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NOTATION  

d effective depth of the cross-section  [mm] 

d’ difference between the height and the effective depth of the cross-section  [mm] 

d0 length over which the concentrated load is spread [mm] 

d1 outer diameter of the punched cone [mm] 

h height of the cross-section [mm] 

fcc uni-axial concrete compression strength [N/mm
2
] 

fct uni-axial concrete tensile strength  [N/mm
2
] 

fcu cube strength of concrete  [N/mm
2
] 

fs,fy yield strength of reinforcement steel [N/mm
2
] 

fc cylindrical concrete tensile strength [N/mm
2
] 

f’c cylindrical concrete compression strength [N/mm
2
] 

kd factor related to the height of the slab [-] 

na dimensionless membrane force in the mid depth of a slab [-] 

nr dimensionless radial membrane force working on the surface of the failure cone  [-] 

nu membrane force at the mid depth axis at the hogging moment per unit width [N/mm] 

n'u membrane force at the mid depth axis at the sagging moment per unit width           [N/mm] 

p perimeter  [mm] 

p punched out perimeter of cone [mm] 

q reinforcement percentage in the code of New Zealand [-] 

r radius [mm] 

r function of the failure surface over the height [mm] 

t outward lateral displacement at the restrained edge [mm] 

w0 critical deflection, empirical determined as 0,5 h  [mm] 

wi deflection at which membrane action starts, empirical determined as 0,03 h [mm] 

A cross-sectional area [mm
2
] 

Ash cross-sectional area of hoop steel per unit width [mm
2
/mm] 

C compression force at the sagging yield moment per unit width [N/mm] 

C’ compression force at the hogging yield moment per unit width  [N/mm] 

DA the internal energy dissipation per unit area in the deforming zone  [N/mm] 

E modulus of elasticity [N/mm
2
] 

F concentrated load  [N] 

I impact factor in the code of New Zealand [-] 

L length of the span [mm] 

M moment  [Nmm] 

N internal force  [N] 

Nrs sum of the radial membrane forces  [N] 



 

12 

 

Ri unfactored ultimate resistance in the New Zealand code [N] 

P ultimate load in punching shear failure  [N] 

Pa analytical ultimate load  [N] 

Pe ultimate load from tests  [N] 

Pp predicted ultimate load  [N] 

S stiffness parameter of a laterally restrained slab  [N/mm] 

W virtual work 

 

 

[Nmm] 

GREEK NOTATION   

α angle between yield surface and displacement rate vector  [rad] 

β factor (0 < β < 0,5) [-] 

β angle between relative displacement and vertical axes  [rad] 

γ0 overload factor in the code of New Zealand  [-] 

γL live load factor in the code of New Zealand [-] 

δ deflection in the middle of the span [mm] 

ε strain [-] 

φ angular rotation  [rad] 

τ shear stress [N/mm
2
] 

τ1 shear stress at with transverse reinforcement is necessary  [N/mm
2
] 

τ2 ultimate shear stress capacity  [N/mm
2
] 

φ strength reduction factor in the code of New Zealand  [-] 

φD strength reduction factor in the code of New Zealand  [-] 

χu height of the compression zone of the concrete  [mm] 

ω0 reinforcement ratio [-] 

ΔL change in length [mm] [mm] 

θ virtual rotation [rad] [rad] 
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1. INTRODUCTION 

1.1. General  

Composites bridge decks are a combination of slab and girder systems, which are designed to 

carry a concentrated wheel-load in bending and punching action. Formerly, the composite 

highway bridges were designed assuming that they obtain adequate shear capacity. Consequently, 

the decks had been considered as simply supported slabs failing entirely in flexure.  

However, many researchers discovered that the effect of in-plane compressive membrane forces, 

induced by the lateral restrained boundary conditions, was considerable on the ultimate capacity of 

the slab. As a result bridge deck slabs which were designed to fail in bending, they mostly fail 

under punching mode at a higher load than that predicted for flexure failure, making the assumed 

bending design of the slab very conservative. Conclusively, the occurring compressive membrane 

forces enhance the strength of the deck slab and reduce its deformations. This phenomenon is 

termed “compressive membrane or arching action” and is going to be investigated at the present 

Master Thesis. Punching and bending failure modes are going to be analysed taken into account 

the enhancement due to compressive membrane action in combination with the transverse 

prestress effect. 

1.2. Basis for compressive membrane action 

Considering a concrete slab which the partially horizontal restraints at the ends do not allow 

horizontal movements, as illustrated in the figure 1.1. Due to high lateral restraints in plane 

compressive forces develop in the slab, increasing the ultimate load. According to experimental 

data the typical load deflection curve for a laterally restrained slab can be depicted at Fig.1 
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Figure 1 Typical Load Deflection Curve for Restrained Slab [Park and Gamble, 1980] 

The dashed line expresses the capacity by predicting in the Yield Line Criterion. The Limit 

Analysis Method or Yield-Line theory is used to predict the ultimate load of slab systems by 

postulating a collapse mechanism and considering the principle of virtual work or equations of 

equilibrium. This method neglects the membrane action and strain hardening as the conventional 

design rules do. The load deflection curve is consisted of two parts: the compressive membrane 

action and the tensile membrane action. Comprehensively, while the load increases and the slab 

deflects vertically, the relative distance between the supports also increases, developing arching 

forces due to the horizontal restraints. This arching action explains the increase in the capacity of 

the concrete slab beyond the yield line. 

The compressive forces take the maximum value in small vertical displacements, which has been 

experimentally proved to be equal to half of the slab’s thickness. As the deflection increases, the 

ends of slab tend to move inward decreasing the compressive forces and finally converting to 

tensile forces. It is noticeable that the ultimate load is given by the load at the peak of the curve 

(point A).  

Generally, it is accepted that the design criterion for the bridge decks should be governed by the 

serviceability limit state rather than the ultimate state for several reasons. 

1. The minimum amount of reinforcement (mainly for shrinkage and temperature requirements) 

leads to high factors of safety against failure. 

2. Compressive membrane action occurs at low deflections, in which the concrete is not fully 

cracked. 

3. The development of tensile membrane action requires an adequate amount of the 

reinforcement and sufficient anchorage of it at the supports. 

 

It is worth mentioning that the degree of compressive membrane action is dependent on the level 

of the lateral restraint and the span-to-depth ratio of the slab, the so-called slenderness. The higher 
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the lateral stiffness of the springs simulating the restraint, the higher the compressive in plane 

forces developed in the slab.  

As have been mentioned, the development of compressive membrane action relies on the restraint 

of the horizontal elongation of the slab, which decreases as the span-to-depth ratio increases. Since 

the slenderness increases, the arching action becomes less effective inasmuch as the axial load 

decreases. The effect of the span-to-depth ratio on the capacity enhancement is shown in Fig 2. 

The ratio S/Ss represents the  lateral support stiffness over the fully rigid stiffness.  

 

Figure 2 Effect of Span to Depth Ratio on Capacity Enhancement 
 

1.3. Basis for transverse prestressing 

It is generally recognized that bridge decks are suffered by wide cracking under moving loads, 

giving rise to penetration of water, oxygen and other chemical  into concrete. This can be avoided 

by prestressing the deck slab so as to improve the structural response under service loads. The 

decks can be lighter reducing the dead loads and the deflection may be controlled reducing the 

cracking. 

 

Figure 3 Typical Examples of Water Entry [Rogowsky, 1997] 
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Prestressed concrete systems commonly use unbonded post-tensioning tendons to improve  the 

serviceability of the deck. 

According to several experimental investigations, the development  of the compressive membrane 

action is highly dependent on the level of transverse prestress. This dependence is proposed by 

Hewitt-Batchelor and can be expressed by linear regression as follows: 

 

Figure 4 η-TPL Relationship 

The transversely prestress can develop sufficient in-plane compressive stresses in the slab to 

counteract the tensile stresses induced by shrinkage and live loads. Thus, the higher the prestress 

applied, the higher the initial cracking loads, enhancing the cracking behaviour.  

Moreover, one important factor influencing the ultimate capacity of the slab is the position of 

applied concentrated load with respect to the prestressed wires. It has been noticed that a deck 

panel is stronger when loaded directly above the wire than when loaded between the wires. 

Generally, the effect of lateral restraint due to transversely prestress and the support conditions 

cooperate effectively to improve essentially the ultimate capacity of slab. The failure mode 

accounts for punching shear and flexure mode and both failure modes will be analysed at the next 

sections. 

 

1.4. Literature Review 

1.4.1. Kinnunen and Nylander’s Model 

Punching failure mechanism was primarily investigated by Kinnunen and Nylander in Royal 

Technical University (1960), carrying out an experimental study about an interior column supports 

of flat slab floors in a symmetric scheme. Kinnunen and Nylander developed an idealised model, 

the so-called triaxial state of compressive stresses in the conical shell based on the experimental 
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results. The failure mode of the slabs was  punching failure, which occurred when the tangential 

strain at the top surface of the circular slabs in the root of the conical shell reaches a characteristic 

value. This would mean that the concrete has been crushed in the tangential direction. 

However, the aforesaid model had to be improved further due to the restricted following 

assumptions: 

1. Failure due to concrete crushing in the tangential direction 

2. No size effect of the column is considered  

3. Dowel forces are estimated 20% of the calculated resistance 

4. The model can be applied to circular slabs with radial and circumferential reinforcement.  

 

At later investigation a more realistic model was provided by Shegata and Regan (1989) as an 

improved version of the Kinnunen and Nylander’s Model. 

This model privileged over the initial because the dowel forces are not estimated but directly 

calculated from model equilibrium and the concrete fails in the critical zone by splitting due to the 

action of the principal tensile stresses or crushing in the tangential direction. 

The improved model of Shegata and Regan corresponds better that the initial to the experimental 

results. 

 

1.4.2.  Hewitt-Batchelor’s Model 

Hewitt-Batchelor modified the proposed model by Kinnunen and Nylander so as to incorporate 

the compressive membrane action. It was achieved by introducing compressive forces (Fb) and 

fixed moments (Mb) at the level of compression reinforcement.  

In order to take into account the variety of  boundary conditions a restrained factor “η” was 

introduced accompanied by the maximum boundary forces, as expressed below:  

Fb= ηFb(max) 

Mb= ηMb(max) 

where Fb(max) and Mb(max) correspond to fully rigid support giving maximum theoretically arching 

action  

η: varies between 0 and 1, for simply supported and fully restrained slab respectively 

The maximum theoretically arching action can be calculated by employing the model Brotchie 

and Holley (1971). This model based on the idealised geometry of displacements in the fully 

restrained slab, as illustrated below.  
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Figure 5 Idealized displacement and Maximum boundary forces in fully restrained slab 
[Hewitt-Batchelor 1975] 

 

From equilibrium equations the maximum boundary restraints are obtained:  

 

Fb(max) = Fc-Ft  

 

At the experiment of Hewitt-Batchelor there was not transverse reinforcement used. Thus, there is 

no contribution of reinforcement steel in the punching shear model. The concrete force is 

calculated according to NEN 1992-1-1:2005; art.3.1.7].   

 

The concept proposed by Hewitt-Batchelor implies that the prestress steel area acts as normal 

reinforcement which effective yield stress is reduced insofar as a part of it contributes to the 

development of compressive forces. This assumption is valid because the positive effect of the 

applying prestress has already been considered as boundary restraints in the slab (Fb=P).  

 

 

Taking into consideration that the ultimate punching shear load, as well as the relating forces are 

implicitly connected, Hewitt and Batchelor developed an analytical model, which calculated the 

ultimate load by executing an iteration process.  

This model has been employed later in the study of He and Weishi, who proposed two methods to 

predict the ultimate punching load. 
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Comprehensively, in the first method the theoretical failure load is calculated for a variety of 

restraint factors. Then, a graph, which illustrates the relation of restraint factor and  transverse 

prestress level is obtained, as depicted below. Having the experimental failure load the relating 

restraint factor can be determined.  

The procedure briefly is the following:  

1. For variety of η the failure loads are calculated 

2. Plot the results: Pu- η 

3. Plot the graph: η-TPL 

4. Estimate the restraint factor by interpolation for the experimental failure load 

 

 

Figure 6 Linear relation restraint factor and level of prestress 
 

In the second method the principle of superposition is employed, which the contribution of 

compressive membrane action in the reinforced concrete slab is examined separately from the 

contribution of the prestress. The latter is divided to two distinct trial approaches, as given 

diagrammatically below. 

 

Figure 7 Analytical Methods 

Ultimate Punching 
load 

Compressive 
Mebrane Action of 

reinforced slab 
n=0.2 Pua 

Prestress action 

Trial 1:  

Fb1=P and Mb1=0 
Pub1 

Pu,total=Pua+Pub1 

Pu,total=Pua+Pub2 

Trial 2: 

Fb2 and Mb2 
Pub2  
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At the first step the slab is analysed as non-prestressed composite deck, considering compressive 

membrane action due to the supports. That is the case the restrain factor η is equal to 0.2 

according to the above mentioned graph.  

At the second step the effect of prestress action is considered and two approaches employed to 

predict the final load. The first trial is simplified since the boundary force is equal to the applied 

prestress force and the boundary moment is considered zero. It is worth mentioning that it has 

been proved by the test results that excluding the boundary moment is not appropriate while the 

arching action is underestimated. The ultimate load will be the summation of the first method the 

this trial.  

At the second trial both compressive forces and moments are considered due to the prestressing 

load, given by the formula:  

Fb= η Fb(max) 

Mb= η Mb(max) 

 

In order to evaluate them Hewitt and Batchelor were making use of the idealised model of 

Brotchie and Holley (1971).  Moreover, setting again the compressive force Fb equal to prestress 

load Fp the restrained factor is the output of this iterative process.  

 

η = 
  

       
 

1.4.3. Plastic theory approach 

Braestrup and Nielsen [1976] developed a punching model to find an upper bound solution to an 

axisymmetric slab. The case is treated theoretically considering that a punching failure occurs with 

a vertical separation of the slab along a surface defined by a generatrix, described by the unknown 

function: 

r=F(x)  

Briefly, the main assumptions employed are: 

 Concrete is considered as a modified Coulomb material.  

 Proposed failure: punched-out of a solid of revolution whereas the rest of slab remains 

rigid. 

 Yield criterion: with respect of tensile strains and stresses. 

 

The upper bound failure load P is given by applying the theory of energy at the failure surface:  

WExternal=WInternal  

WE = P u 

The internal work can be expressed as a function of the geometry of the failure surface and the 

compressive and tensile strengths of the concrete. 
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It should be mentioned that the critical surface of the outer part of slab, which gives the minimum 

upper punching load, corresponds to the minimum work for a given displacement. The details of 

this calculation of the failure surface consists of the two parts: a straight line to a depth h0 and a 

catenary curve from h0 to h. The predicted failure surface is thus similar to that observed in 

punching shear tests. 

The dissipation is found by integration over the failure surface. As the motion of failure is 

perpendicular to the tensile reinforcement, in terms of rigid plasticity, no work is produced by the 

steel. Thus, the predicted ultimate load is independent on the reinforcement ratio. 

 

The  area element can be taken as:  

 

Conclusively, according to the plastic theory the ratio of flexural reinforcement has no influence 

on punching resistance and the compressive strength of the concrete is a decisive parameter for the 

surface of failure. 

In 1986 Jiang and Shen modified the model of Braestrup and Nielsen by using a parabolic 

Coulomb – Mohr intrinsic curve of a modified Coulomb failure envelope.  

The lowest upper bound was given as: 

 

By including the assumption of a straight yield line the formula was further simplified:  

P=0.21fc s h 

where s=π (d+h)  

fc: an effective compression strength equals to: fc =νc*fc’  

νc =0.5 from experimental study 

Therefore, the equation of ultimate punching load is: 

P=0.074 fc’s h 
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It is worth noting that the contribution of the prestressing steel is not taken into consideration, 

making the plastic model less realistic. 

1.4.4. Park and Garnble [1981] 

Considering a concrete slab which the partially horizontal restraints at the ends do not allow 

horizontal movements, as illustrated in the Fig 1. Due to lateral restraints high in plane 

compressive forces develop in the slab, increasing the ultimate load.  

The dashed line expresses the capacity by employing the Yield Line Criterion. The Limit Analysis 

Method or Yield-Line theory is used to predict the ultimate load of slab systems by postulating a 

collapse mechanism and considering the principle of virtual work or equations of equilibrium. 

This method neglects the membrane action and strain hardening as the conventional design rules 

do. The load deflection curve is consisted of two parts: the compressive membrane action and the 

tensile membrane action. Comprehensively, while the load increases and the slab deflects 

vertically, the relative distance between the supports also increases, developing arching forces due 

to the horizontal restraints. This arching action explains the increase in the capacity of the concrete 

slab beyond the yield line. 

The compressive forces take the maximum value in small vertical displacements, which has been 

experimentally proved to be equal to half of the slab’s thickness. As the deflection increases, the 

ends of slab tend to move inward decreasing the compressive forces and finally converting to 

tensile forces. 

1.4.5. New Zealand code 

The New Zealand code is one of the first international codes that takes into account empirically 

the compressive membrane action in bridge decks by making use of test results. This empirical 

method can be used if the following conditions are met: 

 the supporting beams are steel or concrete 

 the diaphragms are continuous and present at all supports for pre-stressed concrete beams 

 the slenderness does not exceed 20 

 the span length does not exceed 4,5 meter 

 the concrete strength f’c is not less than 2 N/mm
2
 

 the minimum slab thickness is 150 mm 

 the overhang of the outer beam is at least 80 mm 

The above criteria are expressed by graphs which are categorised by the height of the slab and the 

compressive strength of the concrete. 

It is noticeable that this code takes into account only the reinforcement ratio ρ. The prestressing 

steel and its effect are neglected, thus the prestressing area has to be converted to an equivalent 
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reinforcement area. This can be achieved by two ways: based on the force equilibrium and equal 

stiffness.   

The New Zealand code considers only full scale bridge decks, consequently for the sake of 

comparison the experimental results have to scaled back according to the scale factors of He. 

 

1.4.6. Eurocode 2 

According to the Eurocode the ultimate punching shear capacity can be calculated by NEN-EN-

1992-1-1 cl 6.4.4. 

uRd=CRd,c·k· (100·ρl·fck)
1/3 

+kl·σcp ≥ (umin+k1· σcp) 

The perimeter of the load area is u:  

u=2· (c1+c2)+4πd 

The scaling coefficient:  

k=1+ 
   

 
  

The reinforcement ratio: ρl=   

In slab the mean transverse reinforcement is taken into account for the capacity, which in turn is 

based on the umin and the level of prestress σcp. 

σcp,level  =   

Pulevel = uRd,2.50,min*d/γc·u 

As has been proved the Eurocode underestimates the ultimate punching load since it takes into 

account only the 10% of the prestressing k1· σcp.  

1.5. Objectives - Research Questions 

The aim of this thesis is to investigate the effect of the compressive membrane action and 

transversely prestress over the ultimate punching and bending capacity. To develop the analysis of 

this scientific topic, research questions have been posed giving an orientation into the research and 

indicating the guiding components of the investigation. 

a. Develop an analytical model to predict the ultimate capacity of a slab accounting for the 

compressive membrane action and the transverse unbonded post-tensioned tendons.  

b. How can the punching shear and bending failure be defined in the terms of the effective 

stiffness provided by the supports and the surrounding slabs?  

c. To what extent can the compressive membrane action and the transverse prestress 

contribute to the punching shear and bending capacity of the slab?  

d. Parametric Study: How can the slenderness of the slab and the position of the load affect 

the development of compressive membrane action?  
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e. Optimization of Structural Design: Which is the combination of the optimum dimensions 

of the slab for the maximum bending and punching shear capacity?  

f. Comparative Study: How realistic is the model compared to the experimental results?  

To approach the research questions this thesis has been divided into two main parts to investigate 

the two failure modes: Punching shear capacity and Bending capacity. Numerical codes were 

necessary to be employed and modified to predict the ultimate capacities. these numerical codes 

were casted to take into account the compressive membrane forces, the prestress effect, the degree 

of stiffness and the loading conditions. 

1.6. Outline Of Thesis 

The present thesis is an attempt to estimate the punching shear capacity and bending capacity of a 

transversely prestressed concrete bridge under the development of compressive membrane action. 

Therefore, the thesis has been divided into two main parts: Punching shear capacity and Bending 

capacity.  

The objective of this thesis is to investigate the effect of compressive membrane action (CMA) in 

combination with the transversely prestress under a static point load applied at the midspan of the 

bridge’s slab. The challenge is to develop a physical model which could predict the mechanical 

response of the slab at punching and bending by taken into account the combination of 

compressive action and the prestress effect. 

Chapter 2 describes the theoretical and analytical approach of punching shear capacity of a 

transversely prestressed slab under the effect of compressive membrane action. A combination of 

the models of Kinnunen and Nylander (1960), Hallgren (1996) and the Model Code 90 is 

employed for the theoretical approach and Hewitt-Batcelor (1975) for the analytical. The 

employed models were necessary to be adjusted at the conditions of the present thesis. Thus, 

modifications have taken place, presenting a different approach for the punching failure. The 

effect of prestress is introduced as imposed deformation in the total ultimate concrete compressive 

strain. Moreover, since the crushing of concrete characterizes the failure of the slab, the 

compressive concrete strain is expected to reach the maximum acceptable limit 3.5 10
-3

. The 

compressive membrane force is calculated by making use of the principle of equilibrium and 

employing 

In Chapter 3 the results of the theoretical approach regarding the punching shear mode are going 

to be compared with experimental results. Two prestress levels are applied (1.25-2.5MPa) during 

the experiments, which took place in the Stevin Lab II CITG, TUDelft, The Netherlands.  

Comparing the results of both cases many conclusions can be reached. Simulating the prestress as 
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an imposed strain, the ultimate punching capacity is hardly affected by different prestress levels 

and the compressive membrane force slightly changes.  

Chapter 4 deals with the estimation of the bending capacity of the slab, employing the flexural 

failure of the approach of Park (1964). A direct solution is not possible due to the fact that the 

position of neutral axis is unknown. Thus, an iterative procedure should be followed to calculate 

the concrete and steel forces. Initially, the concrete force set equal to the crushing force and the 

steel forces equal to yielding force. Then, an incremental displacement is applied and new values 

of the forces are calculated until reaching the maximum capacity. Two cases are investigated 

related to the position of the load. When the load is applied at the exterior panel a lower stiffness 

is contributed to the capacity compared to that of the interior panel. This analysis has been carried 

out by making use of analytical modeling in Matlab, which is capable of making iterations and 

internal loops to estimate the ultimate capacity.  

In chapter 5 the structure and the functions of the Matlab code are thoroughly described. 

Executing a Matlab code for the iterative procedure, presented in the Master thesis Miltenburg 

[1998], the ultimate bending capacity and the vertical displacement are obtained. Then, the 

compressive membrane force can be found by making use of the horizontal equilibrium. 

Comparing the final results of the interior and exterior cases, conclusions can be made. The 

ultimate capacity of the interior panel is higher than the exterior but the displacement is smaller 

because the higher stiffness of the interior makes it stiffer and less ductile. The prestress is 

simulated as an additional stiffness in bending capacity. For different prestress levels, the ultimate 

capacity and arching action are slightly affected.  

Chapter 6 presents the implementation of the theoretical approach to the present research. 

Employing the aforesaid models the ultimate capacity can be estimated for the given input data 

and compared to the experimental results.  

In chapter 7 a parametric study has been carried out to give an insight into the correlation of the 

governing parameters, such as the stiffness ratio and the slenderness. For higher stiffness ratio the 

ultimate capacity is abruptly increased, reaching the higher value at a stiffness ratio equal to 1, 

while for greater values of the ratio no effect is found. In order to achieve the peak of the capacity 

it is not necessary to provide extremely stiff supports. On the other hand, if the slenderness 

increases, the capacity substantially decreases because the slab becomes too slender to develop the 

compressive membrane forces.  

Last but not least, in chapter 8 a comparative study between punching shear and bending results 

takes place. Comparing the two failure modes the bending capacity exceeds the punching shear 

capacity, leading to the conclusion that depending on the loading conditions the most favourable 

failure could be the punching shear failure.  
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PART I: PUNCHING SHEAR CAPACITY 

2. COMPRESSIVE MEMBRANE ACTION IN PUNCHING SHEAR 

2.1. Introduction  

The basic aim of this part of the thesis is to estimate theoretically the punching shear capacity VE 

and analytically the effect of compressive membrane force of the transverse prestressed slab by 

combining the theory of Kinnunen and Nylander (1960) and Hallgren (1996) and the Model Code 

90. The overall procedure has to deal with these phenomena: the bearing capacity under a vertical 

load, the compressive membrane action and their interaction. The parameters of the compressive 

membrane action are also going to be estimated by the analytical approach making use of a Matlab 

code, initially casted by Hewitt-Batcelor (1975). Both procedures are going to be explained in the 

following sections.  

2.2. Failure Mechanism  

Punching shear occurs when the compression zone near a column collapses, because the concrete 

strain in the slab reaches a critical level due to the bending moment or the inclined compression 

stress due to the column reaction. 

According to the proposed model by Kinnunen and Nylander (1960) and Hallgren (1996) failure 

occurs when the tangential compression strain in the slab at the column edge reaches a critical 

value. The cracking at a critical tangential flexural strain softens the concrete at the column edge. 

More comprehensively, at the ultimate stage the compression strain always exceeds the strain 

corresponding to the concrete strength fcc. Thus, when the flexural tangential strain in the bottom 

of the slab reaches the critical value, the concrete loses the interface bond resulting in a vertical 

crack. This vertical crack is attributed to the combined action of the support reaction and the 

tangential strain. It has been observed that the radial compression strain at the bottom surface of 

the slab in the vicinity of the column suddenly decreases to zero when the load almost reaches the 

ultimate punching shear load. Therefore, the inclined compression strut cannot resist the support 

reaction, resulting progressively in the column collapse. Thus, the crack propagation takes place in 
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combination with the shear deformation of the compression zone. Due to the shear deformation 

the radial flexural strain in the bottom of the slab stops increasing while the load increases.  

Conclusively, the failure mode is governed more by the circumferential crack at the slab/column 

interface rather than by propagation of an inclined flexural crack. 

Hewitt-Batcelor (1975) extended the model of Kinnunen and Nylander by introducing 

compressive forces at the ends of the slab, as shown in Fig. 9.  

Below the most representative failures models are presented, indicating the active forces and the 

plane of action.  

 

Figure 8 Kinnunen-Nylander model 
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Figure 9 Punching failure model modified by Hewitt-Batcelor (1975) 
 

 

 

 

 

 

 

 

 

 

 

2.3. Theoretical Approach of Punching Shear capacity  

The main objective of the theoretical approach is to estimate the punching shear capacity and the 

corresponding deflection. The basic assumptions for the material modelling are that at the ultimate 

stage the steel cannot yield and the concrete is crushing. Thus, the steel reinforcement is 

considered as an ideally elastic-plastic material.  

According to punching theory the ultimate load is given by the following formula:  

Figure 10 Failure Mode VE 
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( 1 ) 

 

Where  mε: bending tangential and radial moment per unit width at column edge, given by the Eq 

2.  

yu: compression zone at the ultimate stage, given by the Eq.6 

It is worth mentioning that the employed models should be modified in order to be applicable and 

compatible with the present conditions of the slab. These modifications are based on assumptions 

accounting for simulation of the presence of the post-tensioning tendons and the compressive 

membrane action.   

As can be noticed, the ultimate punching shear capacity Vε depends mainly on the compression 

zone at the failure stage, which in turn depends on the concrete compressive strain. Thus, any 

modification can take place with respect to the concrete strain in order to reflect this change in the 

ultimate capacity.  

 

Figure 11 Bending moments and slab deformation  for a circular slab supported on the edge of a 

circular column 

 

According to the theory of elasticity for a circular slab of Timoshenko and Woinowsky-Krieger 

(1959) the moment can be expressed also as:   

mε = EI   f΄΄= ρ σs
*
 d

2 
(1- yu/3d) ( 2 ) 

Where  f ΄΄: the curvature of the slab due to the bending moment m. 

EI: the stiffness of the cracked cross section 

ρ: reinforcement ratio including regular and prestressing steel, calculating as follows: 

ρ= Ape / Ac  ( 3 ) 
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Ape =Ap+As  

 

i. Calculation of ultimate compression zone: yu 

1
st
 Assumption 

The model Kinnunen and Nylander, Hallgren and Model Code 90 deal with reinforced concrete 

structures. At the considering case, prestressed tendons are present, thus modifications of the 

equations should take place in order to adjust the models.  

To estimate the punching shear capacity the depth of the compression zone should be found. The 

ultimate compression zone depends on the ultimate concrete compressive strain under the vertical 

load Pu and the applied prestress. The role of prestress is quite important since it neutralises the 

tensile strains induced by the external load P, which are responsible for the cracks and ultimately 

for the failure. When the prestress level increases the slab can carry more tensile strains, 

increasing the depth of compression zone, resulting to a higher capacity and better overall 

performance. This favourable effect has to be introduced in the equations of the compression zone. 

It can be achieved by superposing the strain of the reinforced concrete and the strain, carried by 

the prestress. Thanks to the elastic linear behaviour of the prestress steel, the strain compatibility 

can be employed. Thus, the neutralised strain is equal to the strain by the applied prestress. Then, 

it can be assumed that the ultimate compressive concrete strain εu,total is a summation of the 

concrete strain due to reinforcement and the induced strain due to the prestress at the concrete.  

εneutralised = εcp ( 4 ) 

εu,total = εcpu + εcp  ( 5 ) 

2
nd

 Assumption 

Furthermore, since the crushing of concrete characterizes the failure of the slab, the compressive 

concrete strain is expected to reach the maximum acceptable limit 3.5 10
-3

. Thus, at the failure 

stage the concrete has exhausted its capacity by reaching the maximum strain εcpu. 

εu,total = εcpu + εcp = 3.5 10
-3 

+ εcp 

The final compression zone is given by the Eq.(6) at the failure stage when the steel is not yielding 

and the concrete is crushing:  

   
     ε   

         
    

         

         
      

( 6 ) 

αco = 0.5  

εcto = C1/c0 

C1= εu,total (B/2+x) 

x = yel (1+tanα) 
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Where εcp compressive strain at the concrete due to the applied prestress 

 d static effective depth at the level of the tendon: d=0.45*0.5h  

The elastic compression zone yel is derived by the elastic conditions: If punching occurs without 

any yield of the equivalent reinforcement then both reinforcement and concrete behave elastically. 

yel = d           
 

  
   )   

( 7 ) 

n 
  

    
   

ii. Steel stress at the ultimate stage: σ
*
s 

3
rd 

Assumption 

It has been assumed that the steel cannot yield, so the linear elastic model can be used. The 

concrete force has to be balanced by a tensile force. Here, it is considered that the concrete force is 

in equilibrium with a fictitious tensile force which can be calculated making use the principle of 

the equilibrium assuming complete cooperation between concrete and steel (reinforcing and 

prestressing steel). As a result, the concrete strain gives a fictitious steel stress σ
*
s, given by the 

equilibrium as follows: 

Fc = Ft
* 

Ft
* 
= ρ   d   σ*

s 
 ( 8 ) 

Fc =3/4   λ   ηEC   yu   Ec10   εcpu  ( 9 ) 

Where λ is a factor defining the effective height of the compression zone, given by: 

λ=0.8     fck        

λ=0.8-(fck-50)/400   50   fck           

η is a parameters defining the effective strength 

ηEC =1.0     fck        

ηEC =1.0 - (fck-50)/200   50   fck           

  

σ
*
s = 

                 

    
 ( 10 ) 

The tangent modulus of elasticity Ec0 for concrete at zero strain is taken as 

the value given in Model Code 90 (1993): 

Ec0 = 21500   
   

  
     

Ec10 =          
   

   
 
 
  Ec0 

This fictitious steel stress σ
*
s expresses the full cooperation between the 

governing actors: concrete–steel-restraint conditions of the supports. 
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These support conditions are introduced by the fact that there is a fictitious bond between concrete 

and steel.  

Therefore, this fictitious tensile force Ft
* 

includes the steel force of the unbonded tendons, the 

support restraint and the effect of prestress as restraint. The effect of restraint, represented by the 

CMA compressive force Fb, can be isolated from the tensile steel force. Since the fictitious force is 

in equilibrium, the next equation is valid:  

Ft
*
 = Fb + Fpt ( 11 ) 

Where  Fb: compressive membrane force  

Fpt: prestress steel force, calculated according to the crack width theory as the tendon is 

unbonded.  

iii. Calculation of Ultimate Punching Shear capacity  

Now, the bending moment at the support can be calculated, as follows: 

mε = EI   f΄΄= ρ σs
*
 d

2 
(1- yu/3d) 

Finally, the punching shear capacity of the transverse prestressed slab can be estimated according 

to the following formula: 

      
  

    
 
     

  

  

 

Last but not least, the theoretical deflection δ represents the bending deformation and shear 

deformation where the latter cannot be considered negligible since it is important for the punching 

failure mode. This deflection is calculated as follows: 

  
  

  
    

  

  
  

 

     
 
   

 
 

( 12 ) 

The effective (cracked) stiffness is given by the following formula:  

     
  

   
            

  

 
 

    
    

 
  

( 13 ) 

iv. Calculation of stress of unbonded tendon: Crack width theory Fpt 

The unbonded tendon is subjected to a vertical load and an initial axial imposed deformation. The 

total strain is constant along the length of the tendon as the deformation of the bridge is not 

enough to bend the tendon. Thus, it can be simulated as a spring, behaving in an elastic way and 

Figure 12 Stress-strain curve for concrete 

strength 
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accumulating all the strain at its ends. Consequently, the force that is carried by the tendon can be 

calculated directly by the total strain at the support. This strain is a superposition of the applied 

prestress and the strain due to the crack width. 

εptot = Δεp + σs / Es 

Δεp = w/ L  

w = Θ   z 

Θ = θ1 + θ2= δ/l1+ δ/l2  ( 14 ) 

Where  Li: position of applied load 

δ: vertical displacement 

Due to symmetry the distances l1 and l2 are the same and half of the length of the intermediate 

slab. 

Ltot = l1+l2  

Where z the level arm: z = 0.4d 

d = 0.9   0.5   h  

σs = Pm∞/ Ap 

Pm∞ = σcp  Ac 

Ape: equivalent amount of reinforcement given by the summation of prestress and regular 

reinforcement  

Ac: concrete area where the prestress applied 

σcp: applied prestress level at the concrete as a result of the prestress working force Pm∞  

Total prestress of unbonded tendon: 

σpt = εptot   Es  

Fpt = εptot   Es  ( 15 ) 

v. Calculation of compressive membrane force Fb 

Two methods are going to be investigated for the calculation of compressive membrane action. 

The first method employs the principle of equilibrium as explained at the Step 2 and the second 

method applies the analytical Matlab code of Hewitt-Batcelor (1975).  

 Compressive membrane force by theoretical approach “Equilibrium” 

Fb = Ft
* 
- Fpt  ( 16 ) 

 Compressive membrane force by analytical approach Matlab 

2.4. Analytical part of approach 

The main objective of the analytical approach is to calculate the compressive forces and the 

relative factors according to method of Hewitt-Batcelor (1975). The effect of the compressive 

membrane action and the overall interaction will thoroughly investigated. Having obtained the 
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punching capacity and the corresponding deflection, an analytical procedure in Matlab can be 

followed. The value of compressive membrane force of theoretical analysis will be compared to 

that of method of Hewitt-Batcelor (1975).  

 

4
th 

Assumption 

At the Matlab code of Hewitt-Batcelor (1975) the compressive membrane action is an input 

parameter Fb, which has been calculated by introducing an arbitrary value for the restrained factor 

n. Thus, the ultimate punching load is an output parameter that code calculates. At the present case 

study, the ultimate load has been calculated according to the theoretical model, giving above, so 

the code has been inverted and recasted in order to calculate the compressive membrane force. 

Consequently, the validation of the code is ensured because the equations of the model of Hewitt-

Batcelor (1975) are employed to make them work in double way. 

As has been mentioned above, the ultimate load P and the respective displacement are input 

parameters in the Matlab code, as a result no iterations are required to find the compressive force 

Fb and Mb.   

Furthermore, the original code had to deal with bonded regular reinforcement, which was 

expected to yield, giving the steel stress equal to yield stress. At the considering case the tendons 

are unbonded, thus the steel stress will be given by the crack width control, since the unbonded 

tendon is always in the elastic zone.  

Table 1 Input and Output Parameters  

Input data Output data 

Vε Fb 

yel Mb 

yu Fbmax 

εu,total Mbmax 

σs η 
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Hereby, the inverted equations are presented to show the analytical procedure.  
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( 22 ) 

R1 = (rho   fsy d   ((rs - C0) + rs   log(c/(2   rs))))/1000              rs  > C0 ( 23 ) 

R2overBeta = rho   fsy   d   C0/1000                              rs  > C0 ( 24 ) 

R1 = (rho   fsy   d    rs    log(c/(2  C0)))/1000   rs  < C0 ( 25 ) 

R2overBeta = rho   fsy   d    rs/1000    rs  < C0 ( 26 ) 

rs = Es / fsy   tasi   (d - y) ( 27 ) 

fsy = fpk - (Fp / Ap) ( 28 ) 

Fp = σcp  h ( 29 ) 

   
  

   
            

 

 
     

   

 
  

( 30 ) 

 

 

2.4.1. Matlab flowchart 

Hewitt-Batcelor (1975) had casted a Matlab code to calculate the vertical ultimate load Vε.  
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The whole procedure of the code is giving below in the flowchart: 

 

 

Figure 13 Matlab flowchart 
 

At the Appendix III the initial and updated Matlab codes are presented to give an insight into the 

execution of the program. 

 

3. APPLICATION TO PRESENT EXPERIMENT 

3.1. Introduction 

To investigate the punching shear capacity of a transversely prestressed slab, a bridge has been 

constructed at 1:2 scale model at Stevin II laboratory, CITG faculty, Delft University of 

Technology. The bridge model has 12m long and 6.4m width, consisting of four precast concrete 

girders placed at 1800 mm c/c distance. The slab has been casted in situ and prestressed in the 

transverse direction with clear span of 1050mm and thickness of 100mm, as can be observed 

below. 

More specifically, the transversely prestressed slab has 3 intermediate slab panels. At the case of 

punching shear a point load has been applied at the midspan of the panels. The girders have been 
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designed and constructed to bear 11000kN, the load of which cannot be exceeded. Thus, the 

girders are going to remain uncracked during loading, which is also verified during the 

experiment. Since the supports are uncracked the conditions over them can be considered elastic. 

Consequently, the stiffness is not reduced, leading to greater restraint conditions.  

 

Figure 14 Apparatus of structure 
 

 

 

3.2. Application at the applied prestress level: σcp = 2.5 MPa 

The prestressing tendon is positioned at the mid-depth of the slab, resulting to a reduced effective 

depth about d=0.9 0.5 h=0.45 h 

 

 
3.2.1. Theoretical part of approach 

Table 2 Input data 

Description Value  [N/mm
2
] 

fck [N/mm
2
] 82.54 

fcd  [N/mm
2
] 70.16 
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fct  [N/mm
2
] 5.68 

Ec0 [N/mm
2
] 37957.37 

Ec10  [N/mm
2
] 34297.30 

Esp  [N/mm
2
] 205000 

ρ [-] 0.00583 

nρ [-] 0.0277 

h [mm] 100 

d [mm] 45 

ac0 0.5 

B [mm] 200 

Ape [mm
2
] 0.5838 

α 25  

 

 

i. Calculation of elastic zone: yel 

yel = d           
 

  
   )  

As mentioned above, due to the position of the tendon the effective depth of the slab is d=0.45*h 

nρ = 
   

    
  ρ  

Where ρ is the total equivalent ratio taking into account both reinforcement and prestress steel 

area 

ρ = Ap+s /Ac = 0.583/100= 0.00583 per running mm 

Ap+s = Ap+As = 0.4425+ 0.141372 = 0.583mm
2
/mm 

yel =10.41mm 

 

ii. Calculation of ultimate zone yu 

αco = 0.5  

εcto = C1/c0 

C1= εu,total (B/2+x)= 0.411mm 
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x = yel (1+tanα) = 15.27mm 

c0 = B/2 + 1.8   d = 181mm 

Ec0 = 21500   
   

  
    = 37957.37N/mm

2
 

Ec10 =          
   

   
 
 
  Ec0=34297.30N/mm

2
 

εcp = σcp / Ec10 = 5.929 10
-5

 

It is worth mentioning again that the total ultimate compressive concrete strain of the concrete is 

the summation of the strain of the reinforced concrete and the strain, carried by the prestress. 

Employing the strain compatibility it yields: 

εu,total = εctu + εcp = 3.57 10
-3 

   
     ε   

         
    

         

         
      = 12.09mm 

iii. Steel stress at the ultimate stage 

Here, it is considered that the concrete force is in equilibrium with a fictitious tensile force which 

can be calculated making use the principle of the compatibility. As a result the concrete strain 

gives a fictitious steel stress σ
*
s, given by the formula below:  

σ
*
s = 

                 

    
 = 2572.76N/mm

2
 

This fictitious tensile force Ft
* 

includes the steel force of the unbonded tendons, the support 

restraint and the effect of prestress as restraint. The effect of restraint, represented by the CMA 

compressive force Fb, can be isolated (support and prestress) from the tensile steel force. Since the 

fictitious force is in equilibrium, the next equation is valid:  

Fc = Ft
*  

Ft
* 
= ρ   d   σs

*    1000 = 0.583 45 2572.76  1000 = 665190N 

iv. Calculation of ultimate Punching shear capacity  

Now, the bending moment at the support can be calculated, as follows:  

mε = ρ d
2 

σs
*
 (1-yu/3d) = 27651.60N/mm 

Finally, the punching shear capacity of the slab can be estimated according to the following 

formula:  

      
  

    
 

 
    

  

  

  = 162367N  
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Last but not least, the theoretical deflection δ represents the bending deformation and shear 

deformation whereas the latter cannot be considered negligible since it is important for the 

punching failure mode. This deflection is calculated as follows: 

  
  

  
    

  

    
 

     
 
   

 
           

The effective (cracked) stiffness is given by the following formula:  

     
  

   
            

  

 
     

    

 
        10

7 
Nmm 

v. Calculation of stress of unbonded tendon: Crack width theory 

The unbonded tendon is subjected to a vertical load and an initial axial imposed deformation. The 

total strain is constant along the length of the tendon as the deformation of the bridge is not 

enough to bend the tendon. Thus, it can be simulated as a spring, behaving in an elastic way and 

accumulating all the strain at its ends. Consequently, the force that is carried by the tendon can be 

calculated directly by the total strain at the support. This strain is a superposition of the applied 

prestress and the strain due to the crack width. 

εptot = Δεp + σs / Es 

Θ = θ1 + θ2 = δ/L1+ δ/L2 = 2   δ/L1 = 0.096rad 

Where Li: position of applied load 

Ltot = L1=L2 =1050/2=750mm  

w= Θ z =1.72mm 

Where z the level arm: z = 0.4d=18mm 

d=0.45 h=45mm 

Δεp = w/L = 1.72/6400 = 2.69E-04 

Pm∞ = σcp   Ac = 2.5*100*350 = 8.75E+04N/mm  

Ac: concrete area where the prestress applied to the concrete (100x1000) 

σcp: applied prestress level  

The tensile steel and concrete forces are calculated per running meter of the slab, corresponding to 

1000mm width of the slab. The distance between the tendons is 400mm which means that every 

1m there are two tendons.  

σs = Pm∞/ 2Ap = 707.41MPa 

εptot = Δεp + σs / Es = 2.69E-04 + 707.41/205000 = 3.72E-04 

Total prestress of unbonded tendon: 

σpt = εptot   Es = 3.72E-04*205000 = 762.71MPa 

Fpt = σpt   Ap = 762.71 * 0.5838 *1000 = 445272N 

Ft
* = 

Fb + Fpt  
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At the previous stage the fictitious force has been calculated: 

Ft
* 
= 674963N 

Τhus, the compressive membrane force is given by: 

Fb = Ft* - Fpt = 674963 - 445272 = 229691N 

As mentioned in the section 1.4.2, the restrained factor is the ratio between the compressive 

membrane force Fb and the maximum Fbmax under ideal conditions. 

Idealized compressive membrane force 

Fbmax = Fc - Fs 

Fc =3/4 λ ηEC   (2/3   fck    (h/2 – δ/4) 

Where λ is a factor defining the effective height of the compression zone, given by: 

λ=0,8     fck        

λ=0.8-( fck-50)/400   50   fck           

η is a parameters defining the effective strength 

ηEC =1.0     fck        

ηEC =1.0- (fck-50)/200   50   fck           

Thus, the concrete force can be evaluated, as follows: 

Fc = ¾  0.721  0.842  (2/3  82.54)   (100/2-35.96/4)*1000 = 684950N 

At this point it is worth mentioning that the ideal conditions at the support has only effect on the 

concrete force. Due to the fact that the tendon is unbonded, it can be concluded that the 

prestressing steel is not going to yield. During loading, the steel stress will be in the linear stage 

and it is not governing for the failure. Thus, the failure is attributed to crushing of the concrete, 

which leads to punching shear failure. Conclusively, the steel force is not a function of the 

idealised conditions.  

Fs = Fpt = 445272N 

Fbmax = Fc - Fs = 1059.8981N/mm 

The restrained factor is calculated by taken the ratio:  

η = Fb /Fbmax = 229691/23967= 0.95 

3.2.2. Results for all the applied prestress levels  

Table 3: Theoretical Results 

Prestress 

level TPL 

[MPa] 

εcp 

[10
-5

] 

εcpu 

[10
-3

] 

εu,total 

[ 10
-3

] 

yu 

[mm] 

σs
*
 

[MPa] 

mε 

[N] 

Vε 

[N] 

δ 

 [mm] 

by 

ΕΙcracked 
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Table 4: Calculation of prestress force  

 

Following the above procedure the compressive membrane forces and the restrained factor can be 

found by equilibrium for every prestress level applied to the slab. The capacity and the deflection 

are used as an input data for the analytical approach. All the results from the analytical part for 

both cases are presented to the following table. 

  

Table 5: Results by Equilibrium  

Prestress 

level 

TPL 

[MPa] 

Vε = Pu 

[N] 

δ 

[mm] 

Ft
* 

[N] 

Fpt 

[N] 

Fb 

[N] 

Fbmax 

[N] 

η 

0 157809 34.95 655457 31378 624078 657788 0.94 

1.25 160084 35.46 665190 238324 426865 448737 0.95 

2.5 162367 35.96 674963 445272 229691 239677 0.95 

 

 Analytical results by Hewitt-Batcelor  

At this section the compressive membrane action is calculated according to Matlab code of 

Hewitt-Batcelor. 

  

0 - 3.5 3.5 11.99 2498.4 26875.3 157809 34.95 

1,25 3.64 3.5 3.53 12.04 2535.5 27262.8 160084 35.46 

2,5 7.28 3.5 3.57 12.09 2572.7 27651.6 162367 35.96 

Prestress 

level TPL 

[MPa] 

Θ  

[rad] 

w 

 [mm] 

Δεp 

[10
-4

] 

εp,tot 

[10
-4

] 

σpt 

[MPa] 

0 0.093 1.67 2.62 2.62 53.74 

1.25 0.0954 1.70 2.65 1.99 408.23 

2.5 0,095 1.72 2.69 3.72 762.71 
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Table 6 Analytical Matlab Results  

Prestress 

level TPL 

[MPa] 

Vε = Pu 

[N] 

δ 

[mm] 

Fb 

[N] 

Fbmax 

[N] 

η 

0 157809 29.33 737900 1355900 0.54 

1.25 160084 29.44 665230 1308400 0.50 

2.5 162367 34.45   518276 1233000 0.42 

 

4. COMPARATIVE STUDY 

4.1. Results   

Table 7 Results of Experimental approach 

Experiment TPL  

[N/mm
2
] 

Load Pu  

[N] 

Deflection δ 

 [mm] 

Crack width w 

[mm] 

BB-1 [Exterior] 2.5 348740 10.4 0.8 

BB-2 [Exterior] 2.5 321400 9.1 0.7 

BB-16 [Interior] 2.5 553400 9.97 1.5 

 

 

Table 8 Results of Theoretical approach 

Position 

of load  

Failure 

mode 

TPL 

[MPa] 

Vε = Pu 

[N] 

Deflection 

δ 

[mm] 

Fb [N] Fbmax [N] 
η 

By 

Equilibrium 

Hewitt-

Batchelor 

By 

Equilibrium 

Hewitt-

Batchelor 

By 

Equilibrium 

Hewitt-

Batchelor 

- Punching  1.25 160084 35.4 426865 665230 657788 1308400 0.95 0.50 

2.5 162367 35.9 229691   518276 448737 1233000 0.95 0.42 

 

 

 

 

4.2. Comparison: Experimental – Theoretical approach  

Experimental results  



 

44 

 

At the specimens BB-1 and BB-2 the load is applied at the exterior panels at which there is only 

restraint from the edge beam and the one side panel. On the other hand, at the specimen BB-16 the 

load is applied at the interior panel, which is fully restrained by the panels and girders at both 

sides, which give higher restraint, leading to higher load capacity. The main difference between 

the specimens is the position of panel (exterior/interior). Therefore, the effect of the compressive 

membrane action and the effective stiffness are governing for the ultimate failure load, giving a 

deviation about 37% due to the additional stiffness of the interior slab. 

 

Observations 

i. The experimental failure load is greater than the load prescribed at the Dutch code 

52.5kN, which has been scaled down in compliance to the bridge model. Thus, a 

sufficient safety factor can be achieved with lower boundary γ ≥5.6. 

ii. The skewed interface has sufficient capacity to bear the vertical load, since no interface 

failure occurred during the experiments.  

iii. No significant loss of prestressing steel occurred, verifying the initial assumption to 

neglect the prestress losses 

Theoretical results  

i. The ultimate punching load Vε depends on the steel stress, which in turn depends on the 

ultimate compressive zone, given by the concrete compressive strain. That means, every 

external effect such as prestress should be introduced as a strain in the concrete in order to be 

reflected at the ultimate capacity. This initial imposed deformation due to prestress is very 

small to increase the concrete strain, leading to slightly changes in the ultimate capacity.  

ii. The punching shear failure is governed more by circumferential cracks at the loaded area 

rather than by propagation of an inclined flexural crack. The stiffness should be defined in 

terms of parameters, which characterize the punching shear failure, such as the geometric 

dimensions of the conical area and the ultimate compressive zone. However, this stiffness 

cannot account for the boundary conditions and the additional stiffness of the surrounding 

slabs and concrete girders. Thus, the resulting stiffness does not reflect the real effective 

stiffness, which is higher than the assumed, leading to a higher vertical displacement than the 

experimental.  

iii. The theoretical approach cannot take into account the position of the slab, due to the 

deficiency to account for the boundary conditions. Therefore, the interior panel is assumed to 

have the same capacity with the exterior, which is not valid according to the experimental 

results.  
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iv. The effect of compressive membrane action has been considered by taken the maximum 

theoretical capacity of the concrete, since the concrete is expected to crack at the ultimate 

stage. Thus, the concrete strain cannot exceed the value 3.5 10
-3

 at the failure stage.  

vi. The compressive membrane force is the result of the restraint effect of support stiffness and 

prestress. The support stiffness is calculated at the cracked stage by taken into account the 

ultimate compressive zone and the prestress effect has been introduced as an initial imposed 

strain at the compressive zone. Thus, the ultimate punching shear capacity has been estimated 

by taken into account both effects. It is difficult to separate the nominal capacity and the 

additional due to prestress and CMA in punching shear, because at the approach of Kinnunen 

and Nylander (1960) CMA always occurs in the slab due to the fact that the stiffness is given 

by the cracked conical shell. Thus, the boundary conditions at the support are not included in 

the stiffness.  

Comparison: Experiments – Theoretical Results 

i. According to the experimental results the position of loaded panel plays an important role at 

the failure load because of the contributed effective stiffness of the surrounding elements. 

Thus, the interior panel has 37% higher capacity than that of the exterior. On the other hand, 

the theoretical method cannot reflect the boundary conditions since the stiffness is given by 

the cracked conical shell due the shear failure mechanism, neglecting the position of the panel 

(interior/exterior). 

ii.  In the theoretical approach the TPL has a low effect on the load capacity since it has been 

considered as initial imposed deformation, contributed both to concrete and steel force. The 

deviation between the ultimate punching capacities of the different prestress level is less than 

1% (Fig.15). The prestress effect should be taken into account as a progressing effect since it 

introduces strains and restraint effect throughout all the loading process, delaying the failure 

stage. 

iii. In the theoretical approach the deflection has been estimated based on the cracked stiffness 

(effective stiffness) EIcracked by taken into account the compressive zone at the ultimate stage 

when the concrete is crushing, as well as the TPL. The effective stiffness cannot be influenced 

by the effect of the prestress and CMA. Therefore, the stiffness occurs to be less than the real 

stiffness, provided by the support and the surrounding slabs. As a result the deflection is 

higher, almost double, than the observed to the experiments (Fig 16). 

iv. With respect to the two methods (by Equilibrium and Hewitt-Batchelor) for calculation of 

compressive membrane action, according to the literature review and the experimental 

results, the compressive membrane force is expected to increase while the prestress increases. 

However, both approaches analytically prove that in the case of unbonded tendons the 
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prestressing steel force Fpt increases. In the “Equilibrium” approach the fictitious steel force 

Fs
* 

increases at a lower rate than the increasing rate of steel force of the tendon with the 

increase of TPL. This results in a decreasing compressive force (Fig 18). Conclusively, the 

problem is attributed to the definition of the concrete force which cannot reflect the TPL 

levels. 

4.2.1. Graphs 

At the Fig 15-17 it can be observed the effect of TPL over ultimate punching capacity is weak due 

to the simulation of the prestress as imposed strain. The main weakness at the employed 

theoretical method is the definition of the concrete force. It depends mainly on the concrete strain, 

which in turn is replaced with the total strain, including the prestress strain. It is advisable to 

define the concrete force in terms of the effective stiffness, which directly reflect the prestress and 

arching action as a progressing contribution.  

 

 

Figure 15 Vε -TPL Relationship 
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Figure 16 Vε -δ Relationship 
 

 

 

Figure 17 Restraint factor η-TPL Relationship 
 

At the theoretical approach the compressive membrane force is calculated based on the 

equilibrium. On the other hand, at Hewitt-Batcelor approach the membrane force is calculated 

based on the in-plane steel resultants, which represent a better interaction of the steel to the 

punching shear plane. That is why the values of the latter approach are higher than the former. 
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Figure 18 Compressive membrane action 
 

 

Figure 19 Comparison: Punching shear capacity 

 

 

PART II: BENDING CAPACITY OF TRANSVERELLY PRESTRSESSED 

   SLAB 

5. INTRODUCTION: FAILURE MECHANISM 

At the present case the slab is subjected to a double load, applied at the midspan, assuming that it 

fails in bending. To investigate the flexural failure the approach of Park [Park, 1964] is employed. 

According to this theory the slab will form three plastic hinges, as presented below, at which large 

rotations concentrate, leading to the failure deformation. The segments of the panel between the 

slab can be considered that remains straight.  
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Figure 20 Bending Failure Mechanism 

As can be seen at the Fig.20, while the deflection is incrementally increasing the slab moves 

horizontally outward Δ13 causing the development of compressive membrane action Nu due to 

significant horizontal stiffness. At the ultimate failure due to the vertical displacement δ the 

moments at the plastic hinges 1 and 3 are Mu1 and Mu3, respectively. 

 

5.1. Horizontal Elongation of Slab  

The horizontal elongation is directly related to the geometric and kinematic conditions of the slab. 

According to the failure mechanism, three plastic hinges are formed at the critical locations 1,2 

and 3. The position of the central hinge (βL) varies with respect to symmetrical or unsymmetrical 

conditions at the supports. The fact that only the relative distance between the supports 1 and 3 is 

of interest, it can be assumed that the one end is fixed and the other is free to translate. The 

position of neutral axis is represented by notations: c1, c2 and c3 at plastic hinges 1,2 and 3 

respectively.  

 

Figure 21 Boundary restraints 

According to the failure mechanism, three plastic hinges are formed at the critical locations 1,2 

and 3. Idealizing the segments as rigid blocks, the profile of deformation can be considered linear, 

as illustrated below. The rotation of the segments leads to the elongation Δ11' and Δ33' of the 

segments 1-1' and 3-3'. 
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Δ11' = (h-c2-c1)sinγ 

Δ33' = (h-c2-c3)sinθ 

In compatible to the geometric conditions the rotations γ and θ can be expressed as a function of 

the displacement δ, as follows:  

     
 

   
  

     
 

       
  

Δ11' = (h-c2-c1) 
 

   
  

Δ33' = (h-c2-c3) 
 

       
  

Δ1'3' = βL(1-cosγ)+(1-β)L(1-cosθ) = βL(2sin
2 

 
)+(1-β)L(2sin

2 

 
)  

At each incremental displacement δ the total horizontal deformation can be calculated as a 

summation of individual segment's deformations, as follows. 

 

Figure 22 Horizontal elongation of slab 
 

Total elongation: '3'1'33'1113   

2sin
2 

 
 =2( 

 

 
 2

 = 
  

 
  

  

       

2sin
2 

 
 =2( 

 

 
 2 

= 
  

 
  

  

           

Δ1'3' = 
  

        
 

Thus, the total deformation can be expressed:  

Δ13 =          
 

   
 + (        

 

       
  

  

        
 ( 31 ) 

The Eq.31 gives the outward deformation of the slab. The first two terms represent the increase in 

length and the third the decrease. It is worthy noticing that at low displacements the first two terms 

are determinant, explaining the strengthening effect of compressive membrane action at this range 
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of displacements. On the other hand, at large displacements the third term becomes very high due 

to the factor δ
2
, so the slab has the tendency to move inwards, giving rise to the tensile membrane 

force, as illustrated at Fig. 1. 

Having defined the total horizontal displacement of the slab, the compressive membrane force can 

be expressed as:  

Δ13 
  

 
  

Any component of compressive membrane force Nu has to be constant along the entire length L 

(1800mm) of the slab because no other horizontal force is applied. Moreover, along the length of 

the slab the stiffness EA is considered constant since it has been assumed that cracks occur only at 

the plastic hinges.  

The axial stiffness of the slab is consisted of the stiffness of the elements in the transverse 

direction: concrete, mild steel and prestress steel.  

EA = EsAs + Ec (Ag-As-Ap) + EpAp  

Where Ag gross cross sectional area 

 As cross section of the mild steel  

 Ap cross section of the prestress steel 

Creep, shrinkage and temperature changes are not going to be taken into account in the present 

case study. For a scientific interest the final formula which includes all the strain changes is given 

by Mearnarian et. al [1994]:  

 
   TS

c

u

hbEn

Nk





 




11

1
 

Δ13 =          
 

   
 + (        

 

       
  

  

        
   

       

                
           

5.2. Forces in the Slab  

As has been mentioned above, the compressive membrane force Nu, expressed as a function of the 

total deformation Δ13, depends on the position of neutral axes c1,c2 and c3. The rest of the forces: 

concrete, mild and prestressing steel are going to be derived at this section.  

 

5.2.1. Concrete Forces  

The concrete force can be estimated by the next formula according to Eurocode [prEN 1992-1-1]:  

bcfC icdECci   

Where Cci: the compressive concrete force in the hinge i 
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fcd: the design value of concrete compressive strength,defined as:  

ckcd ff
3

2
  

λ: a factor defining the effective height of the compression zone, given by:  

 8,0      MPafck 50  

  400/508,0  ckf    MPafck 9050   

η: a parameters defining the effective strength 

0,1EC      MPafck 50  

  200/500,1  ckEC f    MPafck 9050   

 

The above formula implies a rectangular stress-strain distribution for concrete. It should be noted 

that this is not a true strain-deformation relationship because the extreme fibre of the concrete is 

always considered to be at the ultimate strain. However, the rectangular stress distribution is a 

good representation of the conditions of concrete in flexural compression at failure. Thus, it can be 

employed to approach a plastic failure mechanism.  

 

5.2.2.  Forces in the Mild Steel Reinforcement  

The regular reinforcement is bonded to the concrete, as a result the steel strain is directly related to 

concrete strain, represented by a linear profile in compatible with Bernoulli's theory. 

 

Figure 23 Strains in the Mild Steel Reinforcement 

The strain in the tension and compression steel are expressed as follows:   

Where  εcu: the ultimate compressive concrete strain 

di: the depth from the extreme compression fibre to the centroid of the tension steel at 

hinge i  










 
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i
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cuTi
c

cd
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di': the depth from the extreme compression fibre to the centroid of the compression steel 

at hinge i  

 

Modeling of mild steel: 

The regular reinforcement is bonded, implying that at the ultimate stage it definitely yields. To 

simulate the response of the mild steel during the bending test an elastic-plastic strain hardening 

relationship described by Sargin [1971] is employed. 

According to this Sargin's approach the stress strain relationship is consisted of three parts the so-

called Trilinear Idealization: elastic, plastic and hardening, as illustrated below.  

fs=Es*εs      εs ≤ εy 

fs= fy      εy ≤ εs ≤ εsh 

fs = fy + (εs - εsh)* Esh    
           

        
    εs   εsh 

F=As* fs 

 

Figure 24 Modified trilinear idealization for mild steel [Sargin, 1971] 
 

5.2.3. Forces in Prestressing Steel 

Taking into account that the prestressing steel is unbonded, the strain cannot follow the concrete 

deformation, but it depends on the crack widths at the level of the tendon. The assumed failure 

mechanism in bending states that three plastic hinges are going to be formed at the ultimate stage.  

Due to the escalated deflection the tendon is increasing in length. This difference in length should 

be calculated in compatible with the plastic failure mechanism. Thus, the most suitable model to 

present the deflection of the entire member is that prescribed by Rogowsky and Daher, [1997], as 

presented below.  
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The total steel strain is the summation of the effective prestress εpe and the change in length Δpi at 

each plastic hinge.  

εpf = εpe + Δpi  

 

 

Figure 25 Increase in Tendon length for assumed failure mechanism 
 

The increase in length of the tendons at each of the hinges is: 








 


l

ch
p

1
1

2
  

2
2 2

2 






 


l

ch
p   








 


l

ch
p

3

3

2
 

 

Where dpi: the depth from the extreme compression fibre to the centroid of the prestressing steel at 

hinge i. 

At the present case no losses, such as friction, will be considered. Thus, the total strain in the 

tendon at failure is: 

t
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Modeling of prestressing steel:  

The stress strain relationship is idealized by the model of Collins and Mitchell, [1991].  

The stress for any strain can be calculated as: 
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ppsps AfF   

 

 

Figure 26 Modified Ramberg-Osgood function [Collins and Mitchell, 1991] 

 
 

5.2.4. Location of Neutral Axis at Plastic Hinges  

As has been defined in previous sections, the forces are given as a function of the vertical 

displacement δ, the position of  the central hinge β and the position of neutral axis c1,c2 and c3. 

The position on neutral axis, in turn, can be calculated only when the forces are known. Thus, a 

direct solution is not possible leading to an iterative procedure for the calculation of the variables. 

This can be achieved by taking into account the equilibrium and the geometric compatibility.  

 

Figure 27 Geometry of the deformed slab and the forces present 

 

Making use of the Fig.27 the equilibrium of forces can be derived.  

Cc1+Cs1-T1-Fps = Cc2+Cs2-T2-Fps = Cc3+Cs3-T3-Fps 
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Where  Cci compressive forces in the concrete  

Csi compressive forces in the mild steel reinforcement at hinge i 

 Ti tensile forces in the mild steel reinforcement at hinge i 

Fps prestress force  

 

c1-c2  
             

      
      

c3-c2  
             

      
      

By solving the equations: the position of neutral axis results in the following equations:  

 
   bf

TTT

bS

N
l

hbEn

Nklh
c

cd

u

TS

c

u








4

23

11

1

842

321

1



























   

 
   bf

TTT

bS

N
l

hbEn

Nklh
c

cd

u

TS

c

u








4

2

11

1

842

321

2



























    

 
   bf

TTT

bS

N
l

hbEn

Nklh
c

cd

u

TS

c

u








4

32

11

1

842

321

3



























   

 
    

  

 
  































 































































TS

ps

cd

cd

c

c

cd

TS

c

u

l
b

FT

bf

TTTh
f

ShEn

lk

ShEn

lkf
l

hbEn

Nk
















2321

213

4

2

42

1

11

1

1

11

1

8
1

1

11

1

 

 

 

  
       

               
                 

 

   
       

  
  

      

                
 

 

 
 
    

      

               
 

 

 
             

 

 
 

 

 
 

                              

       
      

 

All the above equations define the position of neutral axis as a function of the forces, which in 

turn depends on the position of neutral axis. That is the case, a direct solution of the equations 

cannot be possible which results in an iterative procedure. The iterations and the boundary criteria 

are going to be analysed at the numerical simulation section.  

 

pscdu FTbcfN  22
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5.3. Determination of the Ultimate Capacity  

At previous sections the forces of concrete, reinforcement and prestressing steel have been defined 

in terms of the deflection δ and central hinge location β. The ultimate capacity is calculated by the 

distribution of the aforesaid forces and their dependent parameters (δ and β). The determination of 

the capacity is according to the assumed failure mechanism, as presented below. 

 

5.3.1. Axial Force and Moments 

The axial forces of the concrete and steel can be observed below at a plastic hinge’s cross section. 

By taking moment equilibrium the ultimate moment capacity can be expressed by the equation: 

Mui= 0.5 η fcd λ ci b (h-λci) + Ti (di-0.5h) + Csi (0.5h-di΄) + Fps (dpi-0.5h)   i=1..3 

The compressive membrane force is given by the horizontal force equilibrium.  

 

 

5.3.2. Calculation of the Capacity 

The failure vertical load, applied at the midspan, depends on the ultimate moments and the 

compressive arching force. By making use the principle of moment equilibrium at the left and the 

right of the central hinge, the capacity is calculated as follows:  

Fd = 
  

   

 
 

   

      
 

   

     
 

   

      
   

 
 

The ultimate capacity as distributed load is given by the formula:  

wu= 
  

   

 
 

   

      
 

   

     
 

   

      
  

       

 

Figure 28 Free Body Diagrams for Loaded Slab Segments 
 

As has already been observed, a direct solution of the capacity is not possible, because all the 

variables in the equations depend on the vertical deflection δ. However, the profile of the 

pscdu FTbcfN  22
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deflection curve including the compressive membrane action is known beforehand by research, 

given at low deflections the arching action starts developing reaching a maximum value at a 

specific deflection and while the deflection keeps increasing the compressive membrane force 

converts to a tensile action. Thus, applying an iteration procedure the accurate deflection curve, 

giving the peak of the compressive action, can be obtained. The iterations are made by applying an 

incrementally increasing deflection at the midspan of the slab.  

 

5.3.3. Location of the Central Hinge  

At the previous sections, the assumed failure mechanism has been defined as a plastic collapse 

mechanism which requires the formation of three plastic hinges, Fig 30. According to the 

equations of the capacity, the failure load depends on the position of the central hinge β. The 

correct value of  parameter β minimizes the collapse load, as a result it can be found by 

differentiating the equation of capacity with respect to the β and setting it equal to zero.  

(Mu1-Mu3) β
2 
– 2(Mu1-Mu2-Nuδ)β + (Μu1+Mu2-Nuδ) = 0  

Thus, the location of central hinge can be estimated by the expression:  

   
                                                    

         
 

( 32 ) 

 

When the reinforcement and the prestressing steel are symmetrical at both support, then the 

ultimate moments Mu1 and Mu3 are equal. At this case, the parameter β cannot be defined, taking 

the value 0.5 due to symmetrical conditions. For unsymmetrical conditions the Eq.32 can be 

employed to find the position or central hinge accurately.   

 

5.4. Restrained Stiffness  

An important parameter that governs the effect of compressive membrane force is the stiffness of 

the slab and of the surroundings elements. The slab is supported by the girders, which are assumed 

to behave linear elastic in order to develop full arching action. If the girders do not have sufficient 

capacity, the failure mechanism will be attributed to the composite failure slab-beam and the 

maximum ultimate capacity, explained at previous sections will not be reached. It is advisable to 

consider different cases of the position of the loaded part in order to estimate a proper distribution 

of (effective) stiffness during loading. The effective stiffness is given by the axial stiffness of the 

slab and the stiffness of the girders. Thus, the next cases are going to be examined at this section. 

The restraints of the loaded slab can be modelled as linear springs, the stiffness of which express 

the effective stiffness of the slab.  
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Figure 29 Linear springs at both ends of slab 

Due to the fact that only the relative distance between the supports 1 and 3 is of interest, it can be 

assumed that the one end is fixed and the other is free to translate. Thus, the final model of the 

slab can be converted to the following one: 

 

Figure 30 Equivalent Mode1 of Restraint 

Taking into account that axial force due to the arching action is the Fb compressive force, which 

has to be constant along span of the slab, since there are no other horizontal forces applied in the 

slab. This force is related to the total axial deformation and the stiffness is considered as the 

stiffness per unit width, as follows: 

Fb = K*Δ13 

K = S*B 

Where S: the effective stiffness of the slab in the transverse direction per unit width B 

L: length of the slab 

Δ13: the total deformation due to compressive force 

The effective stiffness S is given as a function of the linear springs in series per unit width:  
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Having estimated the stiffness of the support the compressive membrane force can be defined:  
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5.4.1. Interior bay loaded  

Assuming that the loaded part is analyzed as an entire bay interior panel, the maximum 

compressive membrane action is expected since the surrounding slab panels will form a confining 

ring to resist the horizontal deformation. The overall stiffness is given by the axial stiffness of the 

slab and the flexural stiffness of the girders. 

Axial stiffness of the slab 

Ss= EA/L=(EsAs + Ec(Ag-As-Ap) + n*EpAp)/L 

Where Ag gross cross sectional area 

As cross section of the mild steel  

 Ap cross section of the prestress steel 

 n amplification factor, taking values 1 for TPL:1.25 and 2 for TPL: 2.5 

More specifically, the girders will not have any horizontal bending deflection since they will act as 

deep beams. At this stage, it is important to take two subcases: the load is applied at the centre and 

at the edge of the panel with respect to the longitudinal direction to investigate the shear effect 

over the horizontal displacement.  

 If the load is applied at the centre of the panel, then there are many unloaded panels 

between the loaded and the edge structure as a result the shear deformation can be 

considered to be negligible. Thus, the axial forces are transferred to the support by 

bending only. Subsequently, the horizontal deflection along the entire width of the loaded 

panel is constant, and it can be modelled as a single slab strip with restrained stiffness 

equal to the axial stiffness of the slab. Moreover, the applied transverse prestress prevents 

cracking, so the retraint stiffness S can be considered as the full axial stiffness Ss. 

 If the load is applied close to the edge of the panel, then the panel is restrained only by a 

single bay and the axial forces of the slab are transferred by shear and bending to the 

supports. To calculate the shear effect on the restraint, the shear stresses due to 

compressive force is considered linear, as plotted below. The compressive force is 

constant along the support.  

 

Figure 31 Shear influence  
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As can be observed, the shear increases the deflection away from the ends of the panel, as the 

axial force is smaller and the restrained stiffness less than that of the ends of the panel.  

Having assumed that the shear stress is uniformly distributed over the width of the panel, it can be 

expressed by the formula at any distance, x:  

τ =  
  

 
 

    

  

   
  

Thus, the shear strain is:  

γ = 

  

 
 

    

 

     
 

Where L: length of the single strip  

B: width of the single strip   

The total shear deformation at the loaded slab (1050x1000mm
2
) is given by the integration 

along the support: 

Δshear =  
 

  

 

 
   = 

  

 
          

         
  

The total deflection of the support due to the compressive membrane force can be expressed as:   

Δsupport = 
    

            
   

The extent that the shear stress is important can be investigated by taking the ratio:  

 Δsupport / Δshear = 
      

       
   

Axial stresses at the support due to Fb Shear stresses at the support due to Fb 
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Figure 32 Lateral Displacement - Stiffness 

As mentioned above, at the analysis of this slab the effective stiffness of the slab is equal to the 

full axial stiffness due to restraint prestress effect, so for the stiffness ratio S/Ss=1 the 

displacement ratio Δsupport / Δshear becomes 2.53. Conclusively, the shear effect can be considered to 

be negligible either the load is positioned at the centre of the panel or close to the edge structure. 

Otherwise, the horizontal deformation should be calculated as a superposition of the support and 

the shear deformation. 

Flexural stiffness of the girder 

As has been mentioned above, the slab is supported by girders, which are considered to obtain 

sufficient capacity to avoid composite failure. The girders are restrained horizontally by the 

surrounding slabs at the upper flange and they are assumed fixed at the floor. Thus, the lateral 

stiffness can be calculated by the formula below:  

kgirder= 
   

  
   

Where EI: the flexural rigidity of the girder  

 hg: the height of the girder 

Taking into account the fact that the inertia in the direction parallel to the length of the slab is of 

interest, the inertia of the girder can be estimated as follows:  

I =Itop,fl+Iweb+Ibot,fl 

Having defined the flexural rigidity of the girder, the stiffness per unit width is:  
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Si = 
       

 
       i=1..3 

The total flexural stiffness of the girders is: 
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Total restraint stiffness:  

Total restraint stiffness is given by the superposition of the contribution of the axial stiffness of the 

slab and the flexural stiffness of the girders. Thus, combining the equations, it is calculated by the 

next expression: 

St =  
  

 
 

    

     
  

It should be noted that the flexural stiffness of the girders is much less than the axial stiffness of 

the slab. The slab should be designed with that high axial stiffness due to the fact that post-

tensioning is applied and it has to be capable of resisting the induced compressive forces.  

The compressive force will cause only lateral displacement at the adjacent slabs and the girders. 

The moment and the shear forces could cause a rotation of the girder towards the loaded slab, but 

due to the continuity of the girder with the slab, the rotation is quite negligible around the girder's 

axis. Also, to neglect this rotation is in the safety side since the rotation would lead to a reduced 

outward horizontal displacement. 

 

Figure 33 Free body – Forces 

5.4.2. Exterior bay line loaded 

At the case that the loaded  panel is located at the exterior bay,  the  restrained stiffness depends 

on the stiffness of the edge beam from the one side, and the stiffness of the adjacent slab and 

girders from the other side. Along the interior edge, the stiffness has been analyzed at the previous 

section. Along the exterior edge is going to be described below:  

 

Edge beam:   
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The stiffness at the edge beam  is expected to be less than the stiffness of the interior line, since 

only the girders contribute to the horizontal resistance. Moreover, the stiffness along the length of 

the edge beam will vary, depending inversely on the deflection of the beam. To estimate the 

distribution of the stiffness the panel has been divided into strips. The lateral stiffness of each strip 

can be found by making use the geometric compatibility that the horizontal displacement  at the 

neutral axis of the strip is equal to the horizontal displacement of the support at the same location. 

It is worth mentioning that  the deflections are calculated under the loads applied by all the strips.  

The forces at the edge beam can cause both lateral deflection and rotation of the beam around its 

shear centre. Furthermore, the centroid of the edge beam does not coincide with the neutral axis of 

the slab, the horizontal displacement will be a combination of the lateral movement and the 

rotation of the edge beam. Thus, to take it into account the flexural rigidity EI and the torsional 

rigidity JG of the edge beam are calculated based on the gross concrete cross section using the 

equations: 

(EI)b = Ec 
 

   
(hb) (bb)

3 
 

(JG)b = 0.43Ec         
  

  
   

  
    

 
  

 

6.  Computational Modelling  

6.1. Introduction  

The numerical simulation of the loaded slab is necessary for estimating the ultimate capacity since 

an iterative process gives an accurate solution. Thus, a code in Fortran 95 has been casted to 

estimate the bending resistance and the ultimate capacity of the slab. This code has taken into 

account the following important parameters, as well as their effects: 

 Compressive membrane action (Nu) 

 Effect of prestress (Fps) 

 Strain hardening of reinforcement steel 

 The position of the loaded part in the slab (case 1, case 2) 

 The temperature changes, creep, shrinkage 

 Symmetrical or unsymmetrical conditions at the supports 

It is well-known that the capacity is directly dependent on the deflection. Therefore, the code 

calculates it by applying an incremental deflection at the midspan, using as a starting point the 

initial deflection: δ= h/300. At each step the code extracts the capacity for a given deflection.  
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6.2. Structure of the code 

The code, casted in Fortran 95, is consisted of the main program SLAB and six subroutines: INT, 

STRIP, REST, ISTRN and FMILDS.  

SLAB 

The main program SLAB initiates the procedure for the estimation of the capacity. It takes into 

account the presence of prestressing steel Ap and the position of the loaded part of the slab 

(exterior or interior). It contains the six subroutines, which are called depending on the different 

cases. Regarding the position of the load, the program calculates the capacity calling the 

subroutine INT or EXT. 

 

INT 

It calculates the ultimate capacity when the interior loaded slab can be simulated as a single strip. 

Initially, it estimated the ultimate capacity (wuo) by calling the STRIP subroutine neglecting the 

effect of compressive membrane action and strain hardening of the mild steel, by employing an 

effective restraint stiffness S of 10
-30 

and ENSH equal to 0. Then, it takes into account these 

phenomena with the total effective stiffness and it finds the load enhancement LE. As has been 

mentioned at previous section the stiffness is a combination of the axial stiffness of the slab and 

the flexural stiffness of the girders, so it is given by the summation of them.  

EXT 

It calculates the ultimate capacity when the exterior loaded slab can be simulated as a number of 

strips in order to obtain a reliable distribution of the stiffness along the length of the edge beam. It 

calculated the ultimate capacity of the slab, by dividing the width and the area of reinforcement. 

Then, it calculates the ultimate capacity by calling the STRIP subroutine with and without the 

effect of CMA and strain hardening by setting an effective restraint stiffness S of 10
-30 

and ENSH 

equal to 0. For the exterior slab the flexural rigidity and the torsional stiffness are inserted as input 

data to calculate the overall response of the slab, by calling the subroutine REST. At the end of the 

analysis the average of the ultimate capacity and the load enhancement of the strips are calculated 

indicating the distribution of the stiffness along the support.  

REST 

It  determines the horizontal displacement of the edge beam at the level of the neutral axis of the 

slab under the load applied by all the strips. The flexural rigidity and the torsional stiffness of the 

edge beam are calculated to form the flexibility matrix and finally to estimate the forces in 

compliance with the distribution of stiffness. Then, applying the geometric compatibility the 

criterion that the horizontal movement of the support has to be equal to that of strip.   

STRIP 
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The subroutine STRIP mainly calculates the ultimate capacity and the moments at the reached 

failure deflection. Defining the restrained stiffness S, it calculates the position of neutral axis for a 

given deflection at each step. Totally it contains three loops:  

Parameter β: Initially, it assumes that the position of central hinge is at the midspan, taking β 

equals to 0.5. At the present case the conditions at the support are symmetrical because of the 

same amount of regular and prestressing reinforcement. At the end, the ultimate moments will be 

known, so the parameter β can be updated using Eq. 32. 

Deflection δ: The deflection is incrementally applied at the central hinge. It is increased at 

successive iterations until the full development of compressive membrane force.  

Forces: In order to estimate the position of neutral axis at the starting point (first iteration), initial 

values for the regular and prestressing steel are assumed. Regarding the regular steel it is 

considered that it yields, but due to the very low initial applied deflection (δ= h/300) the steel only 

yields and no strain hardening is considered yet (plateau part of curve). About the prestressing 

steel, the deflection is not able to cause yielding, thus the initial value is the effective prestress 

force, which takes into account the transverse prestress level, as explained later. Having obtained 

the initial forces the position of neutral axis can be found and then new values of the forces will be 

obtained and used as forces for the next iteration. If the difference between the assumed and the 

resulted is more than 0.01% then the average of the assumed and the calculated forces are taken as 

new values for the next iteration. The iterations stop when the difference between assumed and 

calculated is less that 0.01%. When the final position of neutral axis is known the ultimate 

capacity is calculated and checked with the previous so as to estimate the maximum reached. 

The last step is to calculate the parameter β since all the moments and forces are known. 

FMILDS  

It determined the force in the mild steel at each incremental applied displacement at the midspan. 

The mild steel is modelled by employing the Modified Trilinear Idealization, allowing strain 

hardening of the steel.  

ISTRN 

It determined the force in the prestressing steel at each incremental applied displacement. The 

prestressing steel is modelled by employing the Modified Ramberg-Osgood function. The 

transverse prestress level is introduced as imposed strain in the effective prestress force.  
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6.3. Flowcharts 

Below the most important flowcharts of the code are presented:  

Main program: SLAB 

 

 

 

 

Subroutine: STRIP 
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Subroutine: EXT 
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7. APPLICATION OF THEORETICAL AND NUMERICAL APPROACH 

7.1. General 

The theoretical approach is going to be applied at the present case study. A slab of 3 bays 

supported by girders is going to analysed numerically in order to calculate the ultimate bending 
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capacity and compressive membrane action. As pictured below, the slab model has length 

12000mm and width 6400mm. The concrete girders are located at centre-to-centre distance 

1800mm. The thickness of the slab is 100mm.  

The slab has been examined for different positions of loads: interior panel B and exterior panel 

A/C.  

 

Figure 34 Bridge model structure 
 

7.2. Input data 

As has been presented in previous sections, the numerical simulation takes into account many 

governing parameters, which have already defined. These parameters are required to be introduced 

as input data to execute the main program SLAB. However, the concrete and steel properties, as 

well as the dimensions of the elements are also presented at the table below. 

 

Table 9 Input data-Units in [N,mm] 

Dimensions of slab L 1050 

H 100 

b 12000 
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lt 6600 

Dimensions of girder hb 1200 

bb 300 

lb 12000 

Steel properties As1 1725 

As2 1725 

As3 1725 

As1' 0 

As2' 0 

As3' 0 

Es 200000 

Esh 9000 

fy 500 

fu 700 

εy 0.0025 

εsh 0.006 

εu 0.045 

Prestressing steel Asp 4500 

Ep 205000 

fpe 818.18 

fpu 1100 

Concrete properties fc 81.6 

Ec 40649.72 
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α1 0.7276 

β1 0.766 

 

Where Ec = 4500(fc)
1/2 

 fpe: 900/1.1=818.18MPa 

The tables with the notification and the values of the input data are given below: 

Table 10: Format and description of input file of the Program SLAB 

Input file  Description of input data  

S 

L 

A 

B 

 

D 

A 

T 

A 

l h b    Length, height, width of slab 

d1 d’1 d2 d’2 d3 d’3 Depths of tension and compression steel at plastic hinges 

dp1 dp2 lt  Depths of prestressing at plastic hinges and length of tendon  

As1 As2 As3 A’s1 A’s1 Asp Areas of tension and compression steel and prestressing steel  

fc Ec α β  Concrete strength , modulus of elasticity and  stress block constants  

Es Esh  fy fcu   Modulus of elasticity, strain hardening modulus, yield and ultimate stress 

εy εsh εu    Strains corresponding to yield, start of strain-hardening and ultimate strain 

Fpe Fpu Ep    Effective prestress force, ultimate stress and modulus of elasticity 

A  B  C     Modified Ramberg-Osgood Function Constants  

k εs+T     Ratio of long term to short term axial strains, axial strain due to temper etc. 

 Case 1: Interior slab loaded  

S Effective support stiffness  

Case 1: Exterior slab loaded 

 Sint Stiffness of the interior support 

 lc lcb wc     (EI)c 

hb1 bb lb       (EI)b        (JG)b 

NUM  

Dimensions and flexural stiffness of exterior columns  

Dimensions, flexural and torsional stiffness of edge beam   

Number of slabs to be used 

 

To fill the input data file, important calculations should be made to determine the required 

stiffness for both cases, as well as crucial and valid assumptions with respect to the transverse 

prestress level.  

 

7.3. Determination of stiffness 

Case 1: Interior slab 
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At this case the stiffness is considered the same at the right and left bay lines due to symmetrical 

conditions. It is given as a combination of the contribution of the axial stiffness of the slab and the 

flexural stiffness of the girders.  

There are two subcases regarding the location of the load: centre and edge of the structure. When 

the load is applied at the centre shear deformation can be neglected and the lateral deformation is 

calculated only due to the bending and compressive action. But when the load is applied at the 

edge of the panel then the shear contribution should be checked since it can affect the lateral 

movement, which in turn has an impact on the compressive membrane force.  

 

Figure 35 Loaded panel 

 

 Load is applied at the centre of the slab 

Due to axial stiffness of the slab: 

Ss= EA/L=(EsAs + Ec(Ag-As-Ap) + n*EpAp)/L 

At TPL: 1.25 => n=1 

At TPL: 2.5 => n=2 

n=1: Ss = [200000*(1725+1725+1725)+43285*(105000-(1725+1725+1725)+205000*4500]/1050  

Ss = 5793925.068N/mm
2
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n=2: Ss = [200000*(1725+1725+1725)+43285*(105000-

(1725+1725+1725)+2*205000*4500]/1050        

         Ss = 6672496.496N/mm
2
 

Where : Ag=L*h=1050*100=105000mm
2 

At the transverse direction 60 bars of reinforcement Φ6/200 along the entire length of the support 

have been used. Thus, the total amount of regular reinforcement is As=1725mm
2
.  

Regarding the prestressing steel, there have been installed 30 prestressing bars of cross section 

Ap=150mm
2
. Thus, the total amount of prestressing area is 4500 mm

2
.  

Due to flexural stiffness of the girders:  

Taking into account the fact that the inertia which participates to the horizontal 

resistance along the length of the slab is of interest, this inertia of the girder can 

be estimated as follows:  

I =Itop,fl+Iweb+Ibot,fl =7.02*10
10 

mm
4  

 

kgirder= 
   

  
  = (3*37486*7.02*10

10
)/1200

3 
= 4570526.106N/mm 

where  EI: the flexural rigidity of the girder  

hg: the height of the girder 

Having defined the flexural rigidity of the girder and the slab at both sides, the 

total stiffness per unit width is:  

TPL:1.25 Si = 
              

 
  1727.41N/mm per unit width   i=1..3 

TPL:2.5  Si = 
              

 
  1873.84N/mm per unit width   i=1..3 

Due to symmetrical conditions the flexural stiffness S will be the same at both supports: S1=S3 

The total flexural stiffness of the girders is: 

31

31

1

31
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Total restrained stiffness for interior slab:  
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The total restrained stiffness is given by the superposition of the contribution of the axial stiffness 

of the slab and the flexural stiffness of the girders. Thus, combining the equations, it is calculated 

by the next expression: 

TPL: 1.25 St =  
              

 
 = 863.7N/mm

2
 

 

TPL: 2.5 St =  
              

 
 = 936.92N/mm

2
 

 Load is applied at the edge of the slab:  

Δshear =  
 

  

 

 
   = 

  

 
          

         
  

 

Figure 36 Shear deformation 

The total deflection of the support due to the compressive membrane force can be expressed as:   

Δsupport = 
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Figure 37 Support deformation for varying stiffness ratio 

The extent that the shear stress is important can be investigated by taking the ratio:  

 Δsupport / Δshear = 
      

       
   

 

Figure 38 Δsupport / Δshear for varying stiffness ratio 

 

Case 2: Exterior slab 

At the case that the loaded panel is located at the exterior bay,  the  restrained stiffness depends on 

the stiffness of the edge beam from the one side, and the stiffness of the adjacent slab and girders 

from the other side.  
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The stiffness at the interior bay line is calculated in the same as in case 1. Thus, only the half of 

the axial stiffness and both left and right girders contribute to the resistance.  

TPL: 1.25 St  =   
             

 
 = 622.29N/mm

2
 

TPL: 2.5 St =   
             

 
 = 658.89N/mm

2 
 

About the exterior line, only the edge beam provide lateral stiffness against the horizontal 

deformation.  

During loading the stiffness along the length of the edge beam will vary, depending inversely on 

the deflection of the beam. To estimate the distribution of the stiffness the panel has been divided 

into strips.  

The forces at the edge beam can cause both lateral deflection and rotation of the beam around its 

shear centre. Furthermore, the centroid of the edge beam does not coincide with the neutral axis of 

the slab, the horizontal displacement will be a combination of the lateral movement and the 

rotation of the edge beam. Thus, to take it into account the flexural rigidity EI and the torsional 

rigidity JG of the edge beam are calculated based on the gross concrete cross section using the 

equations given in N and mm: 

(EI)b = Ec 
 

   
(hb) (bb)

3 
= 2.63262*10

15
 

(JG)b =0.43Ec        
  

  
   

  
    

 
 = 1.46667*10

14
 

Making use of the above equations the code can take into account the displacement and the 

rotation of the edge beam for the determination of the ultimate load and the compressive 

membrane action.  
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Figure 39 Exterior bay line loaded 

At this stage all the required input data have defined to the code and given below:  

 

Table 11: Values of input parameters 

INPUT FILE  

S 

L 

A 

B 

 

D 

A 

T 

A 

1050 100 12000     

70 30 70 30 70 30  

56 66 56 6600  

1725 1725 1725 0 0 0 4500 

81.6 40650 0.7276 0.766  

200000 9000 500 700 

0.0025 0.006 0.045  

818.18 1100 205000  

0.025 118 10  

0 0   

Case    

S 

U 

P 

P 

Case 1: Interior slab loaded 

S      

Case 2: Exterior slab loaded  

S     
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O 

R 

T 

 DATA 

1200 1 300 2.63262*10
15

  

1200 300 12000 2.63262*10
15

 1.46667*10
14

 

5     

 

 

8. RESULTS  

At this section the results of numerical analysis are plotted giving an insight into the overall 

performance of the structure. Moreover, the sensitivity of parameters is investigated and plotted in 

order to estimate the effect and the contribution of each parameter, such as the position of load, 

the restraint ratio, the slenderness and the TPL.  

 

8.1. CASE 1: Internal slab 

8.1.1. Effects of Compressive Membrane Action  

Table 12 Analytical results  

TPL 1.25 2.5 

Fdtot [N] 479287.579 484260.85 

Fda [N] 118159.46 117985 

Fdb [N] 361128.11 366275.65 

Mu1 [Nmm] 0.695E+09 0.701E+09 

Mu2 [Nmm] 0.732E+09 0.738E+09   

Mu3[Nmm] 0.695E+09 0.701E+09 

Nu [N] 0.127E+07 0.130E+07 

δ [mm] 12.67 12.33 

c1=c2=c3 [mm] 31.382 31.786 

Δ13 [mm] 1.214 1.138 
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The ultimate capacity will be noticed when the rate of arching is equal and opposite to that of 

bending capacity. Due to the fact that slab obtains very low regular reinforcement area the total 

bending capacity is reached later than the maximum value of the arching capacity. The maximum 

ultimate capacity is reached at 12,58mm while the maximum arching capacity is met at 5,96mm, 

as can be observed at the figure below.  

The aching capacity is 24.65% and the bending action is 75.35% of the ultimate capacity. The 

contribution of the arching action is important at the overall performance of the slab. 

 

Figure 40 Deflection on Bending and Arching capacity 
 

 

S 863.704 936.918 

LE 2.29 2.32 
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Figure 41 Compressive membrane force Nu-δ 
 

 

 

The lateral elongation follows the profile of compressive forces.  

 

 

 

Figure 42 Lateral displacement Δ13–δ 

 

Transverse prestress level: 2.5MPa 

The maximum ultimate capacity is reached at 12,23mm taking the value 484.26kN. The 

contribution of the arching action is important at the overall performance of the slab. 
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Figure 43 Comparison: Effect of TPL and Deflection on Bending and Arching Capacities 
 

 

 

Figure 44 Comparison: Effect of TPL and Deflection on Ultimate capacity 

With respect to prestress level, according to the analytical results, it can be concluded that the 

prestress level slightly affects the ultimate bending capacity of the slab. The additional capacity is 

attributed to the increase in compressive membrane force about 1.75%. 
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Figure 45 Comparison between compressive membrane force Nu-δ for different TPL 
 

 

 

Figure 46 Comparison: Lateral displacement Δ13–δ for different TPL 

 

8.1.2. Effect of Lateral Restraint on the Ultimate capacity 

Transverse prestress level: 1.25MPa 

Effect of Lateral Support Stiffness on the Ultimate Capacities for the range 0<S/Ss<40  
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The figure below illustrates the effect of lateral restraint over the ultimate capacity. At zero 

restraint the load is carried only by the bending action since no arching action can be developed. 

The abrupt increase in the ultimate capacity at small ratio of restraint is attributed mainly to 

arching action, which is quite intensive at the partially restrained conditions especially for values 

between 0.2 and 0.6. For values of ratio higher than 4 an increase in the restraint does not have 

any influence on the capacity. This implies that extremely stiff support is not necessary for 

increasing the ultimate capacity. Neither are bending action nor arching action affected by an 

infinitive stiff support. 

 

Figure 47 Ultimate capacity-Restraint ratio 

Effect of Lateral Support Stiffness on the Ultimate Capacities for the range 0<S/Ss<4 
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Figure 48 Ultimate capacity-Restraint ratio (in detail) 
 

The intensive contribution of the compressive action at small values of retrained can also be 

illustrated by taken the ratio ultimate capacity over the bending capacity (LE). This ratio is 

indicative for the enhancement in the ultimate resistance solely due to arching action. thus, at 

small values the LE load factor reaches values more than the double ultimate capacity. That means 

that the optimum restrained ratio is slightly higher than or equal to 1, when the full stiffness is 

provided for lateral restraint.  

Where, LE=Ultimate capacity/Bending capacity 
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Figure 49 Enhancement factor-Restrained ratio 
 

Furthermore, the following figure shows the ultimate capacity over the vertical displacement δ for 

various lateral restraint ratio S/Ss. At the case that no restraint is provided the capacity slightly 

changes while the vertical deflection at the midspan increases. Thus, the slab will fail due to large 

displacements. It is worth mentioning that as the restrained conditions increase, the slab fails at 

smaller deflections, which leads to the conclusion that the slab becomes less ductile. For values of 

stiffness less than the axial stiffness of the slab and the girders the slab fails at greater deflections 

than L/82 (12.85mm). According to Eurocode, at the permissible serviceability the upper limit l/h 

for prestressed slabs is L/50.  

 

Figure 50 Load Deflections curves for varying S/Ss 
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The profile of the ultimate capacity is also repeated at the enhancement factor, which reaches the 

highest value at the stiffness ratio equal to 1. At this section at which the interior support is 

explained, the stiffness ratio has been considered to be equal to 1, corresponding to the yellow 

load deflection curve. At the aforesaid curve the load enhancement factor becomes double leading 

to the conclusion that at the present case the contribution of compressive membrane action at this 

stiffness ratio results in a double ultimate capacity. 

 

Figure 51 Enhancement load factor for varying S/Ss 
 

Transverse prestress level: 2.5MPa 

Effect of Lateral Support Stiffness on the Ultimate Capacities (0<S/Ss<40)  

As can be also seen by the Table 16, the transverse prestress level hardly affects the ultimate 

capacity due to the fact that the prestress level is introduced as an initial imposed deformation and 

an increase in the effective stiffness of the prestressing steel. Both parameters do not have 

governing influence on the bending resistance. Therefore, there are slightly differences ranging at 

1.03% between the results of the two prestress levels.  
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Figure 52 Comparison: Ultimate capacity-Restraint ratio for different TPL 

 

Effect of Lateral Support Stiffness on the Ultimate Capacities (0<S/Ss<4)  

 

Figure 53 Comparison: Ultimate capacity-Restraint ratio for different TPL (in detail) 
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Figure 54 Comparison: Enhancement load factor for varying S/Ss for different TPL 

 

 

Figure 55 Comparison: Ultimate capacity for varying S/Ss for different TPL 
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Figure 56 Comparison: Enhancement load factor for varying S/Ss 
 

8.1.3. Capacity Enhancement Factor: Slenderness - Stiffness effect  

Another important parameter which governs the performance of the slab is the slenderness l/h. At 

the present case this ratio is l/h=1050/100=10.5 while the stiffness ratio S/Ss is equal to 1. This 

combination results in double ultimate capacity. As expected, for small values of slenderness the 

arching action is more intensive due to higher compression zone. The overall performance of the 

slab is expressed by the blue curve, as illustrated below. On the other hand, high values of 

slenderness lead to a slender behaviour which weakens the compressive action. Specifically, for 

depth to height ratio l/h more than 15 there is no enhancement since the slab starts performing in a 

slender way minimizing the effect of  compressive membrane action.  

To estimate better the influence of slenderness and stiffness over the capacity of the slab it is wise 

to separate the arching and bending case. Thus, the change in the ultimate capacity will be 

attributed to the change in the bending or in the arching action. generally, the bending contribution 

determines the final value of the ultimate capacity. At Fig.61the curves of bending action reaches 

the peak points at S/Ss=1 later than the curves of arching action S/Ss=0.6, Fig. 60. 

As has been mentioned at previous sections, the effect of prestress hardly changes the results and 

the effect of the other parameters. 

I. Transverse prestress level: 1.25MPa 
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Figure 57 Enhancement load factor for varying S/Ss and varying slenderness 

 

Figure 58 Enhancement load factor for varying S/Ss and varying slenderness (in detail) 

. 
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Figure 59 Ultimate capacity for varying S/Ss and varying slenderness 
 

 

Figure 60 Arching capacity for varying S/Ss and varying slenderness l/h 
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Figure 61 Bending capacity for varying S/Ss and varying slenderness l/h 

II. Transverse prestress level: 2.5MPa 

 

Figure 62 Comparison: Enhancement load factor for varying S/Ss and varying slenderness l/h 
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Figure 63 Comparison: Ultimate capacity for varying S/Ss and varying slenderness (in detail) 

 

Figure 64 Comparison: Arching capacity for varying S/Ss, varying slenderness l/h and different 

TPL 
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Figure 65 Bending capacity for varying S/Ss and varying slenderness l/h 

8.2. Case 2: Exterior slab  

Table 13 Results 

EXTERIOR SLAB LOADED -  5 SLAB STRIPS USED 

Strip number 

[NUM] 

Effective support 

stiffness 

[S] 

Ultimate capacity 

[WU] 

Load enhancement [LE] 

1 622.29 0.7118 2.14 

2 172.4 0.5796 1.74 

3 75.9 0.4929 1.48 

4 41.3 0.4437 1.33 

5 29.6 0.4232 1.27 

 

AVERAGE ULTIMATE CAPACITY IS    0.53 

AVERAGE LOAD ENHANCEMENT IS   1.59 
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8.2.1. Effects of Compressive Membrane Action  

The most advisable way to investigate the effect of compressive membrane action is to isolate the 

bending action and arching action. This can be achieved by calculated the ultimate capacity 

separately, by inserting different stiffness at the subroutine STRIP.  

Load for Compressive membrane action:  

Fda  
                      

      
   

Load for bending action 

The moments M1, M2 and M3 are calculated with the axial internal forces at the level of neutral 

axis. They are not equal to the moments Mu1,Mu2 and Mu3 which are calculated with the axial 

forces at the mid-depth of the slab. 

Fdb= 
  

  

 
 

    

   
 

  

   
  

 
   

 

The moments M1, M2 and M3 can be found by converting the moments  Mu1, Mu2 and Mu3  at the 

neutral axis according to the following expressions: 

M1=Mu1    
 

 
   c1)Nu 

M2=Mu2    
 

 
   c2)Nu 

M3=Mu3    
 

 
   c3)Nu 

Ultimate load: Load Bending capacity + Load Compressive membrane action 

Fdtot  
                      

      
  

  
  

 
 

    

   
 

  

   
  

 
    

According to the extracting results the Fdtot is maximized at δ equal to 13.33mm. This is verified 

also numerically by taking the derivative of the above equation with respect to the δ equals to zero 

and solving it. Then, the displacement is found the same value with the program Fortran. This 

happens at every step of the increasing displacement.   

The contribution of the arching and bending action in the ultimate capacity is plotted below.  

Table 14 Results 

TPL [MPa] 1.25 2.5 
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Fdtot [N] 457920 4617906 

Fda [N] 117895 1180629 

Fdb [N] 340024 3437276 

Mu1 [Nmm] 66468806 66932774 

Mu2 [Nmm] 70150624 70614592 

Mu3[Nmm] 66468806 66932774 

M1 [Nmm] 42787345 43273349 

M2 [Nmm] 46469163 46955167 

M3[Nmm] 42787345 43273349 

Nu [N] 1163824 1180903 

δ [mm] 14.1 13.8 

c1=c2=c3 [mm] 29.6 29.96 

Δ13 [mm] 1.55 1.49 

Ss 622.290 658.897 

 

 

 Transverse prestress level: 1.25MPa 
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Figure 66 Effect of Deflection on Bending and Arching Capacities  

 

 

 

Figure 67 Compressive membrane force Nu-δ 
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Figure 68 Lateral displacement Δ13–δ 
 

 Transverse prestress level: 2.5MPa 

 

 

Figure 69 Comparison: Effect of Deflection on Bending and Arching Capacities for different TPL  
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Figure 70 Comparison: Compressive membrane force Nu-δ for different TPL 

 

 

 

Figure 71 Comparison: Lateral displacement Δ13–δ for different TPL 
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8.2.2. Effect of Lateral Restraint on the Ultimate capacity 

 Transverse prestress level: 1.25MPa 

Effect of Lateral Support Stiffness on the Ultimate Capacities (0 <S/Ss <40) 

 

 

Figure 72 Ultimate capacity-Restraint ratio 
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Figure 73 Ultimate capacity-Restraint ratio (in detail) 

 

 

Figure 74 Effect of stiffness ratio on compressive membrane action 
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Figure 75 Effect of stiffness ratio on lateral displacement 

 

 

 

Figure 76 Effect of stiffness ratio on enhancement load factor LE 
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Figure 77 Load Deflections curves for varying S/Ss 
 

 Transverse prestress level: 2.5MPa: Comparison between TPL  

 

Effect of Lateral Support Stiffness on the Ultimate Capacities (0 <S/Ss <4)  

 

Figure 78 Comparison: Effect of Lateral Support Stiffness for different TPL 
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Figure 79 Comparison: Load enhancement factor for different TPL 

 

Figure 80 Comparison: Compressive membrane force for different TPL 
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Figure 81 Comparison: Effect of stiffness ratio on lateral displacement 

 

Figure 82 Comparison: Load Deflections curves for varying S/Ss and different TPL 
 

 

8.2.3. Capacity Enhancement Factor: Slenderness - Stiffness effect  

 Comparison: TPL = 1.25MPa - 2.5MPa 

The slab to depth ratio is governing at the estimation of the compression membrane force. The 

arching action is directly dependent on the horizontal elongation, which in turn depends on the 

geometric characteristics of the slab. As can be observed below that as the slab to depth ratio 
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increases the arching action becomes rapidly less effective. The Fig. 83 shows how the ultimate 

capacity is affected by the slab to depth ratio with respect to the restraint ratio. 

When no restraint is provided the ultimate capacity decreases considerably since the slab becomes 

more slender without any support stiffness to develop compressive membrane action. When lateral 

restraint is provided, the enhancement still decreases substantially since the slab becomes again 

more slender.  

For ratio l/h=8 the enhancement factor shows that the ultimate capacity is 4 times more than that 

when no lateral stiffness is provided, which means that only bending action is present in the slab. 

 

 

Figure 83 Comparison: Ultimate capacity for varying l/h, varying S/Ss and different TPL 
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Figure 84 Comparison: Arching capacity for varying l/h, varying S/Ss and different TPL 

 

Figure 85 Comparison: Bending capacity for varying l/h, varying S/Ss and different TPL 
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8.2.4. Comparison: Load over Internal and External panel 

 

Figure 86 Comparison: Load deflection curves at Internal and External panel [TPL=2.5] 

 

Figure 87 Comparison: Deflection on Bending and Arching Capacities at internal and external 

panel 
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Figure 88 Comparison: Effect of slenderness and stiffness over Arching Capacities [2.5MPa] 

 

Figure 89 Comparison: Effect of slenderness and stiffness over Bending Capacities [2.5MPa] 
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9. COMPARATIVE STUDY 

9.1.  Comparison Bending results 

The experimental results and the theoretical approach for bending failure are going to be 

compared. 

Table 15 Experimental results 

Experiment TPL  

[N/mm
2
] 

Load Pu  

[N] 

Deflection δ 

 [mm] 

BB-11 [Exterior] 1.25 377850 7.11 

BB-5 [Exterior] 2.5 490400 9.56 

 

 

 

 

 

Table 16 Results of theoretical approach 

Theoretical  

approach 

TPL 

[N/mm
2
] 

Vε = Pu 

[N] 

Deflection δ 

[mm] 

External  1.25 457920 14.104 

2.5 461790 13.826 

Internal  1.25 479287 12.5846 

2.5 484260 12.2369 

 

Experimental results  

At the specimens BB-11 and BB-5 the load is applied at the exterior panels at which there is only 

restrained from the edge beam and the one side panel. The main difference between the specimens 

is the transverse prestress level. The BB-5 has 23% higher capacity due to the greater restraint 

owing to higher prestress. More compressive stresses neutralize the tensile increasing the ultimate 

compression zone and carrying higher vertical load Pu. The exterior panels have lower effective 

stiffness than the interior, as a result the effect of prestress will be weaker. At the interior panels 

the difference in the ultimate capacity is expected to be greater.  

Observations  
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i. Large rotations occurred at the peak load leading to longitudinal cracks between the double 

loading points. 

ii. No further increase in the capacity after the failure was occurred.  

iii. The skewed interface has sufficient capacity to bear the vertical load, since no interface failure 

occurred during the experiments.  

iv. No significant loss of prestressing steel occurred, verifying the initial assumption to neglect 

the prestress losses.  

Theoretical results  

 At the internal panels the ultimate capacity is higher because the surrounding slabs form a 

confining ring, which does not occur at the exterior. At the same prestress level the 

punching shear capacity is higher about 5% at the interior panel than that of the exterior.  

 The effect of the prestress level slightly increases the bending capacity of the slab because 

it is simulated as an additional stiffness of the prestressing steel area. The additional 

capacity is attributed to the increase in compressive membrane force about 1.75%.  

9.2. Graphs  

 
Figure 90 Compressive membrane force Nu-δ 

Due to very low regular reinforcement area the total bending capacity is reached later than the 

maximum value of the arching capacity (Fig.91). The maximum ultimate capacity is reached at 

12,5mm while the maximum arching capacity is met at 5,96mm at TPL 2.5MPa. The maximum  

capacity can be divided into an arching capacity of 24.65% and a bending action of 75.35% of the 

ultimate capacity. 
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Figure 91 Comparison: Effect of Deflection on Bending and Arching Capacities for different TPL. 

 

 

Figure 92 Ultimate capacity at bending 

9.3. Comparison: Punching – Bending results  

At Fig.93-95 a comparison is presented between the experimental and theoretical results of 

ultimate capacity at bending and punching shear for different prestress levels. According to the 

graphs, the bending capacity is higher than the punching shear capacity. This leads to the 

conclusion that the slab will fail mostly in punching shear, which is also verified by the 

experiments. The difference in the capacities can be attributed to the fact that the bending capacity 

takes into account the stiffness of the surroundings element, such as panels and girders, whereas 

the punching shear capacity is based only on the stiffness of the formed conical shell. 
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Consequently, the theoretical approach of Kinnunen and Nylander underestimates the effective 

stiffness provided by the adjacent elements, leading to a lower ultimate punching shear capacity. 

 

Figure 93 Comparison: Punching-Bending Results 

 

 

Figure 94 Comparison: Punching-Bending Results 
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Figure 95 Punching failure mode 

 

10. PARAMETRIC STUDY  

The sensitivity of parameters is investigated and plotted in order to estimate the effect and the 

contribution of each parameter, such as the position of load, the restraint ratio, the slenderness 

and the TPL. The considering slab has the following characteristics:  

 Stiffness ratio: S/Ss=1 

 Slenderness: L/H=10.5 

 TP1=1.25-2.5 

Comparison: Load over Internal and External panel 

1. The ratio of ultimate capacity over the bending capacity (LE) is indicative for the 

enhancement in the ultimate resistance solely due to arching action. Thus, at small values 

the LE load factor reaches values more than the double ultimate capacity. That means that 

the optimum restraint ratio is slightly higher than or equal to 1, when the full stiffness 

is provided for lateral restraint.  

2. At the case that no restraint is provided the capacity slightly changes while the vertical 

deflection at the midspan increases (Fig.97). Thus, the slab will fail due to large 

displacements. As the restraint conditions increase, the slab fails at smaller deflections, 

which leads to the conclusion that the slab becomes less ductile. For values of stiffness 

less than the axial stiffness of the slab and the girders, the slab fails at greater deflections 

than L/82 (12.85mm). According to Eurocode, at the permissible serviceability the upper 

limit l/h for prestressed slabs is L/50 (21mm).  
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3. The load enhancement factor becomes double leading to the conclusion that at the present 

case the contribution of compressive membrane action at this stiffness ratio results in an 

almost double ultimate capacity. 

4. For small values of slenderness the arching action is more intensive due to higher 

compression zone. The overall performance of the slab is expressed by the blue curve, as 

illustrated below (Fig.99-100). On the other hand, high values of slenderness lead to a 

slender behaviour which weakens the compressive action. Specifically, for depth to height 

ratio l/h more than 15 there is no enhancement since the slab starts performing in a 

slender way minimizing the effect of  compressive membrane action.  

5. Due to very low regular reinforcement area the total bending capacity is reached later 

than the maximum value of the arching capacity (Fig.97). The maximum ultimate 

capacity is reached at 12,5mm while the maximum arching capacity is met at 5,96mm at 

TPL 2.5MPa. The arching capacity is 24.65% and the bending action is 75.35% of the 

ultimate capacity.  

6. At zero restraint S/Ss=0 the load is carried only by the bending action since no arching 

action can be developed (Fig.99-100). The abrupt increase in the ultimate capacity at 

small ratio of restraint is attributed mainly to arching action, which is quite intensive at 

the partially restraint conditions especially for values between 0.2 and 0.6. For values of 

ratio higher than 4 an increase in the restraint does not have any influence on the capacity. 

This implies that extremely stiff support is not necessary for increasing the ultimate 

capacity. Neither are bending action nor arching action affected by an infinitive stiff 

support.  

 

Figure 96 Enhancement load factor for varying S/Ss and varying slenderness (in detail) 
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Figure 97 Comparison: Load deflection curves at Internal and External panel [TPL=2.5] 

 

 

Figure 98 Comparison: Deflection on Bending and Arching Capacities at internal and external 

panel 

To estimate better the influence of slenderness and stiffness over the capacity of the slab it is wise 

to separate the arching and bending case. Thus, the change in the ultimate capacity will be 
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attributed to the change in the bending or in the arching action. Generally, the bending 

contribution determines the final value of the ultimate capacity.  

 

Figure 99 Comparison: Effect of slenderness and stiffness over Arching Capacities [2.5MPa] 

 

Figure 100 Comparison: Effect of slenderness and stiffness over Bending Capacities [2.5MPa] 

11. CONCLUSIONS  

 The Mild steel has no effect over the punching and bending capacity due to the low 

value of reinforcement ratio.  
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 The transverse prestress level has simulated as an initial imposed deformation in 

punching capacity and as an additional stiffness in bending capacity. In both cases the 

TPL slightly has a contribution in the enhancement of the capacities. This can be 

explained by the fact that the unbonded tendon never yields, responding elastically 

throughout the loading process. Therefore, the tendon has a linear elastic profile and  

its stress value at the ultimate stage is independent on the yielding stress because it is 

never reached. The TPL will delay the failure of concrete.  

 The simulation of TPL as an imposed deformation underestimates the contribution of 

the prestress making the approach less realistic compared to experimental results.  

 The ultimate capacity is considerably affected by the lateral restrained ratio S/Ss, 

provided by the support and the surrounding slabs. The degree of the lateral restraint 

governs the contribution of the compressive membrane action. The optimum restraint 

ratio is estimated S/Ss=1 at which the combination of the compressive and bending 

action is maximum. Stiffness ratio higher than 1 results in non ductile slabs whereas 

for values higher than 5 the stiffness becomes so high that there is no effect of 

stiffness to the ultimate capacity. 

 It is not necessary to provide fully fixed conditions at the support, since for high 

values of stiffness ratio there is not any further enhancement. The performance of the 

slab under a double wheel load should be characterized by plasticity and ductility. 

When the stiffness ratio decreases the slab can accommodate higher displacements 

showing more warning cracks and  avoiding a sudden failure. This can be achieved 

by taken the lateral restraint ratio equal to 1, leading to an economical solution and 

sufficient ultimate capacity.  

 The length depth ratio l/h affects the overall performance of the slab. For the present 

case the ratio l/h is 10 which leads to a double ultimate capacity compared to lower 

ratios. If the slenderness increase the slab becomes more slender and as a result it 

decreases the effect of compressive action.  

 The interior slab shows higher enhancement of the capacity compared to exterior 

slabs, because of  the effective stiffness of the surrounding elements (slab-girders). At 

the case of loading the interior slab, the surrounding panels and concrete girders form 

a confining ring around it, increasing considerably the restraint stiffness. 

 The performance of the exterior slab depends on the flexibility of the edge beam. The 

failure load as well as the contribution of compressive membrane action are 

calculated by taking into account the flexural, rotational and torsional rigidity of the 

edge beam.  

 The shear effect can be considered to be negligible either the load is positioned at the 

centre of the panel or close to the edge structure. Otherwise, the horizontal 
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deformation should be calculated as a superposition of the support and the shear 

deformation.  
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APPENDIX I 

PUNCHING SHEAR: EXPERIMENTS  

To investigate the punching shear capacity of a transversely prestressed slab, a bridge has been 

constructed at 1:2 scale model at Stevin II laboratory, CITG faculty, Delft University of 

Technology. The bridge model has 12m long and 6.4m width, consisting of four precast concrete 

girders placed at 1800 mm c/c distance. The slab has been casted in situ and prestressed in the 

transverse direction with clear span of 1050mm and thickness of 100mm, as can be observed 

below. 



 

123 

 

 

Figure 101 Apparatus of bridge model 
Experiment BB-1 

The first test of the series was carried out on 5th February, 2013. The load was applied in 25kN 

increments @1kN/sec. The position of the load and the distances are depicted below. The applied 

prestress level was 2.5MPa.  

 

Figure 102 BB-1 Apparatus of structure and load 
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Figure 103 Detail of the load position 
 

 

 

 

 

 

 

Table 17 Response progress 

Load   
Crack 

Width  
 Type Remarks 

kN mm   

25  -  -  - 

50   -  -   

75 <0.05  
 Bottom 

long/transverse 

Hairline cracks directly under  loading plate. Hardly 

visible 

 100 <0.05   Better visibility  

 125  0.05 
Diagonal/Radial 

punching  
Diagonal cracks.  Widening of previous cracks 

 150 0.1-0.15 
 

Spreading of radial cracks/Widening  

 175  0.2-0.25     

 200  0.3   Max Crack width directly under load  

 225  0.35   Max Crack width directly under load   

 250  0.4-0.45   0.45 directly under load. Elsewhere 0.4 

 275  0.5   Max Crack width directly under load   
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 300  0.6   
Max Crack Width directly Under load. Crack 

observations stopped  

 325    Circumferential 
Circumferential cracks  occurred somewhere between 

300kN and failure.  

 348.7     

Punching failure.  Large cracking and spalling at 

some places. G301(East side of panel) interface 

spalling at bottom. Top side punched through the  

loading plate.  

 

Table 18 Summary results 

Load [kN] TPL [N/mm
2
] Deflection [mm] Crack width [mm] 

348.74 2.5 10.4 0.8 

 

 

 

Figure 104 Load – Midspan Deflection Response 
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Figure 105 Bottom side of deck slab after failure 
 

 

 

Figure 106 Top side of deck slab after failure 
 

 Experiment BB-2 

The second test of the series was carried out on 8
th
 February, 2013 at Stevin II laboratory, CITG 

faculty, Delft University of Technology. 

Load was applied in 75, 100, 150, 200, 250 kN steps @ 1kN/sec. Later the actuator was switched 

to displacement control at 0.01mm/sec till failure.  
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Figure 107 BB-2 Apparatus of structure and load position 
 

Table 19 Response progress 

Load F0 
Crack 

Width 
 Type Remarks 

kN mm   

75 <0.05  
 Bottom 

Diagonal/transverse 

Hairline cracks. Hardly visible . Directly  under 

the  loading plate 

 100 0.05 Diagonal/Radial  More diagonal/radial cracking 

 150 
0.1 - 

0.15  

Spreading of radial cracks/Widening  of crack. 

First circumferential  crack observed near Duct 27 

 200 
0.25-

 0.3 
  

Propagation of cracks. Longitudinal crack at mid 

span extending from bottom of deck and going 

round the front side to the top. Max Crack width 

directly under load  

 250 
 0.45-

0.5 
  

Crack propagation in all directions. Random radial 

cracks. More circumferential cracks observed 

outlining the loading plate at the bottom side of 

the deck.  

 Crack observations stopped. Load continued (displacement controlled) at 0.01mm/sec 
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321.4 
  

Punching started.  Maximum load reached.  

0.01mm/s 
  

Further displacement allowed punching cone to 

form fully. More diagonal crack propagation . A 

circumferential crack appeared between duct 30 

and 29.  

 

 

Table 20 Summary results 

Load [kN] TPL [N/mm
2
] Deflection [mm] Crack width [mm] 

321400 2.5 9.1 0.7 

 

 

 

Figure 108 Load – Midspan Deflection Response 
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Figure 109 Crack width-Load curve 
 

 

Figure 110 Top side of deck slab after failure 
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Figure 111 Bottom side of deck slab after failure 
 

 Experiment: BB-16 

This test was carried out on 6
th
 May, 2013 at Stevin II laboratory, CITG faculty, Delft University 

of Technology. 

Load was applied in 50 kN increments @1kN/sec till 400 kN. Later the actuator was switched to 

displacement control at 0.01 mm/sec till failure. The load was applied at two points with a c/c 

distance of 600 mm at the midspan. 
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Figure 112 BB-16: Apparatus of structure and load 
 

Table 21 Response progress 

Load F0, 

kN 

Crack Width 

[mm] 
Type Remarks 

50   -  - - 

100 -- - - 

 150 0.05* 

Longitudinal/ 

Transverse/ 

Radial 

First crack in the longitudinal crack direction between  

the two load points. Hairline transverse and radial 

cracks. 

 200 
 0.1*-0.05**-

Hairline*** 

Longitudinal/ 

Radial 

Propagation of initial cracks. New longitudinal and 

radial cracks. 

 250 
0.2*-0.15**-

0.1*** 

Longitudinal/ 

Transverse/ 

Radial 

More cracks in different directions,. Propagation of 

previous cracks.  

 300 
0.3*-0.2**-

0.1*** 
Radial 

More radial/diagonal cracks. Widening and 

propagation of previous cracks.  Shrinkage crack at 

duct 15 widening.  

350 
0.45*-0.3**-

0.15*** 
Radial  

New radial cracks. Propagation and widening of 

previous cracks. Shrinkage crack 0.4 mm wide. 
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400 
0.8*-0.35**-

0.2*** 
Radial 

Displacement controlled load  at 0.01 mm/sec. Observations stopped. 

553.4 
  

Large rotations observed. Circumferential crack 

around loading point 1. Punching Shear Failure. Top 

side punched through the  loading plate 1.   

 

*Initial Longitudinal crack        **Radial crack at load point 1       ***Transverse crack at load 

point 1 

 

Table 22 Summary results 

Load [kN] TPL [N/mm
2
] Deflection [mm] Crack width [mm] 

553.4 2.5 9.97  

 

 

Figure 113 Load – Midspan Deflection Response3 
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Figure 114 Load - Crack width 
 

 

Figure 115 Top side of the deck slab 

 

1 

2 
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Figure 116 Bottom side of deck slab showing the cracks 
 

 

BENDING: EXPERIMENTS 

 

i. Experiment BB-5 

The fifth test of the series was carried out on 25
th
 February, 2013. The load was applied in 50kN 

increments @1kN/sec till 350kN. The position of the load and the distances are depicted below. 

The applied prestress level was 2.5MPa.  

 

Figure 117 Apparatus of structure and load 
 

 

1 
2 



 

135 

 

 

Figure 118 Detail of the load position 

 
Table 23 Response progress 

Load F0 

[Kn]  

Crack Width 

[mm]  
Type Remarks 

50    

100   
  

150 0.05 

Longitudinal/ 

Transverse/ 

Radial 

First crack in the longitudinal direction between 

the 2 loading points, transverse cracks at both 

loading points, radial crack at load point 1.  

200 0.05-0.1 
 

Propagation of the initial cracks.  

250 0.15-0.2 

Longitudinal/ 

Transverse/ 

Radial 

More cracks in different directions, propagation 

of previous cracks.  Maximum crack width at 

the initial longitudinal crack. 

300 0.3 Radial 

More radial/diagonal cracks. Widening and 

propagation of previous cracks. Maximum crack 

width at the initial longitudinal crack 
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350 0.45-0.5 Radial  

More radial/diagonal cracks. Propagation of 

previous cracks. Longitudinal crack getting 

wider. 

Displacement controlled load at 0.005 mm/sec, then changed to 0.01 mm/sec at 370 kN.  

Observations stopped. 

400 
   

450 
   

469.7 
  

Load dropped for a while and then again started 

increasing at increasing deflections. 

490.4 
  

No further load increase was possible. Increase 

in rotation. Flexural failure with a number of 

radial cracks at the loading points.   

250 2.5 
 

Longitudinal crack of 2.5 mm width. 

 

 

 

 

Summary results:  

Load [kN] TPL [N/mm
2
] Deflection [mm] Crack width [mm] 

490.4 2.5 9.56 2.51 
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Figure 119 Load – Midspan Deflection Response 
 

 

 

Figure 120 Bottom side of deck slab after failure 
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Figure 121 Top side of deck slab after failure 
 

 

ii. Experiment BB-11 

The eleventh test of the series was carried out on 27
th
 March, 2013. The load was applied in 50kN 

increments @1kN/sec till 237kN. The position of the load and the distances are depicted below. 

The applied prestress level was 1.25MPa.  
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Figure 122 Apparatus of structure and load 

 

Table 24 Response progress 

Load F0 

[Kn]  

Crack Width 

[mm]  
Type Remarks 

50   Hairline  Transverse A short transverse crack at load point 1.  

100  0.05* Longitudinal 

First longitudinal crack *between two point 

loads. Initial transverse crack at load point 1 

remains hairline. 

 150 

0.15*-

Hairline**-

Hairline*** 

Transverse/ 

Radial 

New transverse cracks at both loading points. 

Radial crack at load point 1. Longitudinal crack 

propagates further. 

 200 
 0.3*-0.05**-

0.1*** 

Longitudinal,/ 

Transverse/ 

Radial 

New longitudinal cracks. New transverse crack 

under load point 2. Long radial cracks. 

Propagation of previous cracks. 

Displacement controlled load at 0.01 mm/sec at 237 kN.   

 250 
0.9*-0.15**-

0.3*** 
Radial 

Radial cracks. Propagation of previous cracks.  

Maximum crack width at the initial longitudinal 

crack. 

 300 
 2*-0.35**-

0.7*** 
Radial 

More radial cracks. Widening and propagation 

of previous cracks. Maximum crack width at the 
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initial longitudinal crack. 

Observations stopped. Crack width of longitudinal crack at 350 kN = 5mm* 

 377.85 
  

Flexural failure with no further increase in load. 

Large increase in prestressing force.  

 

Summary results:  

Load [kN] TPL [N/mm
2
] Deflection [mm] Crack width [mm] 

377.85 1.25 7.11 2.65 

 

 

 

Figure 123 Load – Midspan Deflection Response 
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Figure 124 Bottom side of deck slab after failure 
 

 

Figure 125 Top side of deck slab after failure 
Conclusions:  

v. Large rotations occurred at the peak load leading to longitudinal cracks between the double 

loading points. 

vi. No further increase in the capacity after the failure was occurred.  
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vii. The skewed interface has sufficient capacity to bear the vertical load, since no interface failure 

occurred during the experiments.  

viii. No significant loss of prestressing steel occurred, verifying the initial assumption to neglect 

the prestress losses.  

 

 

 

 

 

 

 

 

 

 

APPENDIX II  

 Verification of the code Fortran 95 

The bending capacity of the model bridge is calculated based on numerical analysis on Fortran 95.  

A lot of research has been carried out in the past to estimate the bending resistance of slabs taken 

into account the effect of the compressive membrane action. In the Master thesis of  a code casted 

in Fortran 75 has been used to calculate the bending capacity of a frame-slab. This code is an 

invaluable engineering tool for capacities of any kind of slabs, since it has taken into account the 

following important parameters, as well as their effects: 

 Compressive membrane action (Nu) 

 Effect of regular reinforcement or prestress (Fps) 

 Strain hardening of reinforcement steel 

 The position of the loaded part in the slab (case 1, case 2) 

 The temperature changes, creep, shrinkage 

 Symmetrical or unsymmetrical conditions at the supports 

This code had to deal with the prestressed slabs in the longitudinal direction supported by 

columns.  

At the present master thesis this code could not be applicable without modifications and 

adjustments. 
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At the first step the original code had to be re-casted in order to be compatible with the newer 

version Fortran 95. Some of the old commands were necessary to be replaced with new commands 

executing  the same function. After recasting the updated code was tested before it is applied at the 

present case.  

It gave exactly the same results with the old code, verifying the validity of the updated one.  

At the second step the code had to be adjusted to the conditions of the structure of the model 

bridge.  

The structure at the initial code has many important differences from the structure at the present 

case. The bridge model, constructed in the Stevin Lab II, CITG TUDelft, differs from the 

aforesaid structure at the next points:  

 Present case: the bridge is supported laterally by the concrete girders. These girders can 

provide adequate restraint to the slab leading to the development of compressive membrane 

forces in the transverse direction. Thus, the axial and flexural stiffness are given by the girders 

and the surroundings panels. 

Past case: it is supported by columns and cross beams. Thus, the axial and flexural stiffness 

are given by the beams, the columns and the surrounding panels. 

 Present case: the bridge is prestressed in the transverse and longitudinal direction.  

Past case: it is prestressed only in the longitudinal direction and only the effect of the regular 

reinforcement was taken into account employing the Modified trilinear idealization for mild 

steel [Sargin, 1971] to simulate the strain hardening of steel.  

 

At the next table the results of the original code are presented, which are precisely the same with 

that from the relative Master thesis. 

 

 Example - Analysis of Interior Slab 

Tables B.l and B.2 show input and output files, respectively, for the analysis of an interior slab in 

the parking structure. The input file for the analysis of Slab having a remain stiffness of 257 

N/rnm
2
, was arbitrarily chosen to demonstrate the input and output files for the analysis of an 

interior slab. A summary of the program execution  is also given at the end of the output file to 

show the size of the program.  

 

Table B.1: Input Data 

INPUT FILE  

S 

L 

A 

B 

4840 140 16500     

114 26 114 26 114 26  

100 110 100 71950  

4714 4125 4714 0 0 0 2159 
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D 

A 

T 

A 

30 24648 0.805 0.895  

200000 9000 400 600 

0.002 0.006 0.08  

1120 1860 200000  

0.025 118 10  

0 0   

1    

S 

U 

P 

P 

O 

R 

T 

 DATA 

Case 1: Interior slab loaded 

257.1 

 

Table B.2 Output Data 

INTERIOR SLAB LOADED -SINGLE SLAB  STRIP USED 

  

 EFFECTIVE                     MAXIMUM 

 SUPPORT                ULTIMATE           VERTICAL                        LOAD 

STIFFNESS            CAPACITY         DEFLECTION       ENHANCEMENT 

 257.1                    0.0272                       29.87                                   1.51  

  

 AXIAL                  MOMENT AT PLASTIC HINGE 

 FORCE                        1                       2                         3 

0.546E+07         0.738E+09         0.739E+09         0.738E+09 

 

Numbers of Warnings  0 

Numbers of Errors 0 

 

 

 Example - Analysis of Interior Slab 

Table B.3  Input Data  

INPUT FILE  

S 

L 

4745 140 16500     

114 26 114 26 114 26  
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A 

B 

 

D 

A 

T 

A 

100 110 100 71950  

4714 4125 4714 0 0 0 2888 

30 24648 0.805 0.895  

200000 9000 400 600 

0.002 0.006 0.08  

1120 1860 200000  

0.025 118 10  

0 0   

2    

S 

U 

P 

P 

O 

R 

T 

 DATA 

Case 2: Exterior slab loaded  

975     

4850 2425 375 7.02*10
14

  

750 300 12000 4.16*10
13

 5.35*10
13

 

5     

 

Numbers of Warnings  0 

Numbers of Errors 0 

 

Table B2: Results  

EXTERIOR SLAB LOADED -  5 SLAB STRIPS USED 

Strip number 

[NUM] 

Effective support 

stiffness 

[S] 

Ultimate capacity 

[WU] 

Load enhancement  

[LE] 

1 295.1 0.0301 1.44 

2 4.3 0.0235 1.12 

3 0 0.0231 1.11 

4 0 0.0231 1.11 

5 0 0.0231 1.11 

 

AVERAGE ULTIMATE CAPACITY IS  0.02 
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AVERAGE LOAD ENHANCEMENT IS  1.18 

 

TOTAL AXIAL FORCE APPLIED TO A COLUMN IS   0.574E+06 

TOTAL MOMENT APPLIED TO AN EXTERIOR COLUMN IS  0.257E+09 

TOTAL MOMENT APPLIED TO AN INTERIOR COLUMN IS  0.305E+09 

 

APPENDIX III 

NUMERICAL CODES  

Hereby, the original and the updated code are given below:  

 

ORIGINAL CODE  

**************************************************************** 

SLAB 

**************************************************************** 

IMPLICIT DOUBLE PRECISION (A-Z) 

INTEGER CASE,NUM 

OPEN (l, FILE='TERMINAL') 

OPEN (5,FILE='INPUT') 

OPEN (6, FILE='OUTPUT' ) 

READ (5,*)  L,H,B, 

+   D1,D11,DZ,D12, D3, D13, 

+  DP1, DP2, DP3, LPS, 

+   AS1, AS2, AS3, ASPl,ASP2,ASP3,ASP, 

+   FC, EC, Al, BI, 

+   ES, ESH, FYS, FUS, 

+   EYY, ESSH, EUU, 

+   FPE, FPU, EP, 

+   AA, BB, CC, 

+   K, EST, 

+   CASE 

IF (ASP.EQ.0) THEN 

GOTO 10 

ELSE 

CALL ISTRN (EPPI, FPE, EP, AA, BB, CC) 

ENDIF 

10 GOTO (100,200,300), CASE 

100 READ(5, *)  S 

CALL INT(L,H,B, D1,D11,D2,D12, D3, D13, DP1, DP2,DP3,LPS,AS1,AS2, 

+ AS3,ASP1,ASP2,ASP3,ASP,FC,EC,A1,B1,ES,ESH,FYS,FUS, 

+ EYY,ESSH,EUU,EPPI,FPE,FPU,EP,AA,BB,CC,K,EST,S) 

GOTO 400 

200 READ(5,*) S3, 

+  LC1, LCB1, WCOL, EIC1, 

+  HB1, BB1, LB1, EIB1, JGB1, 

+  NUM 

CALL EXT (L, H, B, D1, D11, D2, D12, D3,D13, DP1, DP2,  

+ DP3,LPS,AS1,AS2,AS3,ASP1, ASP2, ASP3,ASP,FC,EC,A1, 

+ B1, ES, ESH,FYS, FUS,  
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+  EYY, ESSH, EUU, EPPI, FPE, FPU, EP,AA, BB, CC, K, EST,  

+ S3, LC1,LCB1, WCOL, EIC1, HB1, BB1, LB1, EIB1, JGB1, NUM) 

GOTO 400 

300 READ(5,*) S3, 

+  LC1, LCB1,WCOL,EIC1, 

+ HB1, BB1, LB1, EIB1, JGB1, 

+  NUM 

S3=1E38 

EIC1=1E38 

CALL EXT (L,H, B, Dl, D11, D2, D12,D3, D13, DP1, DP2, DP3,  

+ LPS,AS1,AS2,AS3,ASP1, ASP2,ASP3,ASP, FC, EC,A1, B1,ES, 

+ ESH, FYS, FUS, EYY,  ESSH, EUU, EPPI,  FPE, FPU, EP,AA, BB, 

+ CC, K, EST, S3, LC1, LCB1, WCOL, EIC1, HB1, BB1,LB1, EIB1, JGB1 , NUM) 

GOTO 400 

400 END 

 

************************************************************** 

SUBROUTINE EXT (L,H,B, D1, D11, D2,D12, D3,D13,  

+ DP1,DP2,DP3,LPS, AS1, AS2,AS3,ASP1,ASP2, ASP3,ASP,FC,  

+ EC,A1,B1,ES, ESH, FYS, FUS, EYY, ESSH, EUU, EPPI,  

+ FPE, FPU, EP, AA,  BB, CC,  K, EST, S3,  LC1, LCB1, WCOL, EIC1,  

+ HB1, BB1, LB1, EIB1,JGB1, NUM)  

************************************************************************ 

IMPLICIT DOUBLE PRECISION (A-Z) 

INTEGER NUM,  X , Z ,Y  

DIMENSION DIST (15) , S1 (15) , SE (15) , F1SLAB (30) ,  

+      F3SLAB (30) , CC1 (15) , CC3 (15) , WWU (15) , DDL (15) , SSMOVE (15),  

+      D1SLAB (15) , RMOVE (15), VV1 (15), VV3 (15) , LE (15)  

* CALCULATE WIDTH OF STRIPS AND STEEL IN STRIPS 

B=B/ (2* NUM) 

ASP1=ASP1/ (2 *NUM) 

ASP2=ASP2/ (2 *NUM) 

ASP3=ASP3/ (2 *NUM) 

ASP=ASP/ (2 *NUM) 

AS1=AS1/ (2 *NUM) 

AS2=AS2/ (2 *NUM) 

AS3=AS3/ (2 *NUM) 

* CALCULATE SLAB CAPACITY NEGLECTING COMPRESSIVE MEMBRANE 

*   AND STRAIN HARDENING 

SO=1E-30 

ENSH=0 

CALL STRIP(L,H,B, D1, D11, D2,D12, D3,D13,  

+ DP1,DP2,DP3,LPS, AS1, AS2,AS3,ASP1,ASP2, ASP3,ASP, FC,  

+ EC,A1,B1,ES, ESH, FYS, FUS, EYY, ESSH, EUU, EPPI,  

+ FPE, FPU, EP, AA,  BB, CC,  K, EST, S, NU,  

+ MU1,MU2,MU3,C1,C2,C3,WU, DL,SMOVE,BH,V1,V3)  

* SET STIFFNESS OF FIRST SLAB STRIP EQUAL TO FLEXURAL  

* STIFFNESS OF EDGE BEAM AT MIDDLE OF FIRST SLAB STRIP AND  

* ITERATE TO GET STIFFNESS DISTIBUTION 

  DO 10 X=l,NUM 

  S1 (X)=(1/(2/(3*EIC1*LC1**3/( LCB1**3*(LC1-LCB1)**3)) + ( (LB1/ 

  +          (4*NUM) **2 / (6*EIBl*LB1**3)* (3*LBl**3*( LBl/( 4*NUM)) - 

  +           LB1**3* (LB1/(4*NUM)-3*LB1**2* (LB1/ (4*NUM) )**2))) ) /B 

  DIST (X) =1 

  SE(1)=1/ (1/S1(1) +1/S3) 

10  CONTINUE 

140 Z=0 
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70      Z=Z+1 

    DO 20 X=l, NUM 

20  SE (X) =DIST (X) * SE (1) 

* CALCULATE FORCES AND DISPLACEMENTS OF STRIPS 

DO 30 X=l,NUM 

S=SE (X)  

CALL STRIP(L,H,B, D1, D11, D2,D12, D3,D13,  

+ DP1,DP2,DP3,LPS, AS1, AS2,AS3,ASP1,ASP2, ASP3,ASP, FC,  

+ EC,A1,B1,ES, ESH, FYS, FUS, EYY, ESSH, EUU, EPPI,  

+ FPE, FPU, EP, AA,  BB, CC,  K, EST, S, NU,  

+ MU1,MU2,MU3,C1,C2,C3,WU, DL,SMOVE,BH,V1,V3)  

F1SLAB (X ) = NU 

F1SLAB (X+NUM) =MU1 

CC1 (X) =Cl 

VV1(X) =V1 

F3SLAB(X) =NU 

F3SLAB (X+NUM) =MU3 

CC3 (X) =C3 

VV3 (X) =V3 

WWU(X) =WU 

LE (X) =WU/WUO 

DDL (X) =DL 

30 SSMOVE (X) =SMOVE 

* CALCULATE MOVEMENT OF SUPPORTS 

TNU=0 

DO 40 X=l, NUM 

40   TNU=2*F3SLAB(X)+TNU 

D3SLAB=TNU/(B*2*NUM*S3) 

CALL REST (H,LC1 ,LCB1 , WCOL,EIC1,HB1 , BB1 ,  LB1 , EIB1 , L JGB1 ,  

+  F1SLAB, CC1, D1SLAB, NUM, VV1 ) 

50 RMOVE (X) =D1SLAB (X) + D3SLAB 

* CALCULATE DISTRIBUTION OF EFFECTIVE STIFFNESS 

IF(Z.EQ.1)THEN  

DO 60 X=F1SLAB(X) /RMOVE(X) /(F1SLAB (1) / RMOVE (1)) 

ELSE  

CONTINUE 

ENDIF  

 * DEFINE POINTS ON TWO LINES TO CALCULATE COMPATIBLE STIFFNESS 

IF(Z.EQ.1)THEN 

SM1=SSMOVE ( 1) 

RM1=RMOVE (1) 

SEFF1 = SE ( 1 ) 

SE(1)=.7*SE (l) 

GOTO 70 

ELSE IF(Z.EQ.2)THEN 

SM2=SSMOVE ( 1 ) 

RM2 =RMOVE ( 1 ) 

SEFF2=SE ( 1 ) 

ELSE 

SM1=SM2 

RM1 = RM2 

SEFF1 =SEFF2 

SM2 =SSMOVE ( 1 ) 

RM2=RMOVE ( 1 ) 

SEFF2=SE ( 1 ) 

ENDIF 

WRITE(1,*) 'ITERATION',Z 
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* PREVENT POSSIBLE INFINITE LOOP 

IF(Z.LT.50)THEN 

GOTO 80 

ELSE 

WRITE (1,* ) ' SOLUTION DID NOT CONVERGE' 

GOTO 700 

ENDIF 

* CHECK IF STRIP AND RESTRAINT MOVEMENT ARE EQUAL FOR FIRST  

* STRIP 

80   (SSMOVE(1)-RMOVE(1)) /SSMOVE(1)) .LT.0.01)THEN 

GOTO 90 

ELSE 

GOTO 100 

ENDIF 

* CALCULATE NEXT ESTIMATE OF STIFFNESS 

100 SEFF=(SEFF2-SEFF1)*(RM1-SM1)/(SM2-SM1-RM2+RM1)+SEFF1 

IF (SEFF . LT . 0 ) THEN 

SEFF=lE-5 

ELSE 

CONTINUE 

ENDIF 

SE ( 1 ) =SEFF 

GOTO 70 

* CHECK IF STRIP AND RESTRAINT MOVEMENT ARE EQUAL FOR OTHER 

* STRIPS 

90  WRITE(1,*) 'MATCHED STRIP FIRST STRIP ... CHECKING ALL STRIPS' 

    Y=l 

120  IF(ABS( (SSMOVE(Y)-RMOVE(Y))/SSMOVE(Y)).GT.0.01)THEN 

GOTO 110 

ELSE IF(Y.LT.NUM)THEN 

WRITE(1,*) 'MATCHED STRIP #',Y 

Y=Y+l 

GOTO 120 

ELSE 

WRITE(l,*) 'MATCHED STRIP #',Y 

GOTO 150 

ENDIF 

* CALCULATE NEW DISTRIBUTION OF STIFFNESS 

110  DO 130 X=1,NUM 

130  DIST(X)=F1SLAB(X) /RMOVE(X) /(F1SLAB(1)/RMOVE(1)) 

GOTO 140 

150  WRITE (1, *) 'SLAB HAS CONVERGED TO A SOLUTION' 

* CALCULATE TOTAL AXIAL FORCE AND MOMENT APPLIED TO COLUMNS AND 

* AVERAGE LOAD CAPACITY AND LOAD ENHANCEMENT 

NUT=0 

MU1T=0 

MU3T=0 

WTOT=0 

DO 160 X=1,NUM 

NUT=NUT+F1SLAB (X)  

MU1T=MU1T+F1SLAB (X+NUM) 

MU3T=MU3T+F3SLAB (X+NUM) 

160 WTOT=WTOT+WWU (X) 

 WAVG=WTOT/NUM  

 AVGLE=WAVG/WUO 

* OUTPUT DATA  

 WRITE (6,1) NUM  
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 DO 170 X=1,NUM  

170 WRITE (6,2)  X, SE(X) , WWU (X), LE (X) 

WRITE (6,3)   WAVG, AVGLE, NUT, MU3T, MU1T 

   1 FORMAT(/,'EXTERIOR SLAB LOADED -' , I3, '  SLAB STRIPS USED ', / / , 

       + '   EFFECTIVE       ' 

        +, /, ' STRIP  SUPPORT  ULTIMATE    ', 

+ '   LOAD ' , /, ' NUM STIFFNESS CAPACITY ' , 

+'    ENHANCEMENT ' ) 

2 FORMAT(I3, '    ',F6.1,F18.4,F19.2) 

3 FORMAT(//'AVERAGE ULTIMATE CAPACITY IS ' , F6.2,//, 

+'AVERAGE LOAD ENHANCEMENT IS',F7.2,///, 

+'TOTAL AXIAL FORCE APPLIED TO A COLUMN IS'. 

+ E17.3,//,'TOTAL MOMENT APPLIED TO AN EXTERIOR COLUMN  

+ IS',E12.3, 

+ / /, ' TOTAL MOMENT APPLIED TO AN INTERIOR COLUMN IS ' , E12.3, / ) 

700  CONTINUE 

END 

 

************************************************************ 

SUBROUTINE INT(L,H,B, D1, D11, D2,D12, D3,D13,  

+ DP1,DP2,DP3,LPS, AS1, AS2,AS3,ASP1,ASP2, ASP3,ASP, FC,  

+ EC,A1,B1,ES, ESH, FYS, FUS, EYY, ESSH, EUU, EPPI,  

+ FPE, FPU, EP, AA,  BB, CC,  K, EST, S)  

*************************************************************** 

IMPLICIT DOUBLE PRECISION (A-Z) 

SO=1E-30 

ENSH=0 

CALL STRIP (L,H,B, D1, D11, D2,D12, D3,D13, DP1,DP2,DP3,LPS,  

+ AS1, AS2,AS3,ASP1,ASP2, ASP3,ASP, FC,EC,A1,B1,ES, ENSH,  

+ FYS, FUS, EYY, ESSH, EUU, EPPI,FPE, FPU, EP, AA,  BB, CC,   

+ K, EST, SO, NU,MU1,MU2,MU3,C1,  

+ C2,C3,WUO,DL,SMOVE,BH,VI,V3)  

ENSH=0 

CALL STRIP (L,H,B, D1, D11, D2,D12, D3,D13, DP1,DP2,DP3,LPS,  

+ AS1, AS2,AS3,ASP1,ASP2, ASP3,ASP, FC,EC,A1,B1,ES, ESH,  

+ FYS, FUS, EYY, ESSH, EUU, EPPI,FPE, FPU, EP, AA,  BB, CC,   

+ K, EST, S, NU,MU1,MU2,MU3,C1, C2,  

+ C3,WU,DL,SMOVE,BH,VI,V3)  

LE=WU/WUO  

WRITE(1,*)'SLAB HAS CONVERGED TO A SOLUTION' 

*OUTPUT DATA  

WRITE (6,1) 

WRITE(6,2) S,WU,DL, LE 

WRITE(6,3) 

WRITE(6,4) NU, MU1,MU2,MU3 

1 FORMAT(/,'INTERIOR SLAB LOADED -SINGLE SLAB  STRIP USED', //, 

+ ' EFFECTIVE   MAXIMUM    ' , / 

+ ' SUPPORT  ULTIMATE  VERTICAL   LOAD', /, 

+'STIFFNESS  CAPACITY  DEFLECTION  ENHANCEMENT ' ) 

2 FORMAT(F6.1, F18.4,2Fl6.2) 

3 FORMAT ( / / , 'AXIAL   MOMENT AT PLASTIC HINGE ',/,  

+ ' FORCE   1   2  3')  

4 FORMAT(E9.3,3E18.3, / ) 

  RETURN  

  END  

********************************************************* 
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*********************************** 

SUBROUTINE FMILDS (F,ESS,EYY,ESSH,EUU,AS,ES,ESH,FYS,FUS)  

*********************************************** 

IMPLICIT DOUBLE PRECISION (A-Z ) 

IF(ABS(ESS).LT.EYY) THEN 

F=AS*ES*ESS 

  ELSE IF(ESS.LE. (ESSH*(-1))) THEN 

F=O 

  ELSE IF(ESS.LE.(EYY*(-1)))  THEN 

F=AS*FYS* (-1) 

ELSE IF(ESS.LE.ESSH) THEN 

F=AS*EYS 

ELSE IF (ESS. LE. EUU) THEN 

F=AS*(FYS+ESH*(ESS-ESSH)*(1-ESH*(ESS-ESSH)/(4*(FUS-FYS)))) 

ELSE 

F=O 

ENDIF 

RETURN 

END 

 

********************************************** 

SUBROUTINE ISTRN (EPPI,FPE,EPAA,BB,CC) 

************************************************** 

      IMPLICIT DOUBLE PRECISION (A-Z) 

      EPPI=0 

10  FP=EP*EPPI* (AA+ (1-AA) / (1+ (BB*EPPI) **CC) ** (l/CC) ) 

      IF(FP.LE.FPE) THEN 

EPPI=EPPI+0.000001 

GOTO 10 

   ELSE 

GOTO 20 

       ENDIF 

20 RETURN 

       END 

 

 

 

************************************************************************ 

SUBROUTINE REST(HS,LC,LCB, WCOL,EIC,HB,BB,LB,EIB, JGB,  

+    FSLAB, Cl,DSLAB,NUM,V1) 

******************************************************************** 

IMPLICIT DOUBLE PRECISION (A-M, P-W) 

INTEGER X, Y, NUM 

DIMENSION MID(15),F(3O,30), FSLAB(30),FEB(30),DEB(30),DSLAB(15), 

+   C1(15) ,V1 (15) 

* DETERMINE MIDPOINTS OF STRIPS 

DO 10 X=1,NUM 

MID(X)=LB/ (4*NUM)+ (X-1) *LB/ (2*NUM) 

10 CONTINUE 

* CALCULATE FLEXIBILITY MATRIX 

KHC=3*EIC*LC**3/(LCB**3*(LC-LCB)**3) 

KXC=EIC*LC**3/((-4)*LCB**2*LC**2+LCB*LC**3+6*LCB**3*LC 

+ -3*LCB**4) 

DO 20 X=1,2*NUM  

DO 30 Y=1,2*NUM  

IF ((X.GT.NUM).AND.(Y.LE.NUM))  THEN  
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* EQUATION (4.29)  

 F(Y,X) = 2/(6*EIC*LC**3)*(12*LCB**3*LC**2-3*LCB**2*LC**3)  

+   -15*LCB**4*LC+6*LCB**5)   

ELSE IF((X.GT.NUM).AND.(Y.LE.X)) THEN 

IF( (MID(Y-NUM)) .LE. (WCOL/2)) THEN 

* EQUATION (4.14 A) 

F(Y, X)=2/KXC 

ELSE 

* EQUATION (4.14 B) 

F(Y,X)=(2/KXC+ (MID(Y-NUM) -O.5*WCOL) /JGB) 

ENDIF 

ELSE IF( (X.GT.NUM) .AND. (Y.GT.X) ) THEN 

* EQUATION (4.14 C) 

F(Y,X)=(2/KXC+ (MID(X-NUM) -0.5*WCOL) /JGB) 

ELSE IF(Y.GT.NUM) THEN 

* EQUATION (4.38) 

F(Y,X)=2/(6*EIC*LC)*(-4*LC**2*LCB+15*LC*LCB**2 

+   -2O*LCB**3+15*LCB**4/LC-6*LCB**5/LC**2) 

ELSE IF(Y.GT.X) THEN 

IF( (MID(Y) .LE. (WCOL/2)) THEN 

!  EQUATION (4.11 A) 

F(Y,X)=2/KHC 

ELSE 

* EQUATION (4.11 B ) 

 F(Y, X)=2/KHC+ (MID(X)- 0.5 *WCOL)* *2/ (6*EIB*LB**3)* 

+   (3*LB**3*MID (Y) - LB**3*MID(X) -LB**3*WCOL- 

+   3*LB**2* (MID (Y) -0.5*WCOL) **2) 

ENDIF 

ELSE 

! EQUATION (4.11 C) 

F(Y,X)=2/KHC+(MID(Y)-0.5*WCOL)**2/(6*EIB*LB**3)* 

+  (3*LB**3*MID (X) -LB**3*MID(Y) -LB**3*WCOL-  

+   3*LB**2*MID (X)**2)  

ENDIF  

30 CONTINUE 

20  CONTINUE 

* CONVERT FORCES AT MIDEPTH OF SLAB TO FORCES AT NA OF EDGE BEAM 

DO 40 X=1,2*NUM 

IF(X.LE.NUM) THEN 

FEB (X) =FSLAB (X) 

ELSE 

FEB(X) =FSLAB(X)+V1(X-NUM)*HB/2-FSLAB(X-NUM)/2 *(HB-HS) 

ENDIF 

40  CONTINUE 

! CALCULATE DISPLACEMENTS AT NA OF THE EDGE BEAM  

DO 50 X=1,2*NUM 

50  DEB(X)=O 

DO 60 X=1,2*NUM 

DO 70   Y=1,2*NUM 

DEB (X)=DEB (X) +F(X, Y) * FEB (Y) 

70  CONTINUE 

60  CONTINUE 

! CALCULATE DISPLACEMENTS AT NEUTRAL AXIS OF SLAB 

     DO 80 X=1 , NUM 

DSLAB(X)=DEB(X)-(HB/2-HS+Cl(X)-BB/2*TAN(DEB(X+NUM)/2))* 

+    SIN (DEB(X+NWM)) 

80  CONTINUE 
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END 

 

 

******************************************************* 

SUBROUTINE STRIP(L,H,B, D1, D11, D2,D12, D3,D13,  

+ DP1,DP2,DP3,LPS, AS1, AS2,AS3,ASP1,ASP2, ASP3,ASP, FC,  

+ EC,A1,B1,ES, ESH, FYS, FUS, EYY, ESSH, EUU, EPPI,  

+ FPE, FPU, EP, AA,  BB, CC,  K, EST, S, NU,  

+ MU1,MU2,MU3,C1,C2,C3,WU, DL,SMOVE,BH,V1,V3)  

*********************************************************** 

IMPLICIT DOUBLE PRECISION (A-W) 

SET INCREMENT FOR SLAB DEFLECTION  

BH=0.5  

60 DLINC=H/300 

DL=DLINC 

WU2=0 

INITIAL GUESS OF FORCES IN STEEL 

T1=AS1*FYS 

T2=AS2*FYS 

T3=AS3* FYS 

FPS=ASP* FPE 

CSl=ASP1*FYS 

CS2=ASP2*FYS 

CS3=ASP2 FYS 

*  START LOOP FOR CALCULATION OF LOCATIONS OF NA AND FORCES IN STEEL 

21 Y=0 

20 Y=Y+l 

IF(Y.EQ.15000)THEN 

GOTO 7000 

ELSE 

CONTINUE 

ENDIF 

N=ES / EC 

P=(ASl+AS2+AS3+ASPl+ASP2+ASP3)/(3*B*H) 

BRACK=(( ( l + K ) *L/( (1+(N-1)*P)*EC*H)+l/S)*(A1*FC*Bl*(H/2-DL/4+ 

+  ( (BΗ-1) *(T1-CS1) + T2-CS2-BH*(T3-CS3)+Al*FC* 

+ ( (BH-1) + ASP1-ASP2-BH*ASP3)) / (2*A1*FC*B1*B)) + (CS2-T2-FPS) /B) + 

+ EST*L) / (l+ (1-BH) *BH*L/ (2*DL)*Α1 * F C * B 1 ) * 

+  ( (1+ K)*L/ ( (1+ (N-1) * P) *EC*H) +l/S) 

CALCULATE LOCATION OF NA 

C1=H/2-DL/4 -(1-BH)* BH*L/ (2*DL)* BRACK+ 

+ ( (1+ΒΗ)' (T1-CS1)- T2+CS2-ΒΗ* (T3-CS3)+ A1 *FC* ( (BΗ+1) *ASP1-  

 + ASP2-BH*ASP3))/(2*A1*FC*B1*B)  

C2=H/2-DL/4-(1-BH)*BH*L/(2*DL)*BRACK+ 

+ ((BH-l)*(Tl-CS1)+T2-CS2-BH*(T3-CS3)+A1*FC*((BH-1)*ASP1+ 

+ ASP2-BH*ASP3)) / (2*A1*FC*B1*B) 

C3=H/2-DL/4-(1-BH)*BH*L/(2*DL)*BRACK+ 

+ ( (BH-1) * (Tl-CS1)- T2+CS2+(2-BH)* (T3-CS3) +A1*FC* ( (BH-1) 

+ ASPl-ASP2+ (2-BH) *ASP3)) / (2+A1*FC*Bl*B) 

* CALCULATE STRAINS AND FORCES IN STEEL 

ECC=0.0035 

ESS=EYY 

ET1=ECC* ( (Dl-Cl) /C1) 

CALL FMILDS (T12, ET1, EYY, ESSH,EUU, AS1,ES,ESH, FYS,FUS) 

ET2=ECC* ( (D2-C2) /C2) 

CALL  FMILDS (T22, ET1, EYY, ESSH, EUU,AS2, ES, ESH, FYS, FUS) 

ET3=ECC*((D3-C3)/C3) 
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CALL FMILDS (T32,ET1,EYY, ESSH,EUU,AS3, ES,ESH, FYS, FUS) 

DLl = (DP1-Cl) / (BH*L) *DL 

DL2=(DP2-C2) / (BH* (1-BH) *L) *DL 

DL3=(DP3-C3) / ( (1-BH) *L) * DL 

IF(ASP.EQ.0) THEN 

FPS2=O 

ELSE 

EPP=EPPI + (DL1+DL2+DL3) /LPS 

FPS2=ASP * (EP*EPP*( AA+ (1-AA)/ (1+ (BB*EPP)* *CC)* * (l/CC)) ) 

ENDIF 

IF(FPS2.GT.(FPU*ASP)) THEN 

FPS2=0 

ELSE 

CONTINUE 

ENDIF 

ECS1=ECC* ( (Cl-Dll) /Cl ) 

CALL FMILDS(CS12,ET1,EYY,ESSH,EUU,ASP1,ES,ESH, FYS,FUS) 

ECS2=ECC* ( (C2-D12) /C2) 

CALL FMILDS (CS22, ET1, EYY, ESSH,EUU,ASP2,ES,ESH,FYS,FUS) 

ECS3=ECC*((C3-D13)/C3) 

CALL FMILDS (CS32, ET1, EYY, ESSH,EUU,ASP3,ES,ESH,FYS,FUS) 

* COMPARE CALCULATED VALUES WITH ASSUMED VALUES 

   IF(T1.EQ.0) THEN 

     GOTO 11 

   ELSE IF(ABS ( (Tl-T12) /T1) .GE.0.001) THEN 

     GOTO 10 

   ELSE 

     GOTO 11 

   ENDIF 

11 IF(T2.EQ.0) THEN 

     GOTO 12 

   ELSE IF(ABS ((T2-TS22 /T2) .GE.0.00l) THEN 

     GOTO 10 

   ELSE 

   GOTO 12 

   ENDIF 

12 IF(T3.EQ.0) THEN 

     GOTO 13 

   ELSE IF(ABS((T3-T32)/T3).GE.0.001) THEN 

     GOTO 10 

   ELSE 

     GOTO 13 

        ENDIF 

13 IF(FPS.EQ.0) THEN 

GOTO 14 

    ELSE IF(ABS ((FPS-FPS2) /FPS) .GE.0.001) THEN 

GOTO 10 

    ELSE 

GOTO 14 

    ENDIF 

14 IF(CSl.EQ.0) THEN 

GOTO 15 

   ELSE IF(ABS((CS1-CS12)/CSl). GE.0.001) THEN 

GOTO 10 

   ELSE 

GOTO 15 

   ENDIF 
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15 IF(CS2.EQ.0) THEN 

GOTO 16 

   ELSE IF (ABS ( (CS2-CS22 ) /CS2 ) . GE. 0.001 ) THEN 

GOTO 10 

   ELSE 

GOTO 16 

16 IF(CS3.EQ.0) THEN 

GOTO 17 

   ELSE IF(ABS((CS3-CS32)/CS3).GE.0.001) THEN 

GOTO 10 

   ELSE 

GOTO 17 

ENDIF 

10   IF(T12.EQ.0) THEN 

T1=0 

   ELSE  

 T1=(T1+T22)/2 

   ENDIF 

        IF(T32.EQ.0) THEN 

T3=0 

   ELSE 

T3= (T3+T32) /2 

   ENDIF 

   IF(FPS2.EQ.0) THEN 

FPS=0 

   ELSE 

FPS= (FPS+FPS2) /2 

   ENDIF 

   IF(CS12.EQ.0) THEN 

CS1=O 

   ELSE 

CS1=(CS1+CS12) /2 

        ENDIF 

   IF(CS22.EQ.0) THEN 

CS2=0 

    ELSE 

CS2=(CS2+CS22)/2 

    ENDIF 

    IF(CS32.EQ.0) THEN 

CS3=0 

    ELSE 

CS3=(CS3+CS32) /2 

    ENDIF 

    GOTO 21 

17 CONTINUE 

* CALCULATE FORCES AND ULTIMATE LOAD 

MUl=A1*FC* (BI*C1*B-ASP1)*(0.5*H-0.5*Bl*Cl)+CS1 

+  0.5*H-D11) +T1*(D1-0.5*H) +FPS* (DP1-0.5*H) 

NU=A1*FC*(Bl*C2*B-ASP2) +CS2-T2-FPS 

MU2=Al*FC*(B1*C2*B-ASP2)*(0.5*H-0.5*Bl*C2)+CS2 

+ * (0.5*H-D12) +T2* (D2-0. 5*H) +FPS* (DP2-0.5*H) 

MU3=A1*FC* (B1*C3*B-ASP3)* (0.5*H-0.5*B1*C3)  

+ CS3*(0.5*H-D13)+T3*(D3-0.5*H)+FPS*(DP3-0.5H) 

WU=2/(B*L**2)*(MU1/BH+MU2/((1-BH)*BH)+MU3/(1-BH)  

+ -NU*DL/((1-BH)*BH)) 

*  CHECK IF ULTIMATE LOAD IS REACHED 

WUl=WU2 
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WU2=WU 

IF(WUl.GT.WU2) THEN 

  DL=DL-DLINC 

  GOTO 50 

ELSE 

  DL=DL+DLINC 

GOTO 20 

ENDIF 

  50  CONTINUE 

* CALCULATE LOCATION OF HINGE 2 

IF(ABS(MU1-MU3).LT.0.001) THEN 

   BH2=0.5 

  ELSE 

BH2=((MUl+MU2-NU*DL)-SQRT((MU1+MU2-NU*DL)**2- 

+ (MUl-MU3)*(MUl+MU2-NU*DL)) ) / (MU1-MU3) 

  ENDIF 

IF(ABS (BH-BH2) /BH.LT.0.001) THEN 

GOTO 30 

    ELSE 

BH=BH2 

GOTO 60 

  ENDIF 

30  CONTINUE 

* CALCULATE TOTAL MOVEMENT OF SUPPORTS 

 SMOVE=NU/ (B*S) 

*  CALCULATE SHEAR 

 V1=(WU*B*(1-BH**2)*L**2-2*MU2-2*MU3+2*NU*DL)/(2*(1-BH)*L) 

 V3=(WU*B*(1-BH)**2*L**2+2*MU2+2*MU3-2*NU*DL)/(2*(1-BH)*L) 

 GOTO 6000 

7000 WRITE (1,*) 'ERROR' 

6000 END 

 

 

 

UPDATED CODE 

 
SUBROUTINE EXT (L, H, B, D1, D11, D2, D12, D3,D13, DP1, DP2, DP3,LPS,AS1,AS2, &  

  AS3,ASP1, ASP2, ASP3,ASP,FC,EC,A1,B1,ES,ESH,FYS,FUS,&   

  EYY, ESSH, EUU, EPPI, FPE, FPU, EP,AA, BB, CC, K, EST, S3, LC1,&  

  LCB1,WCOL, EIC1, HB1, BB1, LB1, EIB1, JGB1, NUM) 

IMPLICIT DOUBLE PRECISION (A-Z) 

INTEGER NUM,  X , Z ,Y  

DIMENSION DIST (15) , S1 (15) , SE (15) , F1SLAB (30) ,  F3SLAB (30) , CC1 (15) , CC3 (15) 

, WWU (15) , DDL (15) , SSMOVE (15), & 

 D1SLAB (15) , RMOVE (15), VV1 (15), VV3 (15) , LE (15)  

!CALCULATE WIDTH OF STRIPS AND STEEL IN STRIPS 

B=B/(2* NUM) 

ASP1=ASP1/ (2 *NUM) 

ASP2=ASP2/ (2 *NUM) 

ASP3=ASP3/ (2 *NUM) 

ASP=ASP/ (2 *NUM) 

AS1=AS1/ (2 *NUM) 

AS2=AS2/ (2 *NUM) 

AS3=AS3/(2*NUM) 

! CALCULATE SLAB CAPACITY NEGLECTING COMPRESSIVE MEMBRANE 

!   AND STRAIN HARDENING 

SO=1E-30 
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ENSH=0 

CALL STRIP(L,H,B, D1, D11, D2,D12, D3,D13, DP1,DP2,DP3,LPS, AS1, AS2, & 

AS3,ASP1,ASP2, ASP3,ASP, FC, EC,A1,B1,ES, ENSH, FYS, FUS,& 

 EYY, ESSH, EUU, EPPI, FPE, FPU, EP, AA,  BB, CC,  K, EST,SO, NU, & 

  MU1,MU2,MU3,C1,C2,C3,WUO, DL,SMOVE,BH,V1,V3) 

!SET STIFFNESS OF FIRST SLAB STRIP EQUAL TO FLEXURAL  

! STIFFNESS OF EDGE BEAM AT MIDDLE OF FIRST SLAB STRIP AND  

! ITERATE TO GET STIFFNESS DISTIBUTION 

  DO 10 X=1,NUM 

  S1 (X)=(1/(2/(3*EIC1 *LC1**3/( LCB1**3*(LC1-LCB1)**3)) + ( (LB1/ & 

  (4*NUM))**2 / (6*EIB1*LB1**3)* (3*LB1**3*( LB1/( 4*NUM)) - & 

   LB1**3*(LB1/(4*NUM))-3*LB1**2*(LB1/(4*NUM))**2))))/B 

  DIST (X) =1 

  SE(1)=1/ (1/S1(1) +1/S3) 

10  CONTINUE 

140 Z=0 

70      Z=Z+1 

    DO 20 X=l, NUM 

20  SE (X) =DIST (X) * SE (1) 

! CALCULATE FORCES AND DISPLACEMENTS OF STRIPS 

DO 30 X=l,NUM 

S=SE (X)  

CALL STRIP(L,H,B, D1, D11, D2,D12, D3,D13, DP1,DP2,DP3,LPS, AS1, AS2, & 

   AS3,ASP1,ASP2, ASP3,ASP, FC, EC,A1,B1,ES, ESH, FYS, FUS,& 

    EYY, ESSH, EUU, EPPI,  FPE, FPU, EP, AA,  BB, CC,  K, 

EST,S, NU, & 

     MU1,MU2,MU3,C1,C2,C3,WU, DL,SMOVE,BH,V1,V3) 

F1SLAB (X ) = NU 

F1SLAB (X+NUM) =MU1 

CC1 (X)=C1 

VV1(X) =V1 

F3SLAB(X) =NU 

F3SLAB (X+NUM) =MU3 

CC3(X) = C3 

VV3 (X) =V3 

WWU(X) =WU 

LE (X) =WU/WUO 

DDL (X)=DL 

30 SSMOVE (X) =SMOVE 

! CALCULATE MOVEMENT OF SUPPORTS 

 TNU=0 

 DO 40 X=1, NUM 

40  TNU=2*F3SLAB(X) + TNU 

D3SLAB=TNU/(B*2*NUM*S3) 

CALL REST (H,LC1 ,LCB1 , WCOL,EIC1,HB1 , BB1 ,  LB1 , EIB1 ,JGB1 ,&  

+  F1SLAB, CC1, D1SLAB, NUM, VV1 ) 

50 RMOVE (X) = D1SLAB (X) + D3SLAB 

! CALCULATE DISTRIBUTION OF EFFECTIVE STIFFNESS 

IF(Z.EQ.1)THEN  

DO 60 X=1, NUM  

60 DIST(X)= F1SLAB(X) /RMOVE(X) /(F1SLAB (1) / RMOVE (1)) 

ELSE  

CONTINUE 

ENDIF  

! DEFINE POINTS ON TWO LINES TO CALCULATE COMPATIBLE STIFFNESS 

IF(Z.EQ.1)THEN 

SM1=SSMOVE(1) 
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RM1=RMOVE(1) 

SEFF1=SE(1) 

SE(1)=.7*SE(1) 

GOTO 70 

ELSE IF(Z.EQ.2)THEN 

SM2=SSMOVE ( 1 ) 

RM2 =RMOVE ( 1 ) 

SEFF2=SE ( 1 ) 

ELSE 

SM1=SM2 

RM1 = RM2 

SEFF1 =SEFF2 

SM2 =SSMOVE ( 1 ) 

RM2=RMOVE ( 1 ) 

SEFF2=SE ( 1 ) 

ENDIF 

WRITE(1,*) 'ITERATION',Z 

!PREVENT POSSIBLE INFINTE LOOP 

IF(Z.LT.50)THEN 

GOTO 80 

ELSE 

WRITE (1,* ) ' SOLUTION DID NOT CONVERGE' 

GOTO 700 

ENDIF 

! CHECK IF STRIP AND RESTRAINT MOVEMENT ARE EQUAL FOR FIRST  

! STRIP 

80 IF (ABS((SSMOVE(1)- RMOVE(1)) /SSMOVE(1)).LT.0.01)THEN 

GOTO 90 

ELSE 

GOTO 100 

ENDIF 

! CALCULATE NEXT ESTIMATE OF STIFFNESS 

100 SEFF=(SEFF2-SEFF1)*(RM1-SM1)/(SM2-SM1-RM2+RM1)+SEFF1 

IF (SEFF .LT. 0 ) THEN 

SEFF=1E-5 

ELSE 

CONTINUE 

ENDIF 

SE(1)=SEFF 

GOTO 70 

!CHECK IF STRIP AND RESTRAINT MOVEMENT ARE EQUAL FOR OTHER 

! STRIPS 

90 WRITE(1,*) 'MATCHED STRIP FIRST STRIP ... CHECKING ALL STRIPS' 

    Y=l 

120 IF(ABS( (SSMOVE(Y)-RMOVE(Y))/SSMOVE(Y)).GT.0.01)THEN 

GOTO 110 

ELSE IF(Y.LT.NUM)THEN 

WRITE(1,*) 'MATCHED STRIP #',Y 

Y=Y+l 

GOTO 120 

ELSE 

WRITE(1,*) 'MATCHED STRIP #',Y 

GOTO 150 

ENDIF 

! CALCULATE NEW DISTRIBUTION OF STIFFNESS 

110 DO 130 X=1,NUM 

130 DIST(X)=F1SLAB(X) /RMOVE(X) /(F1SLAB(1)/RMOVE(1)) 
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GOTO 140 

150 WRITE (1, *) 'SLAB HAS CONVERGED TO A SOLUTION' 

!CALCULATE TOTAL AXIAL FORCE AND MOMENT APPLIED TO COLUMNS AND 

! AVERAGE LOAD CAPACITY AND LOAD ENHANCEMENT 

NUT=0 

MU1T=0 

MU3T=0 

WTOT=0 

DO 160 X=1,NUM 

NUT=NUT+F1SLAB (X)  

MU1T=MU1T+F1SLAB (X+NUM) 

MU3T=MU3T+F3SLAB (X+NUM) 

160 WTOT=WTOT+WWU (X) 

 WAVG=WTOT/NUM  

 AVGLE=WAVG/WUO 

! OUTPUT DATA  

WRITE (6,1) NUM  

DO 170 X=1,NUM  

170 WRITE (6,2)  X, SE(X) , WWU (X), LE (X) 

WRITE (6,3)   WAVG, AVGLE, NUT, MU3T, MU1T 

1 FORMAT(/,'EXTERIOR SLAB LOADED -' ,I3, ' SLAB STRIPS USED',//, & 

'   EFFECTIVE        

  '    & 

 ,/,'STRIP  SUPPORT  ULTIMATE    ',  & 

'  LOAD',/,' NUM   STIFFNESS  CAPACITY', &  

     'ENHANCEMENT') 

2 FORMAT(I3,'    ',F6.1,F18.4,F19.2) 

3 FORMAT(//'AVERAGE ULTIMATE CAPACITY IS ' , F6.2,//, & 

+'AVERAGE LOAD ENHANCEMENT IS',F7.2,///, & 

+'TOTAL AXIAL FORCE APPLIED TO A COLUMN IS', & 

+ E17.3,//,'TOTAL MOMENT APPLIED TO AN EXTERIOR COLUMN IS',E12.3, & 

+  / /, ' TOTAL MOME&T APPLIED TO AN INTERIOR COLUMN IS ' , E12.3, / ) 

700 CONTINUE 

END 

 

 

SUBROUTINE FMILDS (F,ESS,EYY,ESSH,EUU,AS,ES,ESH,FYS,FUS)  

IMPLICIT DOUBLE PRECISION (A-Z) 

IF(ABS(ESS).LT.EYY) THEN 

F=AS*ES*ESS 

  ELSE IF(ESS.LE. (ESSH*(-1))) THEN 

F=0 

  ELSE IF(ESS.LE.(EYY*(-1)))  THEN 

F=AS*FYS* (-1) 

ELSE IF(ESS.LE.ESSH) THEN 

F=AS*FYS 

ELSE IF (ESS.LE. EUU) THEN 

F=AS*(FYS+ESH*(ESS-ESSH)*(1-ESH*(ESS-ESSH)/(4*(FUS-FYS)))) 

ELSE 

F=0 

ENDIF 

RETURN 

END 

 

 

SUBROUTINE INT (L,H,B,D1,D11,D2,D12, D3, D13, DP1,DP2,DP3,LPS,AS1,AS2,& 
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    AS3,ASP1,ASP2,ASP3,ASP,FC,EC,A1,B1,ES,ESH,FYS,FUS, 

& 

    EYY ,ESSH,EUU,EPPI,FPE,FPU,EP,AA,BB,CC,K,EST,S)  

IMPLICIT DOUBLE PRECISION (A-Z) 

! effective restraint stiffness SO 

SO=1E-30 

! strain-hardening modulus for mild steel reinforcement ENSH is 0 

! determine the ultimate capacity of the slab neglecting CMA and  

! strain-hardening of the mild steel reinforcement 

ENSH=0 

CALL STRIP (L,H,B, D1, D11, D2,D12, D3,D13, DP1,DP2,DP3,LPS,AS1, AS2,& 

 AS3,ASP1,ASP2, ASP3,ASP, FC,EC,A1,B1,ES, ENSH,FYS, FUS,& 

    EYY, ESSH, EUU, EPPI,FPE, FPU, EP, AA,  BB, CC,K, EST, SO, NU, & 

    MU1,MU2,MU3,C1,C2,C3,WUO,DL,SMOVE,BH,V1,V3)  

CALL STRIP (L,H,B, D1, D11, D2,D12, D3,D13, DP1,DP2,DP3,LPS,AS1, AS2,& 

 AS3,ASP1,ASP2, ASP3,ASP, FC,EC,A1,B1,ES, ESH,FYS, FUS,& 

    EYY, ESSH, EUU, EPPI,FPE, FPU, EP, AA,  BB, CC,K, EST, S, NU, & 

    MU1,MU2,MU3,C1,C2,C3,WU,DL,SMOVE,BH,V1,V3)  

LE=WU/WUO  

WRITE(1,*)'SLAB HAS CONVERGED TO A SOLUTION' 

! OUTPUT DATA  

WRITE (6,1) 

WRITE(6,2) S,WU,DL, LE 

WRITE(6,3) 

WRITE(6,4) NU, MU1,MU2,MU3 

1 FORMAT(/,'INTERIOR SLAB LOADED -SINGLE SLAB  STRIP USED', //, & 

 ' EFFECTIVE   MAXIMUM    ' , / & 

 ' SUPPORT  ULTIMATE  VERTICAL   LOAD', /, & 

'STIFFNESS  CAPACITY  DEFLECTION  ENHANCEMENT ' ) 

2 FORMAT(F6.1, F18.4,2F16.2) 

3 FORMAT ( // , 'AXIAL   MOMENT AT PLASTIC HINGE ',/, & 

 ' FORCE   1   2  3')  

4 FORMAT(E9.3,3E18.3, / ) 

  RETURN  

  END 

   

SUBROUTINE ISTRN (EPPI,FPE,EP, AA,BB,CC) 

IMPLICIT DOUBLE PRECISION (A-Z) 

! initial total prestress strain is equal to 0 

      EPPI=0 

! FP is the stress: equation 2.36:modified Ramberg-Osgood Function 

10  FP=EP*EPPI * (AA + (1-AA) / (1+ (BB * EPPI) **CC) ** (1/CC) ) 

      IF(FP.LE.FPE) THEN 

EPPI=EPPI+0.000001 

GOTO 10 

   ELSE 

GOTO 20 

       ENDIF 

20 RETURN 

       END 

 

SUBROUTINE REST (HS,LC,LCB, WCOL,EIC,HB,BB,LB,EIB, JGB, FSLAB, 

C1,DSLAB,NUM,V1) 

IMPLICIT DOUBLE PRECISION (A-M, P-W) 

INTEGER X, Y, NUM 

DIMENSION MID(15),F(30,30), FSLAB(30),FEB(30),DEB(30),DSLAB(15), C1(15) ,V1 (15) 

!DETERMINE MIDPOINTS OF STRIPS 
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DO 10 X=1,NUM 

MID(X)=LB/ (4*NUM)+ (X-1) *LB/ (2*NUM) 

10 CONTINUE 

!CALCULATE FLEXIBILITY MATRIX 

KHC=3*EIC*LC**3/(LCB**3*(LC-LCB)**3) 

KXC=EIC*LC**3/((-4)*LCB**2*LC**2+LCB*LC**3+6*LCB**3*LC-3*LCB**4) 

DO 20 X=1,2*NUM  

DO 30 Y=1,2*NUM  

IF ((X.GT.NUM).AND.(Y.LE.NUM))  THEN  

! EQUATION (4.29)  

 F(Y,X) = 2/(6*EIC*LC**3)*(12*LCB**3*LC**2-3*LCB**2*LC**3 -

15*LCB**4*LC+6*LCB**5)   

ELSE IF((X.GT.NUM).AND.(Y.LE.X)) THEN 

IF( (MID(Y-NUM)) .LE. (WCOL/2)) THEN 

!EQUATION (4.14 A) 

F(Y, X)=2/KXC 

ELSE 

!EQUATION (4.14 B) 

F(Y,X)=(2/KXC+ (MID(Y-NUM) -0.5*WCOL) /JGB) 

ENDIF 

ELSE IF( (X.GT.NUM) .AND. (Y.GT.X) ) THEN 

!EQUATION (4.14 C) 

F(Y,X)=(2/KXC + (MID(X-NUM)-0.5*WCOL) /JGB) 

ELSE IF(Y.GT.NUM) THEN 

! EQUATION (4.38) 

F(Y,X)=2/(6*EIC*LC)*(-4*LC**2*LCB+15*LC*LCB**2 -20*LCB**3+15*LCB**4/LC-

6*LCB**5/LC**2) 

ELSE IF(Y.GT.X) THEN 

IF( (MID(Y)) .LE. (WCOL/2)) THEN 

!EQUATION (4.11 A) 

F(Y,X)=2/KHC 

ELSE 

! EQUATION (4.11 B ) 

F(Y,X)= 2/KHC + (MID(X)- 0.5 * WCOL) **2/ (6*EIB*LB**3)*(3*LB**3*MID(Y) - 

LB**3*MID(X) -LB**3*WCOL-3*LB**2* (MID(Y) - 0.5*WCOL) **2) 

ENDIF 

ELSE 

! EQUATION (4.11 C) 

F(Y,X)=2/KHC+(MID(Y)-0.5*WCOL)**2/(6*EIB*LB**3)*(3*LB**3*MID (X) -

LB**3*MID(Y) -LB**3*WCOL- 3*LB**2*MID (X)**2)  

ENDIF  

30 CONTINUE 

20 CONTINUE 

!CONVERT FORCES AT MIDEPTH OF SLAB TO FORCES AT NA OF EDGE BEAM 

DO 40 X=1,2*NUM 

IF(X.LE.NUM) THEN 

FEB (X) =FSLAB (X) 

ELSE 

FEB(X) =FSLAB(X)+V1(X-NUM)*HB/2-FSLAB(X-NUM)/2 *(HB-HS) 

ENDIF 

40 CONTINUE 

!CALCULATE DISPLACEMENTS AT NA OF THE EDGE BEAM  

DO 50 X=1,2*NUM 

50 DEB(X)=0 

DO 60 X=1,2*NUM 

DO 70   Y=1,2*NUM 

DEB (X)=DEB (X) +F(X, Y) * FEB (Y) 
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70 CONTINUE 

60 CONTINUE 

!CALCULATE DISPLACEMENTS AT NEUTRAL AXIS OF SLAB 

     DO 80 X=1 , NUM 

DSLAB(X)=DEB(X)-(HB/2-HS+Cl(X)-BB/2*TAN(DEB(X+NUM)/2))* SIN 

(DEB(X+NUM)) 

80 CONTINUE 

END 

 

PROGRAM SLAB 
IMPLICIT DOUBLE PRECISION (A-Z) 

INTEGER CASE,NUM 

OPEN (1, FILE = 'TERMINAL') 

OPEN (5, FILE = "C:\\example\\EXPL\\inputcase11.txt",STATUS ='OLD') 

OPEN (6, FILE='OUTPUT' ) 

READ (5,*)  L,H,B,& 

   D1,D11,D2,D12, D3, D13,& 

   DP1,DP2,DP3,LPS,& 

   AS1,AS2,AS3,ASP1,ASP2,ASP3,ASP,& 

   FC,EC,A1,B1, & 

            ES,ESH,FYS,FUS,& 

    EYY,ESSH,EUU, &  

            FPE,FPU,EP, &  

            AA,BB,CC,& 

   K,EST, & 

            CASE 

IF (ASP.EQ.0) THEN 

GOTO 10 

ELSE 

CALL ISTRN (EPPI, FPE, EP, AA, BB, CC) 

ENDIF 

10 GOTO (100,200,300),CASE 

100 READ(5, *)  S 

CALL INT(L,H,B,D1,D11,D2,D12, D3, D13, DP1,DP2,DP3,LPS,AS1,AS2,& 

+ AS3,ASP1,ASP2,ASP3,ASP,FC,EC,A1,B1,ES,ESH,FYS,FUS, & 

+ EYY ,ESSH,EUU,EPPI,FPE,FPU,EP,AA,BB,CC,K,EST,S) 

GOTO 400 

200 READ(5,*) S3, & 

   LC1, LCB1, WCOL, EIC1,& 

   HB1, BB1, LB1, EIB1, JGB1,&  

   NUM 

CALL EXT (L, H, B, D1, D11, D2, D12, D3,D13, DP1, DP2, DP3,LPS,AS1,AS2, &  

 + AS3,ASP1, ASP2, ASP3,ASP,FC,EC,A1,B1,ES,ESH,FYS,FUS,&   

 + EYY, ESSH, EUU, EPPI, FPE, FPU, EP,AA, BB, CC, K, EST, S3, LC1,&  

 + LCB1,WCOL, EIC1, HB1, BB1, LB1, EIB1, JGB1, NUM) 

GOTO 400 

300 READ(5,*) S3, &  

   LC1, LCB1, WCOL, EIC1,HB1, BB1, LB1, EIB1, JGB1,&  

   NUM 

S3=1E38 

EIC1=1E38 

CALL EXT (L, H, B, D1, D11, D2, D12, D3,D13, DP1, DP2, DP3,LPS,AS1,AS2, &  

 + AS3,ASP1, ASP2, ASP3,ASP,FC,EC,A1,B1,ES,ESH,FYS,FUS,&   

 + EYY, ESSH, EUU, EPPI, FPE, FPU, EP,AA, BB, CC, K, EST, S3, LC1,&  

 + LCB1,WCOL, EIC1, HB1, BB1, LB1, EIB1, JGB1, NUM) 

400 END 

********************************** 
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SUBROUTINE STRIP (L,H,B, D1, D11, D2,D12, D3,D13, DP1,DP2,DP3,LPS,AS1, AS2,& 

 AS3,ASP1,ASP2, ASP3,ASP, FC,EC,A1,B1,ES,ESH,FYS, FUS,& 

    EYY, ESSH, EUU, EPPI,FPE, FPU, EP, AA,  BB, CC,K, EST, S, NU, & 

    MU1,MU2,MU3,C1,C2,C3,WU,DL,SMOVE,BH,V1,V3)  

IMPLICIT DOUBLE PRECISION (A-W) 

!SET INCEREMENT FOR SLAB DEFLECTION   

! IDEALISED PLASTIC FAILURE 

 BH=0.5 

! APPLY INCREMENTAL DEFLECTION  

 60 DLINC=H/300 

  DL=DLINC 

    WU2=0 

! INITIAL GUESS OF FORCES IN MILD STEEL: STEEL YIELDS (BUT NO STRAIN 

HARDENING)  

    T1=AS1*FYS 

    T2=AS2*FYS 

    T3=AS3*FYS 

! INITIAL PRETSRESS FORCE= EFFECTIVE PRESTRESS FORCE  

    FPS=ASP*FPE 

! INITIAL COMPRESSIVE STEEL FORCE IN MILD STEEL (NO ADDITIONAL STRAIN 

DUE TO DEFORMATION)  

    CS1=ASP1*FYS 

    CS2=ASP2*FYS 

    CS3=ASP3*FYS 

! START LOOP FOR CALCULATION OF LOCATIONS OF NA AND FORCES IN STEEL 

UNTIL F<0.1% 

 21 Y=0 

 20 Y=Y+1 

    IF (Y.EQ.15000) THEN  

       GOTO 7000 

    ELSE  

      CONTINUE                               

    ENDIF  

    N=ES/EC 

! P IS THE REINFORCEMENT RATIO  

    P=(AS1+AS2+AS3+ASP1+ASP2+ASP3)/(3*B*H) 

! BRACKET IN EQUATION 2.41-2.43 

    BRACK= (((1+K)*L/((1+(N-1)*P)*EC*H)+1/S)*(A1*FC*B1*(H/2-DL/4+((BH-1)*(T1-

CS1)+T2-CS2-BH*(T3-CS3)+ & 

    A1*FC*((BH-1)*ASP1-ASP2-BH*ASP3))/(2*A1*FC*B1*B))+(CS2-T2-FPS)/B)+ 

EST*L)/(1+ &  

    (1-BH)*BH*L/(2*DL)*(A1*FC*B1)*((1+K)*L/((1+(N-1)*P)*EC*H)+1/S)) 

! CALCULATE LOCATION OF NA : 2.41-2.43 

!START WITH ASSUMED VALUES AND CALCULATE NA FOR EACH ITERATION 

 C1=H/2-DL/4-(1-BH)*BH*L/(2*DL)*BRACK+ & 

    ((1+BH)*(T1-CS1)-T2-CS2-BH*(T3-CS3)+A1*FC*((1+BH)*ASP1-ASP2-

BH*ASP3))/(2*A1*FC*B1*B) 

    C2=H/2-DL/4-(1-BH)*BH*L/(2*DL)*BRACK+ & 

    ((BH-1)*(T1-CS1)+T2-CS2-BH*(T3-CS3)+A1*FC*((BH-1)*ASP1+ASP2-

BH*ASP3))/(2*A1*FC*B1*B) 

    C3=H/2-DL/4-(1-BH)*BH*L/(2*DL)*BRACK+ & 

    ((BH-1)*(T1-CS1)-T2+CS2+(2-BH)*(T3-CS3)+A1*FC*((BH-1)*ASP1-ASP2+(2-BH)*ASP3) 

)/(2*A1*FC*B1*B) 

!CALCULATE STRAINS AND FORCES IN STEEL : EQ 2.25-2.37  

!CALCULATE NEW FORCES FOR THE NEW NA 

 ECC=0.0035 

    ESS=EYY 
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! STRAIN IN TENSION EQ 2.25 FOR EACH PLASTIC HINGE 

    ET1=ECC*((D1-C1)/C1) 

     CALL FMILDS (T12,ET1,EYY, ESSH, EUU, AS1, ES,ESH,FYS,FUS)  

    ET2= ECC*((D2-C2)/C2) 

     CALL FMILDS (T22,ET1, EYY, ESSH, EUU, AS2, ES,ESH,FYS,FUS)  

    ET3=ECC*((D3-C3)/C3) 

     CALL FMILDS (T32,ET1, EYY, ESSH, EUU, AS3, ES,ESH,FYS,FUS)  

!INCREASE LENGTH OF TENDON pi: eq 2.32  

    DL1=(DP1-C1)/(BH*L)*DL 

    DL2=(DP2-C2)/(BH*(1-BH)*L)*DL 

    DL3=(DP3-C3)/((1-BH)*L)*DL 

    IF (ASP.EQ.0) THEN  

     FPS2=0 

    ELSE  

       EPP=EPPI+(DL1+DL2+DL3)/LPS 

        ! steel force PRESTRESS: eq 2.36 

        FPS2=ASP*(EP*EPP*(AA+(1-AA)/(1+(BB*EPP)**CC)**(1/CC))) 

    ENDIF  

    IF (FPS2.GT.(FPU*ASP)) THEN  

       FPS2=0 

    ELSE 

      CONTINUE 

    ENDIF 

    ECS1=ECC*((C1-D11)/C1) 

     CALL FMILDS (CS12,ET1,EYY, ESSH, EUU, ASP1, ES,ESH,FYS,FUS)  

    ECS2=ECC*((C2-D12)/C2) 

     CALL FMILDS (CS22,ET1,EYY, ESSH, EUU, ASP2, ES,ESH,FYS,FUS) 

    ECS3=ECC*((C3-D13)/C3) 

     CALL FMILDS (CS32,ET1,EYY, ESSH, EUU, ASP3, ES,ESH,FYS,FUS) 

! COMPARE CALCULATED VALUES WITH ASSUMED VALUES 

   IF (T1.EQ.0) THEN 

     GOTO 11 

      ELSE IF (ABS((T1-T12)/T1).GE.0.001) THEN  

        GOTO 10 

      ELSE 

        GOTO 11 

      ENDIF 

  11  IF (T2.EQ.0) THEN 

        GOTO 12 

      ELSE IF (ABS((T2-T22)/T2).GE.0.001) THEN  

        GOTO 10 

      ELSE  

        GOTO 12 

      ENDIF 

  12  IF (T3.EQ.0) THEN 

        GOTO 13 

      ELSE IF (ABS((T3-T32)/T3).GE.0.001) THEN  

        GOTO 10 

      ELSE  

        GOTO 13 

      ENDIF 

 13  IF (FPS.EQ.0) THEN 

        GOTO 14 

      ELSE IF (ABS((FPS-FPS2)/FPS).GE.0.001) THEN  

        GOTO 10 

      ELSE  

        GOTO 14 
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      ENDIF 

 14  IF (CS1.EQ.0) THEN 

        GOTO 15 

      ELSE IF (ABS((CS1-CS12)/CS1).GE.0.001) THEN  

        GOTO 10 

      ELSE  

        GOTO 15 

      ENDIF 

 15  IF (CS2.EQ.0) THEN 

        GOTO 16 

      ELSE IF (ABS((CS2-CS22)/CS2).GE.0.001) THEN  

        GOTO 10 

      ELSE  

        GOTO 16 

      ENDIF 

 16  IF (CS3.EQ.0) THEN 

        GOTO 17 

      ELSE IF (ABS((CS3-CS32)/CS3).GE.0.001) THEN  

        GOTO 10 

      ELSE  

        GOTO 17 

      ENDIF 

 10  IF (T12.EQ.0) THEN 

        T1=0  

      ELSE  

        T1=(T1+T12)/2 

      ENDIF  

      IF (T22.EQ.0) THEN  

        T2=0 

      ELSE 

        T2=(T2+T22)/2 

      ENDIF 

      IF (T32.EQ.0) THEN  

        T3=0 

      ELSE  

        T3=(T3+T32)/2 

      ENDIF  

      IF (FPS2.EQ.0) THEN  

       FPS=0 

      ELSE 

        FPS=(FPS+FPS2)/2 

      ENDIF 

      IF (CS12.EQ.0) THEN  

        CS1=0 

      ELSE 

        CS1=(CS1+CS12)/2 

      ENDIF 

      IF (CS22.EQ.0) THEN 

        CS2=0 

      ELSE 

        CS2=(CS2+CS22)/2 

      ENDIF 

      IF (CS32.EQ.0) THEN  

        CS3=0 

      ELSE 

        CS3=(CS3+CS32)/2 

      ENDIF 
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      GOTO 21 

  17  CONTINUE      

! CALCULATE FOCRES AND ULTIMATE LOAD 

 MU1=A1*FC*(B1*C1*B-ASP1)*(0.5*H-0.5*B1*C1)+CS1*(0.5*H-D11)+T1*(D1-

0.5*H)+FPS*(DP1-0.5*H) 

 NU=A1*FC*(B1*C2*B-ASP2)+CS2-T2-FPS 

 MU2=A1*FC*(B1*C2*B-ASP2)*(0.5*H-0.5*B1*C2)+CS2*(0.5*H-D12)+T2*(D2-

0.5*H)+FPS*(DP2-0.5*H) 

 MU3=A1*FC*(B1*C3*B-ASP3)*(0.5*H-0.5*B1*C3)+CS3*(0.5*H-D13)+T3*(D3-

0.5*H)+FPS*(DP3-0.5*H) 

 WU=2/(B*L**2)*(MU1/BH+MU2/((1-BH)*BH)+MU3/(1-BH)-NU*DL/((1-BH)*BH)) 

 ! CHECK IF ULTIMATE LOAD IS REACHED 

  WU1=WU2 

    WU2=WU 

    IF (WU1.GT.WU2) THEN 

      DL=DL-DLINC 

      GOTO 50 

    ELSE 

      DL=DL+DLINC 

      GOTO 20 

      ENDIF 

 50 CONTINUE 

 !CALCULATE LOCATION OF HINGE 2 

  IF (ABS(MU1-MU3).LT.0.001) THEN 

      BH2=0.5 

    ELSE 

        BH2=((MU1+MU2-NU*DL)-SQRT((MU1+MU2-NU*DL)**2-(MU1-

MU3)*(MU1+MU2-NU*DL)))/(MU1-MU3) 

    ENDIF 

    IF (ABS(BH-BH2)/BH.LT.0.001) THEN  

      GOTO 30 

    ELSE 

      BH=BH2 

      GOTO 60 

    ENDIF 

 30 CONTINUE 

 !CALCULATE TOTAL MOVEMENT OF SUPPORTS 

  SMOVE=NU/(B*S) 

 ! CALCULATE SHEAR 

  V1=(WU*B*(1-BH**2)*L**2-2*MU2-2*MU3+2*NU*DL)/(2*(1-BH)*L) 

    V3=(WU*B*(1-BH)**2*L**2+2*MU2+2*MU3-2*NU*DL)/(2*(1-BH)*L) 

 7000 WRITE (1,*) 'ERROR', Y 

 6000 END  

 

 PUNCHING SHEAR CAPACITY 

 

MATLAB CODE 

% scp=2,5MPa- CRACKED EI 

function [Fb]=Fb (c,B,y,d,Es,fsy,rho,P,TA) 

% Starting Assumption 

c = 1050; 

r1 = 200; 

r2 = 200; 

B = (r1 * r2)^0.5; 

Ap =0.583871669; 

h = 100; 

rho = Ap / h; 
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d = 0.5*0.45*h; 

fck = 70.16; 

fcube = 82.54; 

sigmap = 2.5; 

%Fp = sigmap * h; NOT CRACK WIDTH  

fpk = 1100; 

fsy = 762.7144350; % unbonded tendon 

Es = 2.05 * 10^5; 

Ec = 34297.30; 

yel=12.07355402;% mm only for the uncracked stiffness 

y= 10.41; % mm 

P= 162367;% N 

ecpu=3.57E-03; % total strain = concrete and pretsress 

[TA] = calTA(B,y,d,fcube,P) 

TA1=real(TA); 

A = 1/4.7*(1+y/B)*log(c/(B+2*y)); 

kz = ((A + (1 - TA1)/(1+TA1*TA1))*(1+TA1*TA1)/(TA1*(1-TA1)))% [-] 

fcurv=ecpu/y; 

me=P*(2*log(c/B)+1-(B^2/c^2))/(8*pi); 

EI=me/fcurv % cracked stiffness 

if B / d < 2 

tasi = 0.0035 * (1 - 0.22*(B/d))*(1 + B/(2*y)); 

else 

tasi = (P/(4*pi))*(1-B^2/c^2)*(c/(2*EI)); 

end 

rs = Es / fsy * tasi * (d - y); 

C0 = B/2 + 1.8 * d; 

if rs > C0 % mm 

R1 = (rho * fsy * d * ((rs - C0) + rs * log(c/(2 * rs))))/1000; %kNmm 

R2overBeta = rho * fsy * d * C0/1000;% kNmm 

else % it is else 

R1 = (rho * fsy * d * rs * log(c/(2*C0)))/1000 ;%kNmm 

R2overBeta = rho * fsy * d * rs/1000; % kNmm 

end 

[Mb] = Mb(P,y,B,c,TA1,d) 

Fb = (P*kz/(2*pi)- R1*1000 - R2overBeta*1000)*(2/c) % N  

function [TA] = calTA(B,y,d,fcube,P) 

if B/d < 2 

ft = 825 * (0.35 + 0.3* (fcube/150))*(1 - 0.22 * (B / d)); 

else 

ft = 460 * (0.35 + 0.3 * (fcube/150)); 

end 

falpha = P / (pi * (B / d) * (y / d) * (B + 2 * y) / (B + y) * ft * d * d); 

TA = (1 - sqrt(1-4*(falpha+1)*falpha))/ (2*(falpha+1)); 

TA1=real(TA); 

% calculation of Fbmax and Mbmax 

c = 1050; 

r1 = 200; 

r2 = 200; 

B = (r1 * r2)^0.5; 

Ap =0.583871669; 

h = 100; 

rho = Ap / h; 

d = 0.5*0.45*h; 

fck = 70.16; 

fcube = 82.54; 

sigmap = 2.5; 
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Fp = sigmap * h; 

fpk = 1100; 

fsy = fpk - (Fp / Ap); 

Es = 2.05 * 10^5; 

Ec = 34297.30; 

yel=12.07355402;% mm only for the uncracked stiffness 

y= 10.41; % mm 

P= 162367;% N 

ecpu=3.57E-03; % total strain = concrete and pretsress 

fcurv=ecpu/y;  

me=P*(2*log(c/B)+1-(B^2/c^2))/(8*pi) 

EI=me/fcurv % cracked stiffness EI 

if B / d < 2 

tasi = 0.0035 * (1 - 0.22*(B/d))*(1 + B/(2*y)); 

else 

tasi = (P/(4*pi))*(1-B^2/c^2)*(c/(2*EI)) 

end 

delta =1/2* tasi*(c-B) %mm 

Fc = 0.75 * 0.721 *0.842* fck * (h/2 - delta/4); 

Ft = d * rho * fsy;  

Fbmax = Fc - Ft %N 

Mbmax = Ft * (2 * d - h) - Fc * (d - 13*h/16 - 3 * delta/32)%Nmm 

[Mb] = Mb(P,y,B,c,TA1,d);  

eta1=Mb/Mbmax; 

function [Mb] = Mb(P,y,B,c,TA1,d)  

A = 1/4.7*(1+y/B)*log(c/(B+2*y)); 

ky = 3*(c - B)/(2*(3*d - y)); 

kz = ((A + (1 - TA1)/(1+TA1*TA1))*(1+TA1*TA1)/(TA1*(1-TA1))); 

X = (4*(3*d-y)/3)*(ky-kz)/1000 ;%mm  

% Calculate Mb [N m] 

Mb = P * X / (4*pi); 

 


