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NOTATION

d effective depth of the cross-section [mm]

d’ difference between the height and the effective depth of the cross-section [mm]

d0 length over which the concentrated load is spread [mm]

d1 outer diameter of the punched cone [mm]

h height of the cross-section [mm]
fce uni-axial concrete compression strength [N/mm?]
fct uni-axial concrete tensile strength [N/mm?]
fcu cube strength of concrete [N/mm?]
fs,fy yield strength of reinforcement steel [N/mm?]
fc cylindrical concrete tensile strength [N/mm?]
f’c cylindrical concrete compression strength [N/mm?]
kd factor related to the height of the slab [-]

na dimensionless membrane force in the mid depth of a slab [-]

nr dimensionless radial membrane force working on the surface of the failure cone [-]

nu membrane force at the mid depth axis at the hogging moment per unit width [N/mm]
n'u membrane force at the mid depth axis at the sagging moment per unit width [N/mm]
p perimeter [mm]

p punched out perimeter of cone [mm]

g reinforcement percentage in the code of New Zealand [-]

r radius [mm]

r function of the failure surface over the height [mm]

t outward lateral displacement at the restrained edge [mm]
wQ critical deflection, empirical determined as 0,5 h [mm]

wi deflection at which membrane action starts, empirical determined as 0,03 h [mm]

A cross-sectional area [mm?]
Agn cross-sectional area of hoop steel per unit width [mm*/mm]
C compression force at the sagging yield moment per unit width [N/mm]
C’ compression force at the hogging yield moment per unit width [N/mm]
D, the internal energy dissipation per unit area in the deforming zone [N/mm]
E modulus of elasticity [N/mm?]
F concentrated load [N]

I impact factor in the code of New Zealand [-]

L length of the span [mm]

M moment [Nmm]
N internal force [N]

N, sum of the radial membrane forces [N]
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Ri unfactored ultimate resistance in the New Zealand code [N]

P ultimate load in punching shear failure [N]

Pa analytical ultimate load [N]

Pe ultimate load from tests [N]

Pp predicted ultimate load [N]

S stiffness parameter of a laterally restrained slab [N/mm]
W virtual work [Nmm]
GREEK NOTATION

a angle between yield surface and displacement rate vector [rad]

B factor (0<p<0,5) [-]

{3 angle between relative displacement and vertical axes [rad]

vo overload factor in the code of New Zealand [-]

vo live load factor in the code of New Zealand [-]

d deflection in the middle of the span [mm]

€ strain [-]

¢ angular rotation [rad]

7 shear stress [N/mm?]
7, Shear stress at with transverse reinforcement is necessary [N/mm?]
T, Ultimate shear stress capacity [N/mm?]
o strength reduction factor in the code of New Zealand [

¢p strength reduction factor in the code of New Zealand [-]

yu height of the compression zone of the concrete [mm]

o reinforcement ratio [-]

AL change in length [mm] [mm]

0 virtual rotation [rad] [rad]
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1. INTRODUCTION
1.1. General

Composites bridge decks are a combination of slab and girder systems, which are designed to
carry a concentrated wheel-load in bending and punching action. Formerly, the composite
highway bridges were designed assuming that they obtain adequate shear capacity. Consequently,
the decks had been considered as simply supported slabs failing entirely in flexure.

However, many researchers discovered that the effect of in-plane compressive membrane forces,
induced by the lateral restrained boundary conditions, was considerable on the ultimate capacity of
the slab. As a result bridge deck slabs which were designed to fail in bending, they mostly fail
under punching mode at a higher load than that predicted for flexure failure, making the assumed
bending design of the slab very conservative. Conclusively, the occurring compressive membrane
forces enhance the strength of the deck slab and reduce its deformations. This phenomenon is
termed “compressive membrane or arching action” and is going to be investigated at the present
Master Thesis. Punching and bending failure modes are going to be analysed taken into account
the enhancement due to compressive membrane action in combination with the transverse

prestress effect.
1.2. Basis for compressive membrane action

Considering a concrete slab which the partially horizontal restraints at the ends do not allow
horizontal movements, as illustrated in the figure 1.1. Due to high lateral restraints in plane
compressive forces develop in the slab, increasing the ultimate load. According to experimental

data the typical load deflection curve for a laterally restrained slab can be depicted at Fig.1
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Figure 1 Typical Load Deflection Curve for Restrained Slab [Park and Gamble, 1980]

The dashed line expresses the capacity by predicting in the Yield Line Criterion. The Limit

Analysis Method or Yield-Line theory is used to predict the ultimate load of slab systems by

postulating a collapse mechanism and considering the principle of virtual work or equations of

equilibrium. This method neglects the membrane action and strain hardening as the conventional

design rules do. The load deflection curve is consisted of two parts: the compressive membrane

action and the tensile membrane action. Comprehensively, while the load increases and the slab

deflects vertically, the relative distance between the supports also increases, developing arching

forces due to the horizontal restraints. This arching action explains the increase in the capacity of

the concrete slab beyond the yield line.

The compressive forces take the maximum value in small vertical displacements, which has been

experimentally proved to be equal to half of the slab’s thickness. As the deflection increases, the

ends of slab tend to move inward decreasing the compressive forces and finally converting to

tensile forces. It is noticeable that the ultimate load is given by the load at the peak of the curve

(point A).

Generally, it is accepted that the design criterion for the bridge decks should be governed by the

serviceability limit state rather than the ultimate state for several reasons.

1. The minimum amount of reinforcement (mainly for shrinkage and temperature requirements)
leads to high factors of safety against failure.

2. Compressive membrane action occurs at low deflections, in which the concrete is not fully
cracked.

3. The development of tensile membrane action requires an adequate amount of the

reinforcement and sufficient anchorage of it at the supports.

It is worth mentioning that the degree of compressive membrane action is dependent on the level

of the lateral restraint and the span-to-depth ratio of the slab, the so-called slenderness. The higher
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the lateral stiffness of the springs simulating the restraint, the higher the compressive in plane
forces developed in the slab.

As have been mentioned, the development of compressive membrane action relies on the restraint
of the horizontal elongation of the slab, which decreases as the span-to-depth ratio increases. Since
the slenderness increases, the arching action becomes less effective inasmuch as the axial load
decreases. The effect of the span-to-depth ratio on the capacity enhancement is shown in Fig 2.

The ratio S/S, represents the lateral support stiffness over the fully rigid stiffness.
Effect of Spanto Depth Ratio on Capacity Erhancement
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Figure 2 Effect of Span to Depth Ratio on Capacity Enhancement

1.3. Basis for transverse prestressing

It is generally recognized that bridge decks are suffered by wide cracking under moving loads,
giving rise to penetration of water, oxygen and other chemical into concrete. This can be avoided
by prestressing the deck slab so as to improve the structural response under service loads. The
decks can be lighter reducing the dead loads and the deflection may be controlled reducing the

cracking.

WATEA ACCESS AT ANCHORS.
PROFRE WIND ORVEN RAN ‘M :mtz
coLyuM OF P/T TENDON CROUNOWAIER {BCLOW GRADC)
J o S CONGRLIE FLOCR _31A8 /
( — |
=~ i B . Wal /
WATER ACCESS T T
S0LDW LANQSCAPING SUPPORT WATER ACCESS STREISING (MO
CHuns CRACKS ANCHOA
DLAD ENO* ANCHOR
STRCISING POCKET
(FLLED Wit GROUT WTER
CABLE STRESSED AND CUT)

Figure 3 Typical Examples of Water Entry [Rogowsky, 1997]
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Prestressed concrete systems commonly use unbonded post-tensioning tendons to improve the

serviceability of the deck.
According to several experimental investigations, the development of the compressive membrane
action is highly dependent on the level of transverse prestress. This dependence is proposed by

Hewitt-Batchelor and can be expressed by linear regression as follows:
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Figure 4 »-TPL Relationship

The transversely prestress can develop sufficient in-plane compressive stresses in the slab to
counteract the tensile stresses induced by shrinkage and live loads. Thus, the higher the prestress
applied, the higher the initial cracking loads, enhancing the cracking behaviour.

Moreover, one important factor influencing the ultimate capacity of the slab is the position of
applied concentrated load with respect to the prestressed wires. It has been noticed that a deck
panel is stronger when loaded directly above the wire than when loaded between the wires.
Generally, the effect of lateral restraint due to transversely prestress and the support conditions
cooperate effectively to improve essentially the ultimate capacity of slab. The failure mode
accounts for punching shear and flexure mode and both failure modes will be analysed at the next

sections.

1.4. Literature Review
1.4.1. Kinnunen and Nylander’s Model

Punching failure mechanism was primarily investigated by Kinnunen and Nylander in Royal
Technical University (1960), carrying out an experimental study about an interior column supports
of flat slab floors in a symmetric scheme. Kinnunen and Nylander developed an idealised model,

the so-called triaxial state of compressive stresses in the conical shell based on the experimental
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results. The failure mode of the slabs was punching failure, which occurred when the tangential
strain at the top surface of the circular slabs in the root of the conical shell reaches a characteristic
value. This would mean that the concrete has been crushed in the tangential direction.

However, the aforesaid model had to be improved further due to the restricted following
assumptions:

1. Failure due to concrete crushing in the tangential direction

2. No size effect of the column is considered

3. Dowel forces are estimated 20% of the calculated resistance

4

The model can be applied to circular slabs with radial and circumferential reinforcement.

At later investigation a more realistic model was provided by Shegata and Regan (1989) as an
improved version of the Kinnunen and Nylander’s Model.

This model privileged over the initial because the dowel forces are not estimated but directly
calculated from model equilibrium and the concrete fails in the critical zone by splitting due to the
action of the principal tensile stresses or crushing in the tangential direction.

The improved model of Shegata and Regan corresponds better that the initial to the experimental

results.

1.4.2. Hewitt-Batchelor’s Model

Hewitt-Batchelor modified the proposed model by Kinnunen and Nylander so as to incorporate
the compressive membrane action. It was achieved by introducing compressive forces (Fb) and
fixed moments (Mb) at the level of compression reinforcement.

In order to take into account the variety of boundary conditions a restrained factor “n” was

introduced accompanied by the maximum boundary forces, as expressed below:

Fb=1Fo(max)

Mp= NMp(max)

where Fpmax) and Mpmax) correspond to fully rigid support giving maximum theoretically arching
action

n: varies between 0 and 1, for simply supported and fully restrained slab respectively

The maximum theoretically arching action can be calculated by employing the model Brotchie
and Holley (1971). This model based on the idealised geometry of displacements in the fully

restrained slab, as illustrated below.
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Figure 5 Idealized displacement and Maximum boundary forces in fully restrained slab
[Hewitt-Batchelor 1975]

From equilibrium equations the maximum boundary restraints are obtained:

I:b(max) = Fc'Ft

At the experiment of Hewitt-Batchelor there was not transverse reinforcement used. Thus, there is
no contribution of reinforcement steel in the punching shear model. The concrete force is
calculated according to NEN 1992-1-1:2005; art.3.1.7].

The concept proposed by Hewitt-Batchelor implies that the prestress steel area acts as normal
reinforcement which effective yield stress is reduced insofar as a part of it contributes to the
development of compressive forces. This assumption is valid because the positive effect of the

applying prestress has already been considered as boundary restraints in the slab (F,=P).

r
f‘sy - pk -

A

P

Taking into consideration that the ultimate punching shear load, as well as the relating forces are
implicitly connected, Hewitt and Batchelor developed an analytical model, which calculated the
ultimate load by executing an iteration process.

This model has been employed later in the study of He and Weishi, who proposed two methods to

predict the ultimate punching load.
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Comprehensively, in the first method the theoretical failure load is calculated for a variety of
restraint factors. Then, a graph, which illustrates the relation of restraint factor and transverse

prestress level is obtained, as depicted below. Having the experimental failure load the relating

restraint factor can be determined.

The procedure briefly is the following:

1. For variety of 1 the failure loads are calculated

2. Plot the results: Py-n

3. Plot the graph: n-TPL

4. Estimate the restraint factor by interpolation for the experimental failure load
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Figure 6 Linear relation restraint factor and level of prestress

In the second method the principle of superposition is employed, which the contribution of
compressive membrane action in the reinforced concrete slab is examined separately from the
contribution of the prestress. The latter is divided to two distinct trial approaches, as given

diagrammatically below.

Compressive
Mebrane Action of n=0.2 Pua
reinforced slab
Ultimate Punching

load Trial 1: PubL Pu,total=Pua+Publ
Fb1=P and Mb1=0 Pu,total=Pua+Pub2

Prestress action

Trial 2:
Pub2
Fb2 and Mb2

]
TUDelft

Delft

Figure 7 Analytical Methods
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At the first step the slab is analysed as non-prestressed composite deck, considering compressive
membrane action due to the supports. That is the case the restrain factor m is equal to 0.2
according to the above mentioned graph.

At the second step the effect of prestress action is considered and two approaches employed to
predict the final load. The first trial is simplified since the boundary force is equal to the applied
prestress force and the boundary moment is considered zero. It is worth mentioning that it has
been proved by the test results that excluding the boundary moment is not appropriate while the
arching action is underestimated. The ultimate load will be the summation of the first method the
this trial.

At the second trial both compressive forces and moments are considered due to the prestressing
load, given by the formula:

Fr=7 Fb(max)

Mp= 1 Mp(max)

In order to evaluate them Hewitt and Batchelor were making use of the idealised model of
Brotchie and Holley (1971). Moreover, setting again the compressive force F, equal to prestress

load F, the restrained factor is the output of this iterative process.

__Fp
n= Fb(max)

1.4.3. Plastic theory approach

Braestrup and Nielsen [1976] developed a punching model to find an upper bound solution to an
axisymmetric slab. The case is treated theoretically considering that a punching failure occurs with
a vertical separation of the slab along a surface defined by a generatrix, described by the unknown
function:
r=F(x)
Briefly, the main assumptions employed are:

= Concrete is considered as a modified Coulomb material.

=  Proposed failure: punched-out of a solid of revolution whereas the rest of slab remains

rigid.

= VYield criterion: with respect of tensile strains and stresses.

The upper bound failure load P is given by applying the theory of energy at the failure surface:
Wexterna=Winternal

We=Pu

The internal work can be expressed as a function of the geometry of the failure surface and the

compressive and tensile strengths of the concrete.
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It should be mentioned that the critical surface of the outer part of slab, which gives the minimum
upper punching load, corresponds to the minimum work for a given displacement. The details of
this calculation of the failure surface consists of the two parts: a straight line to a depth hy and a
catenary curve from hy to h. The predicted failure surface is thus similar to that observed in
punching shear tests.

The dissipation is found by integration over the failure surface. As the motion of failure is
perpendicular to the tensile reinforcement, in terms of rigid plasticity, no work is produced by the

steel. Thus, the predicted ultimate load is independent on the reinforcement ratio.

The area element can be taken as:

dx
cosa

dA =27

The work equation yields:

N .
Pu = L 5 foull —msine 277 -

Conclusively, according to the plastic theory the ratio of flexural reinforcement has no influence
on punching resistance and the compressive strength of the concrete is a decisive parameter for the
surface of failure.

In 1986 Jiang and Shen modified the model of Braestrup and Nielsen by using a parabolic
Coulomb — Mohr intrinsic curve of a modified Coulomb failure envelope.

The lowest upper bound was given as:

2 2 2
P )
4 4 Ind,—Ind
K:%(n+2(l—\fn+l))
_J
n=-=
i

By including the assumption of a straight yield line the formula was further simplified:

P=0.21f.sh
where s=rn (d+h)
f.: an effective compression strength equals to: f, =v *f’

v =0.5 from experimental study

Therefore, the equation of ultimate punching load is:
P=0.074f.>sh
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It is worth noting that the contribution of the prestressing steel is not taken into consideration,

making the plastic model less realistic.
1.4.4.Park and Garnble [1981]

Considering a concrete slab which the partially horizontal restraints at the ends do not allow
horizontal movements, as illustrated in the Fig 1. Due to lateral restraints high in plane
compressive forces develop in the slab, increasing the ultimate load.

The dashed line expresses the capacity by employing the Yield Line Criterion. The Limit Analysis
Method or Yield-Line theory is used to predict the ultimate load of slab systems by postulating a
collapse mechanism and considering the principle of virtual work or equations of equilibrium.
This method neglects the membrane action and strain hardening as the conventional design rules
do. The load deflection curve is consisted of two parts: the compressive membrane action and the
tensile membrane action. Comprehensively, while the load increases and the slab deflects
vertically, the relative distance between the supports also increases, developing arching forces due
to the horizontal restraints. This arching action explains the increase in the capacity of the concrete

slab beyond the yield line.

The compressive forces take the maximum value in small vertical displacements, which has been
experimentally proved to be equal to half of the slab’s thickness. As the deflection increases, the
ends of slab tend to move inward decreasing the compressive forces and finally converting to
tensile forces.

1.4.5.New Zealand code

The New Zealand code is one of the first international codes that takes into account empirically
the compressive membrane action in bridge decks by making use of test results. This empirical
method can be used if the following conditions are met:

e the supporting beams are steel or concrete

o the diaphragms are continuous and present at all supports for pre-stressed concrete beams

o the slenderness does not exceed 20

o the span length does not exceed 4,5 meter

o the concrete strength f’c is not less than 2 N/mm®

e the minimum slab thickness is 150 mm

o the overhang of the outer beam is at least 80 mm
The above criteria are expressed by graphs which are categorised by the height of the slab and the
compressive strength of the concrete.
It is noticeable that this code takes into account only the reinforcement ratio p. The prestressing

steel and its effect are neglected, thus the prestressing area has to be converted to an equivalent
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reinforcement area. This can be achieved by two ways: based on the force equilibrium and equal
stiffness.
The New Zealand code considers only full scale bridge decks, consequently for the sake of

comparison the experimental results have to scaled back according to the scale factors of He.

1.4.6. Eurocode 2

According to the Eurocode the ultimate punching shear capacity can be calculated by NEN-EN-
1992-1-1cl 6.4.4.

uRd=CRd,c'k' (100'pl'fck)1/3 +k|'ch > (UmintKy- ch)

The perimeter of the load area is u:
u=2- (c1+cy)+4nd

The scaling coefficient:

_ ,200
k=1+ -

The reinforcement ratio: p=,/piz - ply
In slab the mean transverse reinforcement is taken into account for the capacity, which in turn is

based on the unmi, and the level of prestress o,
OCYy+OCZ

2

Ocp,level =

Pulevel = uRd,Z.SO,min"‘d/'Yc'u

As has been proved the Eurocode underestimates the ultimate punching load since it takes into

account only the 10% of the prestressing ki - o,
1.5. Objectives - Research Questions

The aim of this thesis is to investigate the effect of the compressive membrane action and
transversely prestress over the ultimate punching and bending capacity. To develop the analysis of
this scientific topic, research questions have been posed giving an orientation into the research and
indicating the guiding components of the investigation.
a. Develop an analytical model to predict the ultimate capacity of a slab accounting for the
compressive membrane action and the transverse unbonded post-tensioned tendons.
b. How can the punching shear and bending failure be defined in the terms of the effective
stiffness provided by the supports and the surrounding slabs?
c. To what extent can the compressive membrane action and the transverse prestress
contribute to the punching shear and bending capacity of the slab?

d. Parametric Study: How can the slenderness of the slab and the position of the load affect
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e.  Optimization of Structural Design: Which is the combination of the optimum dimensions
of the slab for the maximum bending and punching shear capacity?

f.  Comparative Study: How realistic is the model compared to the experimental results?

To approach the research questions this thesis has been divided into two main parts to investigate
the two failure modes: Punching shear capacity and Bending capacity. Numerical codes were
necessary to be employed and modified to predict the ultimate capacities. these numerical codes
were casted to take into account the compressive membrane forces, the prestress effect, the degree

of stiffness and the loading conditions.
1.6. Outline Of Thesis

The present thesis is an attempt to estimate the punching shear capacity and bending capacity of a
transversely prestressed concrete bridge under the development of compressive membrane action.
Therefore, the thesis has been divided into two main parts: Punching shear capacity and Bending

capacity.

The objective of this thesis is to investigate the effect of compressive membrane action (CMA) in
combination with the transversely prestress under a static point load applied at the midspan of the
bridge’s slab. The challenge is to develop a physical model which could predict the mechanical
response of the slab at punching and bending by taken into account the combination of

compressive action and the prestress effect.

Chapter 2 describes the theoretical and analytical approach of punching shear capacity of a
transversely prestressed slab under the effect of compressive membrane action. A combination of
the models of Kinnunen and Nylander (1960), Hallgren (1996) and the Model Code 90 is
employed for the theoretical approach and Hewitt-Batcelor (1975) for the analytical. The
employed models were necessary to be adjusted at the conditions of the present thesis. Thus,
modifications have taken place, presenting a different approach for the punching failure. The
effect of prestress is introduced as imposed deformation in the total ultimate concrete compressive
strain. Moreover, since the crushing of concrete characterizes the failure of the slab, the
compressive concrete strain is expected to reach the maximum acceptable limit 3.5 10°. The
compressive membrane force is calculated by making use of the principle of equilibrium and

employing

In Chapter 3 the results of the theoretical approach regarding the punching shear mode are going
to be compared with experimental results. Two prestress levels are applied (1.25-2.5MPa) during
the experiments, which took place in the Stevin Lab Il CITG, TUDelft, The Netherlands.
Comparing the results of both cases many conclusions can be reached. Simulating the prestress as
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an imposed strain, the ultimate punching capacity is hardly affected by different prestress levels

and the compressive membrane force slightly changes.

Chapter 4 deals with the estimation of the bending capacity of the slab, employing the flexural
failure of the approach of Park (1964). A direct solution is not possible due to the fact that the
position of neutral axis is unknown. Thus, an iterative procedure should be followed to calculate
the concrete and steel forces. Initially, the concrete force set equal to the crushing force and the
steel forces equal to yielding force. Then, an incremental displacement is applied and new values
of the forces are calculated until reaching the maximum capacity. Two cases are investigated
related to the position of the load. When the load is applied at the exterior panel a lower stiffness
is contributed to the capacity compared to that of the interior panel. This analysis has been carried
out by making use of analytical modeling in Matlab, which is capable of making iterations and

internal loops to estimate the ultimate capacity.

In chapter 5 the structure and the functions of the Matlab code are thoroughly described.
Executing a Matlab code for the iterative procedure, presented in the Master thesis Miltenburg
[1998], the ultimate bending capacity and the vertical displacement are obtained. Then, the
compressive membrane force can be found by making use of the horizontal equilibrium.
Comparing the final results of the interior and exterior cases, conclusions can be made. The
ultimate capacity of the interior panel is higher than the exterior but the displacement is smaller
because the higher stiffness of the interior makes it stiffer and less ductile. The prestress is
simulated as an additional stiffhess in bending capacity. For different prestress levels, the ultimate

capacity and arching action are slightly affected.

Chapter 6 presents the implementation of the theoretical approach to the present research.
Employing the aforesaid models the ultimate capacity can be estimated for the given input data

and compared to the experimental results.

In chapter 7 a parametric study has been carried out to give an insight into the correlation of the
governing parameters, such as the stiffness ratio and the slenderness. For higher stiffness ratio the
ultimate capacity is abruptly increased, reaching the higher value at a stiffness ratio equal to 1,
while for greater values of the ratio no effect is found. In order to achieve the peak of the capacity
it is not necessary to provide extremely stiff supports. On the other hand, if the slenderness
increases, the capacity substantially decreases because the slab becomes too slender to develop the

compressive membrane forces.

Last but not least, in chapter 8 a comparative study between punching shear and bending results
takes place. Comparing the two failure modes the bending capacity exceeds the punching shear
capacity, leading to the conclusion that depending on the loading conditions the most favourable

| . : i
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PART I: PUNCHING SHEAR CAPACITY
2. COMPRESSIVE MEMBRANE ACTION IN PUNCHING SHEAR
2.1. Introduction

The basic aim of this part of the thesis is to estimate theoretically the punching shear capacity Vg
and analytically the effect of compressive membrane force of the transverse prestressed slab by
combining the theory of Kinnunen and Nylander (1960) and Hallgren (1996) and the Model Code
90. The overall procedure has to deal with these phenomena: the bearing capacity under a vertical
load, the compressive membrane action and their interaction. The parameters of the compressive
membrane action are also going to be estimated by the analytical approach making use of a Matlab
code, initially casted by Hewitt-Batcelor (1975). Both procedures are going to be explained in the

following sections.
2.2. Failure Mechanism

Punching shear occurs when the compression zone near a column collapses, because the concrete
strain in the slab reaches a critical level due to the bending moment or the inclined compression
stress due to the column reaction.

According to the proposed model by Kinnunen and Nylander (1960) and Hallgren (1996) failure
occurs when the tangential compression strain in the slab at the column edge reaches a critical
value. The cracking at a critical tangential flexural strain softens the concrete at the column edge.
More comprehensively, at the ultimate stage the compression strain always exceeds the strain
corresponding to the concrete strength f... Thus, when the flexural tangential strain in the bottom
of the slab reaches the critical value, the concrete loses the interface bond resulting in a vertical
crack. This vertical crack is attributed to the combined action of the support reaction and the
tangential strain. It has been observed that the radial compression strain at the bottom surface of
the slab in the vicinity of the column suddenly decreases to zero when the load almost reaches the

ultimate punching shear load. Therefore, the inclined compression strut cannot resist the support
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combination with the shear deformation of the compression zone. Due to the shear deformation
the radial flexural strain in the bottom of the slab stops increasing while the load increases.
Conclusively, the failure mode is governed more by the circumferential crack at the slab/column
interface rather than by propagation of an inclined flexural crack.

Hewitt-Batcelor (1975) extended the model of Kinnunen and Nylander by introducing
compressive forces at the ends of the slab, as shown in Fig. 9.

Below the most representative failures models are presented, indicating the active forces and the
plane of action.

-
|

Compressed conical snell

(b)

Figure 8 Kinnunen-Nylander model
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Figure 9 Punching failure model modified by Hewitt-Batcelor (1975)
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Figure 10 Failure Mode Vg

2.3. Theoretical Approach of Punching Shear capacity

The main objective of the theoretical approach is to estimate the punching shear capacity and the
corresponding deflection. The basic assumptions for the material modelling are that at the ultimate
stage the steel cannot yield and the concrete is crushing. Thus, the steel reinforcement is
considered as an ideally elastic-plastic material.

According to punching theory the ultimate load is given by the following formula:
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8r (1)

21n(%)+1—lj—22

Ve =me-

Where m,: bending tangential and radial moment per unit width at column edge, given by the Eq
2.
Y. compression zone at the ultimate stage, given by the Eq.6

It is worth mentioning that the employed models should be modified in order to be applicable and
compatible with the present conditions of the slab. These modifications are based on assumptions
accounting for simulation of the presence of the post-tensioning tendons and the compressive
membrane action.

As can be noticed, the ultimate punching shear capacity V. depends mainly on the compression
zone at the failure stage, which in turn depends on the concrete compressive strain. Thus, any
modification can take place with respect to the concrete strain in order to reflect this change in the

ultimate capacity.

Figure 11 Bending moments and slab deformation for a circular slab supported on the edge of a

circular column

According to the theory of elasticity for a circular slab of Timoshenko and Woinowsky-Krieger

(1959) the moment can be expressed also as:
m.=El-f"=p o, d*(1- y,/3d) (2)

Where f " the curvature of the slab due to the bending moment m.
El: the stiffness of the cracked cross section

p: reinforcement ratio including regular and prestressing steel, calculating as follows:

pzApe/Ac (3)
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Ape :Ap+As

i.  Calculation of ultimate compression zone: y,

1** Assumption
The model Kinnunen and Nylander, Hallgren and Model Code 90 deal with reinforced concrete

structures. At the considering case, prestressed tendons are present, thus modifications of the
equations should take place in order to adjust the models.

To estimate the punching shear capacity the depth of the compression zone should be found. The
ultimate compression zone depends on the ultimate concrete compressive strain under the vertical
load P, and the applied prestress. The role of prestress is quite important since it neutralises the
tensile strains induced by the external load P, which are responsible for the cracks and ultimately
for the failure. When the prestress level increases the slab can carry more tensile strains,
increasing the depth of compression zone, resulting to a higher capacity and better overall
performance. This favourable effect has to be introduced in the equations of the compression zone.
It can be achieved by superposing the strain of the reinforced concrete and the strain, carried by
the prestress. Thanks to the elastic linear behaviour of the prestress steel, the strain compatibility
can be employed. Thus, the neutralised strain is equal to the strain by the applied prestress. Then,
it can be assumed that the ultimate compressive concrete strain g, IS @ summation of the

concrete strain due to reinforcement and the induced strain due to the prestress at the concrete.

€neutralised = Ecp (4)

€u,total = Ecpu T Ecp (5)

2" Assumption
Furthermore, since the crushing of concrete characterizes the failure of the slab, the compressive

concrete strain is expected to reach the maximum acceptable limit 3.5 107, Thus, at the failure
stage the concrete has exhausted its capacity by reaching the maximum strain ggpy,

— _ -3
Eutotal = Ecpu + Ecp=3.5 107 + g

The final compression zone is given by the Eq.(6) at the failure stage when the steel is not yielding

and the concrete is crushing:

pEs-ecto 4-aco- fcc (6)
yu=r——"""-—(|1+—7—-1)"d

2-aco- fcc p-Es-ecto
Oco=0.5
&cto = Ca/Co

Ci= €y,total (B/2+X)
X = Ye (1+tana)
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Where &, compressive strain at the concrete due to the applied prestress
d static effective depth at the level of the tendon: d=0.45*0.5h

The elastic compression zone Y is derived by the elastic conditions: If punching occurs without

any yield of the equivalent reinforcement then both reinforcement and concrete behave elastically.

7
ya=d:mp( [1+2-1) )
Es
n=
Ec10

ii.  Steel stress at the ultimate stage: o s

3" Assumption
It has been assumed that the steel cannot yield, so the linear elastic model can be used. The

concrete force has to be balanced by a tensile force. Here, it is considered that the concrete force is
in equilibrium with a fictitious tensile force which can be calculated making use the principle of
the equilibrium assuming complete cooperation between concrete and steel (reinforcing and
prestressing steel). As a result, the concrete strain gives a fictitious steel stress o s, given by the

equilibrium as follows:

Fe=F

Fi=p-d o, (8)
Fe=3/4 X Mec* Yu" Ec10 €cpu (9)
Where 2 is a factor defining the effective height of the compression zone, given by:

1=0.8 fox < 50MPa

1=0.8-(fx-50)/400 50 < f« < 90MPa

n is a parameters defining the effective strength

Nec-1.0 fu < 50MPa

Nec =1.0 - (f-50)/200 50 £ f < 90MPa

0*5 _ EclO*scpp:* yu=ac (10)

The tangent modulus of elasticity E.q for concrete at zero strain is taken as
the value given in Model Code 90 (1993):

Eco= 21500 - (<5173

4
Eao=(1-06(1-157) ) Eg

This fictitious steel stress o5 expresses the full cooperation between the

—————————————governing—actors:—concrete=steel-restraint —conditions—of -the—supports.— 1o; K;f . 1 .
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These support conditions are introduced by the fact that there is a fictitious bond between concrete
and steel.

Therefore, this fictitious tensile force Ft* includes the steel force of the unbonded tendons, the
support restraint and the effect of prestress as restraint. The effect of restraint, represented by the
CMA compressive force Fy, can be isolated from the tensile steel force. Since the fictitious force is

in equilibrium, the next equation is valid:
Figure 12 Stress-strain curve for concrete
N strength
Fi =Fp+ Fyt (11)

Where Fy: compressive membrane force
Foi: prestress steel force, calculated according to the crack width theory as the tendon is
unbonded.

iii.  Calculation of Ultimate Punching Shear capacity
Now, the bending moment at the support can be calculated, as follows:
m,=El-f"=p o, d?(1- y,/3d)

Finally, the punching shear capacity of the transverse prestressed slab can be estimated according
to the following formula:

8n

Ve =me- B B2

21n(B)+1—F

Last but not least, the theoretical deflection & represents the bending deformation and shear
deformation where the latter cannot be considered negligible since it is important for the punching

failure mode. This deflection is calculated as follows:

Ve B? c c¢—B (12)

The effective (cracked) stiffness is given by the following formula:

- Esead- (1= (13)
EIcr—f,,—p Es-d (1 d)

' (1 - .dyu>

iv. Calculation of stress of unbonded tendon: Crack width theory Fy

The unbonded tendon is subjected to a vertical load and an initial axial imposed deformation. The
total strain is constant along the length of the tendon as the deformation of the bridge is not

enough to bend the tendon. Thus, it can be simulated as a spring, behaving in an elastic way and
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accumulating all the strain at its ends. Consequently, the force that is carried by the tendon can be
calculated directly by the total strain at the support. This strain is a superposition of the applied

prestress and the strain due to the crack width.

€ptot = Agp+ 05/ Es
Agp=w/ L
W=0-z
® = 01 + 0,=d/l;+ d/1, (14)
Where L;: position of applied load
o: vertical displacement
Due to symmetry the distances I; and I, are the same and half of the length of the intermediate
slab.
Lot = l1+l,
Where z the level arm: z = 0.4d
d=0.9-05-h
Os= P Ap
P = 0cp*Ac
Ape: equivalent amount of reinforcement given by the summation of prestress and regular
reinforcement
A.: concrete area where the prestress applied
ocp: applied prestress level at the concrete as a result of the prestress working force Py
Total prestress of unbonded tendon:
Gpt = Eptot Es
Fot = €ptot * Es (15)

v.  Calculation of compressive membrane force Fy

Two methods are going to be investigated for the calculation of compressive membrane action.
The first method employs the principle of equilibrium as explained at the Step 2 and the second
method applies the analytical Matlab code of Hewitt-Batcelor (1975).

e Compressive membrane force by theoretical approach “Equilibrium”
Fo=F - Fp (16)

e Compressive membrane force by analytical approach Matlab
2.4. Analytical part of approach

The main objective of the analytical approach is to calculate the compressive forces and the

relative factors according to method of Hewitt-Batcelor (1975). The effect of the compressive

embrane action and the overall interaction will thoroughly investigated. Having obtained the
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punching capacity and the corresponding deflection, an analytical procedure in Matlab can be
followed. The value of compressive membrane force of theoretical analysis will be compared to
that of method of Hewitt-Batcelor (1975).

4™ Assumption

At the Matlab code of Hewitt-Batcelor (1975) the compressive membrane action is an input
parameter F,, which has been calculated by introducing an arbitrary value for the restrained factor
n. Thus, the ultimate punching load is an output parameter that code calculates. At the present case
study, the ultimate load has been calculated according to the theoretical model, giving above, so
the code has been inverted and recasted in order to calculate the compressive membrane force.
Consequently, the validation of the code is ensured because the equations of the model of Hewitt-
Batcelor (1975) are employed to make them work in double way.

As has been mentioned above, the ultimate load P and the respective displacement are input
parameters in the Matlab code, as a result no iterations are required to find the compressive force
Fpand M,

Furthermore, the original code had to deal with bonded regular reinforcement, which was
expected to yield, giving the steel stress equal to yield stress. At the considering case the tendons
are unbonded, thus the steel stress will be given by the crack width control, since the unbonded

tendon is always in the elastic zone.

Table 1 Input and Output Parameters

Input data Output data
V., Fy
Yel Mb
Yu I:bmax
€y, total Mbmax
Gs n
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Hereby, the inverted equations are presented to show the analytical procedure.

. (17)
P, =Tsina= E(Ej(lj B+2y f f(a)d?
dA\d) B+y
tana(l—tana (18)
f(a) o tene)
+tan® o

_ (19)

(Kztana—l)lt#:i(Hljln ¢

1+tan“a 4,7 b B+2y
X_4-(3-d—y)_(ky—kz) (20)
B 3 1000
P-X
Mb = — (21)
4 -
P-kz C 22

Fb = (2—71: - Rl " 1000 - RZoverbeta " 1000) : E ( )
Ry = (rmo * fsy:d - ((rs - Co) + 15 - log(c/(2 - 15))))/1000 rs >Co (23)
Roovergeta = o * 1:sy -d- COI:I-000 rs > Co ( 24)
Ry =(rmo - foy-d - s+ log(c/(2- Cy)))/1000 rs <Co (25)
Roovergeta = o * 1:sy -d- rs/1000 rs <Co ( 26 )
rs = Es/ foy - tasi - (d - y) (27)
foy = fox - (Fp / Ap) (28)
Fp=0c h (29)
y 3y (30)

EI=%=p-E5-d3-(1—E)-<1—T>

2.4.1. Matlab flowchart

Hewitt-Batcelor (1975) had casted a Matlab code to calculate the vertical ultimate load V.,
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The whole procedure of the code is giving below in the flowchart:

f(a) from
[14]

TA from [2]

Mb from

Figure 13 Matlab flowchart

At the Appendix IlI the initial and updated Matlab codes are presented to give an insight into the
execution of the program.

3. APPLICATION TO PRESENT EXPERIMENT
3.1. Introduction

To investigate the punching shear capacity of a transversely prestressed slab, a bridge has been
constructed at 1:2 scale model at Stevin Il laboratory, CITG faculty, Delft University of
Technology. The bridge model has 12m long and 6.4m width, consisting of four precast concrete
girders placed at 1800 mm c/c distance. The slab has been casted in situ and prestressed in the
transverse direction with clear span of 1050mm and thickness of 100mm, as can be observed
below.

More specifically, the transversely prestressed slab has 3 intermediate slab panels. At the case of

punching shear a point load has been applied at the midspan of the panels. The girders have been
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designed and constructed to bear 11000kN, the load of which cannot be exceeded. Thus, the
girders are going to remain uncracked during loading, which is also verified during the
experiment. Since the supports are uncracked the conditions over them can be considered elastic.

Consequently, the stiffness is not reduced, leading to greater restraint conditions.

Figure 14 Apparatus of structure

3.2. Application at the applied prestress level: 6, = 2.5 MPa

The prestressing tendon is positioned at the mid-depth of the slab, resulting to a reduced effective
depth about d=0.9-0.5-h=0.45-h

3.2.1. Theoretical part of approach

Table 2 Input data

Description Value [N/mm?]
foi [N/mm?] 82.54
fq [N/mm?] 70.16
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£ [N/mm?] 5.68
Eeo [N/mm?] 37957.37
Ecio [N/mm?] 34297.30
Esp [N/mm?] 205000
p [l 0.00583
np [-] 0.0277
h [mm] 100
d [mm] 45
aco 0.5
B [mm] 200
Ape [mm?] 0.5838
o 25°

i. Calculation of elastic zone: ye,

Ya=d-np - ( [1+.5-1)
As mentioned above, due to the position of the tendon the effective depth of the slab is d=0.45*h

n _ Esp .
P=%ci0 P

Where p is the total equivalent ratio taking into account both reinforcement and prestress steel
area

p = Ap+s/Ac = 0.583/100= 0.00583 per running mm

Apis= AptA;=0.4425+ 0.141372 = 0.583mm?/mm

Ver=10.41mm

ii.  Calculation of ultimate zone y,

Oco=0.5
Ecto = C1/ Co
C]_: Su’tota| (B/2+X): 0.411mm

TUDelft & )




X = Ye (1+tana) = 15.27mm
co=B/2+1.8-d=181mm

Eeo= 21500 - (£9)1/3= 37957.37N/mm’
4
Eeio=(1— 0.6 (1 - %) ) E¢g=34297.30N/mm?

€cp = Ocp/ Ec10=5.929 10

It is worth mentioning again that the total ultimate compressive concrete strain of the concrete is
the summation of the strain of the reinforced concrete and the strain, carried by the prestress.
Employing the strain compatibility it yields:

— -3
€u,total = Ectu t Ecp = 3.5710

__ p'Es-ecto
- 2-ac0-fcc

4-ac0-fcc
p-Es-ecto

( —1)-d = 12.09mm

yu

iii.  Steel stress at the ultimate stage

Here, it is considered that the concrete force is in equilibrium with a fictitious tensile force which
can be calculated making use the principle of the compatibility. As a result the concrete strain
gives a fictitious steel stress o' given by the formula below:

o', = BRI = 2572 76N/mm’

This fictitious tensile force F," includes the steel force of the unbonded tendons, the support
restraint and the effect of prestress as restraint. The effect of restraint, represented by the CMA
compressive force Fy, can be isolated (support and prestress) from the tensile steel force. Since the

fictitious force is in equilibrium, the next equation is valid:

Fe=F
Fi=p-d-o, -1000 = 0.583-45-2572.76 -1000 = 665190N

iv.  Calculation of ultimate Punching shear capacity
Now, the bending moment at the support can be calculated, as follows:
m, = p d?os (1-y./3d) = 27651.60N/mm

Finally, the punching shear capacity of the slab can be estimated according to the following
formula:

Ve = me - ———— =162367N
21n(§)+1—5—2
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Last but not least, the theoretical deflection & represents the bending deformation and shear
deformation whereas the latter cannot be considered negligible since it is important for the
punching failure mode. This deflection is calculated as follows:

2 —_
5:2.(1_3_)-$-%=35.96mm

The effective (cracked) stiffness is given by the following formula:
3.
Eler = 22 = p- Bs-d*- (1-%) - (1 -2¥) = 772410’ Nmm
v.  Calculation of stress of unbonded tendon: Crack width theory

The unbonded tendon is subjected to a vertical load and an initial axial imposed deformation. The
total strain is constant along the length of the tendon as the deformation of the bridge is not
enough to bend the tendon. Thus, it can be simulated as a spring, behaving in an elastic way and
accumulating all the strain at its ends. Consequently, the force that is carried by the tendon can be
calculated directly by the total strain at the support. This strain is a superposition of the applied

prestress and the strain due to the crack width.

Eptot = Agp+ 05/ Eg

® =0 +0,=3/L+d/L,=2-3/L;=0.096rad

Where L;: position of applied load

Lot = L;=L,=1050/2=750mm

w=0-z =1.72mm

Where z the level arm: z = 0.4d=18mm

d=0.45 h=45mm

Agy=w/L = 1.72/6400 = 2.69E-04

P = Ocp * Ac = 2.5%100*350 = 8.75E+04N/mm

A.: concrete area where the prestress applied to the concrete (100x1000)

ocp: applied prestress level

The tensile steel and concrete forces are calculated per running meter of the slab, corresponding to
1000mm width of the slab. The distance between the tendons is 400mm which means that every
1m there are two tendons.

G5 = Pl 2A, = 707.41MPa

€ptot = Agp+ 05/ Eg = 2.69E-04 + 707.41/205000 = 3.72E-04

Total prestress of unbonded tendon:

Opt = &ptot* Es = 3.72E-04*205000 = 762.71MPa

Fot = Ope- Ap= 762.71 * 0.5838 *1000 = 445272N

Fi “Fp+ Fy
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At the previous stage the fictitious force has been calculated:

F, = 674963N

Thus, the compressive membrane force is given by:

Fb = Ft* - Fpt = 674963 - 445272 = 229691N

As mentioned in the section 1.4.2, the restrained factor is the ratio between the compressive
membrane force Fy, and the maximum Fynax Under ideal conditions.

Idealized compressive membrane force

Fbmax = Fc - Fs

Fe =3/4hnec - (2/3 - ) - (W12 — 5/4)

Where A is a factor defining the effective height of the compression zone, given by:
1=0,8 fox < 50MPa

1=0.8-( f-50)/400 50 < f« < 90MPa

n is a parameters defining the effective strength

fa« < 50MPa

50 < fox < 90MPa

Nec=1.0
NMEc :1-0' (fck'50)/200

Thus, the concrete force can be evaluated, as follows:
Fc =% 0.721- 0.842- (2/3- 82.54) - (100/2-35.96/4)*1000 = 684950N

At this point it is worth mentioning that the ideal conditions at the support has only effect on the
concrete force. Due to the fact that the tendon is unbonded, it can be concluded that the
prestressing steel is not going to yield. During loading, the steel stress will be in the linear stage
and it is not governing for the failure. Thus, the failure is attributed to crushing of the concrete,
which leads to punching shear failure. Conclusively, the steel force is not a function of the

idealised conditions.

Fs= Fy= 445272N
Fbmax = FC - FS = 1059.8981N/mm

The restrained factor is calculated by taken the ratio:
N = Fy /Fomax = 229691/23967= 0.95
3.2.2.Results for all the applied prestress levels

Table 3: Theoretical Results

P rest ress Scp £CpU 8uyt0ta| yu 65 ms VS 6
level TPL [mm]
[MPa] [107] [107] [ 107 fmm] [MPa] [N] [N] by

EIcracked
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Following the above procedure the compressive membrane forces and the restrained factor can be

found by equilibrium for every prestress level applied to the slab. The capacity and the deflection

are used as an input data for the analytical approach. All the results from the analytical part for

both cases are presented to the following table.

Table 5: Results by Equilibrium

Prestress .
level Vs = Pu o Ft Fpt Fb I:bmax n
TPL
[N] [mm] [N] [N] [N] [N]
[MPa]
0 157809 34.95 655457 31378 624078 657788 0.94
1.25 160084 35.46 665190 238324 426865 448737 0.95
2.5 162367 35.96 674963 445272 229691 239677 0.95

e Analytical results by Hewitt-Batcelor

0 - 35 35 11.99 2498.4 26875.3 157809 34.95
1,25 3.64 35 3.53 12.04 2535.5 27262.8 160084 35.46
2,5 7.28 35 3.57 12.09 2572.7 27651.6 162367 35.96
Table 4: Calculation of prestress force
Prestress 0 w Ag, €p,tot Opt
level TPL
[MPa] [rad] [mm] [107] [107] [MPa]
0 0.093 1.67 2.62 2.62 53.74
1.25 0.0954 1.70 2.65 1.99 408.23
2.5 0,095 1.72 2.69 3.72 762.71

At this section the compressive membrane action is calculated according to Matlab code of
Hewitt-Batcelor.
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Table 6 Analytical Matlab Results

Prestress
level TPL Ve=Py o Fo Fomax n
[MPa] [N] [mm] [N] [N]
0 157809 29.33 737900 1355900 0.54
1.25 160084 29.44 665230 1308400 0.50
25 162367 34.45 518276 1233000 0.42

4, COMPARATIVE STUDY
4.1. Results

Table 7 Results of Experimental approach

Experiment TPL Load P, Deflection & Crack width w
[N/mm?] [N] [mm] [mm]
BB-1 [Exterior] 25 348740 10.4 0.8
BB-2 [Exterior] 2.5 321400 9.1 0.7
BB-16 [Interior] 2.5 553400 9.97 15

Table 8 Results of Theoretical approach

Position | Failure | TPL V.= P, Deflection Fo [N] Fomax IN] n
ofload | mode | [MPa] N 5 : : :
[N] [mm] By Hewitt- By Hewitt- By Hewitt-
Equilibrium | Batchelor | Equilibrium | Batchelor | Equilibrium | Batchelor
- Punching | 1.25 | 160084 354 426865 665230 657788 1308400 0.95 0.50
25 | 162367 35.9 220691 518276 448737 1233000 0.95 0.42

4.2. Comparison: Experimental — Theoretical approach

Experimental results
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At the specimens BB-1 and BB-2 the load is applied at the exterior panels at which there is only
restraint from the edge beam and the one side panel. On the other hand, at the specimen BB-16 the
load is applied at the interior panel, which is fully restrained by the panels and girders at both
sides, which give higher restraint, leading to higher load capacity. The main difference between
the specimens is the position of panel (exterior/interior). Therefore, the effect of the compressive
membrane action and the effective stiffness are governing for the ultimate failure load, giving a

deviation about 37% due to the additional stiffness of the interior slab.

Observations
i.  The experimental failure load is greater than the load prescribed at the Dutch code
52.5kN, which has been scaled down in compliance to the bridge model. Thus, a
sufficient safety factor can be achieved with lower boundary y >5.6.
ii.  The skewed interface has sufficient capacity to bear the vertical load, since no interface
failure occurred during the experiments.
iii.  No significant loss of prestressing steel occurred, verifying the initial assumption to

neglect the prestress losses

Theoretical results

i. The ultimate punching load V. depends on the steel stress, which in turn depends on the
ultimate compressive zone, given by the concrete compressive strain. That means, every
external effect such as prestress should be introduced as a strain in the concrete in order to be
reflected at the ultimate capacity. This initial imposed deformation due to prestress is very
small to increase the concrete strain, leading to slightly changes in the ultimate capacity.

ii. The punching shear failure is governed more by circumferential cracks at the loaded area
rather than by propagation of an inclined flexural crack. The stiffness should be defined in
terms of parameters, which characterize the punching shear failure, such as the geometric
dimensions of the conical area and the ultimate compressive zone. However, this stiffness
cannot account for the boundary conditions and the additional stiffness of the surrounding
slabs and concrete girders. Thus, the resulting stiffness does not reflect the real effective
stiffness, which is higher than the assumed, leading to a higher vertical displacement than the
experimental.

iii. The theoretical approach cannot take into account the position of the slab, due to the
deficiency to account for the boundary conditions. Therefore, the interior panel is assumed to
have the same capacity with the exterior, which is not valid according to the experimental

results.
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iv. The effect of compressive membrane action has been considered by taken the maximum
theoretical capacity of the concrete, since the concrete is expected to crack at the ultimate
stage. Thus, the concrete strain cannot exceed the value 3.5 107 at the failure stage.

vi. The compressive membrane force is the result of the restraint effect of support stiffness and
prestress. The support stiffness is calculated at the cracked stage by taken into account the
ultimate compressive zone and the prestress effect has been introduced as an initial imposed
strain at the compressive zone. Thus, the ultimate punching shear capacity has been estimated
by taken into account both effects. It is difficult to separate the nominal capacity and the
additional due to prestress and CMA in punching shear, because at the approach of Kinnunen
and Nylander (1960) CMA always occurs in the slab due to the fact that the stiffness is given
by the cracked conical shell. Thus, the boundary conditions at the support are not included in
the stiffness.

Comparison: Experiments — Theoretical Results

i. According to the experimental results the position of loaded panel plays an important role at
the failure load because of the contributed effective stiffness of the surrounding elements.
Thus, the interior panel has 37% higher capacity than that of the exterior. On the other hand,
the theoretical method cannot reflect the boundary conditions since the stiffness is given by
the cracked conical shell due the shear failure mechanism, neglecting the position of the panel

(interior/exterior).

ii. In the theoretical approach the TPL has a low effect on the load capacity since it has been
considered as initial imposed deformation, contributed both to concrete and steel force. The
deviation between the ultimate punching capacities of the different prestress level is less than
1% (Fig.15). The prestress effect should be taken into account as a progressing effect since it
introduces strains and restraint effect throughout all the loading process, delaying the failure
stage.

iii. In the theoretical approach the deflection has been estimated based on the cracked stiffhess
(effective stiffness) Elackeq DY taken into account the compressive zone at the ultimate stage
when the concrete is crushing, as well as the TPL. The effective stiffness cannot be influenced
by the effect of the prestress and CMA. Therefore, the stiffness occurs to be less than the real
stiffness, provided by the support and the surrounding slabs. As a result the deflection is
higher, almost double, than the observed to the experiments (Fig 16).

iv. With respect to the two methods (by Equilibrium and Hewitt-Batchelor) for calculation of
compressive membrane action, according to the literature review and the experimental

results, the compressive membrane force is expected to increase while the prestress increases.
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prestressing steel force Fp increases. In the “Equilibrium™ approach the fictitious steel force
F. increases at a lower rate than the increasing rate of steel force of the tendon with the
increase of TPL. This results in a decreasing compressive force (Fig 18). Conclusively, the
problem is attributed to the definition of the concrete force which cannot reflect the TPL
levels.

4.2.1.Graphs

At the Fig 15-17 it can be observed the effect of TPL over ultimate punching capacity is weak due
to the simulation of the prestress as imposed strain. The main weakness at the employed
theoretical method is the definition of the concrete force. It depends mainly on the concrete strain,
which in turn is replaced with the total strain, including the prestress strain. It is advisable to
define the concrete force in terms of the effective stiffness, which directly reflect the prestress and

arching action as a progressing contribution.
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Figure 17 Restraint factor -TPL Relationship

At the theoretical approach the compressive membrane force is calculated based on the
equilibrium. On the other hand, at Hewitt-Batcelor approach the membrane force is calculated
based on the in-plane steel resultants, which represent a better interaction of the steel to the

punching shear plane. That is why the values of the latter approach are higher than the former.
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Figure 18 Compressive membrane action
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Figure 19 Comparison: Punching shear capacity

PART Il: BENDING CAPACITY OF TRANSVERELLY PRESTRSESSED
SLAB

5. INTRODUCTION: FAILURE MECHANISM

At the present case the slab is subjected to a double load, applied at the midspan, assuming that it
fails in bending. To investigate the flexural failure the approach of Park [Park, 1964] is employed.
According to this theory the slab will form three plastic hinges, as presented below, at which large
rotations concentrate, leading to the failure deformation. The segments of the panel between the

slab can be considered that remains straight.
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+A13

Figure 20 Bending Failure Mechanism

As can be seen at the Fig.20, while the deflection is incrementally increasing the slab moves
horizontally outward A13 causing the development of compressive membrane action N, due to
significant horizontal stiffness. At the ultimate failure due to the vertical displacement & the

moments at the plastic hinges 1 and 3 are My; and M, respectively.

5.1. Horizontal Elongation of Slab

The horizontal elongation is directly related to the geometric and kinematic conditions of the slab.
According to the failure mechanism, three plastic hinges are formed at the critical locations 1,2
and 3. The position of the central hinge (BL) varies with respect to symmetrical or unsymmetrical
conditions at the supports. The fact that only the relative distance between the supports 1 and 3 is
of interest, it can be assumed that the one end is fixed and the other is free to translate. The
position of neutral axis is represented by notations: c;, ¢; and c; at plastic hinges 1,2 and 3
respectively.

L (1-B)L

cl
c3

Figure 21 Boundary restraints

According to the failure mechanism, three plastic hinges are formed at the critical locations 1,2
and 3. Idealizing the segments as rigid blocks, the profile of deformation can be considered linear,
as illustrated below. The rotation of the segments leads to the elongation A11' and A33' of the
segments 1-1'and 3-3".
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Agy = (h-Cp-Cy)siny

Aszz = (h-Cz-C3)Sine

In compatible to the geometric conditions the rotations y and 6 can be expressed as a function of

the displacement 8, as follows:

iy = 5
siny = I
sin@ = pL

All’ = (h-Cz'Cl) %
= (h-Coocs) — 2
Agz = (h-C2-Ca) (=57
Ay = BL(1-cosy)+(1-B)L(1-c0sB) = BL(zsin2§)+(1-B)L(zsinzg)

At each incremental displacement & the total horizontal deformation can be calculated as a

summation of individual segment's deformations, as follows.

NS A1'3" A33

A13)
Figure 22 Horizontal elongation of slab
Total elongation: Ay = A, +Azs —Aps
25in2‘2—/ =2( %)2 = YZ—Z ~ 2;22L2
2sin22 =2(3?=2 ﬁ
Arz= ﬁ
Thus, the total deformation can be expressed:
5 82 (31)

=(h—c —c)2 —C — —
Az=(h—c; C1)B*L+(h C2 C3)(1_B)*L 2B(1-P)L

The Eq.31 gives the outward deformation of the slab. The first two terms represent the increase in

length and the third the decrease. It is worthy noticing that at low displacements the first two terms

are determinant, explaining the strengthening effect of compressive membrane action at this range
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of displacements. On the other hand, at large displacements the third term becomes very high due
to the factor 8% so the slab has the tendency to move inwards, giving rise to the tensile membrane

force, as illustrated at Fig. 1.

Having defined the total horizontal displacement of the slab, the compressive membrane force can
be expressed as:

Nu
Az= —
B= %

Any component of compressive membrane force N, has to be constant along the entire length L
(1800mm) of the slab because no other horizontal force is applied. Moreover, along the length of
the slab the stiffness EA is considered constant since it has been assumed that cracks occur only at
the plastic hinges.

The axial stiffness of the slab is consisted of the stiffness of the elements in the transverse

direction: concrete, mild steel and prestress steel.

EA = EAs+ Ec (Ag-As-Ap) + EpA,
Where A, gross cross sectional area
A cross section of the mild steel

A, cross section of the prestress steel

Creep, shrinkage and temperature changes are not going to be taken into account in the present
case study. For a scientific interest the final formula which includes all the strain changes is given
by Mearnarian et. al [1994]:

@+kN,
@+ (n-1)p)E.hb T

E =

s & (1+k)Nu
1-p)«L  2B(1-P)L ((1+(n—1)p)EChb

)
Az=(h—c;—¢q) Bl +(h—c; —c3) + &547)L

5.2. Forces in the Slab

As has been mentioned above, the compressive membrane force Ny, expressed as a function of the
total deformation A;3, depends on the position of neutral axes ¢;,c; and cs. The rest of the forces:

concrete, mild and prestressing steel are going to be derived at this section.

5.2.1.Concrete Forces

The concrete force can be estimated by the next formula according to Eurocode [prEN 1992-1-1]:
Ci =1 faAcb

Where C,: the compressive concrete force in the hinge i
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feq: the design value of concrete compressive strength,defined as:

fq =§ fu
A: a factor defining the effective height of the compression zone, given by:
A=08 f, <50MPa
A =08—(f, —50)/400 50 < f, <90MPa
n: a parameters defining the effective strength
Nee =10 f, <50MPa
e =10—(f, —50)/200 50 < f, <90MPa

The above formula implies a rectangular stress-strain distribution for concrete. It should be noted
that this is not a true strain-deformation relationship because the extreme fibre of the concrete is
always considered to be at the ultimate strain. However, the rectangular stress distribution is a
good representation of the conditions of concrete in flexural compression at failure. Thus, it can be
employed to approach a plastic failure mechanism.

5.2.2. Forces in the Mild Steel Reinforcement

The regular reinforcement is bonded to the concrete, as a result the steel strain is directly related to
concrete strain, represented by a linear profile in compatible with Bernoulli's theory.
b

.'| £ou

T o

Figure 23 Strains in the Mild Steel Reinforcement

The strain in the tension and compression steel are expressed as follows:

&Ti =gcu(di_Cij |:11213
C.

ngiz‘c"cu(Ci;dij |=:L273

Where &g the ultimate compressive concrete strain

d;: the depth from the extreme compression fibre to the centroid of the tension steel at

hinge i
J
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d;": the depth from the extreme compression fibre to the centroid of the compression steel
at hinge i

Modeling of mild steel:

The regular reinforcement is bonded, implying that at the ultimate stage it definitely yields. To
simulate the response of the mild steel during the bending test an elastic-plastic strain hardening
relationship described by Sargin [1971] is employed.

According to this Sargin's approach the stress strain relationship is consisted of three parts the so-

called Trilinear Idealization: elastic, plastic and hardening, as illustrated below.

f=Es*es &< gy
f= fy &y S &= &
Esh(es—esh)
fs= fy+ (85 - gsh)* Esn [1 - ﬁ € = &
F=As* f,
I.ff i ]
i L !
1 ! 1
i I !
i i i
i I -
1 i ¥
L) I I
1 I "
i ; 1
i i "
i L]
1 r | ]
i I 'l T
-
Eﬂk E.E'u Eef
Strain

Figure 24 Modified trilinear idealization for mild steel [Sargin, 1971]
5.2.3.Forces in Prestressing Steel

Taking into account that the prestressing steel is unbonded, the strain cannot follow the concrete
deformation, but it depends on the crack widths at the level of the tendon. The assumed failure
mechanism in bending states that three plastic hinges are going to be formed at the ultimate stage.
Due to the escalated deflection the tendon is increasing in length. This difference in length should
be calculated in compatible with the plastic failure mechanism. Thus, the most suitable model to
present the deflection of the entire member is that prescribed by Rogowsky and Daher, [1997], as
presented below.
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The total steel strain is the summation of the effective prestress g, and the change in length Ap; at

each plastic hinge.

8pf:f‘Ipe"'Api
Af AT?E
e S 5 . . t
1 5+ tendon e O =
e § ) e S 3 413
f i — __;_ — = S \
e B — (1-B)L "

Figure 25 Increase in Tendon length for assumed failure mechanism

The increase in length of the tendons at each of the hinges is:

h—2c
Ay = I 1)5
A, = h—IZCzjw
h-2c
A= I3J5

Where dy;: the depth from the extreme compression fibre to the centroid of the prestressing steel at
hinge i.
At the present case no losses, such as friction, will be considered. Thus, the total strain in the

tendon at failure is:

Apl +Ap2 +Ap3
pe
It

Modeling of prestressing steel:
The stress strain relationship is idealized by the model of Collins and Mitchell, [1991].

The stress for any strain can be calculated as:

1-A
At m———— o<t

EH(ngf )c ]]/C
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Figure 26 Modified Ramberg-Osgood function [Collins and Mitchell, 1991]

5.2.4. Location of Neutral Axis at Plastic Hinges

As has been defined in previous sections, the forces are given as a function of the vertical
displacement 5, the position of the central hinge B and the position of neutral axis ¢1,c2 and c3.
The position on neutral axis, in turn, can be calculated only when the forces are known. Thus, a
direct solution is not possible leading to an iterative procedure for the calculation of the variables.

This can be achieved by taking into account the equilibrium and the geometric compatibility.

) [-41'3 ]
I " I
Fpﬂ- T fl.‘lp o — — Fps
—_ steg/ D s : U . -
Cag ol &% tendon 3 = e 8y  ,3Ca
Ca1 - L i bﬂfk)mageel b e | __?—ﬂ:ﬁ‘_ . G
BL — | (1-BIL

Figure 27 Geometry of the deformed slab and the forces present
Making use of the Fig.27 the equilibrium of forces can be derived.

C01+C31‘T1'Fp5 = C02+C52‘T2'Fps = C03+C53'T3'Fps
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Where Cg compressive forces in the concrete
Csi compressive forces in the mild steel reinforcement at hinge i
T; tensile forces in the mild steel reinforcement at hinge i

Fos prestress force

C1o, o TAZT2=Cs14Cs2
172 Nfcadb

Cang, = T3-T2=Cs3+Cs2
§2 Nfcadb

By solving the equations: the position of neutral axis results in the following equations:

c —h—é—l—_ L+kN, vog o N | Sh=2T 0T
' 2 4 85| (1+(n-1)p)Ehb T ) bS 4nff 4 Ab
c_hoo V[ @rkN, ) N[ T-2T 4T,
2 4 85[\(1+(n-1)p)Eshb T ) bS | 4nf b
c_hoo V[( xRN, ) N | Tie2m, 3T
2 4 85|\(t+(n-1)p)Eshb T ) bS | 4dpf,ab

1

+ l+A,; =
gs”j 13 mad QLK)

86 (L+(n-1)p)E.h
@ek) 1) o fh & T-2T4T) TotFy )
Wr-DpEN s )TN 274 a5 b b o7

Nu = nfcdﬂ‘CZb_TZ - Fps

1+

1
S

(1+k)Nu _ 1 (14K)L
(st asur) L+ 2] = (e | (i +

26 (1+(n-1)p)Ech)" S

%) [(Ufcdﬂb (g _ % + (li’—1)(T1—cn;;;czd—}fZ—ﬁ(rs—Css))]}

All the above equations define the position of neutral axis as a function of the forces, which in
turn depends on the position of neutral axis. That is the case, a direct solution of the equations
cannot be possible which results in an iterative procedure. The iterations and the boundary criteria

are going to be analysed at the numerical simulation section.
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5.3. Determination of the Ultimate Capacity

At previous sections the forces of concrete, reinforcement and prestressing steel have been defined
in terms of the deflection 6 and central hinge location . The ultimate capacity is calculated by the
distribution of the aforesaid forces and their dependent parameters (6 and B). The determination of

the capacity is according to the assumed failure mechanism, as presented below.

5.3.1. Axial Force and Moments

The axial forces of the concrete and steel can be observed below at a plastic hinge’s cross section.

By taking moment equilibrium the ultimate moment capacity can be expressed by the equation:
Mi= 0.5 1 feg & ¢i b (h-Aci) + T (di-0.5h) + Cs; (0.5h-d;") + Fys (d,i-0.5h) i=1..3

The compressive membrane force is given by the horizontal force equilibrium.

Nu = Ufwflczb_Tz - I:ps

5.3.2. Calculation of the Capacity

The failure vertical load, applied at the midspan, depends on the ultimate moments and the
compressive arching force. By making use the principle of moment equilibrium at the left and the
right of the central hinge, the capacity is calculated as follows:

Mul,  Mu2 | Mu3 Nué
(o e ap)

Fd: L

The ultimate capacity as distributed load is given by the formula:

2(Mu1l Mu2 | Mu3  Nué§ )

W= ~F_GPE G=p)_GpF

BL?
Fd Fd
2 ‘ 2
4 M “
N—“-—_—-—? -1 T = __—__ __=_.‘l\.ﬂ_lﬁ
Mu® s _,Pﬂu? Muz 5[ N T
f " Nu Nu _
Vi

Figure 28 Free Body Diagrams for Loaded Slab Segments

As has already been observed, a direct solution of the capacity is not possible, because all the

variables in the equations depend on the vertical deflection 6. However, the profile of the
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deflection curve including the compressive membrane action is known beforehand by research,
given at low deflections the arching action starts developing reaching a maximum value at a
specific deflection and while the deflection keeps increasing the compressive membrane force
converts to a tensile action. Thus, applying an iteration procedure the accurate deflection curve,
giving the peak of the compressive action, can be obtained. The iterations are made by applying an

incrementally increasing deflection at the midspan of the slab.

5.3.3. Location of the Central Hinge

At the previous sections, the assumed failure mechanism has been defined as a plastic collapse
mechanism which requires the formation of three plastic hinges, Fig 30. According to the
equations of the capacity, the failure load depends on the position of the central hinge p. The
correct value of parameter B minimizes the collapse load, as a result it can be found by

differentiating the equation of capacity with respect to the B and setting it equal to zero.
(Mul-Mu3) p?— 2(Mul-Mu2-Nug)B + (Mul+Mu2-Nug) = 0

Thus, the location of central hinge can be estimated by the expression:

_(Mul + Mu2 — Nu$) — /(Mul + Mu2 — Nu6)? — (Mul — Mu3)(Mul + Mu2 — Nus) ~ (32)
F=( (Mul — Mu3)

When the reinforcement and the prestressing steel are symmetrical at both support, then the
ultimate moments Mul and Mu3 are equal. At this case, the parameter  cannot be defined, taking
the value 0.5 due to symmetrical conditions. For unsymmetrical conditions the Eq.32 can be

employed to find the position or central hinge accurately.

5.4. Restrained Stiffness

An important parameter that governs the effect of compressive membrane force is the stiffness of
the slab and of the surroundings elements. The slab is supported by the girders, which are assumed
to behave linear elastic in order to develop full arching action. If the girders do not have sufficient
capacity, the failure mechanism will be attributed to the composite failure slab-beam and the
maximum ultimate capacity, explained at previous sections will not be reached. It is advisable to
consider different cases of the position of the loaded part in order to estimate a proper distribution
of (effective) stiffness during loading. The effective stiffness is given by the axial stiffness of the
slab and the stiffness of the girders. Thus, the next cases are going to be examined at this section.

The restraints of the loaded slab can be modelled as linear springs, the stiffness of which express

the effective stiffness of the slab.
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Figure 29 Linear springs at both ends of slab

Due to the fact that only the relative distance between the supports 1 and 3 is of interest, it can be
assumed that the one end is fixed and the other is free to translate. Thus, the final model of the

slab can be converted to the following one:

cl ‘
c3
w

3

Figure 30 Equivalent Model of Restraint

Taking into account that axial force due to the arching action is the F, compressive force, which
has to be constant along span of the slab, since there are no other horizontal forces applied in the
slab. This force is related to the total axial deformation and the stiffness is considered as the
stiffness per unit width, as follows:

Fb = K*A13
K=S*B
Where S: the effective stiffness of the slab in the transverse direction per unit width B

L: length of the slab

A13: the total deformation due to compressive force

The effective stiffness S is given as a function of the linear springs in series per unit width:

-1
s L, 1) _ S5
S, S, S, +S;

Having estimated the stiffness of the support the compressive membrane force can be defined:
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5.4.1. Interior bay loaded

Assuming that the loaded part is analyzed as an entire bay interior panel, the maximum
compressive membrane action is expected since the surrounding slab panels will form a confining
ring to resist the horizontal deformation. The overall stiffness is given by the axial stiffness of the

slab and the flexural stiffness of the girders.

Axial stiffness of the slab

Ss= EA/L=(EsAs+ Ec(Ag-As-Ap) + N*E,AL)/L
Where A, gross cross sectional area
A cross section of the mild steel
A, cross section of the prestress steel
n amplification factor, taking values 1 for TPL:1.25 and 2 for TPL: 2.5

More specifically, the girders will not have any horizontal bending deflection since they will act as
deep beams. At this stage, it is important to take two subcases: the load is applied at the centre and
at the edge of the panel with respect to the longitudinal direction to investigate the shear effect

over the horizontal displacement.

o If the load is applied at the centre of the panel, then there are many unloaded panels
between the loaded and the edge structure as a result the shear deformation can be
considered to be negligible. Thus, the axial forces are transferred to the support by
bending only. Subsequently, the horizontal deflection along the entire width of the loaded
panel is constant, and it can be modelled as a single slab strip with restrained stiffness
equal to the axial stiffness of the slab. Moreover, the applied transverse prestress prevents
cracking, so the retraint stiffness S can be considered as the full axial stiffness Ss.

o If the load is applied close to the edge of the panel, then the panel is restrained only by a
single bay and the axial forces of the slab are transferred by shear and bending to the
supports. To calculate the shear effect on the restraint, the shear stresses due to
compressive force is considered linear, as plotted below. The compressive force is

constant along the support.

3 .
T U D e I ft Qfélgi’é.iéff Figure 31 Shear influence




Axial stresses at the support due to F, Shear stresses at the support due to Fy,

As can be observed, the shear increases the deflection away from the ends of the panel, as the

axial force is smaller and the restrained stiffness less than that of the ends of the panel.

Having assumed that the shear stress is uniformly distributed over the width of the panel, it can be

expressed by the formula at any distance, x: Fu2

Nu Nuxx

2 L2
Lxh

T=

Thus, the shear strain is:

Fellz
Nu_ Nuxx

_2 B
¥ LxhxG

Where L: length of the single strip

B: width of the single strip

The total shear deformation at the loaded slab (1050x1000mm?) is given by the integration
along the support:

Nu
—+x*B—Nux*x?
Ashear = fx£dx ==
0 G 2xLxBxh*G

The total deflection of the support due to the compressive membrane force can be expressed as:

Nux*L

Agupport =
support 2xB*E+h*S/Ss

The extent that the shear stress is important can be investigated by taking the ratio:

2.3+L?

A [ Ashear = —>——
support shear B2xS/Ss
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Aszgppart
Ashear =2

Figure 32 Lateral Displacement - Stiffness

As mentioned above, at the analysis of this slab the effective stiffness of the slab is equal to the
full axial stiffness due to restraint prestress effect, so for the stiffness ratio S/Ss=1 the
displacement ratio Agypport / Ashear DECOMeES 2.53. Conclusively, the shear effect can be considered to
be negligible either the load is positioned at the centre of the panel or close to the edge structure.
Otherwise, the horizontal deformation should be calculated as a superposition of the support and
the shear deformation.

Flexural stiffness of the girder

As has been mentioned above, the slab is supported by girders, which are considered to obtain
sufficient capacity to avoid composite failure. The girders are restrained horizontally by the
surrounding slabs at the upper flange and they are assumed fixed at the floor. Thus, the lateral

stiffness can be calculated by the formula below:

3EI
Kgirder= —3
g hg

Where El: the flexural rigidity of the girder
hy: the height of the girder

Taking into account the fact that the inertia in the direction parallel to the length of the slab is of

interest, the inertia of the girder can be estimated as follows:

I =kop,fithwen+ Ibot,

Having defined the flexural rigidity of the girder, the stiffness per unit width is:
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kgirder
Si: £
B

The total flexural stiffness of the girders is:

-1
S= i-l-i — SlS3
S, +S;

Total restraint stiffness:

Total restraint stiffness is given by the superposition of the contribution of the axial stiffness of the
slab and the flexural stiffness of the girders. Thus, combining the equations, it is calculated by the
next expression:

EA S1S3

s= 24
U7 L T 51483

It should be noted that the flexural stiffness of the girders is much less than the axial stiffness of
the slab. The slab should be designed with that high axial stiffness due to the fact that post-
tensioning is applied and it has to be capable of resisting the induced compressive forces.

The compressive force will cause only lateral displacement at the adjacent slabs and the girders.
The moment and the shear forces could cause a rotation of the girder towards the loaded slab, but
due to the continuity of the girder with the slab, the rotation is quite negligible around the girder's
axis. Also, to neglect this rotation is in the safety side since the rotation would lead to a reduced

outward horizontal displacement.
! vy % %
. L1%%-hh N 1 r N N l;:

Figure 33 Free body — Forces

5.4.2. Exterior bay line loaded

At the case that the loaded panel is located at the exterior bay, the restrained stiffness depends
on the stiffness of the edge beam from the one side, and the stiffness of the adjacent slab and
girders from the other side. Along the interior edge, the stiffness has been analyzed at the previous

section. Along the exterior edge is going to be described below:

Edge beam:
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The stiffness at the edge beam is expected to be less than the stiffness of the interior line, since
only the girders contribute to the horizontal resistance. Moreover, the stiffness along the length of
the edge beam will vary, depending inversely on the deflection of the beam. To estimate the
distribution of the stiffness the panel has been divided into strips. The lateral stiffness of each strip
can be found by making use the geometric compatibility that the horizontal displacement at the
neutral axis of the strip is equal to the horizontal displacement of the support at the same location.
It is worth mentioning that the deflections are calculated under the loads applied by all the strips.

The forces at the edge beam can cause both lateral deflection and rotation of the beam around its
shear centre. Furthermore, the centroid of the edge beam does not coincide with the neutral axis of
the slab, the horizontal displacement will be a combination of the lateral movement and the
rotation of the edge beam. Thus, to take it into account the flexural rigidity El and the torsional
rigidity JG of the edge beam are calculated based on the gross concrete cross section using the

equations:

(= Ec(hy) (br)°

(9G)s = 0.43E, (1 - 0.63 ﬁ—z) (@)

6. Computational Modelling
6.1. Introduction

The numerical simulation of the loaded slab is necessary for estimating the ultimate capacity since
an iterative process gives an accurate solution. Thus, a code in Fortran 95 has been casted to
estimate the bending resistance and the ultimate capacity of the slab. This code has taken into

account the following important parameters, as well as their effects:

e  Compressive membrane action (Ny)

o  Effect of prestress (Fps)

e  Strain hardening of reinforcement steel

e The position of the loaded part in the slab (case 1, case 2)
e The temperature changes, creep, shrinkage

e  Symmetrical or unsymmetrical conditions at the supports

It is well-known that the capacity is directly dependent on the deflection. Therefore, the code
calculates it by applying an incremental deflection at the midspan, using as a starting point the

initial deflection: 8= h/300. At each step the code extracts the capacity for a given deflection.

(; Delft 04
TUDelft ey




6.2. Structure of the code

The code, casted in Fortran 95, is consisted of the main program SLAB and six subroutines: INT,
STRIP, REST, ISTRN and FMILDS.

SLAB
The main program SLAB initiates the procedure for the estimation of the capacity. It takes into

account the presence of prestressing steel A, and the position of the loaded part of the slab
(exterior or interior). It contains the six subroutines, which are called depending on the different
cases. Regarding the position of the load, the program calculates the capacity calling the
subroutine INT or EXT.

INT
It calculates the ultimate capacity when the interior loaded slab can be simulated as a single strip.

Initially, it estimated the ultimate capacity (wy,) by calling the STRIP subroutine neglecting the
effect of compressive membrane action and strain hardening of the mild steel, by employing an
effective restraint stiffness S of 10°° and ENSH equal to 0. Then, it takes into account these
phenomena with the total effective stiffness and it finds the load enhancement LE. As has been
mentioned at previous section the stiffness is a combination of the axial stiffness of the slab and

the flexural stiffness of the girders, so it is given by the summation of them.

EXT
It calculates the ultimate capacity when the exterior loaded slab can be simulated as a number of

strips in order to obtain a reliable distribution of the stiffness along the length of the edge beam. It
calculated the ultimate capacity of the slab, by dividing the width and the area of reinforcement.
Then, it calculates the ultimate capacity by calling the STRIP subroutine with and without the
effect of CMA and strain hardening by setting an effective restraint stiffness S of 10°° and ENSH
equal to 0. For the exterior slab the flexural rigidity and the torsional stiffness are inserted as input
data to calculate the overall response of the slab, by calling the subroutine REST. At the end of the
analysis the average of the ultimate capacity and the load enhancement of the strips are calculated

indicating the distribution of the stiffness along the support.

REST
It determines the horizontal displacement of the edge beam at the level of the neutral axis of the

slab under the load applied by all the strips. The flexural rigidity and the torsional stiffness of the
edge beam are calculated to form the flexibility matrix and finally to estimate the forces in
compliance with the distribution of stiffness. Then, applying the geometric compatibility the

criterion that the horizontal movement of the support has to be equal to that of strip.

STRIP
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The subroutine STRIP mainly calculates the ultimate capacity and the moments at the reached
failure deflection. Defining the restrained stiffness S, it calculates the position of neutral axis for a
given deflection at each step. Totally it contains three loops:

Parameter B: Initially, it assumes that the position of central hinge is at the midspan, taking 8
equals to 0.5. At the present case the conditions at the support are symmetrical because of the
same amount of regular and prestressing reinforcement. At the end, the ultimate moments will be
known, so the parameter 3 can be updated using Eq. 32.

Deflection &: The deflection is incrementally applied at the central hinge. It is increased at
successive iterations until the full development of compressive membrane force.

Forces: In order to estimate the position of neutral axis at the starting point (first iteration), initial
values for the regular and prestressing steel are assumed. Regarding the regular steel it is
considered that it yields, but due to the very low initial applied deflection (6= h/300) the steel only
yields and no strain hardening is considered yet (plateau part of curve). About the prestressing
steel, the deflection is not able to cause yielding, thus the initial value is the effective prestress
force, which takes into account the transverse prestress level, as explained later. Having obtained
the initial forces the position of neutral axis can be found and then new values of the forces will be
obtained and used as forces for the next iteration. If the difference between the assumed and the
resulted is more than 0.01% then the average of the assumed and the calculated forces are taken as
new values for the next iteration. The iterations stop when the difference between assumed and
calculated is less that 0.01%. When the final position of neutral axis is known the ultimate
capacity is calculated and checked with the previous so as to estimate the maximum reached.

The last step is to calculate the parameter 3 since all the moments and forces are known.

FMILDS
It determined the force in the mild steel at each incremental applied displacement at the midspan.

The mild steel is modelled by employing the Modified Trilinear ldealization, allowing strain

hardening of the steel.

ISTRN
It determined the force in the prestressing steel at each incremental applied displacement. The

prestressing steel is modelled by employing the Modified Ramberg-Osgood function. The

transverse prestress level is introduced as imposed strain in the effective prestress force.
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6.3. Flowcharts

Below the most important flowcharts of the code are presented:

Main program: SLAB

START

Input stiffness of the interior ’W‘-Wlﬂd

. support, dimensions and stiffnesses of the exterior
Input effetive siffnsses o the enterior columns and edge beam, and
rasraind wiffess columns and edge beam, and the number of strips to use
the number of strips to use (stiffness of interior support

i and exterior columns then

mmp- infinite)

Call INT (uses MEKT{III“FI'R_IP
uhtimate capacity) ultimate capacity)

Subroutine: STRIP
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Input slab dimensions, reinforcement
details and effective support stiffness.

| Sﬂvllnenfﬂequalmﬂ.s |

Apply very small vertical
deflection at center hinge.
']

Set forces in the mild steel reinforcement
equal 1o the yield force and the force in the

prestressing equal to the effective presiress.
'

Calculate location of neutral axis using
equations (2.46) and (2.41) 10 (2.43).

3

Calculate the force in the steel reinforcement
using equations (2.25) 1o (2.37)

Assume new forces

based on average of

previously assumed
and calculated forces.

Calculare the axial force, moment and capacity
using equations (2.45), (2.47) and (2.53).

Increment deflection
at central hinge (8).

[s the difference

between the estimated an Set value of B equal

to calculated value.

Subroutine: EXT
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START

Calculate the width and area of
reinforcement in each slab strip.

3

Set stiffness of all slab swrips equal to the stiffness
of edge beam at the centre of the first slab strip.

v

Calculate effective support stiffness
for all slab strips using (2.20).

4

Call subroutine STRIP to calculate the
ultimate capacity, forces and displacements at
the neutral axis for all the slab strips.

4

Call subroutine REST to caiculate the
horizontal deflection of the edge beam
at the centre of each slab strip.

Is .
" Calculate stiffness
t!m th’e ﬁ?t distribution basedon  |—
teration - deflection of edge beam.
Are strip ¢ Calculate stiffness of the
support movements first strip required for
compatible for compatible movements
i using linear interpolation.
Calculate stiffness distribution
based on forces applied to the  —
edge beam, and the resulting
horizontal deflections.

7. APPLICATION OF THEORETICAL AND NUMERICAL APPROACH

7.1. General

Delft
University of
Technology

]
TUDelft

The theoretical approach is going to be applied at the present case study. A slab of 3 bays
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capacity and compressive membrane action. As pictured below, the slab model has length
12000mm and width 6400mm. The concrete girders are located at centre-to-centre distance
1800mm. The thickness of the slab is 100mm.

The slab has been examined for different positions of loads: interior panel B and exterior panel
A/C.
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Figure 34 Bridge model structure

7.2. Input data

As has been presented in previous sections, the numerical simulation takes into account many
governing parameters, which have already defined. These parameters are required to be introduced
as input data to execute the main program SLAB. However, the concrete and steel properties, as

well as the dimensions of the elements are also presented at the table below.

Table 9 Input data-Units in [N,mm]

Dimensions of slab L 1050
H 100
b 12000
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It 6600
Dimensions of girder hy 1200
by 300
Iy 12000
Steel properties Ast 1725
Ag 1725
Az 1725
Asy 0
Asy 0
Agz 0
Es 200000
Esn 9000
fy 500
fy 700
gy 0.0025
€sh 0.006
&y 0.045
Prestressing steel Agp 4500
(= 205000
foe 818.18
fou 1100
Concrete properties fe 81.6
E. 40649.72
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al 0.7276

Bl 0.766

Where E,= 4500(f,)"?
foe: 900/1.1=818.18MPa
The tables with the notification and the values of the input data are given below:

Table 10: Format and description of input file of the Program SLAB

Input file Description of input data
S I h b Length, height, width of slab
L d d; d, d’, d; d’; | Depths of tension and compression steel at plastic hinges
A o1 dpp |k Depths of prestressing at plastic hinges and length of tendon
B Aag Ao As Aq A’q Ay | Areas of tension and compression steel and prestressing steel
fe E: o B Concrete strength , modulus of elasticity and stress block constants
D Es Eax f feu Modulus of elasticity, strain hardening modulus, yield and ultimate stress
A €&  &h & Strains corresponding to yield, start of strain-hardening and ultimate strain
T Foe Fou Ep Effective prestress force, ultimate stress and modulus of elasticity
A A B C Modified Ramberg-Osgood Function Constants
K eur Ratio of long term to short term axial strains, axial strain due to temper etc

Case 1: Interior slab loaded

S Effective support stiffness

Case 1: Exterior slab loaded

Sint Stiffness of the interior support

I lep we  (El) Dimensions and flexural stiffness of exterior columns

hp1 by ly (EDy (G Dimensions, flexural and torsional stiffness of edge beam
NUM Number of slabs to be used

To fill the input data file, important calculations should be made to determine the required
stiffness for both cases, as well as crucial and valid assumptions with respect to the transverse

prestress level.

7.3. Determination of stiffness

Case 1: Interior slab
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At this case the stiffness is considered the same at the right and left bay lines due to symmetrical
conditions. It is given as a combination of the contribution of the axial stiffness of the slab and the
flexural stiffness of the girders.

There are two subcases regarding the location of the load: centre and edge of the structure. When
the load is applied at the centre shear deformation can be neglected and the lateral deformation is
calculated only due to the bending and compressive action. But when the load is applied at the
edge of the panel then the shear contribution should be checked since it can affect the lateral

movement, which in turn has an impact on the compressive membrane force.
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Figure 35 Loaded panel
e Load is applied at the centre of the slab
Due to axial stiffness of the slab:
Se= EAIL=(EsAs + Eo(Ag-AcAy) + N*E,AL)/L

At TPL: 1.25=>n=1
AtTPL:25=> n=2

n=1: S, = [200000%(1725+1725+1725)+43285*(105000-(1725+1725+1725)+205000*4500]/1050

S, = 5793925.068N/mm?
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n=2: Ss = [200000%(1725+1725+1725)+43285*(105000-
(1725+1725+1725)+2*205000*4500]/1050
S, = 6672496.496N/mm?

Where : A;=L*h=1050*100=105000mm”

At the transverse direction 60 bars of reinforcement ®6/200 along the entire length of the support

have been used. Thus, the total amount of regular reinforcement is A;=1725mm>.

Regarding the prestressing steel, there have been installed 30 prestressing bars of cross section

Ap=150mm?Z. Thus, the total amount of prestressing area is 4500 mm?.
Due to flexural stiffness of the girders:

Taking into account the fact that the inertia which participates to the horizontal

resistance along the length of the slab is of interest, this inertia of the girder can

be estimated as follows:
| =It0pyf|+ Iweb+|b0t'f| :7.02*1010 mm4
Kgirder= ’31_15; = (3*37486*7.02*10'%)/1200° = 4570526.106N/mm =
g
where El: the flexural rigidity of the girder
hg: the height of the girder
- - - - - - - -—_}L_q
Having defined the flexural rigidity of the girder and the slab at both sides, the
total stiffness per unit width is:
TPL:1.25 s, = ZEA/LZkgiNder 9757 41N/mm per unit width i=1..3
TPL:2.5 s, = ZEA/L 2kgirder 1973 84N/mm per unit width i=1..3

Due to symmetrical conditions the flexural stiffness S will be the same at both supports: S;=S3

The total flexural stiffness of the girders is:

-1
S= i_'_i — S183
S, +S,

Total restrained stiffness for interior slab:
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The total restrained stiffness is given by the superposition of the contribution of the axial stiffness
of the slab and the flexural stiffness of the girders. Thus, combining the equations, it is calculated

by the next expression:

TPL: 1.25 S, = w = 863.7N/mm?

2EA/L+2kgirder
2

TPL: 25 S = = 936.92N/mm?

e Load is applied at the edge of the slab:

Nu
“sx*B—Nu*x?
Ashear = IX ki dX = 2
0 G 2#LxBxh*G

T T T 1
200 400 L1 00 1000

-0.02

- 004

- 0.0

-0.08

Figure 36 Shear deformation

The total deflection of the support due to the compressive membrane force can be expressed as:

NuxL

A =
support 2xB*Exh#*S/Ss
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Figure 37 Support deformation for varying stiffness ratio

The extent that the shear stress is important can be investigated by taking the ratio:

Asupport / Ashear = I;—f_;f;
16
14—_
12—_
w—_
o
..
N
N
] ] | . : ,
o b - ’ '

=

Figure 38 Agypport / Ashear fOr varying stiffness ratio
Case 2: Exterior slab

At the case that the loaded panel is located at the exterior bay, the restrained stiffness depends on

the stiffness of the edge beam from the one side, and the stiffness of the adjacent slab and girders

+ +} +h il
mornne owner stde.
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The stiffness at the interior bay line is calculated in the same as in case 1. Thus, only the half of

the axial stiffness and both left and right girders contribute to the resistance.

TPL: 1.25 S, = w = 622.29N/mm?

TPL: 2.5 S, = w = 658.89N/mm?

About the exterior line, only the edge beam provide lateral stiffness against the horizontal
deformation.

During loading the stiffness along the length of the edge beam will vary, depending inversely on
the deflection of the beam. To estimate the distribution of the stiffness the panel has been divided
into strips.

The forces at the edge beam can cause both lateral deflection and rotation of the beam around its
shear centre. Furthermore, the centroid of the edge beam does not coincide with the neutral axis of
the slab, the horizontal displacement will be a combination of the lateral movement and the
rotation of the edge beam. Thus, to take it into account the flexural rigidity EIl and the torsional
rigidity JG of the edge beam are calculated based on the gross concrete cross section using the

equations given in N and mm:

(ENo = Ec—(hy) (bw)* = 2.63262*10"°
- by \ (b hp)\_ 14
(9G)» =0.43E,(1 - 0.63 E) (*5™)= 1.46667*10
Making use of the above equations the code can take into account the displacement and the

rotation of the edge beam for the determination of the ultimate load and the compressive

membrane action.
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Figure 39 Exterior bay line loaded

At this stage all the required input data have defined to the code and given below:

Table 11: Values of input parameters

INPUT FILE
S 1050 100 12000
L 70 30 70 30 70 30
A 56 66 56 6600
B 1725 1725 1725 0 0 0 4500
81.6 40650 0.7276 0.766
D 200000 9000 500 700
A 0.0025 0.006 0.045
T 818.18 1100 205000
A 10025 118 10
0 0
Case
S Case 1: Interior slab loaded
U S
P Case 2: Exterior slab loaded
P S
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0 1200 1 300 2.63262*10%
R 1200 300 12000 2.63262*10% 1.46667*10*
T 5
DATA
8. RESULTS

At this section the results of numerical analysis are plotted giving an insight into the overall
performance of the structure. Moreover, the sensitivity of parameters is investigated and plotted in
order to estimate the effect and the contribution of each parameter, such as the position of load,

the restraint ratio, the slenderness and the TPL.

8.1. CASE 1: Internal slab
8.1.1. Effects of Compressive Membrane Action

Table 12 Analytical results

TPL 1.25 25

Fetot [N] 479287.579 484260.85

Faa [N] 118159.46 117985
Fa [N] 361128.11 366275.65
My: [Nmm] 0.695E+09 0.701E+09
M., [Nmm] 0.732E+09 0.738E+09
Mus[Nmm] 0.695E+09 0.701E+09
Ny [N] 0.127E+07 0.130E+07

& [mm] 12.67 12.33

cl=c2=c3 [mm] 31.382 31.786

Arz [mm] 1.214 1.138
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S 863.704 936.918

LE 2.29 2.32

The ultimate capacity will be noticed when the rate of arching is equal and opposite to that of
bending capacity. Due to the fact that slab obtains very low regular reinforcement area the total
bending capacity is reached later than the maximum value of the arching capacity. The maximum
ultimate capacity is reached at 12,58mm while the maximum arching capacity is met at 5,96mm,
as can be observed at the figure below.

The aching capacity is 24.65% and the bending action is 75.35% of the ultimate capacity. The
contribution of the arching action is important at the overall performance of the slab.

Deflection onB ending and Arching Capacities
500000

450000

400000 \

350000

300000
230000
Fd [H]
200000
150000
100000

50000

0
a 3 10 15 20 25 30 33 40

G [mm]

|— Arching capacity = Bending capacity Ultimare capacity |

Figure 40 Deflection on Bending and Arching capacity
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1.% 10°
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Figure 41 Compressive membrane force Nu-o

The lateral elongation follows the profile of compressive forces.

T T T T 1
L] 10 20 30 40 50
& [mm]

Figure 42 Lateral displacement 4,30

Transverse prestress level: 2.5MPa

The maximum ultimate capacity is reached at 12,23mm taking the value 484.26kN. The
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Deflection onB ending and Atching Capacities

500000

430000
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250000
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[—— TPL:125 —-— TPL:25]

Figure 43 Comparison: Effect of TPL and Deflection on Bending and Arching Capacities
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Figure 44 Comparison: Effect of TPL and Deflection on Ultimate capacity

With respect to prestress level, according to the analytical results, it can be concluded that the
prestress level slightly affects the ultimate bending capacity of the slab. The additional capacity is

attributed to the increase in compressive membrane force about 1.75%.
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Figure 45 Comparison between compressive membrane force Nu-¢ for different TPL
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Figure 46 Comparison: Lateral displacement A413—0 for different TPL

8.1.2. Effect of Lateral Restraint on the Ultimate capacity
Transverse prestress level: 1.25MPa

Effect of Lateral Support Stiffness on the Ultimate Capacities for the range 0<S/Ss<40
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The figure below illustrates the effect of lateral restraint over the ultimate capacity. At zero
restraint the load is carried only by the bending action since no arching action can be developed.
The abrupt increase in the ultimate capacity at small ratio of restraint is attributed mainly to
arching action, which is quite intensive at the partially restrained conditions especially for values
between 0.2 and 0.6. For values of ratio higher than 4 an increase in the restraint does not have
any influence on the capacity. This implies that extremely stiff support is not necessary for
increasing the ultimate capacity. Neither are bending action nor arching action affected by an
infinitive stiff support.

300000 ~
450000 +

400000 4

350000 +
300000
Fa[N]
250000 4
200000
150000 <
100000

50000

f 5

— Arching capacity Bending capacity ——— Ultimate capacity

Figure 47 Ultimate capacity-Restraint ratio

Effect of Lateral Support Stiffness on the Ultimate Capacities for the range 0<S/Ss<4
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|— Arching capacity = Bending capacity
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Figure 48 Ultimate capacity-Restraint ratio (in detail)

The intensive contribution of the compressive action at small values of retrained can also be
illustrated by taken the ratio ultimate capacity over the bending capacity (LE). This ratio is
indicative for the enhancement in the ultimate resistance solely due to arching action. thus, at
small values the LE load factor reaches values more than the double ultimate capacity. That means
that the optimum restrained ratio is slightly higher than or equal to 1, when the full stiffness is
provided for lateral restraint.

Where, LE=Ultimate capacity/Bending capacity
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Figure 49 Enhancement factor-Restrained ratio

Furthermore, the following figure shows the ultimate capacity over the vertical displacement & for
various lateral restraint ratio S/Ss. At the case that no restraint is provided the capacity slightly
changes while the vertical deflection at the midspan increases. Thus, the slab will fail due to large
displacements. It is worth mentioning that as the restrained conditions increase, the slab fails at
smaller deflections, which leads to the conclusion that the slab becomes less ductile. For values of
stiffness less than the axial stiffness of the slab and the girders the slab fails at greater deflections
than L/82 (12.85mm). According to Eurocode, at the permissible serviceability the upper limit I/h
for prestressed slabs is L/50.

Load Deflection Curves
500000 -

4350000
400000
330000
Fd[N]

300000

230000 4

200000 -

130000

T T T T T T T T T 1
o 20 40 60 30 100
& [mm]

5/8s=025

|— §/55=0 — §/8s5=0.123 §/8s=03 5/8s=1

Figure 50 Load Deflections curves for varying S/Ss
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The profile of the ultimate capacity is also repeated at the enhancement factor, which reaches the
highest value at the stiffness ratio equal to 1. At this section at which the interior support is
explained, the stiffness ratio has been considered to be equal to 1, corresponding to the yellow
load deflection curve. At the aforesaid curve the load enhancement factor becomes double leading
to the conclusion that at the present case the contribution of compressive membrane action at this

stiffness ratio results in a double ultimate capacity.

Load Deflection Curves

& [mm]

3/8==0 5/85=0.123 — §/8s=025

8/8s=0.5 §/8s= 1

Figure 51 Enhancement load factor for varying S/Ss
Transverse prestress level: 2.5MPa
Effect of Lateral Support Stiffness on the Ultimate Capacities (0<S/Ss<40)

As can be also seen by the Table 16, the transverse prestress level hardly affects the ultimate
capacity due to the fact that the prestress level is introduced as an initial imposed deformation and
an increase in the effective stiffness of the prestressing steel. Both parameters do not have
governing influence on the bending resistance. Therefore, there are slightly differences ranging at

1.03% between the results of the two prestress levels.
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Figure 52 Comparison: Ultimate capacity-Restraint ratio for different TPL

Effect of Lateral Support Stiffness on the Ultimate Capacities (0<S/Ss<4)
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Figure 53 Comparison: Ultimate capacity-Restraint ratio for different TPL (in detail)
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Figure 54 Comparison: Enhancement load factor for varying S/Ss for different TPL

Load Deflection Curves
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Figure 55 Comparison: Ultimate capacity for varying S/Ss for different TPL
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Load Deflection Curves
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Figure 56 Comparison: Enhancement load factor for varying S/Ss
8.1.3. Capacity Enhancement Factor: Slenderness - Stiffness effect

Another important parameter which governs the performance of the slab is the slenderness I/h. At
the present case this ratio is 1/h=1050/100=10.5 while the stiffness ratio S/Ss is equal to 1. This
combination results in double ultimate capacity. As expected, for small values of slenderness the
arching action is more intensive due to higher compression zone. The overall performance of the
slab is expressed by the blue curve, as illustrated below. On the other hand, high values of
slenderness lead to a slender behaviour which weakens the compressive action. Specifically, for
depth to height ratio I/h more than 15 there is no enhancement since the slab starts performing in a
slender way minimizing the effect of compressive membrane action.

To estimate better the influence of slenderness and stiffness over the capacity of the slab it is wise
to separate the arching and bending case. Thus, the change in the ultimate capacity will be
attributed to the change in the bending or in the arching action. generally, the bending contribution
determines the final value of the ultimate capacity. At Fig.61the curves of bending action reaches
the peak points at S/Ss=1 later than the curves of arching action S/Ss=0.6, Fig. 60.

As has been mentioned at previous sections, the effect of prestress hardly changes the results and
the effect of the other parameters.

. Transverse prestress level: 1.25MPa
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Effect of Spanto Depth Ratio onC apacity Exhatcerm ent
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Figure 57 Enhancement load factor for varying S/Ss and varying slenderness

Effect of 3panto Depth Ratio onC apacity Enhances ent
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Figure 58 Enhancement load factor for varying S/Ss and varying slenderness (in detail)
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Effect of Spanto Depth Ratio onC apacity Exhatcement
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Figure 59 Ultimate capacity for varying S/Ss and varying slenderness

Effect of Spanto Depth Ratio onArching action
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Figure 60 Arching capacity for varying S/Ss and varying slenderness I/h
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Effect of Spanto Depth Ratio onBending action
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Figure 61 Bending capacity for varying S/Ss and varying slenderness I/h

Il.  Transverse prestress level: 2.5MPa

Effect of Spanto Depth Ratio onC apacity Enhancement
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Figure 62 Comparison: Enhancement load factor for varying S/Ss and varying slenderness I/h
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Effect of Spanto Depth Ratio onC apacity Enhancem ent
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Figure 63 Comparison: Ultimate capacity for varying S/Ss and varying slenderness (in detail)

Effect of Bpanto Depth Ratio on Arching action
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Figure 64 Comparison: Arching capacity for varying S/Ss, varying slenderness I/h and different
TPL
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Effect of Spanto Depth Ratio on B ending action
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Figure 65 Bending capacity for varying S/Ss and varying slenderness I/h
8.2. Case 2: Exterior slab

Table 13 Results

EXTERIOR SLAB LOADED - 5 SLAB STRIPS USED
Strip number Effective support Ultimate capacity Load enhancement [LE]
[NUM] stiffness [WU]
[S]
1 622.29 0.7118 2.14
2 172.4 0.5796 1.74
3 75.9 0.4929 1.48
4 41.3 0.4437 1.33
5 29.6 0.4232 1.27

AVERAGE ULTIMATE CAPACITY IS 0.53
AVERAGE LOAD ENHANCEMENT IS 1.59
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8.2.1. Effects of Compressive Membrane Action

The most advisable way to investigate the effect of compressive membrane action is to isolate the
bending action and arching action. This can be achieved by calculated the ultimate capacity

separately, by inserting different stiffness at the subroutine STRIP.

Load for Compressive membrane action:

E. = 2Nu(h—c1-c2+B(c1-c3)-68
da ™ (1-p)L

Load for bending action

The moments M;, M, and M3 are calculated with the axial internal forces at the level of neutral
axis. They are not equal to the moments M;,My, and My which are calculated with the axial

forces at the mid-depth of the slab.

o

The moments My, M, and M3 can be found by converting the moments M,;, My, and M3 at the

neutral axis according to the following expressions:
h
M;=My — (E — CyN,

h
Mo=My, — (E — )Ny

h
M3=Mu3 - (E - C3)Nu

Ultimate load: Load Bending capacity + Load Compressive membrane action

M1, M2+8, M3
2Nu(h—c1-c2+B(c1-c3)-8 2(?"' 1-B +ﬁ)8

(1-p)L L

Fatot =

According to the extracting results the Fg is maximized at 6 equal to 13.33mm. This is verified
also numerically by taking the derivative of the above equation with respect to the & equals to zero
and solving it. Then, the displacement is found the same value with the program Fortran. This
happens at every step of the increasing displacement.

The contribution of the arching and bending action in the ultimate capacity is plotted below.

Table 14 Results

TPL [MPa] 1.25 25
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Fatot [N] 457920 4617906
Fga [N] 117895 1180629
Fab [N] 340024 3437276
My [Nmm] 66468806 66932774
My [Nmm] 70150624 70614592
Mus[Nmm] 66468806 66932774
M; [Nmm] 42787345 43273349
M, [Nmm] 46469163 46955167
M3[Nmm] 42787345 43273349
Ny [N] 1163824 1180903
& [mm] 14.1 13.8
C1=C,=C3 [mm] 29.6 29.96
A13 [mm] 1.55 1.49
S 622.290 658.897

e Transverse prestress level: 1.25MPa
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Deflection on B ending and Arching Capacities
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Figure 66 Effect of Deflection on Bending and Arching Capacities
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Figure 67 Compressive membrane force Nu-6
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Figure 68 Lateral displacement 4,30

e  Transverse prestress level: 2.5MPa

Deflection on B ending and Arching Capacities
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Figure 69 Comparison: Effect of Deflection on Bending and Arching Capacities for different TPL
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C otnpressive membrane force
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Figure 70 Comparison: Compressive membrane force Nu-¢ for different TPL
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Figure 71 Comparison: Lateral displacement 4,56 for different TPL
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8.2.2. Effect of Lateral Restraint on the Ultimate capacity

e Transverse prestress level: 1.25MPa

Effect of Lateral Support Stiffness on the Ultimate Capacities (0 <S/Ss <40)
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Figure 72 Ultimate capacity-Restraint ratio
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Figure 73 Ultimate capacity-Restraint ratio (in detail)
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Figure 74 Effect of stiffness ratio on compressive membrane action
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Figure 75 Effect of stiffness ratio on lateral displacement
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Figure 76 Effect of stiffness ratio on enhancement load factor LE
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Load Deflection Chwrwes
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Figure 77 Load Deflections curves for varying S/Ss

e Transverse prestress level: 2.5MPa: Comparison between TPL

Effect of Lateral Support Stiffness on the Ultimate Capacities (0 <S/Ss <4)
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Figure 78 Comparison: Effect of Lateral Support Stiffness for different TPL
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Figure 79 Comparison: Load enhancement factor for different TPL
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Figure 80 Comparison: Compressive membrane force for different TPL
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Figure 81 Comparison: Effect of stiffness ratio on lateral displacement
Load Deflection Curwes
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Figure 82 Comparison: Load Deflections curves for varying S/Ss and different TPL

8.2.3. Capacity Enhancement Factor: Slenderness - Stiffness effect
e Comparison: TPL = 1.25MPa - 2.5MPa

The slab to depth ratio is governing at the estimation of the compression membrane force. The
arching action is directly dependent on the horizontal elongation, which in turn depends on the

geometric characteristics of the slab. As can be observed below that as the slab to depth ratio

,‘ Delft 106
TU Delft &




increases the arching action becomes rapidly less effective. The Fig. 83 shows how the ultimate
capacity is affected by the slab to depth ratio with respect to the restraint ratio.

When no restraint is provided the ultimate capacity decreases considerably since the slab becomes
more slender without any support stiffness to develop compressive membrane action. When lateral
restraint is provided, the enhancement still decreases substantially since the slab becomes again
more slender.

For ratio 1/h=8 the enhancement factor shows that the ultimate capacity is 4 times more than that

when no lateral stiffness is provided, which means that only bending action is present in the slab.

Effect of Bpatito Depth Ratio on Ultim ate capacity
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Figure 83 Comparison: Ultimate capacity for varying I/h, varying S/Ss and different TPL
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Effect of 3panto Depth Ratio on Arching action
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Figure 84 Comparison: Arching capacity for varying I/h, varying S/Ss and different TPL
Effect of Spanto Depth Fatio onBending action
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Figure 85 Comparison: Bending capacity for varying I/h, varying S/Ss and different TPL
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8.2.4.Comparison: Load over Internal and External panel
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Figure 86 Comparison: Load deflection curves at Internal and External panel [TPL=2.5]

Deflection onBending and Arching Capacities
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Figure 87 Comparison: Deflection on Bending and Arching Capacities at internal and external

panel
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Effect of Zpanto Depth Ratio on Arching action

160000
140000
120000
100000
Fda [N]

20000

A00a0

40000

20000

0 1 2 3 4
&
4S5
[— 1h=8 —1h=10 — Ih=15 —— 1h=20 1/h=30 1h=35]
|— += External panel Internal paml|

Figure 88 Comparison: Effect of slenderness and stiffness over Arching Capacities [2.5MPa]
Effect of 3panto Depth Ratio onBending action
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Figure 89 Comparison: Effect of slenderness and stiffness over Bending Capacities [2.5MPa]
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9. COMPARATIVE STUDY
9.1. Comparison Bending results

The experimental results and the theoretical approach for bending failure are going to be

compared.

Table 15 Experimental results

Experiment TPL Load Pu Deflection &
[N/mm?] [N] [mm]
BB-11 [Exterior] 1.25 377850 7.11
BB-5 [Exterior] 2.5 490400 9.56

Table 16 Results of theoretical approach

Theoretical TPL
approach N /mmz] V.=P, Deflection &
[N] [mm]
External 1.25 457920 14.104
25 461790 13.826
Internal 1.25 479287 12.5846
2.5 484260 12.2369

Experimental results

At the specimens BB-11 and BB-5 the load is applied at the exterior panels at which there is only
restrained from the edge beam and the one side panel. The main difference between the specimens
is the transverse prestress level. The BB-5 has 23% higher capacity due to the greater restraint
owing to higher prestress. More compressive stresses neutralize the tensile increasing the ultimate
compression zone and carrying higher vertical load P,. The exterior panels have lower effective
stiffness than the interior, as a result the effect of prestress will be weaker. At the interior panels

the difference in the ultimate capacity is expected to be greater.

Observations
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i.  Large rotations occurred at the peak load leading to longitudinal cracks between the double
loading points.
ii.  No further increase in the capacity after the failure was occurred.
iii.  The skewed interface has sufficient capacity to bear the vertical load, since no interface failure
occurred during the experiments.
iv. No significant loss of prestressing steel occurred, verifying the initial assumption to neglect

the prestress losses.

Theoretical results

e At the internal panels the ultimate capacity is higher because the surrounding slabs form a
confining ring, which does not occur at the exterior. At the same prestress level the
punching shear capacity is higher about 5% at the interior panel than that of the exterior.

o The effect of the prestress level slightly increases the bending capacity of the slab because
it is simulated as an additional stiffness of the prestressing steel area. The additional

capacity is attributed to the increase in compressive membrane force about 1.75%.

9.2. Graphs
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Figure 90 Compressive membrane force Nu-6

Due to very low regular reinforcement area the total bending capacity is reached later than the
maximum value of the arching capacity (Fig.91). The maximum ultimate capacity is reached at
12,5mm while the maximum arching capacity is met at 5,96mm at TPL 2.5MPa. The maximum
capacity can be divided into an arching capacity of 24.65% and a bending action of 75.35% of the
ultimate capacity.

,‘ Delft 112
TU Delft &




Deflection onBending snd Arching Capacities
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Figure 91 Comparison: Effect of Deflection on Bending and Arching Capacities for different TPL.
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Figure 92 Ultimate capacity at bending
9.3. Comparison: Punching — Bending results

At Fig.93-95 a comparison is presented between the experimental and theoretical results of
ultimate capacity at bending and punching shear for different prestress levels. According to the
graphs, the bending capacity is higher than the punching shear capacity. This leads to the
conclusion that the slab will fail mostly in punching shear, which is also verified by the
experiments. The difference in the capacities can be attributed to the fact that the bending capacity

takes into account the stiffness of the surroundings element, such as panels and girders, whereas

ing s ity is based onl he stiff ¢ the formed conical shell

,‘ Delft 113
TU Delft &




Consequently, the theoretical approach of Kinnunen and Nylander underestimates the effective

stiffness provided by the adjacent elements, leading to a lower ultimate punching shear capacity.
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Figure 93 Comparison: Punching-Bending Results
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Figure 94 Comparison: Punching-Bending Results
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Figure 95 Punching failure mode

10. PARAMETRIC STUDY

The sensitivity of parameters is investigated and plotted in order to estimate the effect and the
contribution of each parameter, such as the position of load, the restraint ratio, the slenderness
and the TPL. The considering slab has the following characteristics:

e  Stiffness ratio: S/Ss=1

e Slenderness: L/H=10.5

o TP1=1.25-2.5

Comparison: Load over Internal and External panel

1. The ratio of ultimate capacity over the bending capacity (LE) is indicative for the
enhancement in the ultimate resistance solely due to arching action. Thus, at small values
the LE load factor reaches values more than the double ultimate capacity. That means that
the optimum restraint ratio is slightly higher than or equal to 1, when the full stiffness
is provided for lateral restraint.

2. At the case that no restraint is provided the capacity slightly changes while the vertical
deflection at the midspan increases (Fig.97). Thus, the slab will fail due to large
displacements. As the restraint conditions increase, the slab fails at smaller deflections,
which leads to the conclusion that the slab becomes less ductile. For values of stiffness
less than the axial stiffness of the slab and the girders, the slab fails at greater deflections
than L/82 (12.85mm). According to Eurocode, at the permissible serviceability the upper
limit I/h for prestressed slabs is L/50 (21mm).
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3. The load enhancement factor becomes double leading to the conclusion that at the present
case the contribution of compressive membrane action at this stiffness ratio results in an
almost double ultimate capacity.

4. For small values of slenderness the arching action is more intensive due to higher
compression zone. The overall performance of the slab is expressed by the blue curve, as
illustrated below (Fig.99-100). On the other hand, high values of slenderness lead to a
slender behaviour which weakens the compressive action. Specifically, for depth to height
ratio I/h more than 15 there is no enhancement since the slab starts performing in a
slender way minimizing the effect of compressive membrane action.

5. Due to very low regular reinforcement area the total bending capacity is reached later
than the maximum value of the arching capacity (Fig.97). The maximum ultimate
capacity is reached at 12,5mm while the maximum arching capacity is met at 5,96mm at
TPL 2.5MPa. The arching capacity is 24.65% and the bending action is 75.35% of the
ultimate capacity.

6. At zero restraint S/Ss=0 the load is carried only by the bending action since no arching
action can be developed (Fig.99-100). The abrupt increase in the ultimate capacity at
small ratio of restraint is attributed mainly to arching action, which is quite intensive at
the partially restraint conditions especially for values between 0.2 and 0.6. For values of
ratio higher than 4 an increase in the restraint does not have any influence on the capacity.
This implies that extremely stiff support is not necessary for increasing the ultimate
capacity. Neither are bending action nor arching action affected by an infinitive stiff

support.
Effect of Bpanto Depth Ratio onC apacity Exhatcement
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Figure 96 Enhancement load factor for varying S/Ss and varying slenderness (in detail)
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Figure 97 Comparison: Load deflection curves at Internal and External panel [TPL=2.5]
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Figure 98 Comparison: Deflection on Bending and Arching Capacities at internal and external

panel

To estimate better the influence of slenderness and stiffness over the capacity of the slab it is wise
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attributed to the change in the bending or in the arching action. Generally, the bending

contribution determines the final value of the ultimate capacity.

Effect of 3panto Depth Ratio on Arching action
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Figure 99 Comparison: Effect of slenderness and stiffness over Arching Capacities [2.5MPa]
Effect of Spanto Depth Fatio onBending action
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Figure 100 Comparison: Effect of slenderness and stiffness over Bending Capacities [2.5MPa]

11. CONCLUSIONS

e The Mild steel has no effect over the punching and bending capacity due to the low
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e The transverse prestress level has simulated as an initial imposed deformation in
punching capacity and as an additional stiffness in bending capacity. In both cases the
TPL slightly has a contribution in the enhancement of the capacities. This can be
explained by the fact that the unbonded tendon never yields, responding elastically
throughout the loading process. Therefore, the tendon has a linear elastic profile and
its stress value at the ultimate stage is independent on the yielding stress because it is
never reached. The TPL will delay the failure of concrete.

e The simulation of TPL as an imposed deformation underestimates the contribution of
the prestress making the approach less realistic compared to experimental results.

e The ultimate capacity is considerably affected by the lateral restrained ratio S/Ss,
provided by the support and the surrounding slabs. The degree of the lateral restraint
governs the contribution of the compressive membrane action. The optimum restraint
ratio is estimated S/Ss=1 at which the combination of the compressive and bending
action is maximum. Stiffness ratio higher than 1 results in non ductile slabs whereas
for values higher than 5 the stiffness becomes so high that there is no effect of
stiffness to the ultimate capacity.

e It is not necessary to provide fully fixed conditions at the support, since for high
values of stiffness ratio there is not any further enhancement. The performance of the
slab under a double wheel load should be characterized by plasticity and ductility.
When the stiffness ratio decreases the slab can accommodate higher displacements
showing more warning cracks and avoiding a sudden failure. This can be achieved
by taken the lateral restraint ratio equal to 1, leading to an economical solution and
sufficient ultimate capacity.

e The length depth ratio I/h affects the overall performance of the slab. For the present
case the ratio I/h is 10 which leads to a double ultimate capacity compared to lower
ratios. If the slenderness increase the slab becomes more slender and as a result it
decreases the effect of compressive action.

e The interior slab shows higher enhancement of the capacity compared to exterior
slabs, because of the effective stiffness of the surrounding elements (slab-girders). At
the case of loading the interior slab, the surrounding panels and concrete girders form
a confining ring around it, increasing considerably the restraint stiffness.

e The performance of the exterior slab depends on the flexibility of the edge beam. The
failure load as well as the contribution of compressive membrane action are
calculated by taking into account the flexural, rotational and torsional rigidity of the
edge beam.

e The shear effect can be considered to be negligible either the load is positioned at the

centre of the panel or close to the edge structure. Otherwise, the horizontal
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deformation should be calculated as a superposition of the support and the shear

deformation.

REFERENCES
i.  Punching behaviour of composite decks with transverse prestressing
Weishi He

1992

ii.  Punching behaviour of composite bridge decks transversely prestressed with carbon fibre

(; reinforced plastic tendons
TUDelft & =
e ft University of
Technology
Challenge the future




S. Marshe
1997

iii.  Punching behaviour of composite bridge decks transversely prestressed with carbon fibre
reinforced polymer tendons
S. Marshe; M.F. Green
1999

iv.  Punching shear resistance of prestressed concrete slabs
G. D. Stefanou
University of Patras, Greece

v.  Analysis and Design of laterally restrained structural concrete one-way members
Nasser Meamarian, Theodor Krauthammer, and John O’Fallon
ACI Structural Journal Technical Paper, Title no. 91-S70

Vi. Reinforced Concrete Slabs
Robert Park and William L. Gamble, 2000

Vii. Membrane action in lateral restraint reinforced concrete slabs
WANG Gang (FRI), WANG Qing-xiang (i), LI Zhong-jun (ZH%)

THESIS

viii. Membrane behaviour in one-way prestressed concrete slabs
Roger J. Miltenburg
The University of Western Ontario, Ontario August 1998

ix.  Loading capacity of laterally restrained prestressed concrete slabs
R.F.C. de Rooij
Delft University Of Technology, April 2011

X.  Experimental determination of bearing capacity transversely prestressed concrete slabs
M.W.J. Vugts,

Delft University Of Technology, June 2012

xi. A finite element model for the deck of plate-girder bridges including compressive

4 membrane action, which predicts the ultimate collapse load
Delft 121
T U D e I ft University of
Technology
Challenge the future




G.J. Bakker
Delft University Of Technology, August 2008

APPENDIX |
PUNCHING SHEAR: EXPERIMENTS

To investigate the punching shear capacity of a transversely prestressed slab, a bridge has been
constructed at 1:2 scale model at Stevin Il laboratory, CITG faculty, Delft University of
Technology. The bridge model has 12m long and 6.4m width, consisting of four precast concrete
girders placed at 1800 mm c/c distance. The slab has been casted in situ and prestressed in the
transverse direction with clear span of 1050mm and thickness of 100mm, as can be observed
below.
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Figure 101 Apparatus of bridge model

Experiment BB-1
The first test of the series was carried out on 5th February, 2013. The load was applied in 25kN
increments @1kN/sec. The position of the load and the distances are depicted below. The applied

prestress level was 2.5MPa.
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Figure 103 Detail of the load position

Table 17 Response progress

Crack
Load ) Type Remarks
Width
kN mm
25 - - -
50 - -
Bottom Hairline cracks directly under loading plate. Hardly
75 <0.05 o
long/transverse visible
100 | <0.05 Better visibility
Diagonal/Radial ] o )
125 0.05 . Diagonal cracks. Widening of previous cracks
punching
150 | 0.1-0.15 Spreading of radial cracks/Widening
175 0.2-0.25
200 0.3 Max Crack width directly under load
225 0.35 Max Crack width directly under load
250 0.4-0.45 0.45 directly under load. Elsewhere 0.4
275 0.5 Max Crack width directly under load
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300 06 Max Crack Width directly Under load. Crack
' observations stopped
] ] Circumferential cracks occurred somewhere between
325 Circumferential
300KkN and failure.
Punching failure. Large cracking and spalling at
2487 some places. G301(East side of panel) interface
' spalling at bottom. Top side punched through the
loading plate.
Table 18 Summary results
Load [kN] TPL [N/mm?] Deflection [mm] Crack width [mm]
348.74 2.5 10.4 0.8

Load ~ Midspan Deflection
D T T

-100

-150

T

T

Load [kN]

-200

-250

T

Global
Net

-300

=350 1 1 1 1 1
-12 -10 -8 -6 -4 -2 0

Deflection [mm)]

Figure 104 Load — Midspan Deflection Response
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Figure 105 Bottom side of deck slab after failure

Figure 106 Top side of deck slab after failure

e Experiment BB-2

The second test of the series was carried out on 8" February, 2013 at Stevin Il laboratory, CITG
faculty, Delft University of Technology.
Load was applied in 75, 100, 150, 200, 250 kN steps @ 1kN/sec. Later the actuator was switched

to displacement control at 0.01mm/sec till failure.
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Figure 107 BB-2 Apparatus of structure and load position

Table 19 Response progress

Load FO Cr-ack Type Remarks
Width
kN mm
- <005 Bottom Hairline cracks. Hardly visible . Directly under
Diagonal/transverse | the loading plate
100 0.05 Diagonal/Radial More diagonal/radial cracking
150 0.1- Spreading of radial cracks/Widening of crack.
0.15 First circumferential crack observed near Duct 27
Propagation of cracks. Longitudinal crack at mid
200 0.25- span extending from bottom of deck and going
0.3 round the front side to the top. Max Crack width
directly under load
Crack propagation in all directions. Random radial
0.45- cracks. More circumferential cracks observed
250 0.5 outlining the loading plate at the bottom side of
the deck.
Crack observations stopped. Load continued (displacement controlled) at 0.01mm/sec
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321.4 Punching started. Maximum load reached.

Further displacement allowed punching cone to
form fully. More diagonal crack propagation . A

0.01mm/s . .
circumferential crack appeared between duct 30
and 29.
Table 20 Summary results
Load [kN] TPL [N/mm?] Deflection [mm] Crack width [mm]
321400 2.5 9.1 0.7

Load ~ Midspan Deflection
U T T T T

-100

-150

Load [kN]

-200

250 F

Global

300 F Net |

_350 1 | 1 1 |
-10 -8 B -4 -2 0 2

Deflection [mm]

Figure 108 Load — Midspan Deflection Response
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Crack Width ~ Load (Top Horizontal Displacements)
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Figure 109 Crack width-Load curve

Figure 110 Top side of deck slab after failure
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Figure 111 Bottom side of deck slab after failure
e Experiment: BB-16

This test was carried out on 6™ May, 2013 at Stevin |1 laboratory, CITG faculty, Delft University
of Technology.

Load was applied in 50 kN increments @1kN/sec till 400 kN. Later the actuator was switched to
displacement control at 0.01 mm/sec till failure. The load was applied at two points with a c/c
distance of 600 mm at the midspan.
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Figure 112 BB-16: Apparatus of structure and load

Table 21 Response progress

Load Fq, Crack Width
Type Remarks
kN [mm]
50 - - -
100 -- - -
Longitudinal/ First crack in the longitudinal crack direction between
150 0.05* Transverse/ the two load points. Hairline transverse and radial
Radial cracks.
200 0.1*-0.05**- Longitudinal/ Propagation of initial cracks. New longitudinal and
Hairline*** Radial radial cracks.
Longitudinal/ o o )
0.2*-0.15**- More cracks in different directions,. Propagation of
250 Transverse/ ]
0.1*** . previous cracks.
Radial
More radial/diagonal cracks. Widening and
0.3%-0.2**- ] ] ] ]
300 0.1+ Radial propagation of previous cracks. Shrinkage crack at
' duct 15 widening.
0.45*-0.3**- ) New radial cracks. Propagation and widening of
350 Radial ] ) ]
0.15%** previous cracks. Shrinkage crack 0.4 mm wide.
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0.8*-0.35%*- ]
400 Radial
0.2%**

Displacement controlled load at 0.01 mm/sec. Observations stopped.

Large rotations observed. Circumferential crack
553.4 around loading point 1. Punching Shear Failure. Top

side punched through the loading plate 1.

*Initial Longitudinal crack **Radial crack at load point1 ~ ***Transverse crack at load

point 1

Table 22 Summary results

Load [KN] TPL [N/mm?] Deflection [mm] Crack width [mm]

553.4 2.5 9.97

Midspan Deflection ~ Load

EI T T T T T T
Actuator
Laser 13814
1o LvDT 168165
200k
=
=,
= -300F
m
A
-400 F
-A00 F
_EDD 1 1 | 1 1 | 1 1
-18 -16 -14 -12 -10 -8 -B -4 -2 0

Deflection [mm]

Figure 113 Load — Midspan Deflection Response3
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Crack Width ~ Load (Top Horizontal Displacements)
18 T T T T T

—— LvDTO1
16 ; LvDTo2 [

: —— LvDTO3
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0.8

0B

Crack Width, WY [rm)]

0.4

0.z

_D2 | | | | |
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Load, P [kN]

Figure 114 Load - Crack width

Figure 115 Top side of the deck slab
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Figure 116 Bottom side of deck slab showing the cracks

BENDING: EXPERIMENTS
i.  Experiment BB-5

The fifth test of the series was carried out on 25" February, 2013. The load was applied in 50kN
increments @1kN/sec till 350kN. The position of the load and the distances are depicted below.

The applied prestress level was 2.5MPa.
600 mm 3100 mm
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Figure 117 Apparatus of structure and load
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Figure 118 Detail of the load position

Table 23 Response progress

Load Fy | Crack Width
Type Remarks
[Kn] [mm]
50
100
Longitudinal/ First crack in the longitudinal direction between
150 0.05 Transverse/ the 2 loading points, transverse cracks at both
Radial loading points, radial crack at load point 1.
200 0.05-0.1 Propagation of the initial cracks.
Longitudinal/ More cracks in different directions, propagation
250 0.15-0.2 Transverse/ of previous cracks. Maximum crack width at
Radial the initial longitudinal crack.
More radial/diagonal cracks. Widening and
300 0.3 Radial propagation of previous cracks. Maximum crack
width at the initial longitudinal crack
FUDelft
echnology

Challenge the future




More radial/diagonal cracks. Propagation of
350 0.45-0.5 Radial previous cracks. Longitudinal crack getting

wider.

Displacement controlled load at 0.005 mm/sec, then changed to 0.01 mm/sec at 370 kN.

Observations stopped.

400

450

460.7 Load dropped for a while and then again started
increasing at increasing deflections.
No further load increase was possible. Increase

490.4 in rotation. Flexural failure with a number of
radial cracks at the loading points.

250 25 Longitudinal crack of 2.5 mm width.

Summary results:

Load [kN] TPL [N/mm?] Deflection [mm] Crack width [mm]

490.4 2.5 9.56 2.51
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bidspan Deflection ~ Load
I:I T T T T T T T T T

a1k Actuator _
Laser 14
-100 .

-150 .

-200 .

-240 .

Load [kN]

-300 .

-3a0 .

-400 .

450 .

_5':":' 1 1 1 1 1 1 1 1 1
200 -18 B 14 12 -10 -0 £ -4 -2 0

Deflection [mm]

Figure 119 Load — Midspan Deflection Response

Figure 120 Bottom side of deck slab after failure
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Figure 121 Top side of deck slab after failure

ii.  Experiment BB-11

The eleventh test of the series was carried out on 27" March, 2013. The load was applied in 50kN
increments @1kN/sec till 237kN. The position of the load and the distances are depicted below.
The applied prestress level was 1.25MPa.
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Figure 122 Apparatus of structure and load

Table 24 Response progress

Load Fy | Crack Width
Type Remarks
[Kn] [mm]
50 Hairline Transverse A short transverse crack at load point 1.
First longitudinal crack *between two point
100 0.05* Longitudinal loads. Initial transverse crack at load point 1
remains hairline.
0.15*- New transverse cracks at both loading points.
o Transverse/ ] ] o
150 Hairline**- Radial Radial crack at load point 1. Longitudinal crack
adia
Hairling*** propagates further.
Longitudinal,/ New longitudinal cracks. New transverse crack
0.3*-0.05**- . .
200 Transverse/ under load point 2. Long radial cracks.
0'1***
Radial Propagation of previous cracks.
Displacement controlled load at 0.01 mm/sec at 237 kN.
Radial cracks. Propagation of previous cracks.
0.9*-0.15**- . ) . - I
250 Radial Maximum crack width at the initial longitudinal
0'3***
crack.
2%-0.35%*- ] More radial cracks. Widening and propagation
300 Radial ) ) )
0.7%** of previous cracks. Maximum crack width at the

,‘ Delft 139
TU Delft &




initial longitudinal crack.

Observations stopped. Crack width of longitudinal crack at 350 kN = 5mm*

Flexural failure with no further increase in load.

377.85 _ _ _
Large increase in prestressing force.

Summary results:

Load [kN] TPL [N/mm?] Deflection [mm] Crack width [mm]

377.85 1.25 7.11 2.65

Midspan Deflection ~ Load
I:I T T T T T T T T

Actuator

A0 Laser 13414

— LWDT 15816

-100

-180

=200 -

Load [kN]

=280

-300

-350

'-"“jl:l 1 1 1 1 | 1 1 1 1
-0 -18 -6 14 120 10 -8 B -4 -2 1]

Deflection [rmm)]

Figure 123 Load — Midspan Deflection Response
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Figure 125 Top side of deck slab after failure

Conclusions:

v.  Large rotations occurred at the peak load leading to longitudinal cracks between the double
loading points.

vi.  No further increase in the capacity after the failure was occurred.
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vii.  The skewed interface has sufficient capacity to bear the vertical load, since no interface failure
occurred during the experiments.

viii. No significant loss of prestressing steel occurred, verifying the initial assumption to neglect
the prestress losses.

APPENDIX Il
e Verification of the code Fortran 95

The bending capacity of the model bridge is calculated based on numerical analysis on Fortran 95.
A lot of research has been carried out in the past to estimate the bending resistance of slabs taken
into account the effect of the compressive membrane action. In the Master thesis of a code casted
in Fortran 75 has been used to calculate the bending capacity of a frame-slab. This code is an
invaluable engineering tool for capacities of any kind of slabs, since it has taken into account the
following important parameters, as well as their effects:

e Compressive membrane action (Nu)

o Effect of regular reinforcement or prestress (Fps)

e  Strain hardening of reinforcement steel

e The position of the loaded part in the slab (case 1, case 2)
e The temperature changes, creep, shrinkage

e Symmetrical or unsymmetrical conditions at the supports

This code had to deal with the prestressed slabs in the longitudinal direction supported by
columns.

At the present master thesis this code could not be applicable without modifications and
adjustments.
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At the first step the original code had to be re-casted in order to be compatible with the newer
version Fortran 95. Some of the old commands were necessary to be replaced with new commands
executing the same function. After recasting the updated code was tested before it is applied at the
present case.

It gave exactly the same results with the old code, verifying the validity of the updated one.

At the second step the code had to be adjusted to the conditions of the structure of the model
bridge.

The structure at the initial code has many important differences from the structure at the present
case. The bridge model, constructed in the Stevin Lab Il, CITG TUDelft, differs from the

aforesaid structure at the next points:

e Present case: the bridge is supported laterally by the concrete girders. These girders can
provide adequate restraint to the slab leading to the development of compressive membrane
forces in the transverse direction. Thus, the axial and flexural stiffness are given by the girders
and the surroundings panels.

Past case: it is supported by columns and cross beams. Thus, the axial and flexural stiffness
are given by the beams, the columns and the surrounding panels.

e Present case: the bridge is prestressed in the transverse and longitudinal direction.

Past case: it is prestressed only in the longitudinal direction and only the effect of the regular
reinforcement was taken into account employing the Modified trilinear idealization for mild

steel [Sargin, 1971] to simulate the strain hardening of steel.

At the next table the results of the original code are presented, which are precisely the same with

that from the relative Master thesis.

» Example - Analysis of Interior Slab

Tables B.l and B.2 show input and output files, respectively, for the analysis of an interior slab in
the parking structure. The input file for the analysis of Slab having a remain stiffness of 257
N/mm?, was arbitrarily chosen to demonstrate the input and output files for the analysis of an
interior slab. A summary of the program execution is also given at the end of the output file to

show the size of the program.

Table B.1: Input Data

INPUT FILE
S 4840 140 16500
L 114 26 114 26 114 26
A 100 110 100 71950
B 4714 4125 4714 0 0 0 2159
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30 24648 0.805 0.895
D 200000 9000 400 600
A 0.002 0.006 0.08
T 1120 1860 200000
A 0.025 118 10
0 0
1
S Case 1: Interior slab loaded
U 257.1
P
5]
O
R
T
DATA

Table B.2 Output Data

INTERIOR SLAB LOADED -SINGLE SLAB STRIP USED

EFFECTIVE MAXIMUM

SUPPORT ULTIMATE VERTICAL LOAD
STIFFNESS CAPACITY DEFLECTION ENHANCEMENT
257.1 0.0272 29.87 151
AXIAL MOMENT AT PLASTIC HINGE

FORCE 1 2 3

0.546E+07 0.738E+09 0.739E+09 0.738E+09

Numbers of Warnings 0

Numbers of Errors 0

» Example - Analysis of Interior Slab

Table B.3 Input Data

INPUT FILE

S 4745 140 16500
L 114 26 114 26 114 26
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A 100 110 100 71950
B 4714 4125 4714 0 0 0 2888
30 24648 0.805 0.895
D 200000 9000 400 600
A 0.002 0.006 0.08
T 1120 1860 200000
A 0.025 118 10
0 0
2
S
U Case 2: Exterior slab loaded
P 975
p 4850 2425 375 7.02*10"
0 750 300 12000 4.16*10°  535*10"
R 5
-
DATA

Numbers of Warnings 0

Numbers of Errors 0

Table B2: Results

EXTERIOR SLAB LOADED - 5 SLAB STRIPS USED
Strip number Effective support Ultimate capacity Load enhancement
[NUM] stiffness [WU] [LE]
[S]
1 295.1 0.0301 1.44
2 4.3 0.0235 1.12
3 0 0.0231 111
4 0 0.0231 111
5 0 0.0231 111
AVERAGE ULTIMATE CAPACITY IS 0.02
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AVERAGE LOAD ENHANCEMENT IS 1.18

TOTAL AXIAL FORCE APPLIED TO A COLUMN IS 0.574E+06
TOTAL MOMENT APPLIED TO AN EXTERIOR COLUMN IS 0.257E+09
TOTAL MOMENT APPLIED TO AN INTERIOR COLUMN IS 0.305E+09
APPENDIX 111

NUMERICAL CODES

Hereby, the original and the updated code are given below:

ORIGINAL CODE

*hkkkhkhkhkkkhkhkkhkhhkhhhhhkhkhhkhhihkhhhhkhhrhkhhhhkhhihkhhhhkhrhhkhhhhkrrhhkhihikix

SLAB
EAEEAEKIKIEAEIAKIAIEAAKREAAAKREAAKRAEAAXAEAARAEARAA A AR A EAAXR A AAAEAAAXAAAAAAAAEAAXAAAAAAAX K
IMPLICIT DOUBLE PRECISION (A-2)

INTEGER CASE,NUM

OPEN (I, FILE="TERMINAL')

OPEN (5,FILE="INPUT)

OPEN (6, FILE='OUTPUT")

READ (5*)  LMH,B,

+ D1,D11,DZ,D12, D3, D13,

+ DP1, DP2, DP3, LPS,
+ AS1, AS2, AS3, ASPI,ASP2,ASP3,ASP,
+ FC, EC, Al BI,

+ ES, ESH, FYS, FUS,

+ EYY, ESSH, EUU,

+ FPE, FPU, EP,

+ AA, BB, CC,

+ K, EST,

+ CASE

IF (ASP.EQ.0) THEN

GOTO 10

ELSE

CALL ISTRN (EPPI, FPE, EP, AA, BB, CC)

ENDIF

10 GOTO (100,200,300), CASE
100 READ(5, *) S
CALL INT(LH,B, D1,D11,D2,D12, D3, D13, DP1, DP2,DP3,LPS,AS1,AS2,

+ AS3,ASP1,ASP2,ASP3,ASP,FC,EC,AL,B1,ES,ESH,FYS,FUS,
+ EYY,ESSH,EUU,EPPI,FPE,FPU,EP,AA,BB,CC K,EST,S)
GOTO 400

200 READ(5,*) S3,

+ LC1, LCB1, WCOL, EIC1,

+ HB1, BB1, LB1, EIB1, JGB1,

+ NUM

CALL EXT (L, H, B, D1, D11, D2, D12, D3,D13, DP1, DP2,

+ DP3,LPS,AS1,AS2,AS3,ASP1, ASP2, ASP3,ASP,FC,EC Al,
+ B1, ES, ESH,FYS, FUS,
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+ EYY, ESSH, EUU, EPPI, FPE, FPU, EP,AA, BB, CC, K, EST,

+ S3, LC1,LCB1, WCOL, EIC1, HB1, BB1, LB1, EIB1, JGB1, NUM)
GOTO 400

300 READ(5,*) S3,

+ LC1, LCB1,WCOL,EIC1,

+ HB1, BB1, LB1, EIB1, JGBL,

+ NUM

S3=1E38

EIC1=1E38

CALL EXT (L,H, B, DI, D11, D2, D12,D3, D13, DP1, DP2, DP3,

+ LPS,AS1,AS2,AS3,ASP1, ASP2,ASP3,ASP, FC, EC,AL, B1,ES,

+ ESH, FYS, FUS, EYY, ESSH, EUU, EPPI, FPE, FPU, EP,AA, BB,
+ CC, K, EST, S3, LC1, LCB1, WCOL, EIC1, HB1, BB1,LB1, EIB1, JGB1, NUM)
GOTO 400

400 END

*kkkhkhkhkkhkkhkhkhkhhkhkhihhhkhkhhkhhrhkhhkhhkhhihkhhhhkhhrhhhihhrhkhkhihhkhrhiiikx

SUBROUTINE EXT (L,H,B, D1, D11, D2,D12, D3,D13,

+ DP1,DP2,DP3,LPS, AS1, AS2,AS3,ASP1,ASP2, ASP3,ASP,FC,

+ EC,A1,B1,ES, ESH, FYS, FUS, EYY, ESSH, EUU, EPPI,

+ FPE, FPU, EP, AA, BB, CC, K, EST, S3, LC1, LCB1, WCOL, EIC1,
+ HB1, BB1, LB1, EIB1JGB1, NUM)

*hkkkhkhkhkkhkkhkhkkhkhhkhhhhhkhhhkhhihkhhhhkhhrhkhhhhkhhrhkhhhhkhrhhkhrhhkrrhhkhrhhkirhhkiihikik

IMPLICIT DOUBLE PRECISION (A-2)

INTEGER NUM, X, Z Y

DIMENSION DIST (15) , S1 (15) , SE (15) , FISLAB (30) ,

+ F3SLAB (30) , CC1 (15), CC3 (15) , WWU (15) , DDL (15) , SSMOVE (15),
+ D1SLAB (15) , RMOVE (15), VV1 (15), VV3 (15) , LE (15)

* CALCULATE WIDTH OF STRIPS AND STEEL IN STRIPS

B=B/ (2* NUM)

ASP1=ASP1/ (2 *NUM)

ASP2=ASP2/ (2 *NUM)

ASP3=ASP3/ (2 *NUM)

ASP=ASP/ (2 *NUM)

AS1=AS1/ (2 *NUM)

AS2=AS2/ (2 *NUM)

AS3=AS3/ (2 *NUM)

* CALCULATE SLAB CAPACITY NEGLECTING COMPRESSIVE MEMBRANE
* AND STRAIN HARDENING

SO=1E-30

ENSH=0

CALL STRIP(L,H,B, D1, D11, D2,D12, D3,D13,

+ DP1,DP2,DP3,LPS, AS1, AS2,AS3,ASP1,ASP2, ASP3,ASP, FC,
+ EC,A1,B1,ES, ESH, FYS, FUS, EYY, ESSH, EUU, EPPI,

+ FPE, FPU, EP, AA, BB, CC, K, EST, S, NU,

+ MU1,MU2,MU3,C1,C2,C3,WU, DL,SMOVE,BH,V1,V3)

* SET STIFFNESS OF FIRST SLAB STRIP EQUAL TO FLEXURAL
* STIFFNESS OF EDGE BEAM AT MIDDLE OF FIRST SLAB STRIP AND
* |ITERATE TO GET STIFFNESS DISTIBUTION
DO 10 X=I,NUM
S1 (X)=(1/(2/(3*EIC1*LC1**3/( LCB1**3*(LC1-LCB1)**3)) + ( (LBL/
+ (4*NUM) **2  (6*EIBI*LB1**3)* (3*LBI**3*( LBI/( 4*NUM)) -
+ LB1**3* (LB1/(4*NUM)-3*LB1**2* (LB1/ (4*NUM) )**2))) ) /B
DIST (X) =1
SE(1)=1/ (1/S1(1) +1/S3)
10 CONTINUE
140-Z=0

+a4Y-£L£—U
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70 z=7+1
DO 20 X=I, NUM
20 SE (X) =DIST (X) * SE (1)
* CALCULATE FORCES AND DISPLACEMENTS OF STRIPS

DO 30 X=I,NUM
S=SE (X)

CALL STRIP(L,H,B, D1, D11, D2,D12, D3,D13,

+ DP1,DP2,DP3,LPS, AS1, AS2,AS3,ASP1,ASP2, ASP3,ASP, FC,
+ EC,A1,B1,ES, ESH, FYS, FUS, EYY, ESSH, EUU, EPPI,

+ FPE, FPU, EP, AA, BB, CC, K, EST, S, NU,

+ MU1,MU2,MU3,C1,C2,C3,WU, DL,SMOVE,BH,V1,V3)

FISLAB (X )=NU

FISLAB (X+NUM) =MU1

CC1 (X) =CI

VV1(X) =V1

F3SLAB(X) =NU

F3SLAB (X+NUM) =MU3

CC3 (X) =C3

VV3 (X) =V3

WWU(X) =WU

LE (X) =WU/WUO

DDL (X) =DL

30 SSMOVE (X) =SMOVE

* CALCULATE MOVEMENT OF SUPPORTS

TNU=0

DO 40 X=I, NUM

40 TNU=2*F3SLAB(X)+TNU
D3SLAB=TNU/(B*2*NUM*S3)

CALL REST (H,LC1 ,LCB1, WCOL,EIC1,HB1, BB1, LB1, EIB1, L JGB1,
+ FISLAB, CC1, DISLAB, NUM, V1)
50  RMOVE (X) =D1SLAB (X) + D3SLAB

* CALCULATE DISTRIBUTION OF EFFECTIVE STIFFNESS
IF(Z.EQ.1)THEN

DO 60 X=F1SLAB(X) /RMOVE(X) /(FLISLAB (1) / RMOVE (1))
ELSE

CONTINUE

ENDIF

* DEFINE POINTS ON TWO LINES TO CALCULATE COMPATIBLE STIFFNESS
IF(Z.EQ.1)THEN

SM1=SSMOVE ( 1)

RM1=RMOVE (1)

SEFF1=SE (1)

SE(1)=.7*SE (1)

GOTO 70

ELSE IF(Z.EQ.2)THEN

SM2=SSMOVE (1)

RM2 =RMOVE (1)

SEFF2=SE (1)

ELSE

SM1=SM2

RM1 = RM2

SEFF1 =SEFF2

SM2 =SSMOVE (1)

RM2=RMOVE (1)

SEFF2=SE (1)

ENDIF

WRITE(L,*) ITERATION',Z

,‘ Delft 148
TU Delft &




* PREVENT POSSIBLE INFINITE LOOP
IF(Z.LT.50)THEN
GOTO 80
ELSE
WRITE (1,*) ' SOLUTION DID NOT CONVERGE'
GOTO 700
ENDIF
* CHECK IF STRIP AND RESTRAINT MOVEMENT ARE EQUAL FOR FIRST
* STRIP
80 (SSMOVE(1)-RMOVE(1)) /SSMOVE(1)) .LT.0.01)THEN
GOTO 90
ELSE
GOTO 100
ENDIF
* CALCULATE NEXT ESTIMATE OF STIFFNESS
100  SEFF=(SEFF2-SEFF1)*(RM1-SM1)/(SM2-SM1-RM2+RM1)+SEFF1
IF(SEFF.LT.0)THEN
SEFF=IE-5
ELSE
CONTINUE
ENDIF
SE (1) =SEFF
GOTO 70
* CHECK IF STRIP AND RESTRAINT MOVEMENT ARE EQUAL FOR OTHER
* STRIPS
90 WRITE(1,*) 'MATCHED STRIP FIRST STRIP ... CHECKING ALL STRIPS'
Y=l
120 IF(ABS( (SSMOVE(Y)-RMOVE(Y))/SSMOVE(Y)).GT.0.01) THEN
GOTO 110
ELSE IF(Y.LT.NUM)THEN
WRITE(1,*) 'MATCHED STRIP #,Y
Y=Y+l
GOTO 120
ELSE
WRITE(Il,*) 'MATCHED STRIP #,Y
GOTO 150
ENDIF
* CALCULATE NEW DISTRIBUTION OF STIFFNESS
110 DO 130 X=1,NUM
130 DIST(X)=F1SLAB(X) /RMOVE(X) /(FISLAB(1)/RMOVE(1))
GOTO 140
150 WRITE (1, *) 'SLAB HAS CONVERGED TO A SOLUTION'
* CALCULATE TOTAL AXIAL FORCE AND MOMENT APPLIED TO COLUMNS AND
* AVERAGE LOAD CAPACITY AND LOAD ENHANCEMENT
NUT=0
MU1T=0
MU3T=0
WTOT=0
DO 160 X=1,NUM
NUT=NUT+F1SLAB (X)
MUIT=MULT+F1SLAB (X+NUM)
MU3T=MU3T+F3SLAB (X+NUM)
160  WTOT=WTOT+WWU (X)
WAVG=WTOT/NUM
AVGLE=WAVG/WUO

* OUTPUT DATA
WRITE (6,1) NUM
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DO 170 X=1,NUM
170 WRITE (6,2) X, SE(X), WWU (X), LE (X)
WRITE (6,3) WAVG, AVGLE, NUT, MU3T, MULT
1 FORMAT(/,EXTERIOR SLAB LOADED -', 13, SLAB STRIPS USED ", //

+ EFFECTIVE '
+,1,' STRIP SUPPORT ULTIMATE g

+ LOAD ', /,' NUM STIFFNESS CAPACITY ',

+ ENHANCEMENT ')

2 FORMAT(I3, * ' F6.1,F18.4,F19.2)

3 FORMAT(/'/AVERAGE ULTIMATE CAPACITY IS, F6.2,//,

+AVERAGE LOAD ENHANCEMENT IS',F7.2,///,

+TOTAL AXIAL FORCE APPLIED TO A COLUMN IS'.

+ E17.3,//, TOTAL MOMENT APPLIED TO AN EXTERIOR COLUMN

+1S'E12.3,

+//,' TOTAL MOMENT APPLIED TO AN INTERIOR COLUMN IS ', E12.3, /)

700  CONTINUE

END

*hkhhhkhkhkhkkkhkhkhkkhkkhkhkikkhkhrhrhhhhhkhkhkhkhkhhhkhkhkikhiihkhhhhikhikikhkhkhkhkhkhikiikx

SUBROUTINE INT(L,H,B, D1, D11, D2,D12, D3,D13,
+ DP1,DP2,DP3,LPS, AS1, AS2,AS3,ASP1,ASP2, ASP3,ASP, FC,

+ EC,A1,BL,ES, ESH, FYS, FUS, EYY, ESSH, EUU, EPPI,

+ FPE, FPU, EP, AA, BB, CC, K, EST, S)
*hkhkhkhkkhkhkhkhkhkkhkhkhkhhhhhhkhhkhhhkhhhkhhkhkhhihhkhhhkhhihhkhhihhhhhhhihhihihhihikh
IMPLICIT DOUBLE PRECISION (A-2)

SO=1E-30

ENSH=0

CALL STRIP (L,H,B, D1, D11, D2,D12, D3,D13, DP1,DP2,DP3,LPS,

+ AS1, AS2,AS3,ASP1,ASP2, ASP3,ASP, FC,EC,A1,B1,ES, ENSH,

+ FYS, FUS, EYY, ESSH, EUU, EPPI,FPE, FPU, EP, AA, BB, CC,

+ K, EST, SO, NU,MU1,MU2,MU3,C1,

+ C2,C3,WUO,DL,SMOVE,BH,VI,V3)

ENSH=0

CALL STRIP (L,H,B, D1, D11, D2,D12, D3,D13, DP1,DP2,DP3,LPS,

+ AS1, AS2,AS3,ASP1,ASP2, ASP3,ASP, FC,EC,A1,B1,ES, ESH,

+ FYS, FUS, EYY, ESSH, EUU, EPPI,FPE, FPU, EP, AA, BB, CC,

+ K, EST, S, NU,MU1,MU2,MU3,C1, C2,

+ C3,WU,DL,SMOVE,BH,VI,V3)

LE=WU/WUO

WRITE(1,*)'SLAB HAS CONVERGED TO A SOLUTION'

*OUTPUT DATA

WRITE (6,1)

WRITE(6,2) S,WU,DL, LE

WRITE(6,3)

WRITE(6,4) NU, MU1,MU2,MU3

1 FORMAT(/,'INTERIOR SLAB LOADED -SINGLE SLAB STRIP USED', //,
+' EFFECTIVE MAXIMUM '
+'SUPPORT ULTIMATE  VERTICAL LOAD, /,
+STIFFNESS CAPACITY  DEFLECTION ENHANCEMENT')

2 FORMAT(F6.1, F18.4,2F16.2)

3 FORMAT (//,'AXIAL MOMENT AT PLASTIC HINGE '/,
+'FORCE 1 2 3)
4 FORMAT(E9.3,3E18.3, /)

RETURN

END

*hkhhhkhkkkkkhkkhhkhkhhkhkhkhkrhhhhhhhhhhkhhhhhkhhirrikrrhhhihhhhkhhhiidx
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*hkhhhkhkikkkkhkkkhkhkhkhkikikhkikihiihhhhikiikhhikk

SUBROUTINE FMILDS (F,ESS,EYY,ESSH,EUU,AS ES,ESH,FYS,FUS)
*hkkhkkhkkhkkhkkhkkhkhkhkhkhkhkhkhkhkhkhkihhkihhkhhkkhkhhihhkhhikhhihiihikx
IMPLICIT DOUBLE PRECISION (A-Z)
IF(ABS(ESS).LT.EYY) THEN
F=AS*ES*ESS
ELSE IF(ESS.LE. (ESSH*(-1))) THEN
F=0
ELSE IF(ESS.LE.(EYY*(-1))) THEN
F=AS*FYS* (-1)
ELSE IF(ESS.LE.ESSH) THEN
F=AS*EYS
ELSE IF (ESS. LE. EUU) THEN
F=AS*(FYS+ESH*(ESS-ESSH)*(1-ESH*(ESS-ESSH)/(4*(FUS-FYS))))
ELSE
F=0
ENDIF
RETURN
END

*hkhhhkhkikhkkkhkhkhkkhkkhkhkikhkhrihhhhhhhkhkhhkkhkhhkhkhkikhiiikiiiikkx

SUBROUTINE ISTRN (EPPI,FPE,EPAA,BB,CC)

*hkhkhkhkkhkhkhkhhkkhkhkhkhkhkhhhhkhhkhhhihhkhhkhkhhihhkhhkihhihhkhhihiikx
IMPLICIT DOUBLE PRECISION (A-2)
EPPI=0

10 FP=EP*EPPI* (AA+ (1-AA) / (1+ (BB*EPPI) **CC) ** (I/CC))
IF(FP.LE.FPE) THEN

EPPI=EPPI+0.000001

GOTO 10

ELSE

GOTO 20
ENDIF

20 RETURN
END

*kkkhkhkkkhkhkhkkhkhhkhkhkhkhhkhkhhhkhkhhkhkhkhhhkhhhkhhkhhhhrhhhhhhhhhhhkhhrhhhhhhhrrhhkirhhiit

SUBROUTINE REST(HS,LC,LCB, WCOL,EIC,HB,BB,LB,EIB, JGB,

+ FSLAB, CI,DSLAB,NUM,V1)
EEEAAKIAEAIXKXAAKRKAAAAAEARAAAAAAARAAAAAAAAAAAAAAAAAAARAAAAAARAAAAAkAAdAhAdihdik
IMPLICIT DOUBLE PRECISION (A-M, P-W)

INTEGER X, Y, NUM

DIMENSION MID(15),F(30,30), FSLAB(30),FEB(30),DEB(30),DSLAB(15),
+ C1(15) V1 (15)

* DETERMINE MIDPOINTS OF STRIPS

DO 10 X=1,NUM

MID(X)=LB/ (4*NUM)+ (X-1) *LB/ (2*NUM)

10 CONTINUE

* CALCULATE FLEXIBILITY MATRIX
KHC=3*EIC*LC**3/(LCB**3*(LC-LCB)**3)
KXC=EIC*LC**3/((-4)*LCB**2*LC**2+LCB*LC**3+6*LCB**3*LC

+ -3*LCB**4)

DO 20 X=1,2*NUM

DO 30 Y=1,2*NUM
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* EQUATION (4.29)
F(Y,X) = 2/(6*EIC*LC**3)*(12*LCB**3*LC**2-3*CB**2*| C**3)
+ -15*LCB**4*LC+6*LCB**5)
ELSE IF((X.GT.NUM).AND.(Y.LE.X)) THEN
IF( (MID(Y-NUM)) .LE. (WCOL/2)) THEN
* EQUATION (4.14 A)
F(Y, X)=2/KXC
ELSE
* EQUATION (4.14 B)
F(Y,X)=(2/KXC+ (MID(Y-NUM) -O.5*WCOL) /JGB)
ENDIF
ELSE IF( (X.GT.NUM) .AND. (Y.GT.X) ) THEN
* EQUATION (4.14 C)
F(Y,X)=(2/KXC+ (MID(X-NUM) -0.5*WCOL) /JGB)
ELSE IF(Y.GT.NUM) THEN
* EQUATION (4.38)
F(Y,X)=2/(6*EIC*LC)*(-4*LC**2*LCB+15*LC*LCB**2
+ -20*LCB**3+15* CB**4/LC-6*LCB**5/LC**2)
ELSE IF(Y.GT.X) THEN
IF( (MID(Y) .LE. (WCOL/2)) THEN
| EQUATION (4.11 A)
F(Y,X)=2/KHC
ELSE
* EQUATION (4.11B)
F(Y, X)=2/KHC+ (MID(X)- 0.5 *WCOL)* *2/ (6*EIB*LB**3)*

+ (3*LB**3*MID (Y) - LB**3*MID(X) -LB**3*WCOL-
+ 3*LB**2* (MID (Y) -0.5*WCOL) **2)

ENDIF

ELSE

| EQUATION (4.11 C)
F(Y,X)=2/KHC+(MID(Y)-0.5*WCOL)**2/(6*EIB*LB**3)*

+ (3*LB**3*MID (X) -LB**3*MID(Y) -LB**3*WCOL-
+ 3*LB**2*MID (X)**2)
ENDIF

30  CONTINUE

20 CONTINUE

* CONVERT FORCES AT MIDEPTH OF SLAB TO FORCES AT NA OF EDGE BEAM

DO 40 X=1,2*NUM

IF(X.LE.NUM) THEN

FEB (X) =FSLAB (X)

ELSE

FEB(X) =FSLAB(X)+V1(X-NUM)*HB/2-FSLAB(X-NUM)/2 *(HB-HS)

ENDIF

40  CONTINUE

I CALCULATE DISPLACEMENTS AT NA OF THE EDGE BEAM

DO 50 X=1,2*NUM

50  DEB(X)=O

DO 60 X=1,2*NUM

DO 70 Y=1,2*NUM

DEB (X)=DEB (X) +F(X, Y) * FEB (Y)

70  CONTINUE

60  CONTINUE

| CALCULATE DISPLACEMENTS AT NEUTRAL AXIS OF SLAB
DO 80 X=1, NUM

DSLAB(X)=DEB(X)-(HB/2-HS+CI(X)-BB/2*TAN(DEB(X+NUM)/2))*

SIN (DEB(X+NWM))

@ +

q

CONTINUE
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END

*kkkhkhkhkkhkhkhhkkhkhhkhkhkhkhhkhkhhhhrhkhhkhhkhhihkhhhhkhkhikhkhhhhhihkhiiikx

SUBROUTINE STRIP(L,H,B, D1, D11, D2,D12, D3,D13,

+ DP1,DP2,DP3,LPS, AS1, AS2,AS3,ASP1,ASP2, ASP3,ASP, FC,
+ EC,A1,B1,ES, ESH, FYS, FUS, EYY, ESSH, EUU, EPPI,

+ FPE, FPU, EP, AA, BB, CC, K, EST, S, NU,

+ MU1,MU2,MU3,C1,C2,C3,WU, DL,SMOVE,BH,V1,V3)

*kkkhkhkhkkhkhkhkkhkhkhkkhhkhhkhhhkhkkhkhhkhkhkhhkhhhhkhhhhkhhhhkhhhhkhirkhkhihhkiikikkx

IMPLICIT DOUBLE PRECISION (A-W)

SET INCREMENT FOR SLAB DEFLECTION

BH=0.5

60 DLINC=H/300

DL=DLINC

WU2=0

INITIAL GUESS OF FORCES IN STEEL

T1=AS1*FYS

T2=AS2*FYS

T3=AS3* FYS

FPS=ASP* FPE

CSI=ASP1*FYS

CS2=ASP2*FYS

CS3=ASP2 FYS

* START LOOP FOR CALCULATION OF LOCATIONS OF NA AND FORCES IN STEEL
21Y=0

20 Y=Y+

IF(Y.EQ.15000)THEN

GOTO 7000

ELSE

CONTINUE

ENDIF

N=ES / EC

P=(ASI+AS2+AS3+ASPI+ASP2+ASP3)/(3*B*H)

BRACK=(( (I + K ) *L/( (1-+(N-1)*P)*EC*H)+I/S)*(AL*FC*BI*(H/2-DL/4+
+ ((BH-1) *(T1-CS1) + T2-CS2-BH*(T3-CS3)+AI*FC*

+ ((BH-1) + ASP1-ASP2-BH*ASP3)) / (2*A1*FC*B1*B)) + (CS2-T2-FPS) /B) +
+EST*L) / (I+ (1-BH) *BH*L/ (2*DL)*Al * FC *B 1 ) *

+ ((1+ K)*L/ ((1+ (N-1) * P) *EC*H) +1/S)

CALCULATE LOCATION OF NA

C1=H/2-DL/4 -(1-BH)* BH*L/ (2*DL)* BRACK+

+ ( (1+BH)' (T1-CS1)- T2+CS2-BH* (T3-CS3)+ Al *FC* ((BH+1) *ASP1-
+ ASP2-BH*ASP3))/(2*A1*FC*B1*B)
C2=H/2-DL/4-(1-BH)*BH*L/(2*DL)*BRACK+

+ ((BH-)*(TI-CS1)+T2-CS2-BH*(T3-CS3)+A1*FC*((BH-1)*ASP1+

+ ASP2-BH*ASP3)) / (2*A1*FC*B1*B)
C3=H/2-DL/4-(1-BH)*BH*L/(2*DL)*BRACK+

+ ((BH-1) * (TI-CS1)- T2+CS2+(2-BH)* (T3-CS3) +AL*FC* ( (BH-1)

+ ASPI-ASP2+ (2-BH) *ASP3)) / (2+A1*FC*BI*B)

* CALCULATE STRAINS AND FORCES IN STEEL

ECC=0.0035

ESS=EYY

ET1=ECC* ( (DI-CI) /C1)

CALL FMILDS (T12, ET1, EYY, ESSH,EUU, AS1,ES,ESH, FYS,FUS)
ET2=ECC* ((D2-C2) /C2)

CALL FMILDS (T22, ET1, EYY, ESSH, EUU,AS2, ES, ESH, FYS, FUS)
ET3=ECC*((D3-C3)/C3)
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CALL FMILDS (T32,ET1,EYY, ESSH,EUU,AS3, ES,ESH, FYS, FUS)
DLI = (DP1-Cl) / (BH*L) *DL
DL2=(DP2-C2) / (BH* (1-BH) *L) *DL
DL3=(DP3-C3) / ( (1-BH) *L) * DL
IF(ASP.EQ.0) THEN
FPS2=0
ELSE
EPP=EPPI + (DL1+DL2+DL3) /LPS
FPS2=ASP * (EP*EPP*( AA+ (1-AA)/ (1+ (BB*EPP)* *CC)* * (I/CC)) )
ENDIF
IF(FPS2.GT.(FPU*ASP)) THEN
FPS2=0
ELSE
CONTINUE
ENDIF
ECS1=ECC* ( (CI-DII) /CI)
CALL FMILDS(CS12,ET1,EYY,ESSH,EUU,ASP1,ES,ESH, FYS,FUS)
ECS2=ECC* ( (C2-D12) /C2)
CALL FMILDS (CS22, ET1, EYY, ESSH,EUU,ASP2,ES,ESH,FYS,FUS)
ECS3=ECC*((C3-D13)/C3)
CALL FMILDS (CS32, ET1, EYY, ESSH,EUU,ASP3,ES,ESH,FYS,FUS)
* COMPARE CALCULATED VALUES WITH ASSUMED VALUES
IF(T1.EQ.0) THEN
GOTO 11
ELSE IF(ABS ((TI-T12) /T1) .GE.0.001) THEN
GOTO 10
ELSE
GOTO 11
ENDIF
11 IF(T2.EQ.0) THEN
GOTO 12
ELSE IF(ABS ((T2-TS22 /T2) .GE.0.00l) THEN
GOTO 10
ELSE
GOTO 12
ENDIF
12 IF(T3.EQ.0) THEN
GOTO 13
ELSE IF(ABS((T3-T32)/T3).GE.0.001) THEN
GOTO 10
ELSE
GOTO 13
ENDIF
13 IF(FPS.EQ.0) THEN
GOTO 14
ELSE IF(ABS ((FPS-FPS2) /FPS) .GE.0.001) THEN
GOTO 10
ELSE
GOTO 14
ENDIF
14 IF(CSI.EQ.0) THEN
GOTO 15
ELSE IF(ABS((CS1-CS12)/CSI). GE.0.001) THEN
GOTO 10
ELSE

GOTO 15
ENDIF
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15 IF(CS2.EQ.0) THEN
GOTO 16

ELSE IF (ABS ((CS2-CS22)/CS2) . GE. 0.001 ) THEN
GOTO 10

ELSE
GOTO 16
16 IF(CS3.EQ.0) THEN
GOTO 17

ELSE IF(ABS((CS3-CS32)/CS3).GE.0.001) THEN
GOTO 10

ELSE
GOTO 17
ENDIF
10 IF(T12.EQ.0) THEN
T1=0

ELSE

T1=(T1+T22)/2
ENDIF
IF(T32.EQ.0) THEN

T3=0

ELSE
T3=(T3+T32) /2

ENDIF

IF(FPS2.EQ.0) THEN
FPS=0

ELSE
FPS= (FPS+FPS2) /2

ENDIF

IF(CS12.EQ.0) THEN
CS1=0

ELSE
CS1=(CS1+CS12) /2

ENDIF

IF(CS22.EQ.0) THEN
CS2=0

ELSE
CS2=(CS2+CS22)/2

ENDIF

IF(CS32.EQ.0) THEN
CS3=0

ELSE
CS3=(CS3+CS32) 12

ENDIF

GOTO 21
17 CONTINUE
* CALCULATE FORCES AND ULTIMATE LOAD
MUI=AL*FC* (BI*C1*B-ASP1)*(0.5*H-0.5*BI*Cl)+CS1
+ 0.5*H-D11) +T1*(D1-0.5*H) +FPS* (DP1-0.5%H)
NU=A1*FC*(BI*C2*B-ASP2) +CS2-T2-FPS
MU2=AI*FC*(B1*C2*B-ASP2)*(0.5*H-0.5*BI*C2)+CS2
+ * (0.5*H-D12) +T2* (D2-0. 5*H) +FPS* (DP2-0.5*H)
MU3=AL*FC* (B1*C3*B-ASP3)* (0.5*H-0.5*B1*C3)
+ CS3*(0.5*H-D13)+T3*(D3-0.5*H)+FPS*(DP3-0.5H)
WU=2/(B*L**2)*(MUL/BH+MU2/((1-BH)*BH)+MU3/(1-BH)
+ -NU*DL/((1-BH)*BH))
* CHECK IF ULTIMATE LOAD IS REACHED
WUI=WU2
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WU2=WU
IF(WUL.GT.WU2) THEN

DL=DL-DLINC

GOTO 50
ELSE

DL=DL+DLINC
GOTO 20
ENDIF

50  CONTINUE
* CALCULATE LOCATION OF HINGE 2
IF(ABS(MU1-MU3).LT.0.001) THEN

BH2=0.5

ELSE
BH2=((MUI+MU2-NU*DL)-SQRT((MU1+MU2-NU*DL)**2-
+ (MUI-MU3)*(MUI+MU2-NU*DL)) ) / (MU1-MU3)

ENDIF
IF(ABS (BH-BH2) /BH.LT.0.001) THEN
GOTO 30

ELSE

BH=BH2
GOTO 60

ENDIF
30  CONTINUE
* CALCULATE TOTAL MOVEMENT OF SUPPORTS
SMOVE=NU/ (B*S)
* CALCULATE SHEAR
V1=(WU*B*(1-BH**2)*L**2-2*MU2-2*MU3+2*NU*DL)/(2*(1-BH)*L)
V3=(WU*B*(1-BH)**2*L**2+2*MU2+2*MU3-2*NU*DL)/(2*(1-BH)*L)
GOTO 6000
7000 WRITE (1,*) 'ERROR'
6000 END

UPDATED CODE

SUBROUTINE EXT (L, H, B, D1, D11, D2, D12, D3,D13, DP1, DP2, DP3,LPS,AS1,AS2, &
AS3,ASP1, ASP2, ASP3,ASP,FC,EC,A1,B1,ES,ESH,FYS,FUS,&
EYY, ESSH, EUU, EPPI, FPE, FPU, EP,AA, BB, CC, K, EST, S3, LC1,&
LCB1,WCOL, EIC1, HB1, BB1, LB1, EIB1, JGB1, NUM)
IMPLICIT DOUBLE PRECISION (A-2)
INTEGER NUM, X,Z.Y
DIMENSION DIST (15) , S1 (15) , SE (15) , FISLAB (30), F3SLAB (30) , CC1 (15) , CC3 (15)
, WWU (15) , DDL (15) , SSMOVE (15), &
D1SLAB (15) , RMOVE (15), VV1 (15), VV3 (15) , LE (15)
ICALCULATE WIDTH OF STRIPS AND STEEL IN STRIPS
B=B/(2* NUM)
ASP1=ASP1/ (2 *NUM)
ASP2=ASP2/ (2 *NUM)
ASP3=ASP3/ (2 *NUM)
ASP=ASP/ (2 *NUM)
AS1=AS1/ (2 *NUM)
AS2=AS2/ (2 *NUM)
AS3=AS3/(2*NUM)
| CALCULATE SLAB CAPACITY NEGLECTING COMPRESSIVE MEMBRANE

I AND STRAIN HARDENING
SO=1E-30
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ENSH=0
CALL STRIP(L,H,B, D1, D11, D2,D12, D3,D13, DP1,DP2,DP3,LPS, AS1, AS2, &
AS3,ASP1,ASP2, ASP3,ASP, FC, EC,A1,BL,ES, ENSH, FYS, FUS,&
EYY, ESSH, EUU, EPPI, FPE, FPU, EP, AA, BB, CC, K, EST,SO, NU, &
MU1,MU2,MU3,C1,C2,C3,WUO, DL,SMOVE,BH,V1,V3)
ISET STIFFNESS OF FIRST SLAB STRIP EQUAL TO FLEXURAL
I STIFFNESS OF EDGE BEAM AT MIDDLE OF FIRST SLAB STRIP AND
I ITERATE TO GET STIFFNESS DISTIBUTION
DO 10 X=1,NUM
S1 (X)=(1/(2/(3*EICL *LC1**3/( LCB1**3*(LC1-LCB1)**3)) + ( (LBL/ &
(@*NUM))**2 | (6*EIBL*LB1**3)* (3*LB1**3*( LBL/( 4*NUM)) - &
LB1**3*(LB1/(4*NUM))-3*LB1**2*(LB1/(4*NUM))**2))))/B
DIST (X) =1
SE(1)=1/ (1/S1(1) +1/S3)
10 CONTINUE
140 Z=0
70 z=7+1
DO 20 X=I, NUM
20 SE (X) =DIST (X) * SE (1)
| CALCULATE FORCES AND DISPLACEMENTS OF STRIPS
DO 30 X=I,NUM
S=SE (X)
CALL STRIP(L,H,B, D1, D11, D2,D12, D3,D13, DP1,DP2,DP3,LPS, AS1, AS2, &
AS3,ASP1,ASP2, ASP3,ASP, FC, EC,A1,BLES, ESH, FYS, FUS,&
EYY, ESSH, EUU, EPPI, FPE, FPU, EP, AA, BB, CC, K,
EST.S,NU, &
MU1,MU2,MU3,C1,C2,C3,WU, DL,SMOVE,BH,V1,V3)
FISLAB (X)=NU
FISLAB (X+NUM) =MU1
CC1 (X)=C1
VV1(X) =V1
F3SLAB(X) =NU
F3SLAB (X+NUM) =MU3
CC3(X) =C3
WV3 (X) =V3
WWU(X) =WU
LE (X) =WU/WUO
DDL (X)=DL
30 SSMOVE (X) =SMOVE
| CALCULATE MOVEMENT OF SUPPORTS
TNU=0
DO 40 X=1, NUM
40 TNU=2*F3SLAB(X) + TNU
D3SLAB=TNU/(B*2*NUM*S3)
CALL REST (H,LC1 LCB1, WCOL,EIC1,HB1, BB1, LB1, EIB1,JGB1,&
+ FISLAB, CC1, DISLAB, NUM, VV1)
50 RMOVE (X) = D1SLAB (X) + D3SLAB
| CALCULATE DISTRIBUTION OF EFFECTIVE STIFFNESS
IF(Z.EQ.1)THEN
DO 60 X=1, NUM
60 DIST(X)= F1ISLAB(X) /RMOVE(X) /(F1SLAB (1) / RMOVE (1))
ELSE
CONTINUE
ENDIF
I DEFINE POINTS ON TWO LINES TO CALCULATE COMPATIBLE STIFFNESS

IF(Z.EQ.1)THEN
SM1=SSMOVE(1)

,‘ Delft 157
TUDelft ey




RM1=RMOVE(1)

SEFF1=SE(1)

SE(1)=.7*SE(1)

GOTO 70

ELSE IF(Z.EQ.2)THEN

SM2=SSMOVE (1)

RM2 =RMOVE (1)

SEFF2=SE (1)

ELSE

SM1=SM2

RM1 = RM2

SEFF1 =SEFF2

SM2 =SSMOVE (1)

RM2=RMOVE (1)

SEFF2=SE (1)

ENDIF

WRITE(L,*) ITERATION',Z

IPREVENT POSSIBLE INFINTE LOOP

IF(Z.LT.50)THEN

GOTO 80

ELSE

WRITE (1,*) ' SOLUTION DID NOT CONVERGE'

GOTO 700

ENDIF

I CHECK IF STRIP AND RESTRAINT MOVEMENT ARE EQUAL FOR FIRST

| STRIP

80 IF (ABS((SSMOVE(1)- RMOVE(L)) /SSMOVE(L)).LT.0.01) THEN

GOTO 90

ELSE

GOTO 100

ENDIF

| CALCULATE NEXT ESTIMATE OF STIFFNESS

100 SEFF=(SEFF2-SEFF1)*(RM1-SM1)/(SM2-SM1-RM2+RM1)+SEFF1

IF (SEFF.LT.0) THEN

SEFF=1E-5

ELSE

CONTINUE

ENDIF

SE(1)=SEFF

GOTO 70

ICHECK IF STRIP AND RESTRAINT MOVEMENT ARE EQUAL FOR OTHER

I STRIPS

90 WRITE(L,*) 'MATCHED STRIP FIRST STRIP ... CHECKING ALL STRIPS'
Y=l

120 IF(ABS( (SSMOVE(Y)-RMOVE(Y))/SSMOVE(Y)).GT.0.01)THEN

GOTO 110

ELSE IF(Y.LT.NUM)THEN

WRITE(L,*) 'MATCHED STRIP #,Y

Y=Y+

GOTO 120

ELSE

WRITE(L,*) 'MATCHED STRIP #,Y

GOTO 150

ENDIF

I CALCULATE NEW DISTRIBUTION OF STIFFNESS

110 DO 130 X=1,NUM

. 130DIST(X)=F1SLAB(X) /RMOVE(X) /(FISLAB(1))RMOVE(1))
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GOTO 140
150 WRITE (1, *) 'SLAB HAS CONVERGED TO A SOLUTION'
ICALCULATE TOTAL AXIAL FORCE AND MOMENT APPLIED TO COLUMNS AND
| AVERAGE LOAD CAPACITY AND LOAD ENHANCEMENT
NUT=0
MU1T=0
MU3T=0
WTOT=0
DO 160 X=1,NUM
NUT=NUT+F1SLAB (X)
MUILT=MUILT+F1SLAB (X+NUM)
MUS3T=MUST+F3SLAB (X+NUM)
160 WTOT=WTOT+WWU (X)
WAVG=WTOT/NUM
AVGLE=WAVG/WUO
I OUTPUT DATA
WRITE (6,1) NUM
DO 170 X=1,NUM
170 WRITE (6,2) X, SE(X) , WWU (X), LE (X)
WRITE (6,3) WAVG, AVGLE, NUT, MU3T, MULT
1 FORMAT(/,EXTERIOR SLAB LOADED -',13, ' SLAB STRIPS USED',//, &

EFFECTIVE
&
J'STRIP SUPPORT ULTIMATE &
' LOAD'/," NUM STIFFNESS  CAPACITY", &
'ENHANCEMENT)
2 FORMAT(I3, '|F6.1,F18.4,F19.2)

3 FORMAT(//'AVERAGE ULTIMATE CAPACITY IS ', F6.2,//, &

+'AVERAGE LOAD ENHANCEMENT IS',F7.2,/ll, &

+TOTAL AXIAL FORCE APPLIED TO A COLUMN IS, &

+ E17.3,//;TOTAL MOMENT APPLIED TO AN EXTERIOR COLUMN IS'E12.3, &

+ /1," TOTAL MOME&T APPLIED TO AN INTERIOR COLUMN IS ', E12.3,/)
700 CONTINUE
END

SUBROUTINE FMILDS (F,ESS,EYY,ESSH,EUU,AS,ES,ESH,FYS,FUS)
IMPLICIT DOUBLE PRECISION (A-2)
IF(ABS(ESS).LT.EYY) THEN
F=AS*ES*ESS
ELSE IF(ESS.LE. (ESSH*(-1))) THEN
F=0
ELSE IF(ESS.LE.(EYY*(-1))) THEN
F=AS*FYS* (-1)
ELSE IF(ESS.LE.ESSH) THEN
F=AS*FYS
ELSE IF (ESS.LE. EUU) THEN
F=AS*(FYS+ESH*(ESS-ESSH)*(1-ESH*(ESS-ESSH)/(4*(FUS-FYS))))
ELSE
F=0
ENDIF
RETURN
END

SUBROUTINE INT  (L,H,B,D1,D11,D2,D12, D3, D13, DP1,DP2,DP3,LPS,AS1,AS2,&
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AS3,ASP1,ASP2,ASP3,ASP,FC,EC,AL1,B1,ES,ESH,FYS,FUS,
&
EYY ,ESSH,EUU,EPPI,FPE,FPU,EP,AA BB,CC,K,EST,S)
IMPLICIT DOUBLE PRECISION (A-2)
I effective restraint stiffness SO
SO=1E-30
I strain-hardening modulus for mild steel reinforcement ENSH is 0
I determine the ultimate capacity of the slab neglecting CMA and
I strain-hardening of the mild steel reinforcement
ENSH=0
CALL STRIP (L,H,B, D1, D11, D2,D12, D3,D13, DP1,DP2,DP3,LPS,AS1, AS2,&
AS3,ASP1,ASP2, ASP3,ASP, FC,EC,A1,B1,ES, ENSH,FYS, FUS,&
EYY, ESSH, EUU, EPPI,FPE, FPU, EP, AA, BB, CC\K, EST, SO, NU, &
MU1,MU2,MU3,C1,C2,C3,WUO,DL,SMOVE,BH,V1,V3)
CALL STRIP (L,H,B, D1, D11, D2,D12, D3,D13, DP1,DP2,DP3,LPS,AS1, AS2,&
AS3,ASP1,ASP2, ASP3,ASP, FC,EC,A1,B1,ES, ESH,FYS, FUS,&
EYY, ESSH, EUU, EPPI,FPE, FPU, EP, AA, BB, CCK, EST, S,NU, &
MU1,MU2,MU3,C1,C2,C3,WU,DL,SMOVE,BH,V1,V3)
LE=WU/WUO
WRITE(1,*)'SLAB HAS CONVERGED TO A SOLUTION'
I OUTPUT DATA
WRITE (6,1)
WRITE(6,2) SSWU,DL, LE
WRITE(6,3)
WRITE(6,4) NU, MU1,MU2,MU3
1 FORMAT(/,'INTERIOR SLAB LOADED -SINGLE SLAB STRIP USED', //, &
"EFFECTIVE MAXIMUM " 1&
'SUPPORT ULTIMATE  VERTICAL LOAD' /, &
'STIFFNESS  CAPACITY DEFLECTION ENHANCEMENT ")
2 FORMAT(F6.1, F18.4,2F16.2)

3 FORMAT (//, 'AXIAL MOMENT AT PLASTIC HINGE '/, &
' FORCE 1 2 3)
4 FORMAT(E9.3,3E18.3, /)

RETURN

END

SUBROUTINE ISTRN (EPPI,FPE,EP, AA,BB,CC)
IMPLICIT DOUBLE PRECISION (A-2)
Iinitial total prestress strain is equal to 0
EPPI=0
I FP is the stress: equation 2.36:modified Ramberg-Osgood Function
10 FP=EP*EPPI * (AA + (1-AA) / (1+ (BB * EPPI) **CC) ** (1/CC) )
IF(FP.LE.FPE) THEN
EPPI=EPPI1+0.000001
GOTO 10
ELSE
GOTO 20
ENDIF
20 RETURN
END

SUBROUTINE REST (HS,LC,LCB, WCOL,EIC,HB,BB,LB,EIB, JGB, FSLAB,
C1,DSLAB,NUM,V1)

IMPLICIT DOUBLE PRECISION (A-M, P-W)

INTEGER X, Y, NUM

DIMENSION MID(15),F(30,30), FSLAB(30),FEB(30),DEB(30),DSLAB(15), C1(15) ,V1 (15)
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DO 10 X=1,NUM
MID(X)=LB/ (4*NUM)+ (X-1) *LB/ (2*NUM)
10 CONTINUE
ICALCULATE FLEXIBILITY MATRIX
KHC=3*EIC*LC**3/(LCB**3*(LC-LCB)**3)
KXC=EIC*LC**3/((-4)*LCB**2*LC**2+LCB*LC**3+6*LCB**3*LC-3*LCB**4)
DO 20 X=1,2*NUM
DO 30 Y=1,2*NUM
IF (X.GT.NUM).AND.(Y.LE.NUM)) THEN
| EQUATION (4.29)
F(Y,X) = 2/(6*EIC*LC**3)*(12*LCB**3*|C**2-3%LCB**2*|_C**3 -
15*L CB**4*C+6*LCB**5)
ELSE IF((X.GT.NUM).AND.(Y.LE.X)) THEN
IF( (MID(Y-NUM)) .LE. (WCOL/2)) THEN
IEQUATION (4.14 A)
F(Y, X)=2/KXC
ELSE
IEQUATION (4.14 B)
F(Y,X)=(2/KXC+ (MID(Y-NUM) -0.5*WCOL) /JGB)
ENDIF
ELSE IF( (X.GT.NUM) .AND. (Y.GT.X) ) THEN
IEQUATION (4.14 C)
F(Y,X)=(2/KXC + (MID(X-NUM)-0.5*WCOL) /JGB)
ELSE IF(Y.GT.NUM) THEN
| EQUATION (4.38)
F(Y,X)=2/(6*EIC*LC)*(-4*LC**2*.CB+15*LC*LCB**2 -20*LCB**3+15*.CB**4/LC-
6*LCB**5/LC**2)
ELSE IF(Y.GT.X) THEN
IF( (MID(Y)) .LE. (WCOL/2)) THEN
IEQUATION (4.11 A)
F(Y,X)=2/KHC
ELSE
| EQUATION (4.11B)
F(Y,X)= 2/KHC + (MID(X)- 0.5 * WCOL) **2/ (6*EIB*LB**3)*(3*LB**3*MID(Y) -
LB**3*MID(X) -LB**3*WCOL-3*LB**2* (MID(Y) - 0.5*WCOL) **2)
ENDIF
ELSE
| EQUATION (4.11 C)
F(Y,X)=2/KHC+(MID(Y)-0.5*WCOL)**2/(6*EIB*LB**3)*(3*LB**3*MID (X) -
LB**3*MID(Y) -LB**3*WCOL- 3*LB**2*MID (X)**2)
ENDIF
30 CONTINUE
20 CONTINUE
ICONVERT FORCES AT MIDEPTH OF SLAB TO FORCES AT NA OF EDGE BEAM
DO 40 X=1,2*NUM
IF(X.LE.NUM) THEN
FEB (X) =FSLAB (X)
ELSE
FEB(X) =FSLAB(X)+V1(X-NUM)*HB/2-FSLAB(X-NUM)/2 *(HB-HS)
ENDIF
40 CONTINUE
ICALCULATE DISPLACEMENTS AT NA OF THE EDGE BEAM
DO 50 X=1,2*NUM
50 DEB(X)=0
DO 60 X=1,2*NUM
DO 70 Y=1,2*NUM

DEB (X)=DEB (X) +F(X. .Y) * FEB (YY)
DEBA(A)=DEDB(A)+F A )~ FEB{Y)
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70 CONTINUE
60 CONTINUE
ICALCULATE DISPLACEMENTS AT NEUTRAL AXIS OF SLAB

DO 80 X=1, NUM
DSLAB(X)=DEB(X)-(HB/2-HS+CI(X)-BB/2*TAN(DEB(X+NUM)/2))*  SIN
(DEB(X+NUM))
80 CONTINUE
END

PROGRAM SLAB
IMPLICIT DOUBLE PRECISION (A-2)
INTEGER CASE,NUM
OPEN (1, FILE = "'TERMINAL")
OPEN (5, FILE ="C:\\exampleWEXPL\inputcasell.txt",STATUS ='OLD")
OPEN (6, FILE='OUTPUT")
READ (5,*) L H,B,&
D1,D11,D2,D12, D3, D13,&
DP1,DP2,DP3,LPS,&
AS1,AS2,AS3,ASP1,ASP2,ASP3,ASP,&
FC,EC,A1Bl, &
ES,ESH,FYS,FUS,&
EYY,ESSH,EUU, &
FPE,FPUEP, &
AABB,CC,&
K,EST, &
CASE
IF (ASP.EQ.0) THEN
GOTO 10
ELSE
CALL ISTRN (EPPI, FPE, EP, AA, BB, CC)
ENDIF
10 GOTO (100,200,300),CASE
100 READ(5, *) S
CALL INT(L,H,B,D1,D11,D2,D12, D3, D13, DP1,DP2,DP3,LPS,AS1,AS2,&

+ AS3,ASP1,ASP2,ASP3,ASP,FC,EC,AL,B1,ES,ESH,FYS,FUS, &
+ EYY ,ESSH,EUU,EPPI,FPE,FPU,EP,AA,BB,CC,K,EST,S)
GOTO 400

200 READ(5,*) S3, &
LC1, LCB1, WCOL, EIC1,&
HB1, BB1, LB1, EIB1, JGB1,&
NUM
CALL EXT (L, H, B, D1, D11, D2, D12, D3,D13, DP1, DP2, DP3,LPS,AS1,AS2, &
+ AS3,ASP1, ASP2, ASP3,ASP,FC,EC,A1,B1,ES,ESH,FYS,FUS,&
+EYY, ESSH, EUU, EPPI, FPE, FPU, EP,AA, BB, CC, K, EST, S3, LC1,&
+ LCB1,WCOL, EIC1, HB1, BB1, LB1, EIB1, JGB1, NUM)
GOTO 400
300 READ(5,*) S3, &
LC1, LCB1, WCOL, EIC1,HB1, BB1, LB1, EIB1, JGB1,&
NUM
S3=1E38
EIC1=1E38
CALL EXT (L, H, B, D1, D11, D2, D12, D3,D13, DP1, DP2, DP3,LPS,AS1,AS2, &
+ AS3,ASP1, ASP2, ASP3,ASP,FC,EC,A1,B1,ES,ESH,FYS,FUS,&
+EYY, ESSH, EUU, EPPI, FPE, FPU, EP,AA, BB, CC, K, EST, S3, LC1,&
+ LCB1,WCOL, EIC1, HB1, BB1, LB1, EIB1, JGB1, NUM)
400 END

B R AR AR A KA KA KA AR A KA AR ARARARARATARARARATARARATATARA KA KA T KA AT AKAT
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SUBROUTINE STRIP (L,H,B, D1, D11, D2,D12, D3,D13, DP1,DP2,DP3,LPS,AS1, AS2,&
AS3,ASP1,ASP2, ASP3,ASP, FC,EC,A1,B1,ES,ESH,FYS, FUS,&
EYY, ESSH, EUU, EPPI,FPE, FPU, EP, AA, BB, CC,K, EST, S, NU, &
MU1,MU2,MU3,C1,C2,C3,WU,DL,SMOVE,BH,V1,V3)
IMPLICIT DOUBLE PRECISION (A-W)
ISET INCEREMENT FOR SLAB DEFLECTION
I IDEALISED PLASTIC FAILURE
BH=0.5
| APPLY INCREMENTAL DEFLECTION
60 DLINC=H/300
DL=DLINC
WU2=0
I INITIAL GUESS OF FORCES IN MILD STEEL: STEEL YIELDS (BUT NO STRAIN
HARDENING)
T1=AS1*FYS
T2=AS2*FYS
T3=AS3*FYS
I INITIAL PRETSRESS FORCE= EFFECTIVE PRESTRESS FORCE
FPS=ASP*FPE
I INITIAL COMPRESSIVE STEEL FORCE IN MILD STEEL (NO ADDITIONAL STRAIN
DUE TO DEFORMATION)
CS1=ASP1*FYS
CS2=ASP2*FYS
CS3=ASP3*FYS
I START LOOP FOR CALCULATION OF LOCATIONS OF NA AND FORCES IN STEEL
UNTIL F<0.1%
21Y=0
20 Y=Y+1
IF (Y.EQ.15000) THEN
GOTO 7000
ELSE
CONTINUE
ENDIF
N=ES/EC
I P IS THE REINFORCEMENT RATIO
P=(AS1+AS2+AS3+ASP1+ASP2+ASP3)/(3*B*H)
| BRACKET IN EQUATION 2.41-2.43
BRACK= (((1+K)*L/((1+(N-1)*P)*EC*H)+1/S)*(A1*FC*B1*(H/2-DL/4+((BH-1)*(T1-
CS1)+T2-CS2-BH*(T3-CS3)+ &
AL*FC*((BH-1)*ASP1-ASP2-BH*ASP3))/(2*AL*FC*B1*B))+(CS2-T2-FPS)/B)+
EST*L)/(1+ &
(1-BH)*BH*L/(2*DL)*(AL*FC*B1)*((1+K)*L/((1+(N-1)*P)*EC*H)+1/S))
I CALCULATE LOCATION OF NA : 2.41-2.43
ISTART WITH ASSUMED VALUES AND CALCULATE NA FOR EACH ITERATION
C1=H/2-DL/4-(1-BH)*BH*L/(2*DL)*BRACK+ &
((1+BH)*(T1-CS1)-T2-CS2-BH*(T3-CS3)+A1*FC*((1+BH)*ASP1-ASP2-
BH*ASP3))/(2*A1*FC*B1*B)
C2=H/2-DL/4-(1-BH)*BH*L/(2*DL)*BRACK+ &
((BH-1)*(T1-CS1)+T2-CS2-BH*(T3-CS3)+A1*FC*((BH-1)*ASP1+ASP2-
BH*ASP3))/(2*A1*FC*B1*B)
C3=H/2-DL/4-(1-BH)*BH*L/(2*DL)*BRACK+ &
((BH-1)*(T1-CS1)-T2+CS2+(2-BH)*(T3-CS3)+AL*FC*((BH-1)*ASP1-ASP2+(2-BH)*ASP3)
)/(2*A1*FC*B1*B)
ICALCULATE STRAINS AND FORCES IN STEEL : EQ 2.25-2.37
ICALCULATE NEW FORCES FOR THE NEW NA

ECC=0.0035
ESS=EYY
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I STRAIN IN TENSION EQ 2.25 FOR EACH PLASTIC HINGE
ET1=ECC*((D1-C1)/C1)
CALL FMILDS (T12,ET1,EYY, ESSH, EUU, AS1, ES,ESH,FYS,FUS)
ET2= ECC*((D2-C2)/C2)
CALL FMILDS (T22,ET1, EYY, ESSH, EUU, AS2, ES,ESH,FYS,FUS)
ET3=ECC*((D3-C3)/C3)
CALL FMILDS (T32,ET1, EYY, ESSH, EUU, AS3, ES,ESH,FYS,FUS)
IINCREASE LENGTH OF TENDON pi: eq 2.32
DL1=(DP1-C1)/(BH*L)*DL
DL2=(DP2-C2)/(BH*(1-BH)*L)*DL
DL3=(DP3-C3)/((1-BH)*L)*DL
IF (ASP.EQ.0) THEN
FPS2=0
ELSE
EPP=EPPI+(DL1+DL2+DL3)/LPS
I steel force PRESTRESS: eq 2.36
FPS2=ASP*(EP*EPP*(AA+(1-AA)/(1+(BB*EPP)**CC)**(1/CC)))
ENDIF
IF (FPS2.GT.(FPU*ASP)) THEN
FPS2=0
ELSE
CONTINUE
ENDIF
ECS1=ECC*((C1-D11)/C1)
CALL FMILDS (CS12,ET1,EYY, ESSH, EUU, ASP1, ES,ESH,FYS,FUS)
ECS2=ECC*((C2-D12)/C2)
CALL FMILDS (CS22,ETL,EYY, ESSH, EUU, ASP2, ES,ESH,FYS,FUS)
ECS3=ECC*((C3-D13)/C3)
CALL FMILDS (CS32,ET1,EYY, ESSH, EUU, ASP3, ES,ESH,FYS,FUS)
I COMPARE CALCULATED VALUES WITH ASSUMED VALUES
IF (T1.EQ.0) THEN
GOTO 11
ELSE IF (ABS((T1-T12)/T1).GE.0.001) THEN
GOTO 10
ELSE
GOTO 11
ENDIF
11 IF (T2.EQ.0) THEN
GOTO 12
ELSE IF (ABS((T2-T22)/T2).GE.0.001) THEN
GOTO 10
ELSE
GOTO 12
ENDIF
12 IF (T3.EQ.0) THEN
GOTO 13
ELSE IF (ABS((T3-T32)/T3).GE.0.001) THEN
GOTO 10
ELSE
GOTO 13
ENDIF
13 IF (FPS.EQ.0) THEN
GOTO 14
ELSE IF (ABS((FPS-FPS2)/FPS).GE.0.001) THEN
GOTO 10
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ENDIF

14 IF (CS1.EQ.0) THEN
GOTO 15
ELSE IF (ABS((CS1-CS12)/CS1).GE.0.001) THEN
GOTO 10
ELSE
GOTO 15
ENDIF

15 IF (CS2.EQ.0) THEN
GOTO 16
ELSE IF (ABS((CS2-CS22)/CS2).GE.0.001) THEN
GOTO 10
ELSE
GOTO 16
ENDIF

16 IF (CS3.EQ.0) THEN
GOTO 17
ELSE IF (ABS((CS3-CS32)/CS3).GE.0.001) THEN
GOTO 10
ELSE
GOTO 17
ENDIF

10 IF (T12.EQ.0) THEN
T1=0
ELSE
T1=(T1+T12)/2
ENDIF
IF (T22.EQ.0) THEN
T2=0
ELSE
T2=(T2+T22)12
ENDIF
IF (T32.EQ.0) THEN
T3=0
ELSE
T3=(T3+T32)/2
ENDIF
IF (FPS2.EQ.0) THEN

FPS=0

ELSE
FPS=(FPS+FPS2)/2
ENDIF
IF (CS12.EQ.0) THEN
CS1=0
ELSE
CS1=(CS1+CS12)/2
ENDIF
IF (CS22.EQ.0) THEN
CS2=0
ELSE
CS2=(CS2+CS22)/2
ENDIF
IF (CS32.EQ.0) THEN
CS3=0
ELSE

CS3=(CS3+CS32)/2
ENDIF
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GOTO 21
17 CONTINUE
| CALCULATE FOCRES AND ULTIMATE LOAD
MU1=A1*FC*(B1*C1*B-ASP1)*(0.5*H-0.5*B1*C1)+CS1*(0.5*H-D11)+T1*(D1-
0.5*H)+FPS*(DP1-0.5%H)
NU=AL*FC*(B1*C2*B-ASP2)+CS2-T2-FPS
MU2=A1*FC*(B1*C2*B-ASP2)*(0.5*H-0.5*B1*C2)+CS2*(0.5*H-D12)+T2*(D2-
0.5*H)+FPS*(DP2-0.5*H)
MU3=A1*FC*(B1*C3*B-ASP3)*(0.5*H-0.5*B1*C3)+CS3*(0.5*H-D13)+ T3*(D3-
0.5*H)+FPS*(DP3-0.5*H)
WU=2/(B*L**2)*(MUL/BH+MU2/((1-BH)*BH)+MU3/(1-BH)-NU*DL/((1-BH)*BH))
I CHECK IF ULTIMATE LOAD IS REACHED
WU1=WU2
WU2=WU
IF (WUL.GT.WU2) THEN
DL=DL-DLINC
GOTO 50
ELSE
DL=DL+DLINC
GOTO 20
ENDIF
50 CONTINUE
ICALCULATE LOCATION OF HINGE 2
IF (ABS(MU1-MU3).LT.0.001) THEN
BH2=0.5
ELSE
BH2=((MU1+MU2-NU*DL)-SQRT((MU1+MU2-NU*DL)**2-(MU1-
MU3)*(MU1+MU2-NU*DL)))/(MU1-MU3)
ENDIF
IF (ABS(BH-BH2)/BH.LT.0.001) THEN
GOTO 30
ELSE
BH=BH2
GOTO 60
ENDIF
30 CONTINUE
ICALCULATE TOTAL MOVEMENT OF SUPPORTS
SMOVE=NU/(B*S)
| CALCULATE SHEAR
V1=(WU*B*(1-BH**2)*L**2-2*MU2-2*MU3+2*NU*DL)/(2*(1-BH)*L)
V3=(WU*B*(1-BH)**2*L**2+2*MU2+2*MU3-2*NU*DL)/(2*(1-BH)*L)
7000 WRITE (1,*) 'ERROR!, Y
6000 END

PUNCHING SHEAR CAPACITY

MATLAB CODE

% scp=2,5MPa- CRACKED ElI

function [Fb]=Fb (c,B,y,d,Es,fsy,rho,P,TA)
% Starting Assumption

¢ = 1050;

rl = 200;

r2 = 200;

B =(r1 *r2)"0.5;

Ap =0.583871669;

h =100;

rho=Ap/h:
rmo=Ap/n;
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d = 0.5*0.45%*h;

fck = 70.16;

fcube = 82.54;

sigmap = 2.5;

%Fp = sigmap * h; NOT CRACK WIDTH

fpk = 1100;

fsy = 762.7144350; % unbonded tendon

Es =2.05* 10"5;

Ec = 34297.30;

yel=12.07355402;% mm only for the uncracked stiffness
y=10.41; % mm

P=162367;% N

ecpu=3.57E-03; % total strain = concrete and pretsress
[TA] = calTA(B,y,d,fcube,P)

TAl=real(TA);

A = 1/A.7*(1+y/B)*log(c/(B+2*y));

kz = ((A+ (1-TAL/(A+TALT*TAL))*(I+TAL*TAL/(TAL*(1-TAL))% [-]
fcurv=ecpuly;

me=P*(2*log(c/B)+1-(B"2/c"2))/(8*pi);

El=me/fcurv % cracked stiffness

ifB/d<2

tasi = 0.0035 * (1 - 0.22*(B/d))*(1 + B/(2*y));

else

tasi = (P/(4*pi))*(1-B~2/c"2)*(c/(2*El));

end

rs=Es/fsy * tasi * (d - y);

C0=B/2+18*d;

if rs > C0 % mm

R1 = (rho * fsy * d * ((rs - C0) + rs * log(c/(2 * rs))))/1000; %kNmm
R2overBeta = rho * fsy * d * C0/1000;% kNmm

else % it is else

R1 = (rho * fsy * d * rs * log(c/(2*CQ0)))/1000 ;%kNmm
R2overBeta = rho * fsy * d * rs/1000; % kNmm

end

[Mb] = Mb(P,y,B,c, TAL,d)

Fb = (P*kz/(2*pi)- R1*1000 - R2overBeta*1000)*(2/c) % N
function [TA] = calTA(B,y,d,fcube,P)

if B/d<2

ft = 825 * (0.35 + 0.3* (fcube/150))*(1 - 0.22 * (B / d));
else

ft = 460 * (0.35 + 0.3 * (fcube/150));

end
falpha=P/(pi*(B/d)*(y/d)*(B+2*y)/(B+y)*ft*d™*d),
TA = (1 - sqrt(1-4*(falpha+1)*falpha))/ (2*(falpha+1));
TAl=real(TA);

% calculation of Fbmax and Mbmax

¢ = 1050;

r1 = 200;

r2 = 200;

B =(r1 *r2)"0.5;

Ap =0.583871669;

h = 100;

rho=Ap/h;

d = 0.5*0.45%*h;

fck = 70.16;

fcube = 82.54;

sigmap =2.5:
gmap

£y
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Fp = sigmap * h;

fpk = 1100;

fsy = fpk - (Fp / Ap);

Es =2.05* 10"5;

Ec = 34297.30;

yel=12.07355402;% mm only for the uncracked stiffness
y=10.41; % mm

P=162367;% N

ecpu=3.57E-03; % total strain = concrete and pretsress
fcurv=ecpuly;

me=P*(2*log(c/B)+1-(B"2/c"2))/(8*pi)

El=me/fcurv % cracked stiffness El

ifB/d<2

tasi = 0.0035 * (1 - 0.22*(B/d))*(1 + B/(2*y));

else

tasi = (P/(4*pi))*(1-B~2/c"2)*(c/(2*El))

end

delta =1/2* tasi*(c-B) %omm

Fc =0.75*0.721 *0.842* fck * (h/2 - delta/4);

Ft =d * rho * fsy;

Fbmax = Fc - Ft %N

Mbmax =Ft* (2 *d - h) - Fc * (d - 13*h/16 - 3 * delta/32)%Nmm
[Mb] = Mb(P,y,B,c, TAL,d);

etal=Mb/Mbmax;

function [Mb] = Mb(P,y,B,c,TA1,d)

A = 1/A.7*(1+y/B)*log(c/(B+2*y));

ky = 3*(c - B)/(2*(3*d - y));

kz = ((A+(1-TAL/A+TAL*TAL))*(I+TAL*TAL)/(TAL*(1-TAL)));
X = (4*(3*d-y)/3)*(ky-kz)/1000 ;%mm

% Calculate Mb [N m]

Mb =P * X/ (4*pi);
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