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Abstract

We consider adaptive network models with discrete and continuous state sets obeying dynam-

ical rules that enable application to swarming systems. The 2-state adaptive network contains a

supercritical pitchfork bifurcation in the transition between ordered and disordered stationary

solutions. We derive an adaptive network model that works on a continuous state set and apply

it to swarming motion in both a mean �eld and a moment closure approximation. In numer-

ical solutions of the mean �eld approximation the relation between the variance of the ordered

stationary distributions and the system parameters is given by a square root function. Cauchy

distributions form a good �t to these steady state distributions, although they are not the analytic

stationary solutions. We show that in numerical solutions of the moment closure approximation

a bistable region is formed, in which the initial condition determines if the system ends up in

an ordered or a disordered state. Further research could focus on �nding the exact details of

the corresponding subcritical pitchfork and saddle-node bifurcations and comparing the derived

models to real-life swarming systems.

v





Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Discrete state adaptive network models . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 The 2-state adaptive network model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Transformation to a continuous state set . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 Modelling swarming systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6 Conclusions and recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

vii





Chapter 1

Introduction

A �ock of birds is a fascinating phenomenon. Thousands of birds that �y in certain patterns,

collectively, and yet there is no real leader. No bird tells the other birds where to �y. The question

that naturally arises is: how do birds coordinate their movement and how do they know at what

speed they should �y in which direction? At the beginning of the previous century, researchers

studying this phenomenon proposed the concept of a ‘group mind’ in which the nervous systems

of individual birds are connected [1]. Some decades ago, many researchers found the idea that

there must be some kind of a leader more plausible [2], but no such leader has been found in

detailed studies [3].

Many more of these processes of so-called collective motion take place in nature, such as

schools of �sh, swarms of insects and herds of certain mammals. Recent studies into these kinds

of swarming systems demonstrated the existence of a set of universal organising principles that

all swarming systems have in common [4]. However, the aforementioned question remained un-

answered. Nowadays, to �nd the answer, most theoretical studies of collective motion represent

a swarm either as a continuous medium [5] or focus on (sophisticated) agent-based models of

a system of self-propelled particles [4, 6, 7, 8]. The latter obeying certain dynamical rules that

facilitate self-organisation.

Opinion formation processes in human populations form another class of systems in which

the collective decision making is studied. Many similarities between these voter models and

swarming systems can be identi�ed [4], but most of the time these processes are modelled dif-

ferently. In the voter models, the human population is represented as a network. The nodes of

the network correspond to the people in the population and nodes corresponding to individuals

that speak on a regular basis to each other are connected by a link [9].

In 2011, the idea of using the networks of the voter model to model the real-life swarming

system of one-dimensional movement of locusts [10] was proposed by Huepe et al. [4]. The

network nodes, representing the locusts, have a binary internal state, which corresponds to the

direction of movement of the locust. Nodes corresponding to individuals which are aware of each

other’s direction of movement are connected by a link. There is no variable that keeps track of

the position of the locust in physical space. Within this con�guration, certain dynamical rules

are imposed that give individuals the possibility of changing their internal state randomly or of

aligning themselves with neighbouring nodes. The model is called an adaptive network model

since the dynamics allow for the creation and deletion of links, which causes a changing net-

work topology over time. This system turned out to reproduce multiple characteristic features

of swarms, amongst others the existence of an ordered state, corresponding to collective motion,

and a disordered state, in which all locusts move randomly. Furthermore, the results suggested

that keeping track of the spatial position of each individual explicitly could be of minor import-
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ance in obtaining self-organisation in such systems.

A couple of years later Chen et al. [11] derived and analysed a class of adaptive network

models in which the internal state of a node was not binary, but chosen from a state set containing

a �nite number of discrete states. Such a state set is convenient since swarms moving in either

two- or three-dimensional space can be modelled with these networks.

This text will focus on introducing the reader to this swarming systems class of adaptive

network models. Moreover, we derive an adaptive network model that works on a continuous

state set. For these models, the set of directions an individual can choose from does not have to

be discretised. Hence this may lead to more accurate models.

In chapter two, we will familiarise the reader with discrete state adaptive network models

and the dynamical rules that allow for self-organisation in the system. In the third chapter, the

2-state (binary) adaptive network model is analysed analytically. Moreover, we will perform a

bifurcation analysis. Subsequently, we formally derive the continuous state adaptive network

models in chapter four. The application of the derived model to swarming systems, including

discussion of the results, is contained in chapter �ve. Finally, chapter six presents the conclusions

in combination with recommendations for further research.

This work is part of the bachelor programmes Applied Mathematics and Applied Physics,

provided by the faculties Electrical Engineering, Mathematics and Computer Science and Applied

Sciences at the Delft University of Technology. It constitutes a bachelor thesis in both study

programmes simultaneously.



Chapter 2

Discrete state adaptive network models

In this chapter, the swarming systems class of adaptive network models with a discrete state set

will be introduced. We will consider the same types of networks as developed by Chen et al.

[11].

§2.1 Network topology and dynamics

A network can be represented by a graph which consists ofN discrete nodes, representing agents.

Each node has an internal state and the set of all possible states is denoted by Ω. In this chapter,

we take a discrete state set Ω � t1, 2, ..., Mu containing M possible states. Nodes may be connec-

ted to multiple other nodes by links, indicating mutual awareness of the corresponding agents.

For example when applying the network as a voter model, where all individuals in a popula-

tion have to answer a certain question with either ’yes’ or ’no’, each node represents a di�erent

person holding one of the opinions contained in the state set Ω � tyes, nou. People who talk

about their opinion on a regular basis would be connected by a link. As a second example, we

can consider the swarming motion of self-propelled particles in two-dimensional space, with

constant speed. This can be modelled by having the nodes represent particles with their state

corresponding to their direction, contained in Ω � tup, down, left, rightu. Particles who are

aware of each other’s direction are connected by a link.

Having de�ned the network properly, we can impose dynamical rules on the network such

that it is able to evolve in time. Analogous to [11], we distinguish four types of dynamics:

Type 1 Nodes change spontaneously to another uniformly chosen state with rate �.

Type 2 In a triplet of nodes in con�guration X-Y-X, where a node in state Y is connected to two

nodes in state X, the middle node takes the state of its two neighbours such that it ends up

in an X-X-X con�guration with rate �d per triplet.

Type 3 Links are created between two arbitrary not-linked nodes occupying di�erent states

with rate � per pair.

Type 4 Links are removed between two arbitrary linked nodes occupying di�erent states with

rate � per link.

The �rst two types are referred to as state dynamics since they in�uence the internal state of the

nodes, whilst the latter two change the topology of the network by rewiring links and therefore

they are referred to as link dynamics. All four types of dynamics are visualised in �gure 2.1 and

take place irrespective of any additional links that the nodes may have.
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� �d
�
�

Figure 2.1: Illustration of themodel, four types of dynamics are applied to the discrete state adaptive

network models. The internal state of each node (circle) is represented by its colour. These dynamics

take place irrespective of any additional links that may be present, but are not drawn.

§2.2 Counting of motifs

In this section, we will formalise di�erent quantities that are used throughout the �rst part of this

thesis, in particular the density of nodes in a certain state, densities of links and small subgraphs

and how these motifs are counted in the network. Unfortunately, these are not unambiguously

de�ned in literature, hence, to be absolutely clear in this work, we will write down all de�nitions

explicitly. This section is based on [11, 12] and personal email communication with dr T. Gross

[13].

The adaptive network model is developed with the use of di�erent motif densities. First, we

de�ne the density of nodes

De�nition 2.1. Let X P Ω. The density of nodes in state X , rX s, is the total number of nodes in

state X, NX , normalised against the total number of nodes in the network N , i.e. rX s � NX
N .

Note that we have rX s P r0, 1s for all X P Ω and

°
XPΩ

rX s � 1.

De�nition 2.2. Let X, Y P Ω. The density of links rXY s, connecting a node in state X to a node

in state Y (XY-links) is the total number of XY-links NXY normalised against the total number of

nodes in the network N , i.e. rXY s � NXY
N .

This means that the links are not double counted, so if we have a network with one XX -link,

it is counted as
1
N . In other words, we do not check for each X -node to how many other X -nodes

it is connected, but we really count the links connecting certain nodes. Note that some papers

do this di�erently although they do not always mention this clearly. Furthermore note that the

link density is symmetric, that is, rXY s � rYX s for X, Y P Ω.

De�nition 2.3. Let X, Y , Z P Ω. The density of triplets rXYZ s connecting a node in state Y to a

node in state X and to a node in state Z (XYZ-triplets) is the total number of XYZ-triplets NXYZ
normalised against the total number of nodes in the network N , i.e. rXYZ s � NXYZ

N .

Throughout this work, we assume that the density of triangular triplets is low enough such

that they are described accurately enough by the line-like triplets. Therefore we do not need a

separate density for triangular con�gurations. However, in dealing with highly clustered net-

works these triangles do need to be taken into account. Keeling [14] describes how to deal with
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these and other clustering e�ects. Moreover, note that also triplet densities are symmetric, such

that rXYZ s � rZYX s, but rXYZ s � rXZY s.

De�nition 2.4. LetW,X , Y , Z P Ω. The density of four-body subgraphs rXY Z
W s connecting a node

in state Y to nodes in stateW,X and Z , is the total number of subgraphs in this con�guration NXY ZW

normaised against the total number of nodes in the network N , i.e. rXYZW s �
NX YZW
N .

There is again a symmetry relation: rXY Z
W s � rXYW

Z s � rZYW
X s � rZYX

W s � rWYX
Z s �

rWY Z
X s, as long as the middle node is in state Y . In addition, note that there are no conservation

laws for the link, triplet and four-body subgraph densities.

Example 2.5. Let X, Y , Z P Ω. Suppose we have a triangular con�guration of nodes in states

X, Y and Z . Furthermore suppose an extra node in state X is connected to the node in state Y , see
�gure 2.2. Then we have rX s � 2

4 , rY s � rZ s � 1
4 , rXZ s � rZX s � 1

4 , rXY s � rYX s � 2
4 ,

rXYX s � 1
4 , rXYZ s � rZYX s � 2

4 , rYXZ s � 1
4 and rXY Z

X s � 1
4 , all normalised against the

number of nodes in the network N � 4.

Z

YX X

Figure 2.2: Con�guration considered in example 2.5. A triangular con�guration of nodes in states

X, Y and Z , in which the node in state Y is connected to an additional node in state X .

With these de�nitions we can derive a set of ordinary di�erential equations (ODEs), which

describes the time evolution of the network. As this is done in [11], we will omit writing out the

derivation. The resulting system describing the discrete state adaptive network models can be

written as
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d
dt rX s �

�
M � 1

�
� ¸
YPΩztXu

rY s � pM � 1qrX s

�
�� �d

¸
YPΩztXu

prXYX s � rYXY sq , (2.1a)

d
dt rXX s �

�
M � 1

�
� ¸
YPΩztXu

rXY s � 2pM � 1qrXX s

�
�� �d

¸
YPΩztXu

�
2rXYX s � 3rXYXX s � rXXY

Y s
	
, (2.1b)

d
dt rXX

1s �
�

M � 1

�
�2prXX s � rX 1X 1sq �

¸
YPΩztX,X 1u

�
rXY s � rX 1Y s

�
� 2pM � 1qrXX 1s

�
� (2.1c)

� �d
�
� 2rXX 1X s � 2rX 1XX 1s � rXXX 1

X 1 s � rX
1X 1X
X s � 3rX 1XX 1

X 1 s � 3rXX 1X
X s

�

� �d
¸

YPΩztX,X 1u

�
rX

1YXX s � rXYX 1

X 1 s � rXXY
Y s � rX

1XY
Y s

�

� �rX srX 1s � �rXX 1s.

where X, X 1 P Ω, with X � X 1
. This system represents a bigger number of equations, since

we have similar expressions for
d
dt rY s, ddt rYY s etcetera. The complete system consists of Mp2�

1
2pM � 1qq equations. The coe�cients in the equations can be explained by the symmetry rela-

tions. For example,
d
dt rXX 1s depends on

2�
M�1 rXX s, since either of the two nodes in state X may

change to state X 1
with rate

�
M�1 , creating an XX 1

-link. As a second example,
d
dt rXX 1s depends

on �dp�2rX 1XX 1s � rXXX 1

X 1 sq, since if the middle X -node changes to state X 1
, two XX 1

-links are

lost in the X 1XX 1
-triplet. However, if the middle node in the triplet happens to be connected to

another X -node, an extra XX 1
-link is created, resulting in an overall loss of one XX 1

-link.

Notice that this system is not closed. That is, not all terms are known. All moment equations

of a given order are dependent on higher order terms. One might think this means we need

extra equations for these higher order moments, but this would lead to a great hierarchy of

connected ODEs which would be very hard to solve. Moreover, numerical estimates would not

allow developing an analytical solution [12]. This can be prevented in multiple ways. In the next

sections two possibilities are described: the mean �eld approximation and the moment closure

approximation.

§2.3 Mean field approximation

In the previous sections, the topology of and dynamics on the adaptive networks were con-

sidered. In this section, we will look at the most simple model which describes the time evolution

of such a network: the mean �eld approximation. Although this approximation omits a lot of the

properties of the described network, it gives a good qualitative description of how the network

develops. A more accurate model, which also closes the system of equations, is described in the

next section.

In the mean �eld approximation we consider a network in which we neglect link dynamics
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(type 3 and 4). Moreover, it is assumed that the density of links connecting nodes in a given state

is proportional to the product of the densities of these states, where the proportionality constant

is given by xky, the mean degree of the network. In other words, we express the link densities in

terms of the node densities, e.g. rXY s � xkyrX srY s. Suppose Ω � t1, 2, ...Mu such that we have

anM-state system in which rX s is the density of nodes in state X P Ω as a function of continuous

time t . Furthermore we denote the density of all other M � 1 states by rYis, i P t1, 2, ..., M � 1u.
The time evolution of rX s can now be described as

d
dt rX s �

�
M � 1

�M�1̧

i�1
rYis

�
� �rX s � �dxky2

M�1̧

i�1
prX s2rYis � rYis2rX sq. (2.2)

Numerical simulations in [11] suggest that the system converges either to a disordered solution

in which all densities are equal, or to an ordered state in which one single state dominates and all

other states have the same lower density. Using this, let us assume rY1s � rY2s � ... � rYM�1s�
rY s, such that the system simpli�es to

d
dt rX s � �prY s � rX sq � �dxky2pM � 1qprX s2rY s � rY s2rX sq. (2.3)

The steady state solutions can be obtained by setting
d
dt rX s � 0. This yields rX s � rY s � 1

M
and rX s � 1

2 �
b

1
4 � �

�dxky2 , where the latter is independent of the number of states M . These

results are in accordance with the results found in [11].

§2.4 Moment closure approximation

In this section, the second way of closing the system im equation (2.1) is considered, which is a

moment closure approximation. This means that higher order terms are approximated using the

known lower order terms. Various closure approximations are discussed by Demirel et al. [12].

In this work we use the homogeneous pair approximation.

Triplets

Let us suppose that the highest densities known are link densities and we want to �nd an expres-

sion for triplet densities in terms of these link densities and node densities. That is, we want to

�nd for instance a function f such that rXYX s � f prY s, rXY sq. In order to �nd f , �rst suppose

we have an XY-link with density rXY s, moreover assume that the XY-links are uncorrelated
1
.

Now each of the additional links connected to the Y-node in the existing link is an XY-link with

probability

PX � Ppadditional X connected to the Y | XY-linkq �
rXY s

rXY s � 2rYY s � rZY s � ... �
rXY s

rY sxkY y
, (2.4)

1
We do need to assume that the Y-node has a higher than average degree since we already know it is connected

to an X -node [12].
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in which xkY y represents the mean degree of nodes occupying state Y . The factor 2 comes from

the fact that the YY-link may be connected on either side to the Y-node in the XY-link.

Now to create an XYX-triplet, we need to multiply the existing XY-link density by the ex-

pected number of additional links of the Y-node xqY y and by the probability PX of the additional

link being an XY-link. This yields

rXYX s � 1
2 rXY sxqY yPX �

1
2
xqY y
xkY y

rXY s2
rY s (2.5)

The factor of
1
2 comes from the fact that we need to correct for double counting. To explain this

compare this derivation to counting the number of possible links in a network of N nodes. One

might expect that the amount of possible links equals N pN � 1q, but then every link would be

counted twice. The actual number of possible links is
1
2N pN � 1q. For creating triplets there is

a similar situation. Suppose we have four XY-pairs, then there are six potential triplets. This is

visualised in �gure 2.3. However, NXY pNXY �1q � 12. Hence, the factor of
1
2 is needed to correct

for double counting. In the networks, we assume that the number of triplets is high enough that

we can neglect the ‘�1’, justifying the derived closure equation.

X Y

X Y

XY

XY

Figure 2.3: Four XY-pairs create six potential triplets.

The quantity
xqY y
xkY y is not known in general since it depends on the exact network topology,

which changes in time due to link dynamics [12]. However, on random graphs created by the

Erdös-Rényi model [15] it turns out that assuming xqY y � xkY y yields good results if the degree

distribution is not too wide [16].

In a similar fashion, we can derive

rXYY s � 2xqY yxkY y
rXY srYY s

rY s , (2.6)

only this time there is a factor 2 which comes from the fact that each YY-pair may be connected

to the X on either side. We do not need the factor of
1
2 since in combining XY- and YY-pairs we

do not double count XYY-triplets.

Lastly, we can also derive

rXXX s � 2xqX yxkX y
rXX s2
rX s , (2.7)

in which both e�ects occur. We need a factor of
1
2 to correct for double counting, but we also

need two factors of 2 since both XX-pairs may be connected on either side. This results in an

overall factor of 2.



DISCRETE STATE ADAPTIVE NETWORK MODELS 9

Taking all these e�ects together and assuming xqX y � xkX y we generalise the triplet closure

by writing an arbitrary density rXYZ s as

rXYZ s � p1� �XY qp1� �YZ q
1� �XZ

rXY srYZ s
rY s , (2.8)

with � the Kronecker delta.

Four-body subgraphs

Since the density of four-body subgraphs is also unknown we will �nd a function g such that

rXY Z
W s � gprXYZ s, rYW s, rY sq � gpf prXY s, rYZ s, rY sq, rYW s, rY sq. The same reasoning as

with the triplets can be used to �nd g.

Suppose we already have an XYZ-triplet and each of the additional links of the Y node is a

YW link with probability

PYW � PpYW link | XYZ tripletq � rYW s
rYW s � 2rYY s � rZY s � rXY s � ... �

rYW s
rY sxkY y . (2.9)

In order to create an XYZW-triplet, we need to multiply the existing XYZ-link density (ap-

proximation) by the expected number of additional links of the Y node xqY y � 1 (under the con-

dition it is already connected to an X and a Z node) and by the probability PYW of the additional

link being a YW-link. Neglecting the ‘�1’, the result is

rXY Z
W s � rXYZ spxqyy � 1qPYW

� p1� �XY qp1� �YZ qp1� �YW q
1� �XZ � �XW � �ZW � �XZ�ZW � �XW �ZW

rXY srYZ srYW s
rY s2 ,

(2.10)

where all delta functions correct for aforementioned e�ects of double counting and sym-

metry. Again we made use of the assumption xqX y � xkX y.

Closing the system of ODEs

The derived moment closure approximations can now be used to close the system of ordinary

di�erential equations, by substitution of equation (2.8) and equation (2.10) into equation (2.1).

For more information on the quality of the closure relations and special situations in which they

may be a less suitable approximation, one can read [12]. In the rest of this thesis, we will assume

these relations to be valid for the considered discrete state adaptive networks.





Chapter 3

The 2-state adaptive network model

In this chapter we will go more into detail and specify the discrete state adaptive network for

M � 2 states in the moment closure approximation. Furthermore, we will look at the behaviour

of the model for di�erent system parameters and carry out a bifurcation analysis.

§3.1 The model

In the two-state case, we can describe the time evolution of the network with 5 equations. Sup-

pose Ω � trX s, rY su, such that with imposing the closure relations on the system of ODEs (2.1),

we can write the equations for all relevant quantities as

d
dt rX s � � prY s � rX sq � 1

2�drXY s
2
� 1
rY s �

1
rX s



(3.1a)

d
dt rY s � � prX s � rY sq � 1

2�drXY s
2
� 1
rX s �

1
rY s



(3.1b)

d
dt rXX s � � prXY s � 2rXX sq � �drXY s2

� 1
rY s �

rXY s
2rY s2 �

rXX s
rX s2



(3.1c)

d
dt rYY s � � prXY s � 2rYY sq � �drXY s2

� 1
rX s �

rXY s
2rX s2 �

rYY s
rY s2



(3.1d)

d
dt rXY s � 2� prXX s � rYY s � rXY sq � �rX srY s � �rXY s (3.1e)

� �drXY s2
� rXX s
rX s2 �

rYY s
rY s2 �

1
rY s �

1
rX s �

rXY s
2rX s2 �

rXY s
2rY s2



.

The system was implemented in Python such that it can be solved with the odeint numerical

ODE-integrator included in the SciPy package. The node and link densities in various numer-

ical solutions for di�erent system parameters and initial conditions are plotted versus time in

�gure 3.1. The graphs on the left-hand side contain the zeroth-order moments rX s and rY s as a

function of the discrete time index � . The graphs on the right-hand side contain the �rst-order

moments rXX s, rYY s and rXY s.
In �gure 3.1a, the system parameters are chosen such that the system converges to what is

called an ordered stationary solution. That is, the density of nodes in a certain order is higher

than the density of all other states. If the initial link densities were chosen relatively high, the

convergence towards the stationary state is much faster than in the case where the initial link

densities were chosen to be relatively low. In the latter case, the state densities seem to divide all

states equally over all nodes at �rst sight. However, in the meantime the network got the time to

increase the average number of links per node, such that eventually it is able to reach the same

ordered stationary state as in the �rst case.
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Figure 3.1: Behaviour of the two-state adaptive network model for di�erent system parameters and

initial conditions. All six �gures graph the density of the zeroth moments (left) and the �rst moments

(right) versus the discrete time index � . In both �gure (a) and (b) the initial conditions were taken

as rX s � 0.7, rY s � 0.3, rXX s � 1.2, rYY s � 0.7 rXY s � 1.0 for the upper set of graphs and as

rX s � 0.6, rY s � 0.4, rXX s � 0.3, rYY s � 0.3 rXY s � 0.4 for the lower set. Figures (a) and (b)

di�er in system parameters �, �d , � and � .
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In �gure 3.1b, the system parameters are chosen such that the system converges to a di�erent

stationary solution. This solution is called the disordered stationary solution since all states are

equally distributed over all nodes. Hence, we have r!s � 1
M for all! P Ω. In this case, we see that

convergence occurs relatively slow if the initial link densities are chosen high, compared to the

case where they are lower. Moreover, when the network converges to the disordered solution, it

seems that the homogeneous link densities rXX s and rYY s converge to the same value.

The four di�erent cases in the �gure give a good insight into how the system behaves under

di�erent conditions. In the next section, we will perform a bifurcation analysis to gain quantit-

ative knowledge of under what conditions the system may and up in what �nal state.

§3.2 Bifurcation analysis of the 2-state adaptive network model

In the previous section, we gained some insight into the behaviour of the two-state adapt-

ive network model. In some cases, the state densities converged to the disordered solution

rX s � rY s � 1
2 , while for other system parameters the distributions got very close to the

disordered distribution before they converged to their true �xed point. This behaviour suggests

that the disordered solution is either a stable node or a saddle point. In the case of a saddle point,

the densities in the unstable manifold might approach the saddle point very slowly before they

suddenly shoot away to the �nal ordered solution. This would also explain the convergence

rates. In order to check if this is the case, we will analyse the linear stability in rX s � rY s � 1
2 .

The two state adaptive network model in equation (3.1) can be rewritten as

9x � f pxq, (3.2)

for

x �

�
��������

rX s
rY s
rXX s
rYY s
rXY s

�
��������

and f pxq �

�
��������

f1pxq
f2pxq
f3pxq
f4pxq
f5pxq

�
��������

where Newton’s dot notation is used to indicate the derivative with respect to time t . For a

solution x� to be a stationary solution (also �xed point, steady state solution or equilibrium

solution) we have f px�q � 0 by de�nition [17].

Finding �xed points

In order to obtain expressions for the �xed points of the system, we will be solving f px�q � 0.

Therefore, all time derivatives are equated to zero. We start with setting
d
dt rX s � 0 or

d
dt rY s � 0,

which yields rX s � rY s or rX srY s � �d rXY s2
2� . Imposing the conservation law rX s � rY s � 1 on

the �rst solution gives rX s � rY s � 1
2 . Equating the other time derivatives to zero should give
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the other coordinates of the �xed point. If we �rst solve
d
dt rXX s � d

dt rYY s � 0 we obtain two

results, one of which is

rXX s � rYY s � �
8�

�d�2 � 4�d�� � 8��2
�d�2 � 8��2 � l

8
l2 � 4l � 8s
l2 � 8s , (3.3)

in which we de�ne l � �
� as the dimensionless link creation ratio and s � �

�d as the dimensionless

noise ratio. The other solution is � � 0 ^ p�d � 0_ rXY s � 0q. This corresponds to either a

network with only link dynamics, implying all node states stay unchanged, or to a network

with no �ipping noise and no heterogeneous XY -links. In the latter case the network is either

disconnected or homogeneous such that all nodes are in the same state. Since rX s � rY s � 1
2 and

we assume the network is connected this solution can be safely considered as a trivial solution

and therefore be omitted. Lastly setting
d
dt rXY s � 0 gives

rXY s � �
4� �

l
4 . (3.4)

Combined, the �rst set of �xed points x�1 is given by

x�1 �

�
�����������

1
2
1
2

l
8
l2�4l�8s
l2�8s

l
8
l2�4l�8s
l2�8s
l
4

�
�����������
, (3.5)

corresponding to the disordered stationary solutions.

We can analyse the stability of the other branch rX s, rY s � 1
2 in the same manner. Here we

already found rX srY s � �d rXY s2
2� . Using the other ODEs, the resulting second set of �xed points

x�2 is given as

x�2 �

�
�����������

1
2 � 1

2
a
1� 8 s

l2

1
2 	 1

2
a
1� 8 s

l2

s
l
�
1� 2

l
� 1�

?
1�8 s

l2
1	
?
1�8 s

l2

s
l
�
1� 2

l
� 1	

?
1�8 s

l2
1�
?
1�8 s

l2
2s
l

�
�����������
, (3.6)

which corresponds to the ordered state solutions. It turns out that the exact density of states

X and Y depend on the two system parameters s and l only. Which of the two has the highest

density depends on the initial condition; the one with the highest initial density will have the

highest stationary state density.

The �xed points densities are plotted against s for various values of l in the bifurcation

diagrams in �gure 3.2 and �gure 3.3 on the left hand side, whilst they are plotted versus l for
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various values of s on the right hand side. In �gure 3.2 we see that for a high noise ratio s, the

system will converge to a disordered state, while if the noise rate drops below a certain value

(depending on l), two extra ordered solutions emerge. For low link creation rates l the system also

converges to a disordered solution. If l is increased then there is a critical value (depending on s)
where the same two ordered solutions are formed. From �gure 3.3 we deduce that l determines

the density of XY -links in the system and that if l is increased, then the overall total number

of links increases. On the other hand, higher values of s cause a lower overall link density. If

the system converges to an ordered solution, then there are relatively many homogeneous links

corresponding to the highest density state, hence, all nodes in the same state will be highly

connected. Finally, if the system converges to the ordered state the number of XY -links depends

linearly on the rate s, but if it converges to a disordered state it depends linearly on the rate l.
Finally we note that these �xed points are consistent with the assumption �rX srY s � �rXY s

on both branches, which was made in [11] to simplify the system in order to allow for analytical

evaluation.
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Figure 3.2: Bifurcation diagrams of the two state adaptive network model. The ordered and dis-

ordered stationary solutions of state densities rX s, rY s for various values of the link creation para-

meter l as function of the noise ratio s (left) and for various values of s as function of l (right). Both
stable and unstable solutions are plotted. The bifurcation is a supercritical pitchfork bifurcation.
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Figure 3.3: (continues on next page)
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Figure 3.3: Bifurcation diagrams of the two state adaptive network model. (left) The stationary

solutions of link densities rXX s, rYY s, rXY s for various values of the link creation parameter l as
function of the noise ratio s. The stable disordered stationary solutions are on the right hand side

of the line s � l2
8 , while the unstable disordered solutions are on the left hand side plotted with a

dotted line. The bold curves on the left hand side indicate the ordered stationary solutions. (right)

The stationary solutions of link densities rXX s, rYY s, rXY s for various values of s as function of l.
The stable disordered stationary solutions are on the left hand side from the line l � 2

?
2s, while the

unstable disordered solutions are on the right hand side plotted with a dotted line. The bold curves

on the right hand side indicate ordered stationary solutions. Note that the axis scales di�er.

Linearisation

For further stability analysis, we will proceed with a linearisation of the system of ODEs around

its �xed points x�. This can be done as follows

f px� � Δxq � f px�q � J |x�Δx � p}Δx}22q
� J |x�Δx ,

(3.7)

in which the Jacobian matrix J is de�ned component-wise by Ji,j � Bfi
Bxj with xj an element of

x . Now in order to evaluate the stability of the found �xed points, we will need the theorem

of Lyapunov, which enables us to �nd the stability by evaluation of the eigenvalues of the Jac-

obian matrix. The proof is not written out here, since it can be found in various books on basic
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di�erential equation or bifurcation theory, for example [18, 19].

Theorem 3.1 (Lyapunov). Let f ∶ ℝn Ñ ℝn be an element of C1 and x� be a �xed point of

9x � f pxq. Let 9x � J |x�x be the linearization of f with J the Jacobian matrix with eigenvalues

�1, .., �n. x� is

1. asymptotically stable if Re �i   0 for all i P t1, ..., nu,

2. unstable if Re �i ¡ 0 for some i P t1, ..., nu

Note that the theorem does not say anything if Re �i � 0 for some i P t1, ..., nu. Hence,

further analysis is necessary in that case. This theorem is applicable since f is continuous in

time t . Using Maple 2018 the Jacobian matrix is evaluated in the �rst set of �xed points x�1 . The

resulting �ve eigenvalues can be written as

�1 � 0 (3.8a)

�2 � �d�2 � 8��2
4�2 � 1

4�d l
2 � 2� (3.8b)

�3 � ��d�2 � 8��2
4�2 � �14�d l

2 � 2� (3.8c)

�4 �
?
b2 � 4ac � b

2a (3.8d)

�5 � �?b2 � 4ac � b
2a , (3.8e)

where the latter two eigenvalues are written in terms of a certain a, b, c P ℝ¡0, which are quite

elaborate expressions in terms of parameters �, �d , � and � .

According to the theorem, each eigenvalue with negative real part corresponds to an asymp-

totically stable manifold of the �xed point x�1 in the phase plane, whilst each eigenvalue with

positive real part will have an eigenvector corresponding to an unstable manifold. Before evaluat-

ing these eigenvalues, note that �1 is a zero eigenvalue, which emerges because the conservation

law rX s � rY s � 1 is imposed on the system. In fact, this directly implies that there only exist

valid solutions to the system of ODEs in a four-dimensional subspace of the �ve-dimensional

prX s, rY s, rXX s, rYY s, rXY sq space. These statements are formalized in the following theorem.

Theorem 3.2. If a conservation law is imposed on a system of �rst order ODEs, then the corres-

ponding Jacobian matrix J has at least one eigenvalue zero.

Proof. Let 9x � f pxq be a system of �rst order ODEs in which x � rx1, x2, ..., xnsT and f pxq �
rf1pxq, f2pxq, ..., fnpxqsT . Furthermore suppose there is a conservation law, which means that a

certain linear combination of time derivatives equals zero. This law enables us to express one

derivative in terms of the other derivatives. Assume without loss of generality 9x1 � ℎp 9x2, ..., 9xnq,
with ℎ a linear function. Using the system of equations we then �nd f1pxq � 9x1 � ℎp 9x2, ..., 9xnq �
ℎpf2pxq, ..., fnpxqq.
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The Jacobian matrix J is de�ned as

J � Bpf1, ..., fnq
Bpx1, ..., xnq �

�
�������

Bf1
Bx1

Bf1
Bx2 … Bf1

Bxn
Bf2
Bx1

Bf2
Bx2 … Bf2

Bxn

⋮ ⋮ ⋱ ⋮
Bfn
Bx1

Bfn
Bx2 … Bfn

Bxn

�
�������

�

�
�������

Bℎpf2pxq,...,fnpxqq
Bx1

Bℎpf2pxq,...,fnpxqq
Bx2 … Bℎpf2pxq,...,fnpxqq

Bxn
Bf2
Bx1

Bf2
Bx2 … Bf2

Bxn

⋮ ⋮ ⋱ ⋮
Bfn
Bx1

Bfn
Bx2 … Bfn

Bxn

�
�������

�

�
�������

ℎ
�
Bf2
x1 , ...,

Bfn
x1

	
ℎ
�
Bf2
x2 , ...,

Bfn
x2

	
… ℎ

�
Bf2
xn , ...,

Bfn
xn

	
Bf2
Bx1

Bf2
Bx2 … Bf2

Bxn

⋮ ⋮ ⋱ ⋮
Bfn
Bx1

Bfn
Bx2 … Bfn

Bxn

�
�������
.

Since ℎ is a linear function, it is possible to �nd a matrix A which de�nes row operations such

that AJ has a row containing only zeros. This implies detpAJ q � 0 � detpAJ � �I q for � � 0.
Therefore AJ has an eigenvalue � � 0. It follows directly that the Jacobian matrix J also has an

eigenvalue � � 0, since row operations leave the eigenvalues unchanged.

Because the Jacobian matrix has one row which is linearly dependent on the other rows,

rankpJ q ¤ n � 1. This means that the solutions to the system are all found on a subspace of

maximum dimension n � 1 of the phase space. This also means that the system can be reduced

to an identical four-dimensional system, in which the zero eigenvalue disappears. Therefore

�1 � 0 does not in�uence the stability.

Looking at the other eigenvalues, we see that �2 and �3 di�er by a minus sign. Demanding

�2   0 gives

l2   8s, (3.9)

as a condition for asymptotic stability of x�1 . Furthermore, since �, �d , �, � ¡ 0 we have �3   0.
The last two eigenvalues �4 and �5 also di�er by a minus sign. Using Maple, it was veri�ed that

0   4ac   b2, which implies

?
b2 � 4ac   b. Since 2a ¡ 0 we have �4   0. Also using the fact

that a, b, c ¡ 0 it can be concluded that �5   0.
Altogether, �1 does not in�uence the stability, �2 demands l2   8s for a stable manifold in

the phase plane and �3, �4, �5   0 create stable manifolds in all cases. This makes x�1 a stable

node in phase space for l2   8s and a 1-saddle point if this condition is not met. This means that

the curve l2 � 8s, or l � 2
?
2s, represents supercritical pitchfork bifurcations of the two-state
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adaptive network model
1
.

For determining the stability of the second set of �xed points x�2 the same procedure could

be followed. However, it turns out that apart from one zero eigenvalue, four over 25-degree

polynomials in the four system parameters �, �, �, �d are found. Unfortunately, there is no way

to simplify them, so for a stability condition a di�erent approach is needed. With the MATLAB-

package MatCont, which can be used for numerical bifurcation analysis of dynamical systems

[21], one can check and search for additional bifurcations in a system. After a normal time integ-

ration, where the software �nds the �xed point x�2 , it analyses the behaviour of the eigenvalues

numerically to �nd these special points. We �nd that the system is only to end up in the dis-

ordered solution if l2 ¡ 8s, which is the exact opposite requirement compared to the ordered

solution. Derivatives up to the third order were computed analytically using the Symbolic Math

Toolbox.

As a whole, we �nd that the pitchfork bifurcations are found on l2 � 8s, moreover, these are

the only bifurcations in the system. For l2   8s the disordered solution x�1 , in which all states in

Ω are equally distributed over all nodes, is the only stable node. Hence all systems will converge

to that same state, irrespective of the initial condition. For l2 ¡ 8s the ordered solution x�2 is a

stable node and the disordered solution x�1 a 1-saddle point. All systems will therefore eventually

converge to x�2 , given that the initial condition of the system is not on the stable manifold of x�1
In addition, MatCont was used to con�rm all analytic results in this section. For various

combinations of s and l the �nal state distribution at time tf � 1000 was plotted either as cross

if it converged to an ordered state or as a square if it ended up in a disordered state in �gure 3.4.

The curve s � 2
?
2s indicates the supercritical pitchfork bifurcation. The numerical solutions

are perfectly in line with the analytic derivation. Hence, irrespective of what biological, physical

or social system the adaptive network is applied to, we know the outcome once we know the

initial condition and the values of the system parameters s � �
�d and l � �

� .

1
Since we go from one unstable and two stable �xed points to one stable �xed point this is a supercritical pitchfork

and not a saddle-node bifurcation [20].
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Figure 3.4: Phase diagram of a two-state adaptive network model as described by equation (3.1).

The diagram displays the stable stationary state solution as a function of the dimensionless noise

ratio s � �
�d and the dimensionless link creation ratio l � �

� . For l   2
?
2s, the disordered solution

is stable, whilst for l ¡ 2
?
2s the systemwill converge to the ordered solution. At the curve l � 2

?
2s

there is a supercritical pitchfork bifurcation. Final distributions in numerical solutions for various s
and l are indicated by the squares and crosses for the disordered and the ordered solution respectively.





Chapter 4

Transformation to a continuous state set

So far we have considered adaptive network models with a discrete state set Ω, governed by a

set of four dynamical rules. Recently there have been quite some publications on comparable

discrete state (adaptive) network models, ranging from very fundamental mathematical back-

grounds to applications of discrete state adaptive networks, for example [22, 11, 12, 16, 4, 14, 23,

24, 25, 26]. These models have however some drawbacks. For instance, if the network is used a

model for self-organisation in a two-dimensional swarming system consisting of self-propelled

particles, one could use Ω � tup, down, left, rightu. This means that diagonal motion would not

be a separate state. A global diagonal movement would certainly be possible, but looking at a

small time scale this movement would consist of small steps in two directions that are contained

in Ω. The problem with this is that the dynamics happen on the same small time scale as this

�ipping in states, such that a particle with a global diagonal movement to the north-west would

interact half of the time similar with a particle moving north as a particle moving west would.

In this chapter, we make a transformation of discrete state networks to work on a continuous

state set. The goal of making this transformation is to see if these networks might be a better

model of reality in cases such as the aforementioned example. So far, limited research has been

done into these type of networks. We derive the system of equations describing this class of

models in a general form.

This will be the most technical chapter of this thesis. The reader can skip ahead to chapter 5

for the results. There, we will apply the derived model to self-organisation in two-dimensional

swarming systems, where we have Ω � p��, �s representing directions of 2D movement of

self-propelled particles.

§4.1 State and link dynamics

The continuous state adaptive network model will be derived in a general form. However to stay

speci�c, some pre-determined properties will be applied to the model. The discrete state model

is used as a starting point and from here we will make adaptations to make the model work

on a continuous state set. We will write lower case letters for states contained in a continuous

state set instead of upper case letters that are used for discrete states. Starting with the types

of dynamics, the dynamical rules used in the discrete state systems are not suitable anymore,

hence they should be altered. Especially the second type of state dynamics, where a triplet of

nodes y � x � y switches to state y � y � y with rate �d is not properly de�ned if we switch to

continuous states; the probability for a node having two neighbours in the exact same state will

be zero. Hence, the four types of interactions will be rede�ned for the continuous model:

23
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Figure 4.1: Illustration of the model, four types of dynamics are applied to the continuous state

adaptive network models. The internal state of each node (circle) is represented by its colour. The

grey colour corresponds to the average of the states black and white. The chequered pattern indicates

a random state in the state setΩ. These dynamics take place irrespective of any additional links that

may be present, but are not drawn.

Type 1 Nodes change to another uniformly chosen state with rate �.

Type 2 Nodes adopt to the average state of two neighbours with rate �c .

Type 3 Links are created between arbitrary not-linked nodes with rate � .

Type 4 Links are removed between two arbitrary linked nodes with rate � .

The dynamics take place irrespective of any additional links that may be connected to a node.

Furthermore, we cannot use the same de�nition of densities for nodes and small subgraphs as

before. These discrete network moments would not be properly de�ned if a system of continuous

states is considered. Therefore state and link density functions will be introduced. These func-

tions describe the distribution of the possible states in the network (comparable to probability

density functions in probability theory). In order to introduce these formally, let us �rst consider

the cumulative distribution functions Fpx ; tq and Lnpx1, x2, ..., xn; tq and assume that the state set

Ω is a single non-empty, bounded real interval. That is Ω � ra, bs, or Ω � pa, bq, where a, b P ℝ
and the endpoints are either included in or excluded from the interval.

De�nition 4.1. The cumulative distribution function (CDF) Fpx ; tq denotes the density of nodes

that have a state in ra, xs � Ω at time t .

De�nition 4.2. Let n P ℕzt1u. For n-body subgraphs (e.g. links, triplets etcetera) the pn � 1q’th
order moment cumulative distribution function Lnpx1, x2, ..., xn; tq is the density of motifs in which

the �rst node occupies a state in ra, x1s, which is connected to a second node occupying a state in

ra, x2s, etcetera, at time t .

CDFs can be de�ned analogously for open intervals. The node density, but also the higher

order densities are all normalised against the total number of nodes N . The density of nodes in a

certain state is a zeroth-order moment, the density of e.g. x � y-links a �rst-order moment and

the density of subgraphs consisting of n nodes an pn � 1q’th-order moment. Subsequently, the

state and link density distribution functions can be de�ned as follows.
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De�nition 4.3. The state distribution function f px ; tq ∶ Ω � ℝ¥0 Ñ ℝ¥0 is the unique function
that satis�es Fpx ; tq �

x³
a
dx̄ f px̄ ; tq.

De�nition 4.4. The pn�1q’th order moment distribution function lnpx1, x2, ..., xn; tq ∶ Ωn�ℝ¥0 Ñ
ℝ¥0 is the unique function that satis�es Lnpx1, x2, ..., xn; tq �

x1³
a
dx̄1

x2³
a
dx̄2 ...

xn³
a
dx̄n lpx̄1, x̄2, ..., x̄n; tq.

In these de�nitions, x̄ and x̄i , i P t1, 2, ..., nu, are used as integration variables. Note that the

link distribution functions obey a certain symmetry. By de�nition l2px, y; tq � l2py, x ; tq, which

makes sense since if an x-node is connected to a y-node, one can describe the links both as an

x � y- or as an y � x-link. Moreover, we have l3px, y, z; tq � l3pz, y, x ; tq, both representing

the density of x � y � z-triplets. Furthermore, we remark that the distribution functions do

not have to be continuous in state space. However, in case a distribution function is continuous

in state space, we have f px ; tq � B
Bx Fpx ; tq and lnpx1, x2, ..., xn; tq � B

Bx1
B
Bx2 ...

B
Bxn Lpx1, x2, ..., xnq.

Intuitively f px ; tqdx is the density of nodes occupying a state within the interval rx, x � dxs,
while lnpx1, x2, ..., xn; tqdx1dx2...dxn is the density of n body subgraphs with the �rst node in

state rx1, x1 � dx1s is connected to a second node in state rx2, x2 � dx2s, etcetera.

Besides, it will be useful to derive a density distribution function for subgraphs in con�gur-

ation
wxyz , with the middle node in state x connected to nodes in states w, y and z.

De�nition 4.5. The third order moment distribution lpwxyz ; tq ∶ Ω4 � ℝ¥0 Ñ ℝ¥0 describes the
density of subgraphs in con�guration wxyz at time t .

We will derive the equations describing the e�ect of the four types of dynamics on the state

and link distributions in the most general form possible, such that they can be applied to model a

great variety of phenomena. To keep things clear the equations will be introduced for each type

of dynamics separately. The e�ect of the dynamics of type 1 on the state density function f px ; tq
are captured by the following partial di�erential equation (PDE). The superscript p1q indicates

that only the dynamics of the �rst type are captured by this equation.

Bf p1qpx ; tq
Bt � �� f px ; tq � �

}Ω}
»

Ωztxu

dx̄ f px̄ ; tq

� �� f px ; tq � �
}Ω}

»
Ω

dx̄ f px̄ ; tq

� �
� 1
}Ω} � f px ; tq



,

(4.1)

where we used x̄ as integration variable which is integrated over the complete set of states,

except for state x . The �rst term corresponds to nodes leaving state x for another uniformly

chosen state and the second term to nodes changing spontaneously to state x . Note, since the

density function integral in a point equals zero the integral over Ωztxu equals the integral over

the complete set Ω. The expression should be divided by the total size of the set }Ω}, as the node
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should change to the speci�c state x . In the last step, we made use of the fact that the integral

of a state density function over the complete set of states equals 1.

It can easily be observed that the solution to equation (4.1) converges to the uniform distribu-

tion density function, that is lim
tÑ8

f px ; tq � 1
}Ω} . In particular, if f px ; tq ¡ 1

}Ω} we have
Bf px ;tq
Bt   0

and vice versa.

The change in link density l2px, y; tq due to interactions of type 1 is described by the following

PDE. From now on we will write

³
Ωztxu

directly as

³
Ω

. We have

Blp1q2 px, y; tq
Bt � �2� l2px, y; tq � �

}Ω}
»
Ω

dz l2pz, y; tq � �
}Ω}

»
Ω

dz l2px, z; tq

� �2� l2px, y; tq � �
}Ω}

»
Ω

dz pl2pz, y; tq � l2px, z; tqq ,
(4.2)

in which the second and third term correspond to the creation of x � y-links. That is z� x- and

z � y-links with an arbitrary z P Ω changing to y or x respectively. The �rst term describes the

destruction of x � y-links due to one of the nodes changing to another state, hence the factor 2.

The last simpli�cation step is justi�ed by the linearity property of the Riemann integral.

Equations (4.1) and (4.2) describe a continuous system which obeys interactions of the �rst

type only. The next step will be to obtain similar equations for the second type of dynamics. For

the state density f px ; tq, these interactions can be described as follows,

Bf p2qpx ; tq
Bt � �c

»
d�

»
Ω

dz l3px � � , z, x � � ; tq � �c
»
d�

»
Ω

dz l3pz � � , x, z � � ; tq

� �c
»
Ω

dz
»
d� pl3px � � , z, x � � ; tq � l3pz � � , x, z � � ; tqq .

(4.3)

The �rst term represents nodes in an arbitrary state z, in between two nodes in states x � �
and x � � such that their average state is x . This way an extra x node is created due to three-

body interactions at rate �c . The second term corresponds to removal of x nodes due to these

interactions. We take an x node in between two arbitrary nodes in states z � � and z � � .

Their average state is z, which is in general not equal to x , which justi�es the integration over

the complete state set Ω. The simpli�cation step is again justi�ed by linearity of the integral

and moreover by Fubini’s double integral theorem [27]. However, we should be careful, since

the integral boundaries may demand function evaluations outside of the domain on which the

density functions are de�ned. In that case, there are two di�erent ways to compute the integrals,

depending on the application. The state set can be a normal interval Ω � ra, bs. Then we simply

de�ne all density distributions to be zero outside the state set Ω, such that the integrals can be

evaluated. Another possibility is that the state set is periodic, for example Ω � r��, �q, with

x � 2� � x for all x P Ω. We want the integrals to take this periodicity into account. Hence, we

would make even extensions of the density distribution functions at the boundaries of the state
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set. In the next part of this thesis, we will elaborate on making the system speci�c for application

on such a periodic state set.

The next partial di�erential equation captures the change in the link density function l2px, y; tq
due to the three-body interactions

Blp3q2 px, y; tq
Bt � �c

»
Ω

dz
»
d� l4pyzx��x�� ; tq

� �c
»
Ω

dz
»
d� l4pxzy��y�� ; tq

� �c
»
Ω

dz
»
d� l4pyxz��z�� ; tq

� �c
»
Ω

dz
»
d� l4pxyz��z�� ; tq

� �c
»
Ω

dz l3py, z,�y � 2x ; tq

� �c
»
Ω

dz l3px, z,�x � 2y; tq

� �c
»
Ω

dz l3py, x, z; tq

� �c
»
Ω

dz l3px, y, z; tq.

(4.4)

The �rst term represents four-body subgraphs of con�guration
yzx��x�� in which the middle node

z changes to the average state of x� � and x� � , which is x . Here, one x�y-link is created with

the neighbouring y node. We integrate over all z P Ω to include all nodes which might change

to state x . Again, we integrate over all � for which our averaging operation is de�ned properly.

The second term is quite similar. Here, the positions of nodes in state x and y are inverted. The

third term corresponds to four-body subgraphs of con�guration
yxz��z�� . Now, the middle node

takes with rate �c the average of the two neighbouring nodes z � � and z � � , which is z and

does not equal x in general. This causes the y � x-link to be changed in a y � z-link, explaining

the minus sign. The fourth term is again similar to the third one. Three-body subgraphs with

the potential to form an x � y-link are taken into account in the �fth and sixth term. In triplets

with con�guration y� z�p�y� 2xq and x � z�p�x � 2yq the middle node takes the average

value of the outer two, which is x or y respectively, with rate �c . With this, an x � y-link is

created with the already existing y or x node. Three-body subgraphs x�y� z and y�x� z are

taken into account in the last two terms. The middle node takes the average state of the outer

two, which is again in general not x or y . We integrate over all z P Ω to include all subgraphs

of this form. Note, l3px, y, z; tq � l3pz, y, x ; tq � l3py, x, z; tq. Note too that this equation is

still an approximation. There could always be more terms added. However, these terms would
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correspond to subgraphs with a very speci�c con�guration. We assume that the densities of

these subgraphs are small compared to the other terms, such that they can be omitted.

The next step will be adding the link dynamics. Equations (4.5) and (4.6) describe the link

creation interactions. Since the node states do not change when adding links, we have

Bf p3qpx ; tq
Bt � 0. (4.5)

Moreover, the fact that links are created between two arbitrary nodes with rate � is described as

Blp3q2 px, y; tq
Bt � � f px ; tq f py; tq. (4.6)

The deletion of links is described by similar PDEs. Again, the node states stay unchanged,

yielding

Bf p4qpx ; tq
Bt � 0, (4.7)

whilst the removal of arbitrary links with rate � is captured by

Blp4q2 px, y; tq
Bt � �� l2px, y; tq. (4.8)

§4.2 Completing the continuous model

Equations (4.1) - (4.8) describe the in�uence of the four types of interactions on the time derivat-

ives of the state and link density functions. To obtain the complete model, these PDEs can simply

be added. This yields the following equation for the state density function

Bf px ; tq
Bt �Bf

p1qpx ; tq
Bt � Bf p2qpx ; tq

Bt � Bf p3qpx ; tq
Bt � Bf p4qpx ; tq

Bt
� �

� 1
}Ω} � f px ; tq




� �c
»
Ω

dz
»
d� pl3px � � , z, x � � ; tq � l3pz � � , x, z � � ; tqq .

(4.9)
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The PDE describing the link density function can be obtained in a similar fashion

Bl2px, y; tq
Bt �Bl

p1q
2 px, y; tq
Bt � Blp2q2 px, y; tq

Bt � Blp3q2 px, y; tq
Bt � Blp4q2 px, y; tq

Bt
� �
}Ω}

»
Ω

dz pl2pz, y; tq � l2px, z; tqq

� �c
»
Ω

dz
»
d�

�
l4pyzx��x�� ; tq � l4pxzy��y�� ; tq

	

� �c
»
Ω

dz
»
d�

�
l4pyxz��z�� ; tq � l4pxyz��z�� ; tq

	

� �c
»
Ω

dz pl3py, z,�y � 2x ; tq � l3px, z,�x � 2y; tqq

� �c
»
Ω

dz pl3py, x, z; tq � l3px, y, z; tqq

� � f px ; tq f py; tq
� p2�� �q l2px, y; tq,

(4.10)

where again the linearity of the Riemann integral was used to simplify the expression. Equations

(4.9) and (4.10) together describe the adaptive network model with a continuous state set in the

most general form. There are two main di�erences with the discrete adaptive networks. Firstly,

the types of dynamics had to be slightly altered. Secondly, the network evolution is described

by partial (integro-)di�erential equations, instead of ordinary di�erential equations. Although

these are in general harder to solve, there are only two coupled equations. For the discrete state

set we needed Mp2� 1
2pM � 1qq coupled equations for M states.

Note however, that not all terms are known. Just as in the discrete adaptive networks, mo-

ment equations of a given order are dependent on higher order terms. One might think this

means we need extra PDEs for these higher order moments, but then we would go on until we

get equations for subgraphs of size in the order of the network size, resulting in a system of a

large amount connected PDEs which would be very hard to solve. Moreover, numerical estim-

ates would not allow for developing an analytical solution. This can be prevented in multiple

ways. In the next sections, two possibilities are described: the mean �eld approximation and the

moment closure approximation, both were also applied for the discrete state adaptive networks

in the �rst part of this work.

§4.3 Mean Field model

A �rst approach into solving a continuous state adaptive network model would be considering

a mean �eld approximation. This is equivalent to neglecting the link dynamics and assuming

that the density of links connecting nodes in a given state is proportional to the product of the
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densities of these states, similar what was done to the discrete state adaptive networks. This

simpli�es equation (4.9) to the following mean �eld approximation

B
Bt f px ; tq � �

� 1
}Ω} � f px ; tq




� �cxky2
»
Ω

dz
»
d� f px � � ; tq f pz, tq f px � � ; tq

� �cxky2
»
Ω

dz
»
Ω

dw f pw; tq f px ; tq f pz; tq,

(4.11)

where x̄ is used as an integration variable and in which xky is the aforementioned proportionality

constant, representing the mean network degree. Since we are dealing with a density function,³
Ω
dx f px ; tq � 1, such that we can simplify to

B
Bt f px ; tq � �

� 1
}Ω} � f px ; tq




� �cxky2
»
d� f px � � ; tq f px � � ; tq

� �cxky2 f px ; tq
»
Ω

dz
»
d� f pz � � ; tq f pz � � ; tq.

(4.12)

Since link dynamics are neglected in the mean �eld approximation there is no need to approxim-

ate equation (4.10). Therefore, the mean �eld system is described with only one partial integro-

di�erential equation, which has the advantage that it allows for easier analysis compared to

a system of PDEs. In chapter 5 we apply the mean �eld model to two-dimensional swarming

motion of self-propelled particles.

§4.4 Moment closure approximation

In order to obtain the system of two coupled, closed PDEs we seek expressions for the un-

known terms l3px, y, z; tq and l4pxyzw ; tq in terms of the known lower order moments l2px, y; tq
and f px ; tq. Analogous to the discrete state adaptive network models, the closure used will be

the pair level closure,

l3px, y, z; tq � l2px, y; tq l2py, z; tq
f py; tq , (4.13)

l4pxyzw ; tq �
l2px, y; tq l2py, z; tq l2py, w; tq

f py; tq2 , (4.14)

which is elaborated on in the �rst part of this thesis. Additional derivation and explanation can

be found in [11, 12, 24]. We will assume that this closure relation is still valid in the continuous

state case. Applying the approximation would result in a closed system of two coupled PDEs, one

for the state density function f px ; tq and one for the �rst order link density function l2px, y; tq.
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Hence, it will be convenient to write l2px, y; tq � lpx, y; tq from now on. With this approxima-

tion, the adaptive network models with a continuous state set are captured by the following two

coupled non-linear partial integro-di�erential equations

Bf px ; tq
Bt � �

� 1
}Ω} � f px ; tq



(4.15a)

� �c
»
Ω
dz
»
d�
�
lpx � � , z; tq lpz, x � � ; tq

f pz; tq �
lpz � � , x ; tq lpx, z � � ; tq

f px ; tq

�

Blpx, y; tq
Bt �

»
Ω
dz
#

�
}Ω} plpx, z; tq � lpz, y; tqq (4.15b)

� �c
lpy, z; tq lpz,�y � 2x ; tq

f pz; tq � �c
lpx, z; tq lpz,�x � 2y; tq

f pz; tq

� �c
lpy, x ; tq lpx, z; tq

f px ; tq � �c
lpx, y; tq lpy, z; tq

f py; tq

� �c
»
d�
�
lpy, z; tq lpz, x � � ; tq lpz, x � � ; tq

f pz; tq2 �
lpx, z; tq lpz, y � � ; tq lpz, y � � ; tq

f pz; tq2

�
lpy, x ; tq lpx, z � � ; tq lpx, z � � ; tq

f px ; tq2 �
lpx, y; tq lpy, z � � ; tq lpy, z � � ; tq

f py; tq2

� +

� � f px ; tq f py; tq � p2�� �q lpx, y; tq.





Chapter 5

Modelling swarming systems

With swarming systems, we indicate the class of all processes of collective motion. From the

most speci�c processes, which are for example the dynamics in a �ock of birds, a school of �sh

or the behaviour of a crowd of people, to the most general processes, such as collective motion in

systems of self-propelled particles, which obey certain prescribed interaction rules. The process

of self-organisation in such systems is still poorly understood. So far, research into swarming

systems was mainly done in either of two ways. The swarm was represented as a continuous

medium [5], or (comprehensive) agent-based models were developed that obey certain dynam-

ical rules [4, 6, 7, 8]. Since a few years, research into the application of adaptive networks on

swarming systems has gotten more attention [4, 11, 26]. In the next section, we will apply the

developed continuous state adaptive network model to a swarming system.

The most famous minimal agent-based model of collective motion is the Vicsek model [7]. It

describes a system of self-propelled individuals moving at a constant speed v. These individuals

try to align with all their neighbours within a certain radius r , such that the system can be

(discretely) evolved as

xipt � Δtq � xiptq � viΔt (5.1a)

�ipt � Δtq � x�jy|ri�rj | r � �i (5.1b)

in which xiptq represents the position of the i’th individual at time t . The direction of its velocity

is given by �iptq. �i is a noise parameter, which can for example be drawn from a uniform

probability distribution on the interval p��, �s.
Although many great advances have been made with (variations on) the Vicsek model [8],

there is a restriction on the size of the system. The position and direction of each individual

should be updated each time step, which may lead to computationally heavy simulations. For

adaptive networks, there is no such limit. The accuracy even improves for increasing system size,

such that these models allow for obtaining more general results. Therefore, modelling swarm-

ing systems in an adaptive network might give new insights into the self-organisation in large

swarming systems.

§5.1 Applying the developed adaptive network models to swarming systems

So far, the adaptive network models have been derived in the most general form possible. In the

last part of this thesis, we will apply them to swarming systems of two-dimensional motion. All

individuals are represented by a node and individuals that are aware of each other’s behaviour

33
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are connected by a link. This allows for a very similar condition to the alignment in the Vicsek

model, where individuals tend to align with their neighbours within a certain radius. We will

refer to individuals connected by a link as neighbours. Moreover, we assume that all individuals

can be modelled as self-propelled particles with a constant speed v, such that only their direction

of movement is of importance. In this work, we will restrict the individuals to move in two

dimensions only. Hence, it would be a sensible choice to de�ne Ω � p��, �s. Furthermore, we

can make the four types of interactions more speci�c:

Type 1 Individuals pick another direction with rate �. This direction is uniformly chosen from

Ω � p��, �s

Type 2 Individuals adopt to the average direction of two neighbours with rate �c .

Type 3 Arbitrarily chosen not-neighbouring individuals become neighbours with rate � .

Type 4 Arbitrarily chosen neighbours become not-neighbouring individuals with rate � .

All dynamics take place irrespective of any additional neighbours an individual may have.

A swarming system can be well described with these four types of interactions. The �rst two

types are comparable to the Vicsek model; type 1 is similar to the noise �i of the i’th particle,

whereas type 2 corresponds to the tendency of individuals to align with their neighbours within

a certain radius. This radius is in the network modelled with the links since we do not keep track

of the physical position of individuals in space. Interactions of the third type are needed since

not-neighbouring individuals which move in di�erent directions might become aware of each

other’s position at a certain moment. It is su�cient to model this by a global rate because we

do not look at individual nodes separately (which would also not be possible since we do not

know the individuals’ physical position). The main advantage here is that this allows for faster

computations. The fourth type of dynamics is the opposite of the third type; individuals which

are neighbouring, but head in di�erent directions are at a certain moment too far apart to be still

aware of each other. Therefore their link must be broken. Again, it is su�cient to model this

with a global rate.

In this case, the meaning of the state distribution function f px ; tq can be explained as follows:

the network density of individuals with direction x in the interval r�1, �2s at time t is given by

�2»
�1

dx̄ f px̄ ; tq.

For the link distribution function lpx, y; tq we have something similar: the density of pairs of

neighbouring individuals, where one of the neighbours’ direction x is within the interval r�1, �2s,
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x � �
2

x � �
2

xx � �

x � �
� �

Figure 5.1: The process of �nding the right directions x � � and x � � which average to x . Clearly
� P �0, �2 � or the average will be in the direction x � � .

while the other heads in a direction y in the interval r�1, �2s, at time t , is given by

�2»
�1

dx̄
�2»
�1

dȳ lpx̄ , ȳ; tq.

So far, we have not mentioned how the averaging operation in the model is de�ned, because

this de�nition can di�er for various applications. This operation corresponds to the integrals

over � in equation (4.15). In the case of two-dimensional motion, the average should be taken in

a special way, because the interval is periodic. This is easiest illustrated in an example. Suppose

one individual has a direction of �1 � 3�
4 , while another individual moves in the �2 � � 3�

4
direction. The numerical average would be zero, while the ‘angular’ average is � � � . In this

case, we clearly should use the latter. This can be implemented in the equations by integrating

over � from 0 to
�
2 , instead of integrating over the complete state set Ω. Figure 5.1 illustrates this

process of �nding the right states which average direction x . Every pair of individuals heading

in directions x� � and x� � respectively have the possibility to let a common neighbour change

its direction to x as long as � P �0, �2 �.

Now we have all variables, functions and dynamics rules properly de�ned to apply the pre-

viously derived network to swarming systems. In the next two sections, the resulting sets of

equations for both the mean �eld approximation and the moment closure approximation models

are stated, including results and corresponding analysis.
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§5.2 Mean field approximation on swarming systems

All rules making the continuous state adaptive network model a swarming system were de-

scribed in the previous section. In this section, they will be applied to the mean �eld approxim-

ation. Subsequently, analysis and discussion of the results will follow.

The partial di�erential equation (4.12) models the collective motion in the previously de-

scribed swarm if we write it as

B
Bt f px ; tq � �

� 1
2� � f px ; tq




� �cxky2
�{2»
0

d� f px � � ; tq f px � � ; tq

� �cxky2 f px ; tq
�»

��

dz
�{2»
0

d� f pz � � ; tq f pz � � ; tq.

(5.2)

Discretisation

It is unlikely that we can �nd the time-dependent solution to this equation analytically, con-

sequently let us look for a numerical solution. The �rst step will be discretising the time and

state set Ω. This will yield a partial di�erence equation which can be solved using a computer.

The continuous time t � r0, Tmaxs at which the network evolution is considered will be parti-

tioned into M intervals of length Δt , such that the discrete time set is of the form

td � t0,Δt, 2Δt, ..., p� � 1qΔt, �Δt, ..., Tmax � Δt, Tmaxu,

in which MΔt � Tmax and � is the discrete time index. Next, we have to discretise the state set

Ω. This set is partitioned into N intervals of length Δ!, such that Ω � p��, �s is transformed

into

Ωd � t��,�� � Δ!, ...,�� � pp � 1qΔ!,�� � pΔ!, ...� � Δ!, �u,

in which NΔ! � 2� and p is the discrete state index.
1

Furthermore, we use the following

shorthand notation in the discretisation of the density function f px ; tq,

f �p � f p�� � pΔ!; �Δtq.

The discrete state-time-grid which is obtained is visualised in �gure 5.2.

1
It might seem odd to discretise the state set as we have just made it continuous. Ironically this is the �rst

step in solving the system numerically. It is however important to note that the discretisation is di�erent from the

discrete state model. This discretisation gives the same solutions as the continuous state model would if it were solved

analytically if we take the limits of Δt Ñ 0 and Δ! Ñ 0. Moreover, it incorporates the di�erent dynamics which are

used exclusively in the continuous state case. In other words, we are really solving a di�erent system.
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Figure 5.2: Grid resulting from the discretisation of t and Ω. The time is discretised into M time

steps of size Δt � Tmax
M with corresponding index � . The state set Ω is discretised into N discrete state

values, with step size Δ! � 2�
N . The corresponding index is p.

The next step is discretising the partial di�erential equation. For the partial derivatives the

forward di�erence method is applied. That is

B
Bt f px ; tq �

f px ; t � Δtq � f px ; tq
Δt � f ��1p � f �p

Δt , (5.3)

for x � ���pΔ!. In addition, the integrals should be discretised. This can be done by replacing

them by their corresponding left Riemann sum, such that

�»
��

dx f px ; tq � Δ!
N�1̧

i�0
f p� � iΔ!; tq � Δ!

N�1̧

i�0
f �i . (5.4)

Note, since the discretisation is done as a left Riemann sum, the summation limits go from i � 0
to i � N � 1. Applying these discretisation steps to the partial di�erential equation yields a

partial di�erence equation. With that, the system in mean �eld approximation can be solved by

a forward Euler scheme

f ��1p � f �p � Δt

�
� �
2� � � f �p � Δ� �c xky2

N
4 �1̧

i�0

�
f �p�i f �p�i � Δz f �p

N�1̧

j�0
f �j�i f �j�i

��� , (5.5)

such that we can ‘walk forward’ in time by implementation of equation (5.5) in any appropriate

computing language, given a feasible initial condition.
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Figure 5.3: The �nal state distribution f px ;MΔtq, forM � 3 � 105 time steps, as a function of state

x for di�erent values of the ratio �
�cxky2 of system parameters. M was large enough to ensure that

the system converged to a stationary solution. The constant solution at �
�cxky2 � 0.1 is f px ; tq � 1

2� .

The system was initialised as a standard normal distribution (with zero mean and unit variance),

however, note that the initial condition does not in�uence the outcome unless a stationary solution

is chosen as initial condition.

Results and discussion

The forward Euler scheme of equation (5.5) was implemented in Python. The input parameters

of the script are the system parameters �, �c , xky, step size Δt � 1
300 , and grid spacing Δ! � �

400 .

To generate results a renormalised standard normal distribution was chosen as initial condition,

i.e.

f px ; 0q � Ab
2��2f

exp
�
�px � �f q2

2�2f

�
, (5.6)

where �f � 0 is the mean, �2f � 1 is the variance of the distribution andA is determined such that

�³
��

dx f px ; 0q � 1. Similar to the discrete state case, it turns out that the �nal state distribution

only depends on a ratio of system parameters. In this case this important ratio is
�

�cxky2 . In

�gure 5.3 the �nal distribution f px ;MΔtq after M � 3 � 105 time steps Δt is plotted for various

values of
�

�cxky2 , together with the initial condition.

In order to verify that the �nal state distributions have converged (within certain numerical

tolerance) to a stationary solution, the time evolution of the variance of the distribution �2f 2
is

visualised in �gure 5.4. After � � 300 time steps, the variance has converged for almost all values

of
�

�cxky2 . In the situations where there was no convergence after 300 time steps, we veri�ed that

2
Note that � 2f is the variance of the state distribution f px ; tq and �c is the rate of three-body interactions.
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Figure 5.4: Time evolution of the variance �2f of the state distribution f px ; tq for various values of
�

�cxky2 . For almost all values of the system parameters convergence was achieved within 300 time

steps. For �
�cxky2 P t0.07, 0.08u convergence was achieved at a later moment in the computation.

�2f � �2
3 corresponds to a uniform state distribution. The legend lists the curves from top to bottom.

convergence of �2f was obtained at a later moment, before the end of the computation. If we

combine this result with the fact that all feasible state distributions integrate to one on the state

set Ω � p��, �s and with the observation that the shape of the distribution remains the same

in the last part of the simulation, we can conclude that the �nal distributions after 3 � 105 time

steps correspond to steady-state distributions.

Comparing continuous state adaptive network models to the discrete state models, we have

the following similarities. The disordered solution in which all possible states in Ω are equally

distributed over all agents corresponds to the continuous uniform distribution. Furthermore,

the ordered solution, in which there is one state occupied by a majority of nodes compared to

all other states, is a bell-shaped distribution in the continuous case. In the limit to all nodes

occupying the same state f px ; tq becomes a Dirac delta distribution. In contrast to the discrete

state networks, minority distributions do not have equal densities. We will use the variance of

the distribution as a measure of the amount of order in the system. A system which is completely

disordered is represented by a uniform distribution f px ; tq � 1
2� , such that

�2f �
1
2�

�
� �»
��

dx x2 �
�
� �»
��

dx x

�

2�
� � �2

3 . (5.7)

On the other hand, for a completely ordered system, which is represented by a Dirac delta dis-

tribution, we have �2f Ñ 0 by de�nition. Similar to the discrete state adaptive networks, the

�nal state distribution depends on the ratio of system parameters. If there is a relatively high
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Figure 5.5: Variance �2f of the stationary state of the state distribution f px ; tq as function of the

ratio �
�cxky2 of mean �eld system parameters. The transition from a disordered to an ordered state

occurs at �
�cxky2 � 0.068. For �

�cxky2 ¡ 0.072 the state distribution function is constant at 1
2� such

that �f � �2
3 and the system is completely disordered. For �

�cxky2   0.068 the state distribution has a
maximum value for some state x , such that the system is ordered. On this interval, the black dashed

line is a least squares �t of a square root function to all steady state variances �2f . (Inset) A close up

of the region in which the transition from the ordered to the disordered state occurs. The data points

in this region do not �t the square root, nor the constant �2
3 .

noise rate �, compared to �c then the network tends to end up in a less ordered state compared to

situations in which the rate �c or the mean degree xky is relatively high. In these latter cases, the

system will evolve towards a more ordered distribution. We can make this quantitative by com-

puting the variance of the stationary solution for multiple values of
�

�cxky2 . The result is plotted

in �gure 5.5.

For
�

�cxky2 ¡ 0.072 the variance �2f in the state distribution function f px ; tq equals the expected

variance for the disordered solution. For
�

�cxky2   0.068 we have �2f   �2
3 , corresponding to a

system in which one subset of states is more present than the others. These are the not-constant

state distributions in �gure 5.3. For discrete state networks, the density of a certain state as a

function of the system parameters could be analytically expressed by a square root relationship

[11]. In order to check if a similar relation holds between the distribution variance and system

parameters for the continuous state networks, the data points for
�

�cxky2   0.068 are plotted on

logarithmic scales in �gure 5.6. Comparing the curve shape with the dotted square root function,

we can see that especially for lower values of
�

�cxky2 the variances lie on a line with slope
1
2 , which
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Figure 5.6: Variance �2f of the stationary state of the state distribution f px ; tq versus the ratio �
�cxky2

of mean �eld system parameters on logarithmic scales. Only the ordered solutions
�

�
�cxky2   0.068

	
were plotted. The dotted line has slope 1

2 , representing a square root function (with o�set).

is a property of a square root relation. Moreover, we can make a least squares �t of

�2f �
�2
3 � a

c
0.068� �

�cxky2 , for

�
�cxky2   0.068, a P ℝ, (5.8)

in �gure 5.5. The optimal parameters is a � 12.52, with goodness of �t R2 � 0.999. Hence

we con�rm that the relation is indeed given as a square root function. The variances for values

�
�cxky2 P r0.068, 0.072s do not �t the least squares �t, nor the constant

�2
3 . Hence, the transition

from the ordered state to a disordered state occurs in this region. However, we can expect it to

be closer to 0.068, since this is where the �tted square root meets the variance of the disordered

state. This is in line with the fact that systems with
�

�cxky2 close to the ratio at which the transition

takes place tend to converge much slower than systems which have a much higher or lower

ratio. This can also be observed in �gure 5.4. It would mean that if we take both the simulation

time and the number of grid points to in�nity, we would have a perfect distinction between the

disordered states on the branch where the variance is
�2
3 and the branch which can be described

as a square root function. Taking everything together, the system ends up in an ordered state if

�
�cxky2   0.068 and in a disordered state if

�
�cxky2 ¡ 0.068, where convergence rates are very low

for ratios close to 0.068.
Lastly, we check whether we can make a judicious guess for an analytic stationary solution

which �ts the simulation results. In the �rst place, it is not hard to see that

f pxq � 1
2� (5.9)
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Figure 5.7: (left) The �nal state distribution function f px,MΔtq forM � 3 � 105, for various values
of �

�cxky2 , on logarithmic scale versus x on linear scale. The dotted line represents a standard normal

distribution. (right) The same �nal state distribution functions on logarithmic scale versus x on

logarithmic scale. The dotted line is the Cauchy distribution with x0 � 0 and  � 1.

forms the disordered stationary solution. One might expect the ordered state distribution to

have a bell-shape. To check this, various �nal state distributions are plotted on a logarithmic

scale versus the state x on both linear and logarithmic scales in �gure 5.7 to check if they can be

represented by either renormalised Gaussian or renormalised Cauchy distributions. A Gaussian

distribution is of the form

f px ; �f , �2f q �
Ab
2��2f

exp
�
�px � �f q2

2�2f

�
, (5.10)

in which �f represents the mean and �2f the variance of the distribution. This is an exponential

function in x2 and therefore it will appear as a parabola on a logarithmic-linear-plot. It is easy to

see that the state distributions do not follow the shape of a parabola, from which we can conclude

that the �nal distributions are not given as Gaussian distributions. The Cauchy distribution can

be written as

f px ; x0, q � A
�

 2
px � x0q2 �  2 (5.11)

with A P ℝ the amplitude, x0 the location parameter, specifying the location of the maximum

and  the scale parameter corresponding to the half-width at half-maximum. Supposing x0 � 0,
this distribution is a polynomial function in x2 �  2, such that if it is plotted on a graph with

logarithmic scales it will appear as a line with slope �2. Figure 5.7 shows that the �nal state

distributions are very similar to Cauchy distributions, especially around x � 0, the location of

the peak of the distribution.
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Figure 5.8: (soft curves) The �nal state distribution function f px,MΔtq forM � 3 �105, for various
values of �

�cxky2 . (dashed/dotted curves, left) Least squares �ts of the Gaussian distribution equa-

tion (5.10) to the �nal state distributions. (dashed,dotted curves, right) Least squares �ts of the

Cauchy distribution equation (5.11) to the �nal state distribution. The �t parameters and goodness

of �t can be found in table 5.1. Legend entries are ordered from narrow to wide distributions.

Table 5.1: (a) Parameters A, �2f for the least squares Gaussian �ts in the left graph of �gure 5.8.

For all �ts �f   10�6. (b) Parameters A,  for the least squares Cauchy distribution �ts in the right

graph of �gure 5.8, where  is scale parameter of the distribution. For all �ts the location parameter

x0   10�4. The goodness of �t R2 and the area under the curve are denoted in the last two columns.

(a)

�
�cxky2 A �2f R2

�³
��

dx f pxq
0.01 1.89 0.0292 0.9703 0.808

0.03 0.660 0.266 0.9591 0.852

0.06 0.253 2.73 0.9152 0.987

(b)

�
�cxky2 A  R2

�³
��

dx f pxq
0.01 2.12 0.1564 0.9998 1.01

0.03 0.741 0.4750 0.9998 0.999

0.06 0.267 1.769 0.9816 0.999

To verify this, a least squares �t of a renormalised Gaussian distribution and a renormalised

Cauchy distribution was made for various numerical �nal distributions. The results are plotted

in �gure 5.8. The least squares �t parameters, goodness of �t R2 and area under the distribution

are given in table 5.1.

On the left-hand side of �gure 5.8, we can clearly see that a Gaussian distribution does not

�t the �nal state distribution well. For the sharpest peak, the �t is good anywhere where the

distribution has a high slope, but the �t does not reach the peak value, nor is it high enough

for x-values far from x � 0. Hence, the area under the �tted distribution is less than 1, making

it unfeasible. For wider distributions, the R2 value increases, meaning that the �t quality is
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higher. But in these cases the maximum and minimum values are estimated too low. An analytic

substitution of equation (5.10) in equation (5.12) using Maple 2018 veri�es that a Gaussian is no

steady state solution
3
.

The right-hand side of �gure 5.8 shows the least squares �ts of Cauchy distribution to the

�nal state distributions. These curves seem to be a much better �t than the Gaussian distribu-

tions, an observation which can also be made quantitative by the goodness of �t R2 in table 5.1.

Furthermore, the area under the curves is very close to 1, corresponding with feasible state dis-

tributions. However, a closer look at the distribution corresponding to
�

�cxky2 � 0.06 shows that

a Cauchy distribution might not be the perfect analytic description of the stationary state distri-

bution. Substitution of equation (5.11) con�rms this last observation
4
.

It should be remarked that both Gaussian and Cauchy distributions yield the constant value

1
2� if we take the limit of respectively the variance or the half-width at half-maximum to in�nity

before renormalising on r��, �q. This corresponds to the distribution of the disordered system.

Moreover, they converge to a Dirac distribution if we take the same limit to zero, corresponding

to a perfectly ordered system. Therefore it might be worthwhile for further research to check

whether all steady-state distributions, i.e. either disordered and ordered, can be described by

another bell-shaped distribution with the same properties, where one allows for taking the limit

cases �2f Ñ8 and �2f Ñ 0 or  Ñ8 and  Ñ 0.

§5.3 Moment closure approximation on swarming systems

The same rules and assumptions with which we de�ned a swarming system in section 5.1 will

be applied to the moment closure approximation of continuous state adaptive networks in this

section. Afterwards, analysis and discussion of the results will follow.

The system consisting of two coupled non-linear partial integro-di�erential equations which

make an adaptive network model two dimensional collective motion in a swarm is written as

3
We made an even extension of equation (5.10) at x � �� and x � � before substitution, to make sure the

integrals are properly de�ned.

4
Again an even extension was made to equation (5.11) before substitution.
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Bf px ; tq
Bt � �

� 1
2� � f px ; tq



(5.12a)

� �c
�»

��
dz

�{2»
0
d�
�
lpx � � , z; tq lpz, x � � ; tq

f pz; tq �
lpz � � , x ; tq lpx, z � � ; tq

f px ; tq

�

Blpx, y; tq
Bt �

�»
��

dz
#

�
2� plpx, z; tq � lpz, y; tqq (5.12b)

� �c
lpy, z; tq lpz,�y � 2x ; tq

f pz; tq � �c
lpx, z; tq lpz,�x � 2y; tq

f pz; tq

� �c
lpy, x ; tq lpx, z; tq

f px ; tq � �c
lpx, y; tq lpy, z; tq

f py; tq

� �c
�{2»
0
d�
�
lpy, z; tq lpz, x � � ; tq lpz, x � � ; tq

f pz; tq2 �
lpx, z; tq lpz, y � � ; tq lpz, y � � ; tq

f pz; tq2

�
lpy, x ; tq lpx, z � � ; tq lpx, z � � ; tq

f px ; tq2 �
lpx, y; tq lpy, z � � ; tq lpy, z � � ; tq

f py; tq2

� +

� � f px ; tq f py; tq � p2�� �q lpx, y; tq.

Here we assumed the discrete closure relation from [11] to be applicable in the continuous

state case.

Discretisation

Similar to the mean �eld approximation, we will look for numerical solutions to the system

of equations (5.12). A �rst step into solving this system numerically is discretising the time

and state sets and transforming the partial integro-di�erential equations into partial di�erence

equations. This discretisation will be conducted in a similar manner compared to the mean �eld

approximation model. That is, the continuous time t � r0, Tmaxs at which the network evolution

is considered will be partitioned into M intervals of length Δt , such that the discrete time set is

of the form

td � t0,Δt, 2Δt, ..., p� � 1qΔt, �Δt, ..., Tmax � Δt, Tmaxu,

such thatMΔt � Tmax and � is the discrete time index. Furthermore, the state setΩ is partitioned

into N intervals of length Δ!, such that Ω � r��, �q is transformed into

Ωd � t��,�� � Δ!, ...,�� � pp � 1qΔ!,�� � pΔ!, ...� � Δ!, �u,

in which NΔ! � 2� and p is the discrete state index.
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To keep things clear, we will use the following shorthand notation in the discretisation of

the density functions f and l on the discrete state-time-grid.

f �p � f p�� � pΔ!; �Δtq l�p,q � lp�� � pΔ!,�� � qΔ!; �Δtq. (5.13)

The grid on which f �p is de�ned is visualised in �gure 5.2. For l�p,q we have something similar, but

then on a three-dimensional grid. Again the forward di�erence method is applied to discretise

the partial derivatives, such that for the state distribution f we have equation (5.3), whilst for the

link distribution l we have

B
Bt lpx, y; tq �

lpx, y; t � Δtq � lpx, y; tq
Δt � l��1p,q � l�p,q

Δt , (5.14)

for x � ���pΔ! and y � ���qΔ!. Once again, we take the left Riemann sums as discretisa-

tion for the integrals, just as in equation (5.4). Taking everything together, the system of partial

di�erence equations describing a continuous state adaptive network becomes

f ��1p � f �p
Δt � �

� 1
2� � f �p



� �c Δ!2

N�1̧

j�0

N
4 �1̧

i�0

�
l�p�i,j l�j,p�i

f �j
� l�j�i,p l�p,j�i

f �p

�
(5.15a)

l��1p,q � l�p,q
Δt �

N�1̧

j�0
Δ!

�
�
2�

�
l�p,j � l�j,q

	
(5.15b)

� �c
l�q,j l�j,�q�2p

f �j
� �c

l�p,j l�j,�p�2q
f �j

� �c
l�q,p l�p,j
f �p

� �c
l�p,q l�q,j
f �q

� �c Δ!
N
4 �1̧

i�0

�
l�q,j l�j,p�i l�j,p�i

pf �j q2
� l�p,j l�j,q�i l�j,q�i

pf �j q2

� l�q,p l�p,j�i l�p,j�i
pf �p q2

� l�p,q l�q,j�i l�q,j�i
pf �q q2

��

� � f �p f �q � p2�� �q l�p,q .

This system of equations can be rewritten as a forward Euler scheme, allowing for numeric-

ally computing the time evolution in any appropriate computing language, given feasible initial

conditions.

Results and discussion

The forward Euler scheme of equation (5.15) was implemented in Python. The input parameters

of the script are the system parameters �, �c , � and � , step size Δt � 1
400 , and grid spacing

Δ! � 2�
23 . To generate results the system was solved for �ve di�erent initial conditions (before

normalisation):  p0, 5q,  p0, 1q and
1
2� � a cospxq, for a P  1

10 , 140 , 1
400

(
.  p�, �2f q indicates the
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Figure 5.9: The state distribution function f px ; �Δtq for various values of � . The system parameters

are � � 1, �c � 4, � � 0.1, � � 0.1. The initial condition (IC) was taken as f px ; 0q �  p0, 1q
(left) and f px ; 0q � 1

2� � 1
10 cospxq (right). Both solutions converge to the disordered stationary

solution. Grid points are indicated with dots.

normal distribution with mean � and variance �2f . The link distribution function is initialised as

2-dimensional standard normal distribution. That is

lpx, y; 0q � 1
2� exp

�
�12

�
x2 � y2

�

. (5.16)

Similar to the discrete state models and the continuous state mean �eld approximation, the solu-

tion converges to a disordered solution if the ratio of the noise rate � to the three-body inter-

action rate �c is high enough. For this case, the state distribution function f px ; tq is plotted for

two di�erent initial conditions in �gure 5.9. If this rate is low enough the system converges to

an ordered solution, which is visualised in �gure 5.10 for two di�erent initial conditions. For

most initial conditions, the time evolution is similar to the graph on the left-hand side and is as

expected. The graph on the right-hand side shows a phenomenon which was not encountered

before; the highest density states at � � 0 converge to a density of 0, whilst the lower density

states end up dominating the system. This behaviour is most likely caused by the discretisation

of the system. For example, if in the �rst time step the change in the peak value of the state

distribution is bigger than �2a � � 1
200 the distribution at � � 1 will be inverted. If the change

in consecutive time steps is smaller, then convergence to an inverted ordered state can be ex-

plained. One can check if this is really the case by testing if similar results are obtained when

smaller time steps and more grid points in Ω are taken.

As with the mean �eld approximation, we use the variance �2f of the state distribution as a

measure for the amount of order in the system. In �gure 5.11 the variance of the �nal distribution
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Figure 5.10: The state distribution function f px ; �Δtq for various values of � . The system para-

meters are � � 1, �c � 7, � � 0.1, � � 0.1. The initial condition (IC) was taken as

f px ; 0q � 1
2� � 1

40 cospxq (left) and f px ; 0q � 1
2� � 1

400 cospxq (right). Both solutions converge to

an ordered stationary solution. Grid points are indicated with dots.

f px ;MΔtq after M � 2 � 104 time steps was plotted as function the ratio of system parameters
�
�c

for all �ve initial conditions. For relatively high noise ratios

�
�
�c ¥ 1

5.2

	
the system converges to

the disordered solution and therefore �2f � �2
3 . For a relatively low ratio

�
�
�c ¤ 1

6.6

	
the system

converges to a disordered solution with nearly constant variance for all initial conditions. Note

that this was not the case in the mean �eld approximation, where the �nal state distribution

variance was depending on the system parameters by a square root relation. For
1
6.6 ¤ �

�c ¤ 1
5.2

there is a bistable region, where the exact stationary solution depends on the initial condition.

This may be a sign that the system has a subcritical (pitchfork) bifurcation at either of the two

ends of the bistable region in combination with a saddle-node bifurcation at the other end. Fig-

ure 5.12 shows another sign of the presence of these bifurcations. The system initialised as

standard normal distribution seems to converge to the disordered solution f px ; tq � 1
2� at �rst

sight. However, after � � 7000, the distribution stops �attening out and it starts converging to

an ordered stationary solution, which is indicated by the star in �gure 5.11. This is an indication

that the disordered solution forms a saddle-node for these parameters and the distribution gets

close to the saddle-node in phase space before converging to its stable stationary solution. Note

that we cannot determine the exact system parameters for which this bifurcation occurs with

current solutions for only �ve di�erent initial conditions. Further research is needed to determ-

ine the exact location and details of this bifurcation. Moreover, the exact reason why the ordered

state distribution has an almost constant variance for various values of the system parameters

could be a subject of future research.

Some more remarks should be added about the (implementation of) the current numerical
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Figure 5.11: Variance �2f of the stationary state of the state distribution f px ; tq as function of the

ratio of system parameters �
�c for various initial conditions. The system parameters were taken as

� � 1, � � 0.1, � � 0.1, �c was varied. For �
�c ¥ 1

5.2 all distributions converged to the disordered

stationary state solution, while for �
�c ¤ 1

6.6 all distributions converged to an ordered solution. For
1
6.6 ¤ �

�c ¤ 1
5.2 the stationary state solution depends on the chosen initial condition. The star

indicates �
�c � 1

5.331 , for which the time evolution is plotted in �gure 5.12.
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Figure 5.12: (left) The state distribution function f px ; �Δtq for various values of � . The system
parameters are � � 1, �c � 5.331, � � 0.1, � � 0.1. The initial condition (IC) was taken as

f px ; 0q �  p0, 1q. Grid points are indicated with dots. (right) The di�erence f ��1p � f �p between

two consecutive state distribution functions for p P r0, ..., 11s versus the discrete time index � . Similar

curves are obtained for p P r12, ..., 23s since the distribution is symmetric for all � . The distribution
converged to a disordered solution, despite of the fact that it �attens out in the �rst 7000 time steps.
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method which solves the system. More recommendations for future research will naturally fol-

low. The most important limitation of the current script occurs when the ratio of the noise rate

to the three-body interaction rate is taken too low

�
�
�c À 1

8

	
. Then for some � , the distribution

will get too narrow to be represented properly by 24 grid points. That is, there is a time step after

which the obtained curve is not smooth enough, introducing unacceptable numerical errors in

consecutive time steps. Moreover, the smallest values of the state distribution function get so

small, that extra numerical errors are obtained when these numbers get multiplied or divided

by each other and by other numbers. Multiple things have been implemented to reduce these

errors, amongst others calculating with 128-bit �oating-point numbers, preventing division by

small numbers, reducing the time step and implementing an implicit Euler backward integration

method. These are however no permanent �xes for the problem. To resolve this issue perman-

ently, one could �nd a way to increase the resolution of the state set Ω to more than 24 grid

points. This requires signi�cant optimisation of the current computation time �rst. Moreover,

one could look at alternative numerical methods to �nd stationary solutions, such as Newton-

Raphson methods for systems of di�erential equations. The latter being rather a workaround

than a solution since it does not allow for time evolution, but only for �nding stationary solu-

tions. If one �nds higher resolution stationary state distributions, then it will be worthwhile

to check whether the Cauchy distribution (or another bell-shaped distribution) can be the true

analytic stationary solution to the system using more sophisticated PDE techniques.

Furthermore, future research could focus more on the link distribution function lpx, y; tq.
That is, �nding its steady state distributions, looking for bifurcations, investigating the in�uence

of a di�erent initial condition than equation (5.16) and exploring the e�ect of di�erent values for

� and � . One could also do more research into how more sophisticated initial distributions

evolve. This might be done by deriving and analysing a PDE for the change in the mean of the

distribution

d
dt xxy �

B
Bt

»
Ω

dx x f px ; tq (5.17)

and by deriving and analysing the a PDE for change of the second moment

d
dt xx

2y � B
Bt

»
Ω

dx x2 f px ; tq, (5.18)

which is a measure for the amount of order in the system.

With all this information, the comparison between adaptive network models, other models

for swarming systems and real life swarming systems can be made. Subsequently, one can �nd

out how accurate adaptive network models are and where improvement might be needed. For

example, it may be that adding other types of dynamics yields more accurate and realistic pre-

dictions. Finally, it will be interesting whether there are cases in which adaptive network models

are better or more convenient than the current models.



Chapter 6

Conclusions and recommendations

In this thesis, we considered adaptive network models with discrete and continuous state sets.

The 2-state adaptive network models were analysed analytically and have two stationary points:

an ordered and a disordered solution. The ordered solution, in which all states are equally dis-

tributed over all nodes, is stable for a relatively high dimensionless noise ratio compared to the

dimensionless link creation ratio. The disordered solution, where one of the two states has a

higher density than the other, is stable for relatively low dimensionless noise ratios. The trans-

ition from the ordered to the disordered state occurs through a supercritical pitchfork bifurcation.

Numerical solutions are in line with these analytic results. Hence, irrespective of what biological,

physical or social system the adaptive network is applied to, we know the outcome once the noise

and link creation ratios are known.

Furthermore, an adaptive network model was derived that works on a periodic or non-

periodic continuous state set, obeying comparable dynamical rules as in the considered dis-

crete state models. This model consists of a non-closed system of two coupled partial integro-

di�erential equations, which can be analysed either in the mean �eld approximation or in the

moment closure approximation.

Both approximations were applied to a swarming system, consisting of two-dimensional mo-

tion of self-propelled particles with constant speed. Numerical solutions of the mean �eld model

show that the disordered solution forms a stationary distribution if the noise rate is relatively

high compared to the three-body interaction rate. For lower noise rates, the system ends up in

an ordered solution, of which the variance is related to the system parameters by a square root

function. A Cauchy distribution �ts this ordered stationary solution very well, although it does

not form an analytic stationary solution to the PDEs. Future research could focus on �nding an

analytic stationary ordered solution using more sophisticated PDE techniques.

The moment closure approximation model was also numerically solved. Again, for relatively

high noise rates compared to the three-body interaction rate the system ends up in a disordered

solution. If the noise rate is relatively low, the system ends up in an ordered distribution, of

which the variance does not spread as much as in the mean �eld approximation models and is

probably not given by a square root function of the system parameters. There exists a bistable

region in which the �nal distribution depends on the initial conditions of the system. This a sign

of a subcritical pitchfork bifurcation in combination with a saddle-node bifurcation. Further

research is needed to �nd the exact details of these bifurcations. Moreover, the current script

solving the system numerically could be optimised, such that higher resolution solutions can

be found for more di�erent system parameters. These solutions could help in determining the

exact form of the stationary solutions. Further research could also focus more on analysis the

link distribution function and exploring the e�ect of di�erent link creation and deletion rates

51



52

and more sophisticated initial conditions.

The comparison between continuous state adaptive networks, agent-based models and real-

life swarming systems is still to be made. It will be very interesting to see whether the derived

model can be an alternative to already existing models and what advantages and disadvantages

there are. Moreover, there might be applications other than swarming systems that can be mod-

elled very accurately as a continuous state adaptive network.

In the future, multiple possible extensions to the derived adaptive network model can be

made. For example, one could do research into the e�ects of changing the interaction (rates)

depending on the state a certain node occupies. These models may be a better representation of

certain real-life situations. Another possibility is extending the concepts of adaptive networks

with a stochastic component. In that case one would not be able to determine the complete time

evolution beforehand.
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