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Abstract

Carbon capture and storage (CCS) has emerged as a cornerstone technology for mitigating climate change,
as highlighted by the Intergovernmental Panel on Climate Change (IPCC) and International Energy Agency
(IEA). A key component of CCS involves the safe and efficient transport of CO2 between capture sites and stor-
age facilities, often over long distances. Pipelines can be an attractive mode of transport, with CO2 typically
maintained in a liquid or supercritical state to optimize density and viscosity. However, rapid depressuriza-
tion events, whether due to intentional releases or accidental pipeline ruptures, lead to complex two-phase
flow dynamics. Accurately modelling these phenomena is critical to designing pipelines that are both safe
and cost-effective.

This thesis investigates various one-dimensional, unsteady, compressible two-phase flow models to simulate
CO2 depressurization scenarios in pipelines. All models are implemented using a finite volume method and
discretization is done with the HLLC approximate Riemann solver, enabling the resolution of shocks and dis-
continuities. Thermodynamic properties are computed using equations of state (EOS), with a focus on the
Span-Wagner (SW) EOS, to capture the CO2 unique phase behaviour under high-pressure conditions. The
models are validated against existing experimental data from SINTEF’s depressurization facility, which pro-
vided high-resolution measurements of pressure and temperature during rapid phase transitions.

Three different models are initially looked at: DF 3, DF 4, and T F 5. Key findings demonstrate that while the
DF 3 model provides accurate predictions of pressure variations over time, it underestimates the initial pres-
sure drop by up to 20 [bar ]. In contrast, the DF 4 model, through the manual adjustment of the mass transfer
term (°) using the relaxation parameter µ, more accurately captures the initial transient behaviour, aligning
closely with experimental data. Both models ultimately converge to approximately the same state after 20
[ms], with no more than 4 [bar ] difference between the models.

Temperature predictions, however, pose a greater challenge. The DF 3 model exhibits a spurious downward
temperature spike immediately following pipeline rupture, while the DF 4 model predicts an even greater
initial temperature drop, neither of which align with experimental observations. The delayed cooling effect
observed in experiments is not captured by either model, highlighting limitations in the energy equation and
the need for additional source terms to account for temperature drop delays.

Limitations of the models include challenges in simulating temperature variations near the critical point and
an inability to accurately model delayed temperature effects for both the DF 3 and DF 4 models. Recommen-
dations for future work include developing a generalized mass transfer model, incorporating implicit numer-
ical schemes for stability near critical conditions. Furthermore, the T F 5 model shows promise for improving
temperature predictions over longer timescales.
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�
Introduction

Carbon capture and storage (CCS) is increasingly recognized as a viable solution to mitigate the climate crisis,
as highlighted by the IPCC [1]. According to the IEA, achieving net-zero emissions by 2050 requires the an-
nual capture and storage of several gigatonnes of CO2 [2]. One critical aspect of CCS is the safe and efficient
transport of CO2 between capture plants and storage facilities, which are often separated by large distances.
This transport is typically conducted via pipelines, ships, or other methods. To optimize transport efficiency,
CO2 is maintained in a liquid phase at supercritical pressures, ensuring high density and low viscosity [3].

However, rapid depressurization events, such as intentional releases (e.g., opening pressure relief valves or in-
jecting CO2 into empty gas fields) or accidental scenarios (e.g., pipe fractures), can lead to significant changes
in pressure, temperature, sound speed and mass flow. During such events, the CO2 fluid undergoes a phase
transformation into a two-phase regime, introducing complex flow dynamics and thermodynamic behaviour.
Accurate modelling of these processes is essential, particularly given the potential for cost savings by repur-
posing existing pipelines for CO2 transport.

Despite substantial prior research on two-fluid modelling, simulating CO2 with high accuracy remains a chal-
lenge, due to its unique phase behaviour and thermodynamic properties. Consequently, numerical tech-
niques for modelling CO2 flow in pipelines are actively being developed by the energy sector, including Shell.
In this master thesis, various models are constructed and compared, with validation against experimental
data from SINTEF [4] [5] [6].

1.1. Problem description
As previously mentioned, CO2 flow can transition into a two-phase regime, significantly increasing the com-
plexity of simulations. Accurate modelling is essential for designing pipelines that are both cost-efficient and
safe for CO2 transportation. The materials used in pipeline construction are highly sensitive to tempera-
ture variations. If simulations predict lower temperatures than those actually experienced by the fluid, the
pipeline will be over-designed, resulting in unnecessary additional costs. Conversely, if simulations overesti-
mate the temperature, the pipeline will be under-designed and more susceptible to rupture. This presents a
significant hazard, as ruptures can propagate along the pipeline in a phenomenon known as running-ductile
fracture. A running-ductile fracture can cause extensive damage to large portions of the pipeline, as illus-
trated in Figure 1.1. The energy released during such an event is substantial, especially given that the pressure
in pipelines transporting CO2 can reach up to 160 bar [3]. Such failures not only pose serious safety risks but
also result in considerable economic and environmental consequences. Accurate simulations are therefore
critical to ensure that pipelines are designed to withstand these extreme conditions while minimising costs.
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The challenge with simulating two-phase CO2 flow lies in accounting for non-equilibrium effects. The most
accessible method for simulating CO2 flow is by employing the one-dimensional unsteady Euler flow equa-
tions and assuming bulk quantities across the cross-section of the pipeline. However, this approach over-
looks critical non-equilibrium effects, including pressure undershoots during rapid depressurisation, delays
in temperature changes, and differing velocities for the gas and liquid phases in stratified flow. These effects
are crucial for accurately capturing the dynamics of two-phase CO2 flow and ensuring reliable simulation
results.

Figure 1.1: Simulation of a pipeline ductile fracture. In the simulation, there is an initial rupture and this gives a snowball effect that
propagates the rupture over a large part of the pipeline. Source: Istre [7]

1.2. Present contribution
This study aims to simulate two-phase CO2 flow in a pipeline using various two-phase flow models and to
compare these models to identify their shortcomings. The main research question is:

• What are the differences and shortcomings of various flow models in simulation of CO2 flow in a pipeline,
and how can CO2 flow be predicted more accurately?

Several models were implemented and tested in this work. The simplest models, the HE M and DF 3 model,
which are explained in subsection 3.1.1, serves as a foundational approach to understanding and developing
the simulation framework. This model was compared to the solution by OLGA, a state-of-the-art simulation
tool for 1D multiphase flow, in which also the HE M and DF 3 models are used.

Furthermore, the DF 4 model, explained in subsection 3.1.3, was discretized with the HLLC method and eval-
uated. Here, the results are compared to the DF 3 model, whereby the difference in mass transfer is eval-
uated and the physical meaning behind it is discussed. Additionally, different methods for calculating the
mass transfer are incorporated, with a discussion on what the implementation of the different mass transfer
correlations mean. Lastly, the T F 5 model, explained in subsection 3.1.5, is discretized and used. It proved
time-wise to be too optimistic to simulate the T F 5 model with CO2 in this study. Nevertheless, the model’s
theoretical framework provides valuable insights into its potential applications.

1.3. Thesis structure
This thesis is divided into three main parts: Theory (chapters 2, 3, 4 and 5), Implementation (chapters 6 and
7), and Results (chapters 8, 9 and 10).

Chapter 1 introduces the motivation and context for this research.
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Chapter 2 reviews existing research, derives the physical modelling of CO2 flow using the Euler equations,
identifies gaps in the literature, and formulates the research questions and sub-questions.

In chapter 3, it is explained how the different flow models have been established, what additional source
terms are needed and how these models are simulated with a Riemann setup. Lastly, a discussion is given on
the mixture speed of sound of the models.

The thermodynamics of CO2 are described in chapter 4. It is briefly discussed what the Span-Wagner and
Peng-Robinson equation of states are. In addition, an explanation is given on how all primitive variables are
calculated.

In chapter 5, the numerics and discretization of the flow models are discussed. This means using the FVM
(Finite Volume Method) and the HLLC (Harten, Lax, van Leer, Contact) approximate Riemann solver. In
addition, it is shortly discussed how ODEs (Ordinary Differential Equations) are discretized for the thermo-
dynamics.

Chapter 6 provides the details of implementing the numerics into the code. Moreover, difficulties are ex-
plained and how to handle these in the code.

For an adequate implementation, the verification is crucial and this is addressed in chapter 7.

In chapter 8, all the results and outcomes of the models are presented.

In chapter 9, a discussion is presented of the observed physical implementations. Furthermore, the research
questions are answered.

Lastly, chapter 10 presents the conclusions of this research, and gives further recommendations for future
studies.





I
THEORY
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�
Literature Review

In this chapter, a literature review on the background of two-phase flow simulation for pure CO2 fluid is pre-
sented. The aim is to establish a foundation for the remainder of this study by identifying research gaps and,
ultimately, by justifying the research question introduced in chapter 1.

This chapter begins with an overview of two-phase flow in section 2.1, explaining the basic concepts and
importance of accurately modelling liquid and gas phases. In addition, in section 2.1, it is discussed what
the various two-phase models commonly found in the literature are, and their relevance to CO2 transport.
Particular attention is given to the assumptions that underpin each model and how they influence accuracy
and computational complexity. It is then examined how these models can be simplified through assumptions
regarding pressure, velocity, temperature, and chemical potential.

The discussion then turns to the choice of the EOS (Equation Of State). In section 2.2, the emphasis is placed
on the choice of an appropriate EOS for two-phase flow simulation of pure CO2, outlining how an unsuitable
EOS can undermine flow predictions. Several commonly used EOSs, namely Peng-Robinson, Stiffened Gas,
and Span-Wagner, are compared demonstrating the trade-offs between computational efficiency and phys-
ical accuracy. In addition, section 2.3 addresses numerical discretisation, focusing on hyperbolicity and the
selection of a reliable Riemann solver, namely the HLLC scheme, to manage shocks effectively.

Following this, the chapter highlights a key gap in the literature: although multiple authors have derived and
simplified two-phase flow equations, especially leading to the so-called T F 5 model, there appears to be no
documented application of the T F 5 model for pure CO2 flow. The potential benefits of this more advanced
model remain largely unexplored in the context of rapid depressurization of CO2 flow.

Finally, the essential experimental framework is introduced in section 2.5. This involves describing the CO2
depressurisation laboratory facility at ECCSEL in Norway, the test conditions, and the instrumentation used
for validating two-phase flow models.

2.1. General two-phase flow model
As stated earlier, CO2 fluid can exist in a state of single-phase flow or two-phase flow. In single-phase flow,
all the CO2 is in a gaseous, liquid, or supercritical state. If one considers a cross-section of the pipeline, the
assumption is that the fluid in that cross-section is homogenous, with uniform properties across the phase.

In a two-phase flow regime, however, a pipeline cross-section can simultaneously contain liquid and gaseous
phases. Still, it is assumed that the properties within each phase remain uniform. This means that in each
cross-section, there is a property for the liquid phase, and a property for the gaseous phase (such as liquid
and gaseous density). In Figure 2.1, a cross-sectional area of a pipeline is illustrated: three distinct two-phase
flow regimes are seen. In these examples, the blue area represents the liquid phase, and the white area repre-
sents the gaseous phase. Note that these are only three of many possible flow regimes.
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8 2. Literature Review

The proportion of each phase within a cross-section is expressed as the volume fraction, denoted as Æ. For
instance, in the rightmost cross-section of Figure 2.1, the liquid occupies approximately one-third of the total
area, while the gas occupies two-thirds. This corresponds to Æg = 2

3 and Æl = 1
3 . The sum of the volume

fractions always need to add up to one, see Equation 2.1. These volume fractions form the foundation for
constructing one-dimensional two-phase flow models.

Æg +Æl = 1. (2.1)

The most general and comprehensive model is the Baer-Nunziato model [8], B N 7 model, named after the
two authors who developed the model. This model is based on the one-dimensional unsteady compress-
ible Euler equations for fluid dynamics and consists of seven equations: two mass conservation equations
(one for each phase), two momentum equations (one for each phase), two energy equations (one for each
phase), and a compaction law that governs the phase interaction. The compaction law describes how the
volume fraction of one phase changes in response to pressure variations, enabling the model to account for
interfacial dynamics. Each phase has its own set of properties, including pressure, velocity, temperature, and
chemical potential (pg , pl , vg , vl , Tg , Tl , µg , µl ). Although this model was originally developed for a solid-
gas mixture for detonation waves in granular explosives, it is also possible to use it for liquid-gas mixtures [8]
[9] [10].

Figure 2.1: Cross sectional area of a pipeline with three different two-phase flow regimes. The blue area indicates where the flow is in a
liquid phase, and the white area indicates where the flow is in a gaseous phase.

Figure 2.2: Cross sectional area of a pipeline in the longitudinal direction. The flow is in a two-phase regime with liquid carrying gas
bubbles.

Nevertheless, the B N 7 model has not yet been applied to simulate CO2 two-phase flow. This is primarily due
to its complexity and the numerical challenges it presents, as its hyperbolicity is not guaranteed. As a result,
oscillations can arise in the solution, as discussed by Dallet [11] and Andrianov & Warnecke [12]. Additionally,
no validation of the model for a gas-liquid scenario has been documented. The only validation of the B N 7
model appears in the original paper by Baer & Nunziato [8], where it was tested against experimental data for
solid-gas mixtures. The results were in good agreement with the experimental data, showcasing its potential
for capturing interphase dynamics. Despite its robustness, the complexity of the B N 7 model has motivated
researchers to derive simplified models. For instance, Lund et al. [13], Martinez et al. [14], Morin et al. [15],
and Saurel et al. [16] have built upon the B N 7 framework to create less computationally demanding models.

2.1.1. Two-phase Euler equations
This derivation section explains how the B N 7 model is developed. The derivation done below is based on the
book of Toro, chapter 1 [17].
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Imagine a control volume, where a fluid element has a differential volume dV. It is known that there are three
fundamental physical principles: the conservation of mass, momentum and energy. Then integrated over a
three-dimensional domain, it becomes:
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Now, the Divergence Theorem states that for a vector field (F) defined on a region (V ) with a closed surface
(A ) (which is the boundary of (V )), the following relationship holds:
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where the left hand side is the surface integral of F over the closed surface A, representing the total flux of F
through A. The right hand side is the volume integral of the divergence of F over the volume V , representing
the total divergence within V . The set of equations becomes:
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Equations (2.6)–(2.8) are known as the bulk equations, as they contain bulk quantities of both phases. The
volume part of the equations state the total quantity (mass, momentum and energy), and the surface part of
the equations state the flux through the volume (mass flux, momentum flux and energy flux). In addition, the
momentum and energy equations have an additional component that is produced by the pressure. This is
the pressure force exerted on the volume for the momentum, and the rate of work done by the pressure force
on the volume for the energy. It is also possible to write a separate mass, momentum and energy equation for
each fluid. This is the following set:
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In these equations, the subscript k indicates the phase, where k = l denotes the liquid phase and k = g de-
notes the gaseous phase. Thus, equations Equation 2.9 through Equation 2.11 comprise two distinct sets:
one for the liquid phase (l ) and one for the gaseous phase (g ). In Equation 2.9 to Equation 2.11, the challenge
arises from the time-dependent changes in volume (Vk (t )) and surface area (Ak (t )). This is attributed to the
moving interface between the phases, which progresses with a velocity denoted as v Ak . This issue can be
addressed by introducing the volume fraction, as defined in Equation 2.12.

Æk = Vk

Vl +Vg
= Vk

V
. (2.12)

By employing this variable, the integration can once again be carried out from Vk (t ) to over the constant
volume V . v Ak becomes zero again, as the integration is now done over a fixed domain. For the flux terms,
the divergence theorem is applied to express them over the volumes, resulting in the following form:
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In addition to separate mass, momentum, and energy equations, the model also includes a topology equation
describing the evolution of the volume, Equation 2.16. This is the result of changing from the unknown mov-
ing domain Vk (t ), into the known fixed domain V . Since the liquid volume fraction is simply one minus the
gas volume fraction, only one topology equation is required. Finally, the system of equations are converted
into a one-dimensional differential form, facilitating numerical discretization and simulation. The resulting
seven equations are the following:
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These set of equations is the B N 7 model. It has a separate mass, momentum and energy equation for each
phase and as mentioned before, an additional topology equation, being Equation 2.23. By introducing sim-
plifying assumptions, the model can be reduced to less equations:

1. Equal Pressure Assumption:
Assuming equal pressures for both phases, i.e. (pg = pl = p), the topology equation, Equation 2.23, is
no longer required. This reduction results in the two-phase 6 model (T F 6), with six equations spanning
Equation 2.17 to Equation 2.22.

2. Equal Velocity Assumption:
A second assumption is to equal the velocities for both phases, i.e. (vg = vl = v). With this assumption,
one of the momentum equations can be replaced by a bulk momentum equation, obtained by sum-
ming Equation 2.19 and Equation 2.20. The resulting model is the two-phase 5 model (T F 5), which in-
cludes separate mass and energy conservation equations for each phase, Equation 2.17, Equation 2.18,
Equation 2.21 and Equation 2.22, alongside the bulk momentum equation, Equation 2.24.
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3. Equal Temperature Assumption:
Furthermore, assuming equal temperatures for both phases (Tg = Tl = T ), the energy equations can be
combined into a bulk energy equation:
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This yields the drift-flux 4 model (DF 4), which includes separate mass conservation equations for each
phase, Equation 2.17 and Equation 2.18, a bulk momentum equation, Equation 2.24, and a bulk energy
equation,Equation 2.25.

4. Equal Chemical Potential Assumption:
Lastly, by assuming equal chemical potentials for both phases (µg =µl =µ), the mass transfer terms in
Equation 2.17 and Equation 2.18 are combined, resulting in a bulk mass equation:

@Ω

@t
+ @(Ωv)

@x
= 0. (2.26)

Combining assumptions 1, 2, 3 and 4 gives the homogeneous equilibrium model (HE M), consisting of three
bulk equations: Equation 2.24, Equation 2.25, and Equation 2.26. If source terms, such as friction, are in-
cluded in any equation, the model becomes the drift-flux 3 model (DF 3). Figure 2.3 shows the models with
their respectively assumptions in a flowchart.

The path taken to arrive at the HE M model is not unique. An example is given in Figure 2.4. The DF 4°
a model consists of a bulk mass conservation equation, two distinct momentum conservation equations
and a bulk energy conservation equation. The reason for taking the path of Figure 2.3 will be examined in
subsection 2.1.2.

Figure 2.3: Flowchart of the various models and how to obtain these models by assuming different parameters to be identical.

Figure 2.4: Flowchart of the various models and how to obtain these models by assuming different parameters to be identical.

2.1.2. Simplifications
As discussed above, various assumptions can be made to simplify the original B N 7 model. The key ques-
tion is which assumptions are valid. A first reasonable assumption is the equality of pressures between the
phases. This assumption is based on the fact that pressure adjustments between two phases occur over a
much shorter timescale compared to other properties. Kapila et al. [18] argue that, in comparison to tem-
perature variations, the timescale for pressure changes is approximately 100 times smaller. This suggests that
a single pressure for both phases is a plausible assumption, and that both phases reach the same pressure
almost instantaneously. As Kapila et al. [18] state: "This is one reason why standard two-phase fluid models
assume pressure equilibrium."

Further supporting this, Guo et al. [19] conducted CO2 depressurization experiments in a horizontal pipeline.
These experiments, which included both dense-phase and gaseous-phase starting conditions, demonstrated
that the pressure was uniform across the top and bottom of the pipeline. In contrast, temperature differences
were observed, with a larger temperature difference near the rupture location, which diminished farther from
it. This suggests that the relaxation time for temperature changes is longer than for pressure.

A second reasonable assumption is that the velocities of both phases are in equilibrium. Hammer et al. [20]
modelled CO2 flow in a vertical pipeline and validated their model with experiments. They assumed iden-
tical properties for both phases: pressure, velocity, temperature, and chemical potential, i.e., pg = pl = p,
vg = vl = v , Tg = Tl = T , and µg = µl = µ. By including friction as a source term, this model corresponds to
the DF 3 model, rather than the HE M model. Hammer et al. also simulated the experiments where the as-
sumption of identical velocities was relaxed, leading to the DF 4°a model shown in Figure 2.4. Three different
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DF 4°a models were used, which differed by their choice of source terms for the friction in the momentum
equations. Their conclusion was that the DF 3 model provided the most accurate results. As Hammer et al.
stated: "The experimental results indicate that the flow is close to no-slip, within the experimental uncer-
tainty." It is important to note that these results were obtained for a vertical pipeline.

Again, the same paper of Guo et al. [19] is used to argue that the equality in velocity is reasonable. In the
gaseous-phase tests, the flow underwent depressurization, and upon reaching saturation conditions, part of
the flow transitioned into liquid droplets, as shown in the leftmost cross-section of Figure 2.1. In the dense-
phase tests, depressurization led to the formation of gas bubbles, as illustrated in the middle of Figure 2.1. In
both scenarios, the CO2 fluid phases were well-mixed within the pipeline cross-section. When only droplets
or bubbles are present, the two phases flow together, and the velocities remain the same. This phenomenon
is illustrated in Figure 2.2. Here, the fluid velocity will be in the x-direction. The bubbles are surrounded by
the liquid, and therefore, are transported with the liquid in the same direction. When the bubbles are small,
they travel with the same velocity as the liquid, being a no-slip condition. This principle applies to both gas
bubbles in liquid and liquid droplets in gas, providing a strong rationale for assuming that both phases share
the same velocity in a well-mixed flow.

Under low flow conditions, a clear phase separation can occur, as seen in the rightmost cross-section in
Figure 2.1. Here the top portion of the pipeline contains the gas phase, while the bottom portion contains the
liquid phase. This is a so-called stratified flow regime. This phase separation implies that different velocities
for each phase may exist, resulting in frictional interactions. This was not the situation in the tests of Guo et
al.[19].

2.1.3. Flow models discrepancies
Building on the research and theories presented previously, there is substantial evidence to justify assuming
that both phases share the same pressure (pg = pl = p) and velocity (vl = vg = v) in two-phase CO2 flow in
rapid depressurization situations. However, whether the chemical potential (µ) and temperature (T ) can also
be taken as identical for both phases remains an open question.

At the SINTEF research centre in Norway, Munkejord et al. [21] and Log et al. [22] [23] [24] carried out mul-
tiple depressurization experiments starting with CO2 at high pressure. The initial conditions for these tests
are listed in Table 2.2 and shown in Figure 2.7, which presents a pressure–temperature diagram. During these
experiments, Munkejord et al. [21] observed that the CO2 pressure dropped below the local saturation pres-
sure before entering the two-phase regime—a phenomenon known as “pressure undershoot.” Under strictly
chemical-equilibrium conditions, one would expect the pressure to reach the saturation line, transition to
two-phase flow, and then follow that line in both pressure and temperature. The observed pressure under-
shoot indicates a degree of non-equilibrium behaviour during depressurization; an illustrative example is
provided in Figure 2.6 (not based on any specific simulation or experiment). Log et al. [22] [23] [24] showed
that abandoning the assumption of chemical equilibrium—by using a DF 4 model instead yielded simula-
tions that more closely matched the experimental data, especially during the first 100 [ms] of the tests.

In addition to pressure measurements, the SINTEF experiments also recorded pipeline temperatures at sev-
eral locations, including the bottom, top, and sides of the cross-section, in order to identify if different tem-
peratures occur. Munkejord et al. [21] compared these results with simulations using the DF 3 model, which
assumes identical properties for both phases. Although this approach produced accurate results for some
scenarios, certain cases showed significant discrepancies. Two such examples are given in Figure 2.5. In Fig-
ure 2.5a, the simulated temperature is notably lower than the measurements, leading to an overly conserva-
tive pipeline design (and unnecessary cost). Conversely, Figure 2.5b shows a scenario in which the simulation
predicts a higher temperature than observed, posing an increased risk of pipeline failure. Furthermore, the
measured data indicate that temperatures at the top and bottom of the pipeline can diverge, suggesting that
assuming a single temperature for both phases is not always valid.
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(a) Temperature result of the experiment and simulation of test 11 at a
distance of 61.280 [m]. Source: Munkejord et al. [21].

(b) Temperature result of the experiment and simulation of test 6 at a dis-
tance of 46.085 [m]. Source: Munkejord et al. [21].

Figure 2.5: Temperature results of the DF 3 model compared with experimental data. Source: Munkejord et al. [21].

Figure 2.6: Pressure undershoot of a possible depressurization path. Source: Log et al. [22].

2.2. Equation of state
While choosing an appropriate two-phase flow model, two additional factors must be considered. The first is
the choice of the equation of state (EOS). An EOS relates the state variables of a fluid, and an unsuitable EOS
can lead to inaccurate predictions of the fluid properties. Although the ideal gas law is the most familiar and
straightforward EOS, it often fails under high-pressure conditions and during phase transitions.

A review of the literature shows that three EOSs are most commonly employed for simulating CO2:

• Peng-Robinson (PR) EOS, introduced by Peng & Robinson [25]. Originally developed for natural gas
systems, it can be adapted for CO2 by modifying standard parameters. Its algebraic cubic form makes
it relatively easy to solve.

• Stiffened Gas (SG) EOS, formulated by Harlow & Amsden [26] and adapted for CO2 by adjusting con-
stants, as demonstrated by Lund et al. [13], [27]. This equation is also algebraic and is computationally
efficient.

• Span-Wagner (SW) EOS, proposed by Span and Wagner [28] specifically for CO2. It is considered the
most accurate choice for pure CO2 applications.

Munkejord et al. [29] reviewed the SW EOS, reporting uncertainties of 0.05% for density, 0.006% for vapour
pressure, and about 1.0% for the speed of sound. Böttcher et al. [30] likewise compared the SW, SG, and PR
EOS, concluding that the SW EOS provided superior performance across a wide range of conditions, a result
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corroborated by other studies from Hammer et al. [31], and Zhou et al. [32]. Despite its accuracy, the SW EOS
can be computationally intensive—often requiring ten to twenty times more computational resources than
the SG or PR EOS, as stated by Böttcher et al. [30]. Nevertheless, if computational resources permit moderate
solution times, the SW EOS remains the most recommended option.

2.3. Discretization and hyperbolicity of the T F 5 model
Discretization is a crucial step in evaluating the feasibility and convergence of two-phase flow models, as it
involves examining various model attributes. One such attribute is the hyperbolicity of the partial differential
equations (PDEs): a hyperbolic system ensures a unique solution for a given set of initial conditions. For the
T F 5 model, its hyperbolicity has been established by Martinez et al. [14], Munkejord et al. [33], Saurel et al.
[16], and Kreeft et al. [34].

Another major consideration in discretization is selecting an appropriate Riemann solver to compute fluxes
in regions featuring shocks. The Harten–Lax–van Leer contact (HLLC) scheme, introduced by Toro [17] [35],
is a widely recognised and validated solver. Although it was originally formulated for the HE M model, the
HLLC method has since been applied successfully to other models, including the DF 4 model investigated by
Log et al. [22] [23] [24]. Moreover, Saurel et al. [36] and Pelanti & Shyue [37] employed HLLC for the T F 6
model. In addition, de Böck et al. [38] used it for a different five-equation two-phase flow model. Collectively,
these findings provide strong evidence that it is both feasible and reliable to discretize the T F 5 model using
the HLLC scheme as the approximate Riemann solver for flux calculations.

2.4. Literature gap
Given the aforementioned considerations, it is reasonable to assume that pressure and velocity (no-slip con-
dition) are identical for both phases at rapid depressurization cases. By contrast, there are compelling ar-
guments against assuming the same temperature and chemical potential for each phase. A review of the
literature shows that several authors have provided derivations of the T F 5 model, where only pressure and
velocity are set equal. This derivation has been presented by Martinez et al. [14], Saurel et al. [16], Kapila et
al. [18], Munkejord et al. [33], and Kreeft & Koren [34]. However, Martinez et al. [14], Kapila et al. [18] and
Munkejord et al. [33], did not implement these models in any numerical simulations. Although Kreeft & Ko-
ren [34] performed simulations, their study addressed a two-fluid system without mass transfer, and Saurel
et al. [16] focused on a single fluid with two phases of dodecane rather than CO2. Consequently, there is no
evidence in the literature that the T F 5 model has been applied to CO2. This represents a clear gap, suggesting
that implementing the T F 5 model for CO2 could enhance simulation accuracy.

2.4.1. Objective
As outlined in section 1.2, this research aims to investigate existing flow models for CO2 two-phase flow,
assess their predictive capabilities in greater detail, and implement a new flow model to improve accuracy
in simulating CO2 flows. Several sub-questions have been formulated to fulfil this objective, as shown in
Table 2.1.
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Table 2.1: Overview of sub-questions and whether the sub-question has already been answered in the literature study, or will be answered
in this master thesis.

Question Method
1. What flow models have been used for simulating CO2 flow?
1.1 How accurate where the HE M and the DF 3 models?

1.1.1 What where the shortcomings of the DF 3 model?
Literature study &

master thesis
1.2 How accurate was the DF 4 model?

1.2.1 What where the shortcomings of the DF 4 model?
Literature study &

master thesis
1.3 Why did the DF 4 model better predict in comparison to the DF 3 model? Master thesis

1.4 Which equation of state is used and recommended?
Literature study &

master thesis
2. What flow models can be used for simulating CO2 flow more accurately?
2.1 Has the T F 5 model been used for predicting CO2 flow? Literature study
2.2 Can the T F 5 model be used for predicting CO2 flow?
2.2.1 Has the T F 5 model been used by other researchers? Literature study
2.2.2 Can the HLLC approximate Riemann solver be used for flux calculation? Master thesis
2.3 Does the T F 5 model predict CO2 flow more accurately? Master thesis

Although the T F 5 model was successfully discretised and verified against several test cases, time constraints
prevented its application to the CO2-specific experiments. Consequently, further work is required to fully
evaluate the model’s potential for improving CO2 flow simulations.

2.5. Experiments
In order to validate the different flow models, experimental data are essential. ECCSEL has a depressurization
lab facility especially made for CO2 and CO2-rich mixtures. The facility is located at the roof of the Thermal
Engineering Laboratories at the campus of the Norwegian University of Science and Technology (NTNU) in
Trondheim. In the facility’s experimental setup, a 61.67 [m] horizontal pipeline is filled with CO2 gas, and
liquefied by two stages of compression and cooling, until the desired initial conditions are reached. The pro-
cedure of the experiment, and the properties, dimensions and sensors of the pipeline are given in Appendix E.

2.5.1. Test cases
In total, eight full-bore CO2 pipe depressurization tests were conducted by Log et al. [24] and Munkejord et
al. [21]. These tests all begin at a high initial pressure, in order for the CO2 to be in the dense phase or liquid
phase, before transitioning into the two-phase region. The complete set of experiments was conducted with
initial temperatures approximately ranging from 5[±C] to 40[±C], and with an initial pressure of around 120
[bar ]. Table 2.2 provides the initial conditions for the eight pure CO2 tests, and Figure 2.7 illustrates their
locations on a pressure–temperature diagram.

Table 2.2: Experimental conditions of the CO2 depressurization tests, listed in the order of descending initial temperature. § done by
Log et al. [24] ; † done by Munkejord et al. [21]. All conditions had an ambient pressure of 1 [bar ].

Test no. Pressure avg. [bar ] Temperature avg. [±C] Ambient Temperature [±C]
6§ 104.0 40.0 8.0
24† 115.6 35.8 10.4
23† 121.9 31.5 15.3
8§ 122.2 24.6 10.1
4§ 125.4 21.1 26.8
22† 124.8 14.9 14.4
19† 124.7 10.2 18.3
25† 122.7 4.6 -8.5
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Figure 2.7: Initial conditions of the test-cases on the PT diagram of CO2.

2.6. Chapter Summary
• Two-Phase Flow Fundamentals

The chapter begins by explaining the transition from single-phase to two-phase flow for CO2, highlight-
ing the importance of accurately capturing liquid-gas interactions under high-pressure conditions.

• Model Derivations and Simplifications
The Baer–Nunziato (B N 7) model and its derived forms (T F 6, T F 5, DF 4, and DF 3) are introduced.
Each model’s simplifying assumptions—equalising pressures, velocities, temperatures, or chemical
potentials—are discussed, illustrating the trade-off between complexity and computational practical-
ity.

• Equation of State (EOS) Considerations
The discussion covers key equations of state, including the Peng–Robinson (PR), Stiffened Gas (SG),
and Span–Wagner (SW) formulations. While the SW EOS provides the highest accuracy for pure CO2, it
also involves significantly higher computational costs.

• Numerical Discretisation
The importance of hyperbolicity in ensuring unique solutions to the flow equations is emphasised. The
HLLC approximate Riemann solver is introduced as a robust method for handling shocks, having been
applied successfully to models such as T F 6, DF 4, and DF 3. This background supports the feasibility
of employing T F 5 with the same solver.

• Literature Gap
A critical gap is identified: although the T F 5 model is well-documented theoretically, its application
to CO2 is absent from the literature. Existing research primarily focuses on simpler models (e.g., DF 3,
DF 4) or applies T F 5 to other fluids without incorporating mass transfer. This suggests an opportunity
for improved accuracy by implementing and testing T F 5 for CO2.

• Experimental Context
The chapter concludes by outlining the ECCSEL depressurisation facility, describing the high-pressure
tests undertaken on CO2. These experiments, aimed at replicating dense and liquid-phase conditions,
serve as reference points for validating both established and novel flow models.

By synthesising theoretical analysis, model derivations, and experimental findings, this chapter lays the ground-
work for deeper investigation into CO2 two-phase flow simulation and the potential application of the T F 5
model.
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Multiphase Flow

This chapter begins by defining what two-phase flow modelling is and which assumptions are used. In addi-
tion, the different flow models are examined in section 3.1. Here, more information is given about the flow
models, and what the pros and cons are. section 3.2 introduces the Riemann setup, followed by an examina-
tion of the source terms in section 3.3. Finally, section 3.4 presents a discussion of the speed of sound in these
flow models.

3.1. Two-phase flow modelling
Two-phase flow is the simplest form of multiphase flow, consisting of two distinct phases, which may be
solid–liquid, solid–gas, or gas–liquid. In the context of pure CO2 transport, two-phase gas–liquid flow typi-
cally arises during transient conditions and steady-state transport. Furthermore, because CO2 is most com-
monly transported in a liquid or dense phase, and rapid depressurisation can cause it to transition to vapour,
the gas–liquid regime is the most relevant for this research. The phase diagram in Figure 3.1 illustrates the
conditions under which CO2 is typically transported, as given by Han et al. [39].

Figure 3.1: Phase diagram for CO2, and the relevant operating range for CO2 pipeline transportation [39].

As mentioned in subsection 2.1.1, the multiphase flow in this research is derived from the unsteady, com-
pressible Euler equations. In these equations, viscosity and heat conduction are neglected, although they
can be incorporated as source terms if required. The Euler equations are particularly suitable for flows with
high Reynolds numbers, where inertial forces dominate over viscous forces. Conversely, they may be less
appropriate in scenarios involving strong shocks or significant vorticity, as the simplification to the potential
equation is no longer valid.

In the context of pipeline flow, especially during depressurisation, the flow often reaches high speeds and
thus exhibits high Reynolds numbers. In addition, as the working fluid transitions from liquid to gas, the

17
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Reynolds number increases further. Furthermore, as will be more thoroughly explained in subsection 3.2.3,
only rarefaction waves (rather than shocks) occur in the pipeline, making the Euler equations a reasonable
choice for modelling depressurisation test cases.

The following general assumptions, applicable to all models discussed, are used:

• The flow is modelled as one-dimensional, and thus the flow is assumed to be mixed in the cross-
sectional direction.

• The viscous term, øxx , is neglected. However, wall-friction will be incorporated in the model.

• Turbulence are captured through the applied wall friction correlation.

• The flow is assumed to be adiabatic, indicating no heat transfer through the pipeline walls or to the
ambient environment. However, heat transfer may occur within the fluid inside the pipeline.

3.1.1. The Homogeneous Equilibrium Model (HE M)
The Homogeneous Equilibrium Model (HE M) is widely used for modelling flow in pipelines, leveraging the
Euler flow equations for accuracy under certain conditions. The HE M employs bulk conservation equations
for mass, momentum, and energy, which, in differential form, are given as follows:
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The model assumes that both phases are in complete equilibrium for all thermodynamic and flow parame-
ters, meaning that the pressure, velocity, temperature and chemical potential are assumed to be the same for
both phases (pg = pl = p, vg = vl = v, Tg = Tl = T, µg = µl = µ). This assumption simplifies the problem by
treating the flow as a single-phase system with averaged properties, which is computationally efficient but
limits the ability to capture non-equilibrium effects.

The eigenvalues of the Euler equations, as derived by Munkejord et al. [29], are all real and linearly indepen-
dent, confirming that the system is hyperbolic. These eigenvalues are seen in Equation 3.5. Hyperbolicity is
critical for ensuring well-posedness, as it guarantees that the solution evolves predictably over time. Addi-
tionally, the equations are written in a conservative form, meaning that all conserved variables are explicitly
included in the flux terms. This ensures that physical quantities such as mass, momentum, and energy are
conserved over time, even in the presence of discontinuities such as shock waves. Further details about the
mixture speed of sound, an important characteristic for modelling compressible flows, is provided in sec-
tion 3.4.
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Pros and cons
The primary advantage of the HE M model lies in its simplicity and computational efficiency, making it suit-
able for simulations where rapid solutions are needed. By assuming complete equilibrium, the model avoids
the complexities of tracking separate phase properties, leading to faster convergence and easier implemen-
tation.
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However, the HE M model has significant limitations. The assumption of equilibrium for all parameters
(pressure, velocity, temperature, and chemical potential) means it cannot capture non-equilibrium phenom-
ena such as phase separation, velocity slip, or temperature gradients between phases. These effects, which
are critical in certain scenarios like rapid depressurisation or highly dynamic flows, cannot be accurately re-
solved using the HE M model.

3.1.2. The Drift Flux Three Model (DF 3)

The HE M model serves as the foundation for inviscid fluid dynamics. However, to better capture the physics
of the problem, source terms can be incorporated. In the DF 3 model, two additional source terms are in-
cluded: wall friction (F ) and gravity (Ωg · si n(±)). Here, the angle ± is defined with respect to the horizontal
axis (positive if upward inclined). The modified momentum equation with the added source terms is shown
in Equation 3.6. Further details about the source terms will be given in section 3.3.
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A heat transfer term representing the exchange of energy with the wall and ambient environment was also
considered for the energy equation. However, due to the short simulation times typical of the scenarios anal-
ysed, this term was found to have an insignificant effect on the results and was therefore omitted.

The addition of these source terms does not alter the eigenvalues or speed of sound of the system. Conse-
quently, the DF 3 model retains the hyperbolic properties of the HE M model, making it a computationally
efficient extension that improves the realism of the physical representation without significantly increasing
complexity.

Pros and cons

The DF 3 model offers advantages over the simpler HE M model without giving drawbacks. By incorporat-
ing source terms such as wall friction and gravity, it captures additional physical effects that are important
in real-world pipeline flow scenarios. The model retains the computational efficiency and simplicity of the
HE M model, as the addition of source terms does not alter the hyperbolicity or eigenstructure of the equa-
tions. This makes it well-suited for scenarios where the primary goal is to balance computational cost with
improved physical accuracy.

The only additional downside is that the computation effort will slightly increase. Besides, it still does not ac-
count for non-equilibrium effects such as phase separation, velocity slip, or temperature gradients between
phases, as it assumes complete equilibrium for all thermodynamic and flow parameters. Additionally, while
the model includes gravitational and frictional effects, the exclusion of heat transfer terms may limit its ap-
plicability in cases where heat exchange plays a significant role over longer timescales.

3.1.3. The Drift Flux Four Model (DF 4)

The Drift Flux Four Model (DF 4) introduces a second equation for mass transfer, ensuring that each phase
has its own mass conservation equation. The governing equations for this model are:
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In this model, the pressure, temperature, and velocity are still assumed to be in equilibrium. However, the
chemical potential is no longer assumed to be equal. This adjustment allows the mass transfer between
phases to be controlled dynamically through the source term °, aligning better with the physical processes.
Further details regarding ° and its implications are discussed in Section 3.3.3.

The eigenvalues for the DF 4 model, derived by Martinez et al. [14], are shown in Equation 3.8:
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Similar to the HE M model, the eigenvalues are all real and linearly independent, confirming that the system
is hyperbolic. The additional eigenvalue ∏3 = v , which is not present in the HE M model, is associated with
the propagation of the discontinuity in the mass fraction of the phases at the flow speed.

Pros and cons
Similar to the HE M and DF 3 models, the DF 4 model is conservative, with all fluxes explicitly defined within
the differential equations. This ensures compatibility with the same numerical methods and schemes. More-
over, the inclusion of a second mass conservation equation introduces the flexibility to dynamically adjust
the mass transfer between phases, enhancing the model’s ability to capture non-equilibrium effects.

However, this flexibility also presents a challenge. Determining an accurate and physically consistent mass
transfer relation can be complex and case-dependent. Additionally, the inclusion of the mass transfer source
term can increase the model’s stiffness, particularly over longer simulation time-scales, potentially requiring
smaller time steps and more computational effort.

3.1.4. Alternative formulation
An alternative approach to the DF 4 model involves replacing the separate mass transfer equations with one
equation for a specific phase and another for the total mass transfer. Mathematically, this formulation is
equivalent to the original DF 4 equations and will produce identical results. However, from a programming
perspective, this approach can simplify implementation and debugging. Additionally, it allows for an easy
transition back to the DF 3 model by disabling the phase mass transfer equation. It should be noted that tran-
sitioning back to the DF 3 model impacts the calculation of primitive variables, as discussed in section 4.4.
The governing equations for this alternative are as follows:
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3.1.5. The Two Phase Model (T F 5)
The Two Phase 5 (T F 5) model extends the capabilities of the DF 4 model by introducing an additional energy
equation, resulting in a total of five governing equations. The complete set of equations is as follows:
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In this model, only the pressure and velocity are assumed to be uniform for both phases, while the chemical
potential and temperature are not. This allows the T F 5 model to better capture non-equilibrium effects, such
as phase-specific temperature gradients and chemical disequilibrium.

The eigenvalues for the T F 5 model, shown in Equation 3.11, confirm that all eigenvalues are real and linearly
independent, making the system hyperbolic. The eigenvalues are derived in Appendix C. The additional
eigenvalues, ∏3,4 = v , compared to the HE M model, are associated with the discontinuities in temperature
and mass fraction of the phases, both of which propagate at the flow speed.
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In subsection 3.3.4, the source term SE will be examined in detail. There it will be showed that the variables
are not all contained in the derivatives, and the set of equations is non-conservative. This can give multiple
problems, especially when dealing with shocks and discontinuities. In section 5.6, an explanation will be
given on how to deal with these problems.

Pros and cons
The T F 5 model offers significant advantages compared to the other models, as it can capture more non-
equilibrium effects, including temperature differences between the phases. Additionally, the inclusion of a
separate energy equation for the gas phase allows the model to potentially capture temperature delay effects,
which can be crucial in accurately modelling transient flow behaviour.

However, the T F 5 model also presents notable challenges. The inclusion of derivatives with outside vari-
ables in the source term makes the system non-conservative, complicating its numerical implementation.
Non-conservative systems require special care to ensure that physical conservation laws are respected. This
complexity often necessitates advanced numerical techniques, which can increase computational cost and
implementation difficulty. Furthermore, the additional equations and source terms may introduce stiffness
into the system.

3.1.6. Alternative Two Phase Model (T F 5°2)
An alternative model where five equations are used is seen in Equation 3.12. The difference here is that a
second energy equation is replaced by a topology equation. Nevertheless, the same set of eigenvalues is
obtained as for the T F 5 model, Equation 3.11. This model is used in order to verify the numerics, as it also
contains derivatives where not all variables are contained in the derivatives, thus making it non-conservative.
However, it will not be used in simulating CO2 in the pipelines. Note that °, F and the gravity terms are
neglected, as for the verification, these source terms were not important.
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3.2. Riemann setup
The Riemann problem is a fundamental concept in the study of hyperbolic partial differential equations
(PDEs). It provides a simplified framework for understanding wave propagation and the behaviour of so-
lutions to these equations. The dynamics of conserved variables and the relationships between other wave
types, including shock waves, contact discontinuities, and rarefaction waves can be learned by looking at
the Riemann problem. This section will explore the characteristics and Riemann invariants, followed by a
detailed discussion of the Riemann problem and its implications for flow models.

3.2.1. Characteristics and Riemann invariants
The hyperbolic nature of the models allows them to be rewritten in their characteristic form. By examining
the characteristic properties, we can gain insight into the transport of conserved variables. The models are
rewritten by using the chain rule:

Ut + JUx = 0, (3.13)

J = R§R°1, (3.14)

where J is the Jacobian matrix. The model can then be redefined by the characteristic vector:

w = R°1U (3.15)

wt +§wx = 0. (3.16)

This means that the conserved variables, U, are reformulated into linearly independent characteristics vari-
ables, w. The reason for doing this is that the velocities of the independent variables are solely given by the
eigenvalues, ∏. The travel path of the information can be plotted in a space-time diagram. An example is
sketched in Figure 3.2. Each line indicates the trajectory along which information about each characteristic
property travels. The slope of these lines is given by 1

∏ . There are four separate regions in the time-space dia-
gram. In region a, w is equal to wL , as all information comes from the most left state and no mixing happens.
The same applies for region d, where w is equal to wR . To the contrary, regions b and c do have information
coming from the left and right state, meaning that the primitive variables can be calculated as a combined
function of wL and wR .

3.2.2. Riemann problem
The Riemann problem is initially a shock tube, which is separated in the middle by a diaphragm. It is is
crucial for understanding the behaviour of solutions to hyperbolic PDEs. The left side and right side both have
different starting conditions, and at t = 0, the diaphragm is removed. The setup is written in Equation 3.17.

Ut +F(U)x = 0,

U(x,0) =
(

UL if x < 0,

UR if x > 0.

(3.17)
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Figure 3.2: A space-time diagram with the propagations of the characteristics. To the left are the shock wave & contact discontinuity, and
to the right is the rarefaction wave. Assuming a sufficiently short time scale, the variables ’u’ and ’c’ can be considered approximately
constant. This approximation results in straight characteristic lines.

The result will be that multiple waves will appear. The number of waves depends on the system of flow equa-
tions, and how many eigenvalues it has. There are three wave type: a contact discontinuity, a shock wave or a
rarefaction wave.

A shock wave is known as a type of propagating disturbance that moves with the local speed of sound in the
medium. Here, all variables (p, v , Ω, e), are discontinuous. It is characterized by an abrupt change in the
variables. The velocity of a shock wave is calculated with the Rankine-Hugoniot (RH) condition, which is:

F(U)L °F(U)R = S(UL °UR ). (3.18)

Here, S is the speed of the wave. In section 5.2, the RH condition is used to derive the different states in the
HLLC approximate Riemann solver.

A contact discontinuity is characterized by a surface in the flow field across which there is a discontinuity in
the fluid properties. It reflects the contact of two fluids in different states. While in a shock wave, all variables
are discontinuous, at a contact discontinuity, the pressure, p, and velocity, v , are not discontinuous. The
density, Ω, and internal energy, e, are discontinuous, and thus the entropy, s, is also discontinuous. Again, the
speed of the wave is calculated with Equation 3.18.

Lastly, there is the rarefaction wave. A rarefaction wave is a type of wave that causes a decrease in density and
pressure in the medium. In rarefaction waves, the variables, such as density Ω, velocity v , internal energy e,
and pressure p change gradually and continuously. This means that the entropy is constant along the flow
lines.

3.2.3. Practical application
Now applying the Riemann problem to the flow models, it is seen that every model has three distinct eigen-
values, namely v ° c, v and v + c. These eigenvalues correspond to the speed of the three waves. The middle
wave with speed v will always be a contact discontinuity, while the two other waves can be rarefaction or
shock waves, depending on the initial condition. With these details, the solution of numerical simulations
can be found, and the waves will tell how different stages are connected with each other. In a more practical
sense, when a pipeline ruptures, the conditions in the pipeline can be seen as one state, while the ambient
conditions are a second state. Because the initial conditions in the pipeline often have much higher pressure
than outside, there will only be a rarefaction wave moving inside the pipeline, while there will be a shock wave
and contact discontinuity travelling outside of the pipeline.
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3.3. Source Term
In order to describe the physics more accurately, multiple source terms can be included. The source terms
that are used are the ° term for the mass transfer but also for the delay in condensation/evaporation, the
friction of the fluid with the pipeline denoted as F and a gravity term (which is zero for horizontal test cases).
In addition, the source term for the energy equation of the gas is derived at the end of this section.

3.3.1. Friction (Friedel method)
The friction is calculated with the Friedel correlation [40], in the simulations made by Log et al. [23]. The
friction is calculated as follows, where the top equation is for single phase flow and the the bottom for two-
phase flow.

F =
(

fk
Ωv |Ωv |
2Ωk di

,

f`
Ωv |Ωv |
2Ω`di

©.
(3.19)

fk = f (Rek ) is the Darcy friction factor, di is the inner diameter of the pipeline and © is an empirical correla-
tion, which is used to account for two-phase flow, and it depends on various properties of both phases.

The Darcy friction factor is a parameter that depends on whether the flow is laminar or turbulent. It is calcu-
lated based on how high the Reynolds number is. In the Reynolds number, the viscosity is calculated with the
method of Laesecke & Muzny [41]. For single phase flow, it is calculated as follows:

fk =

8
<
:

64
Re , if Re < 1055,≥
0.86859 · l n

h
Re

1.964·l n(Re)°3.8215

i¥°2
, if Re > 1055,

(3.20)

Re = |Ω · v | ·di

¥
. (3.21)

For the two-phase flow, the Reynolds number, Re, and viscosity, ¥1, are based on the volume fraction of each
phase:

fk =

8
<
:

64
Re , if Re < 1055,≥
0.86859 · ln

h
Re

1.964·ln(Re)°3.8215

i¥°2
·©, if Re > 1055,

(3.22)

Re =Æg Reg +Æl Rel , Rek = |Ωk · v | ·di

¥k
, (3.23)

¥=Æg¥g +Æl¥l , ¥k = f (Ωk ,T ). (3.24)

© is calculated the following way. Here A,B and C are arbitrary letters to indicate functions. æ is the surface
tension, and for all calculations, it is set to 53·10°3[N /m]. A better way is to calculate the surface tension with
the method of Mulero et al. [42], as recommended by NIST [43].

©2 = A+ 3.24 ·B ·C
F r 0.045

h W e0.035
l

, (3.25)

A = (1°Y )2 +Y 2 Ωl fg

Ωg fl
, (3.26)

B = Y 0.78(1°Y )0.224, (3.27)

C =
µ
Ωl

Ωg

∂0.91 µ
¥g

¥l

∂0.19 µ
1°

¥g

¥l

∂0.7

, (3.28)

fl =
0.316

Re0.25
l

, fg = 0.316

Re0.25
g

, (3.29)

F rh = (Ω · v)2

9.81 ·di ·Ω
, W el =

(Ω · v)2di

æ ·Ω . (3.30)

Please note, because © is multiplied in the friction factor, and in the final friction equation, it is the same as
having©2, More details on the expressions can be found in [40] and [44].
1In literature, viscosity can also be defined as µ
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3.3.2. Friction (Churchill method)
Another method to calculate friction is the Churchill method [45]. This method is easier to implement and,
as will be shown later, provides similar results as the previous method. Below is shown how the friction
is calculated with the Churchill method. What is clear is that it is much less complex to calculate and to
implement. In addition, there is only a small difference between single phase, two phase and two phase for
the T F 5 model. The only difference is how the mixture viscosity is calculated.

F = fchur chi l l
2Ωv |v |

di
, (3.31)

fchur chi l l = 2 · (Ter m1 +Ter m2)
1

12 , (3.32)

Ter m1 =
µ

8
Re

∂12

, (3.33)

Ter m2 =
µ

1
A+B

∂1.5

, (3.34)

A =
∑
°2.457 · l n

µµ
7

Re

∂0.9

+0.27
"

di

∂∏16

, (3.35)

B =
µ

37530
Re

∂16

. (3.36)

In this method, the Reynolds number is always calculated with the mixture density and mixture viscosity. " is
the pipe mean roughness.

Re = |Ω · v | ·di

¥
, (3.37)

¥=

8
><
>:

¥(Ω,T ), if Single Phase ,

Æg¥g (Ωg ,T )+Æl¥l (Ωl ,T ), if Two-Phase,

Æg¥g (Ωg ,Tg )+Æl¥l (Ωl ,Tg ). if Two-Phase with T F 5.

(3.38)

3.3.3. Mass transfer for the DF 4 model
The mass transfer between the gas and liquid allows for incorporating non-equilibrium effects, and gives the
ability of superheating of the liquid phase or subcooling of the gas phase. A possible formulation for ° is:

°= Ω
Yg ,sat °Yg

µ
, (3.39)

Yg =
ΩgÆg

Ω
. (3.40)

Here, µ is a relaxation time related to the delay in the phase change process. A larger µ provides a higher phase
change process, allowing for more superheating of the liquid phase. In the testcases, µ is a tuning parameter.
Yg is the mass fraction of the gaseous phase.

The saturation mass fraction of the gaseous phase, Yg ,sat , can be computed using three distinct methods:

1. Bilicki & Kestin Method Based on the work of Bilicki & Kestin [46], the saturated mass fraction is given
by:

Yg ,sat =
1
Ω ° 1

Ωl ,sat

1
Ωg ,sat

° 1
Ωl ,sat

. (3.41)

In the original paper, the saturated liquid and vapour densities (Ωl ,sat and Ωg ,sat ) were functions of
pressure. In this research, however, they are functions of temperature.
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2. Reduced UV Flash for DF3 This method leverages saturation densities as functions of temperature
and is based on a reduced UV flash calculation developed by Kumar et al. [47]. More is explained in
subsection 4.4.3. It is defined as:

Yg ,sat =
Ωg ,satÆg ,sat

Ω
, (3.42)

Æg ,sat =
Ω°Ωl ,sat

Ωg ,sat °Ωl ,sat
. (3.43)

(3.44)

3. UV Flash of DF3 Used by Log et al. [22], this method calculates the gaseous density and volume fraction
using the UV flash from the DF 3 model, as explained in subsection 4.4.2:

Yg ,sat =
Ωg ,HEMÆg ,HEM

Ω
. (3.45)

The first two methods yield identical results, making them reliable and computationally efficient. The third
method, while slightly different, is computationally more expensive and prone to numerical errors. As such,
it is recommended to use one of the first two methods. In this research, the ’Reduced UV Flash for DF 3’ is
used.

The mass transfer term has been used more frequently for other substances [46]. Other mass transfer terms
are applied in literature. However, for these transfer terms, other equilibrium assumptions have to be made,
resulting in a not working term for the used models in this research.

• °= K (µl °µg ),

• °=C ·ÆlΩl
T°Tsat

Tsat
,

• °=C ·ÆlΩl
p°psat

psat
.

3.3.4. Source term energy equation
The derivation of the energy source term is based on Kreeft & Koren [34]. It should be noted that it has been
independently done by Munkejord et al. [33] for a six equation model (see Appendix B).

The energy exchange is possible due to mechanical work, thermodynamic work, and heat exchange with the
phases. In differential form, the rate of energy exchange is given to be:

dw
dt

= F · dr
dt

= F · v. (3.46)

In here, F is the force exerted by the liquid phase on the gaseous phase. We denote F as SM , being the me-
chanical work done. Next, there is the thermodynamics work. This happens when a fluid changes volume,
and is given in the time-derivative as:

dw
dt

=°p · dV
dt

. (3.47)

We denote this as ST . Lastly, there is the energy exchange by heat exchange of the mass transfer. We we call
this SH . The total source term is:

SE = SM · v +ST +SH . (3.48)

To find SM , the assumption of a bulk velocity is applied. This means that the velocity in the momentum
equation of the liquid phase is the same as the velocity in the momentum equation of the gaseous phase,
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Equation 3.49. Now, we fill in the mass conservation equation of the gaseous phase with no mass transfer,
Equation 3.50, and we get Equation 3.51.

@(ÆgΩg vg )

@t
+
@(ÆgΩg v2

g )

@x
+
@(Æg pg )

@x
= SM , (3.49)

@(ÆgΩg )

@t
+
@(ÆgΩg vg )

@x
= 0, (3.50)

@v
@t

+ v
@v
@x

+ 1
ÆgΩg

@Æg p

@x
= 1
ÆgΩg

SM . (3.51)

When doing this for the bulk momentum and bulk mass conversation equations, respectively Equation 2.7
and Equation 2.6, the following is found:

@v
@t

+ v
@v
@x

+ 1
Ω

@p
@x

= 0. (3.52)

Note that here there are no source terms. Because the velocity v should be the same for both phases, the term
@v/@t + v@v/@x can be substituted in both equations, resulting in:

° 1
Ω

@p
@x

= 1
ÆgΩg

SM ° 1
ÆgΩg

@(Æg p)

@x
, (3.53)

SM =
@(Æg p)

@x
°
ÆgΩg

Ω

@p
@x

. (3.54)

Note that ÆgΩg /Ω is in fact the mass transfer. In addition, the @(Æg p)/@x will be split. This becomes:

SM =Æg
@p
@x

+p
@Æg

@x
°Yg

@p
@x

= p
@Æg

@x
+ (Æg °Yg )

@p
@x

. (3.55)

(3.56)

Now for the thermodynamic source term, the assumption is made that the model is isentropic in a continuous
domain. This means that the entropy is constant, and thus:

ds = 0 ) @s
@t

+ v
@s
@x

= 0. (3.57)

(3.58)

In addition, it is known that the speed of sound is Equation 3.59, and so it can be substituted:

c2
k =

µ
dp

dΩk

∂

sk

, (3.59)

dsk / dp ° c2
k dΩk , (3.60)

@p
@t

+ v
@p
@x

° c2
k

µ
@Ωk

@t
+ v

@Ωk

@x

∂
= 0. (3.61)

Now substituting the phase mass conservation equations, Equation 2.17 and Equation 2.18, in Equation 3.61,
it becomes the following:

@p
@t

+ v
@p
@x

+Ωg c2
g

∑
1
Æg

µ
@Æg

@t
+ v

@Æg

@x

∂
+ @v
@x

∏
= 0, (3.62)

@p
@t

+ v
@p
@x

+Ωl c2
l

∑°1
Æl

µ
@Æl

@t
+ v

@Æl

@x

∂
+ @v
@x

∏
= 0. (3.63)
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Both equations can be filled in for @p/@t + v@p/@x, which will result in:

@Æg

@t
+ v

@Æg

@x
+'@v

@x
= 0, (3.64)

(3.65)

with

'=ÆgÆl
Ωg c2

g °Ωl c2
l

ÆlΩg c2
g +ÆgΩl c2

l

.

Now because the pressures are equal to each other, the following holds:

µ
@p
@t

+ v
@p
@x

∂
(eg ,Ωg ) =

µ
@p
@t

+ v
@p
@x

∂
(el ,Ωl ) (3.66)

This can be rewritten as:

ST =°p
µ
@Æg

@t
+ v

@Æg

@x

∂
. (3.67)

Because it is very hard to model an additional source term in the time derivative, we want to rewrite this term
into only spatial derivatives. This is done by filling in Equation 3.64 in Equation 3.67. The term becomes:

ST = p
µ
'
@v
@x

∂
, (3.68)

(3.69)

with

'=ÆgÆl
Ωg c2

g °Ωl c2
l

ÆlΩg c2
g +ÆgΩl c2

l

. (3.70)

The term SH is based on the flow equations derived by Collier and Thome in chapter 2.2 [48]. The SH term is:

SH = °
√

hg +
v2

g

2

!
. (3.71)

Adding all parts up, the total source term becomes:

SE =
µ

p
@Æg

@x
+ (Æg °Yg )

@p
@x

∂
· v +p

µ
'
@v
@x

∂
+°

√
hg +

v2
g

2

!
. (3.72)

3.4. Speed of Sound
A sound wave is an oscillatory motion in a compressible fluid with small amplitude. It alternately compresses
and decompresses the fluid at each location. Since the perturbations of the density, pressure and velocity
are small, the derivation of the speed of sound is typically conducted using a first-order approximation. This
approach leads to the general expression for the speed of sound, given by:

c2(T,Ω) =
µ
@p
@Ω

∂

s
. (3.73)

The full derivation is given in Appendix A.
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Table 3.1: Parameters for mixture speed of sounds for CO2. The parameters are found with the Span Wagner EOS at the saturation line.

Quantity Liquid (300 [K ]) Gas (300 [K ]) Liquid (280 [K ]) Gas (280 [K ])
Pressure [bar ] 67.13 67.13 41.61 41.61
Temperature [K ] 300.0 300.0 280.0 280.0
Density [kg /m3] 679.24 268.58 121.74 883.58
Sound speed [m/s] 245.67 185.33 207.72 471.54
Isobaric heat capacity [J/(kg ·K )] 8697.9 11921.0 2276.9 2814.1
Entropy [m2/(s2 ·K )] 1275.9 1621.5 1805.0 1059.8
Grüneisen parameter [°] 0.396 0.287 0.315 0.738

From the general speed of sound, the mixture speed of sound of every model can be derived. This becomes
Equation 3.75 for the HE M & DF 3 models, Equation 3.76 for the DF 4 model and Equation 3.77 for the T F 5
& T F 5°2 models. The derivation for the DF 3 mixture speed of sound is derived by Saurel et al. [16], for the
DF 4 model by Flåtten et al. [49] and for the T F 5 model by Wood & Lindsay [50]. In addition, Morin et al. [15]
showed that the hierarchy of the models follow the sub-characteristics condition, provided that the phase
velocities are equal to each other. Accordingly, models that permit greater non-equilibrium variables get an
equal or higher speed of sound:

cHEM ∑ cDF4 ∑ cTF5 ∑ cTF6, (3.74)
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, (3.77)

The three mixture speed of sounds are plotted in Figure 3.3. This is for a temperature of 6.85 ±C or 280 [K ]
and a temperature of 26.85 ±C or 300 [K ]. All the other properties are found at the saturation line with the
SW equation of state, and given in Table 3.1. These are found with the NIST database [43]. As can be seen,
the speed of sound of the HE M model is discontinuous, that is, cHEM (Æl = 1) 6= cl and cHEM (Æg = 1) 6= cg .
The reason for this is that the usual linear theory of sound does not work. Landau & Lifshitz [51] described
this by stating that in addition to only the compressions and decompressions, the waves are accompanied
by a change between a one-phase and a two-phase system. In literature, it is regarded as unphysical that the
sound wave is discontinuous. In experiments by Brennen et al. [52] in Figure 9.2, it has been observed that
the mixture speed of sound corresponds more with the ’shapes’ of the DF 4 and T F 5 models. Especially for
lower temperatures, the speed of sound of the liquid phase is much higher than the mixture speed of sound,
and it quickly falls. This is observed in Figure 3.3a for the DF 4 and T F 5 models. An explanation for this
phenomenon is not found in the literature. A possible explanation could be that in the multiphase regime,
the mixture behaves as a sponge, and it is harder for the discontinuity to progress. It is very important to
model the speed of sound correctly, as it determines the speed at which pressure waves travel through it. In a
depressurization case, it will determine how rapid the pressure drop will propagate through the pipeline.
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(a) Mixture speed of sound for the HE M , DF 4 and T F 5 models for CO2
at T =280 [K ]. The mixture speed of sound is the same for the HE M &
DF 3 models. Note that it is discontinuous at the boundaries for the HE M
mixture speed of sound

(b) Mixture speed of sound for the HE M , DF 4 and T F 5 models for CO2
at T =300 [K ]. The mixture speed of sound is the same for the HE M &
DF 3 models. Note that it is discontinuous at the boundaries for the HE M
mixture speed of sound

Figure 3.3: Mixture speed of sounds for CO2, applied with different models and two temperatures.

Two-phase parameters
The following parameters are commonly employed to mathematically describe the two-phase flow (with the
assumption that the flow is 1D):

Volume fraction:

Æk = Vk

Vl +Vg
, Æg +Æl = 1. (3.78)

Mixture density:

Ω = ΩgÆg +ΩlÆl . (3.79)

The mass fraction:

Yk = ΩkÆk

Ω
. (3.80)

The mass flux:

ṁ = Ω · v. (3.81)

Mixture specific internal energy:

Ωe = ΩgÆg eg +ΩlÆl el , e = Yg eg +Yl el . (3.82)

The total energy:

E = Ω(e + 1
2

v2) = El +Eg . (3.83)

The component energy:

Ek = ΩkÆk (ek +
1
2

v2). (3.84)

The component heat capacity:

C̃p,k =ÆkΩk cp,k . (3.85)

Mixture viscosity

µ=Ægµg +Ælµl .2 (3.86)
2Some authors use the mass fraction instead of volume fraction, see mixture specific internal energy.
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Summary
This chapter delves into the mathematical and physical principles of multiphase flow models, focusing on
two-phase gas/liquid flow models, applied for depressurization of CO2. The foundational framework for
these models is derived from the unsteady compressible Euler equations, which are well-suited for high
Reynolds number flows typical of pipeline transport.

A hierarchy of flow models is presented, ranging from the simplest, the Homogeneous Equilibrium Model
(HE M), to more complex models like the Two-Phase Five Model (T F 5). Each model incrementally relaxes
equilibrium assumptions, adding layers of complexity to better capture the non-equilibrium effects present
in real-world scenarios. While the HE M assumes equilibrium for all variables, the DF 3 introduces source
terms for friction and gravity. The DF 4 extends this further by including a second mass conservation equa-
tion to account for non-equilibrium chemical potential effects, and the T F 5 incorporates separate energy
equations for each phase, enabling the modelling of temperature disequilibrium.

The chapter also examines the Riemann problem, a crucial concept in solving hyperbolic partial differen-
tial equations (PDEs) for fluid flow and wave propagation. By analysing the characteristic properties and
eigenvalues of the models, insights are gained into wave propagation, including shock waves, contact dis-
continuities, and rarefaction waves. This analysis provides a foundation for understanding wave dynamics
within the flow and demonstrates its practical applications.

Source terms are explored in detail to enhance the physical accuracy of the models. These include friction,
which is calculated using both the Friedel and Churchill methods, mass transfer terms for phase transitions,
and energy source terms for capturing mechanical and thermodynamic work. The derivation of these terms,
particularly for the T F 5 model, highlights the interplay between physical realism and computational feasi-
bility.

Finally, the mixture speed of sound is analysed for all models, revealing significant differences in how they
capture this critical parameter. The HE M model shows discontinuities in the speed of sound at phase bound-
aries, which are considered unphysical. In contrast, the DF 4 and T F 5 models exhibit smoother transitions,
aligning more closely with experimental observations. The chapter emphasizes the importance of accurately
modelling the speed of sound, as it directly impacts the propagation of pressure waves in depressurization
scenarios.
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Thermodynamics

In order to solve the flow models described in chapter 3, an equation of state (EOS) is needed. The EOS,
relates different state variables of a fluid. The most widely used equation of state is the functional relationship
between pressure, temperature, and density. In section 4.1, the different fundamental properties are stated
and derived. section 4.2 explains the Span Wagner (SW) EOS and section 4.3, explains the Peng Robinson
(PR) EOS. Lastly, the procedure of finding the primitive variables is described in section 4.4

4.1. Equation of state
State variables are intrinsic properties that depend exclusively on the equilibrium state of a fluid, irrespective
of the process undertaken to achieve that state. Density, (Ω), temperature (T ), pressure (p), specific internal
energy (e), and specific entropy (s) are a few examples of thermodynamic state variables. In addition, a com-
bination of either of the previously stated state variables are also state variables. Several important ones are:

The specific enthalpy:

h = e + p
Ω

, (4.1)

The specific Gibbs free energy:

G = h °Ts, (4.2)

The specific Helmholtz free energy:

a = e °Ts. (4.3)

Just two of the thermodynamic state variables are necessary to fully characterise the thermodynamic state of
a fluid. It is possible to derive all additional thermodynamic state variables from the fundamental equation.
The SW EOS is widely recognized as the most reliable EOS for modelling for pure CO2. It is derived from the
Helmholtz free energy, a = a(T,Ω), from which all other properties can be derived. The following definitions
are used:

Pressure:

p(T,Ω) = Ω2
µ
@a
@Ω

∂

T
, (4.4)

Specific entropy:

s(T,Ω) =°
µ
@a
@T

∂

Ω
, (4.5)

Specific internal energy:

e(T,Ω) = a °T
µ
@a
@T

,
∂

Ω
(4.6)
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Specific enthalpy:

h(T,Ω) = a °T
µ
@a
@T

∂

Ω
+Ω

µ
@a
@Ω

∂

T
, (4.7)

Specific isochoric heat capacity:

cv (T,Ω) =
µ
@e
@T

∂

Ω
, (4.8)

Specific isobaric heat capacity:

cp (T,Ω) =
µ
@h
@T

∂

Ω
, (4.9)

Speed of sound:

c2(T,Ω) =
µ
@p
@Ω

∂

s
, (4.10)

Grüneisen parameter:

∞(T,Ω) = 1
Ω

µ
@p
@e

∂

Ω
= 1
Ωcv

µ
@p
@T

∂

Ω
. (4.11)

4.2. Span-Wagner EOS
As mentioned in section 2.2, the Span Wagen (SW) EOS is the most reliable EOS for pure CO2. It is seen as
the reference EOS. It is derived using experimental data to create a Helmholtz free energy function for CO2.
It is reliable from 217 [K ] (This is the triple point temperature) to 1100 [K ] and up to 800 [MPa]. Munkejord
et al. [29] reviewed the SW EOS, and concluded that the density uncertainty is 0.05%. The uncertainty in
vapour pressure is even lower with 0.006% and the speed of sound uncertainty is 1.0%. Nevertheless, it is very
complicated with 51 terms, especially when also calculating the differentials. The full equation can be seen
in Equation 4.12. The equation is a function of ø and ±. Here, ø is the inverse reduced temperature, Tc /T , and
± is the reduced density, Ω/Ωc . Tc and Ωc are constants, respectively 304.1282 [K ] and 467.6 [kg /m3]. This
means that every other parameter can be calculated with the temperature and density at every stage. All the
constants and formulas can be found in the original paper of Span & Wagner [28].

It is derived by expressing the Helmholtz free energy into a part for the ideal-gas behaviour, ¡0, and a part
that takes into account the fluid behaviour of CO2, ¡r . It should be noted that ¡r is determined empirically.
It is determined with 150 experimental data points. Experiments done after inventing the relationship have
shown that it is accurate from 217 to 1100 [K ±] and up to 800 [MPa].

a(Ω,T )
RT

=¡(ø,±) =¡0(±,ø)+¡r (±,ø),

¡0(ø,±) = ln(±)+a0
1 +a0

2ø+a0
3 ln(ø)+

8X

i=4
a0

i ln[1°exp(°øµ0
i )],

¡r (ø,±) =
7X

i=1
ni±

di øti +
34X

i=8
ni±

di øti exp
°
°±ci

¢
+

39X

i=35
ni±

di øti exp
≥
°Æi (±°"i )2 °Øi

°
ø°∞i

¢2
¥
+

42X

i=40
ni¢

bi ±exp
°
°Ci (±°1)2 °Di (ø°1)2¢ .

(4.12)

4.3. Peng-Robinson EOS
A more simplified EOS is the PR EOS. This is a standard cubic EOS, used to predict the behaviour of real gases.
It was developed by Peng and Robinson in 1976 to improve the accuracy of phase behaviour predictions [25].
The model can be tuned accordingly to a substance or a mixture of substances. It allows for phase transitions
between liquid and gas, and is a reliable EOS below the critical point. The PR EOS is given in Equation 4.13 to
Equation 4.16, and in Table 4.1 are the tuned values corresponding to CO2.
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p(T,Vm) = RT
Vm °b

° aPR

V 2
m +2bVm °b2

, (4.13)

aPR =0.45723553 ·R2 T 2
c

pc

"
1+∑

√
1°

s
T
Tc

!#2

, (4.14)

b =0.07779607 ·R
Tc

pc
, (4.15)

Vm =M
Ω

. (4.16)

Table 4.1: CO2 values for the PR EOS

Quantity Value
Pc [Pa] 7.3773e6
Tc [K ] 304.1282
R [J/(K ·mol )] 8.314
M [g /mol ] 44.095
∑ [°] 0.706477

4.4. Determining primitive variables
In order to calculate all primitive variables, it is needed to know if the fluid is in single phase or two-phase
conditions. To distinguishing single phase from two-phase flow, the following approach is applied. For the
temperature of the previous step, T , the saturation gaseous and liquid densities, Ωg and Ωl , are computed. If
Ωg < Ω < Ωl , then the cell is in two-phase flow, otherwise it is single phase flow, as seen below:

Phase =
(

if Ωg ∑ Ω ∑ Ωl , Two-phase ,

else, Single phase .
(4.17)

With every time-step, the state vector U is established. This means that always, the (mixture) density, Ω,
the momentum, Ωv , and the total energy, E are known. The velocity is simply the momentum divided by
the (mixture) density. From the total energy, the (mixture) specific internal energy, e, can be found with
Equation 4.18.

E = Ω(e + 1
2

v2). (4.18)

For the DF 4 and T F 5 models, the state vector contains ÆgΩg and ÆlΩl . With these variables known, the
(mixture) density is simply found with Equation 4.19.

Ω =ÆgΩg +ÆlΩl . (4.19)

4.4.1. Single phase regime
For single phase flow, the density, velocity, and specific internal energy are given at each time step. Using
an optimization algorithm, the temperature can be determined from Equation 4.20. The variables denoted
with a tilde are known, leaving the temperature as the only unknown. Once the temperature and density
are determined, all other primitive variables (e.g., pressure, speed of sound, etc.) can be computed. This
approach is applicable to all three models (DF 3, DF 4, T F 5).

e(Ω̃,T ) = ẽ. (4.20)
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4.4.2. Two-phase regime HE M & DF 3 model
When the flow is in multiphase, the "behaviour" of the flow becomes more complex. The gas phase and the
liquid phase are both present and are in equilibrium in the two-phase zone. After every time step, the mixture
density is known. If the density is between the saturated gas and liquid density, then it is concluded that the
fluid is in two phase. Now the unknowns are Ωg ,Ωl ,Æg ,T . In order to calculate these unknowns, four inde-
pendent equations are needed. These four equations are given in Equation 4.21 to Equation 4.24. Since the
specific energy and density are used to compute the other parameters, this phenomenon is referred to as UV
flash 1.

The first equation describes the mixture density. Here the density is known from the mass transfer equation,
from Equation 3.6. The second equation is the mixture internal energy. Again, the density is known and the
total energy is known from Equation 3.6. The specific internal energy is than calculated with Equation 4.18.
Thirdly, the pressures of both states are equal to each other. Therefore, the pressure of the liquid is the same
as the pressure of the gas, however, the pressure is unknown. Finally, it is assumed that the states are in the
lowest energy state, so the Gibbs free energy of both phases are the same. It is observed that there are four
unknowns (Æg ,Ωg ,Ωl ,T ) and four equations. All known variables are indicated with a tilde. In section 6.3 is
explained how the set of equations is solved.

ÆgΩg + (1°Æg )Ωl = Ω̃, (4.21)

ÆgΩg eg (Ωg ,T )+ (1°Æg )Ωl el (Ωl ,T ) = Ω̃ẽ, (4.22)

pg (Ωg ,T )°pl (Ωl ,T ) = 0, (4.23)

Gg (Ωg ,T )°Gl (Ωl ,T ) = 0. (4.24)

4.4.3. Two-phase regime HE M & DF 3 model, second method
Another method for calculating the primitive variables is through a reduced UV flash. This method has been
suggested by Kumar et al. [47]. Because of the assumption that the phases are in chemical equilibrium, the
phases are on the saturation line and the densities can easily be calculated with the temperature. This reduces
the number of unknowns only to the temperature T , as Ωl and Ωg are both functions of T .

Ω̃ = ΩgÆg +Ωl (1°Æg ) ) Æg = Ωl (T )° Ω̃
Ωl (T )°Ωg (T )

. (4.25)

Substituting the expression for Æg into the mixture internal energy equation, the only unknown becomes T .
This becomes the following equation, and can easily be solved with an optimization routine:

ÆgΩg (T )eg (Ωg (T ),T )+ (1°Æg )Ωl (T )el (Ωl (T ),T ) = (Ω̃ẽ). (4.26)

4.4.4. Two-phase regime DF 4 model
With the DF 4 model, as mentioned before, the assumption of chemical equilibrium is not valid anymore.
This results in the Gibbs free energy being not the same for both phases. On the contrary, because of the two
mass equations, it is possible to describe an algebraic equation for both densities. Looking at Equation 4.27
to Equation 4.30, the first equation states that ÆgΩg is equal to the first entry of the state vector. While it is
not known what the individual values are, it is known at every time-step what the product of those variables
is through the state vector. The same principle is applied for the second equation. The third and fourth
equation are the same as for the DF 3 model. Again, all known variables are indicated with a tilde. The four
unknowns, which are identical to the problem with the HE M/DF 3 model, are then solved, with the method
being explained in section 6.3.

Æg ·Ωg = ( ˜ÆgΩg ), (4.27)

(1°Æg ) ·Ωl = ( ˜ÆlΩl ), (4.28)

ÆgΩg eg (Ωg ,T )+ (1°Æg )Ωl el (Ωl ,T ) = Ω̃ẽ, (4.29)

pg (Ωg ,T )°pl (Ωl ,T ) = 0. (4.30)

1In literature, U stands for internal energy, and V for specific volume
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4.4.5. Two-phase regime T F 5 model
In the T F 5 model, an additional unknown is introduced, resulting in different temperatures for both phases.
Due to the presence of two energy equations, the total energy and total energy for the gaseous phase are
calculated at each time step. With this information, the specific energies can be calculated with Equation 4.18
and Equation 4.31.

Eg =ÆgΩg (eg +
1
2

v2). (4.31)

Consequently, there are five unknowns and five corresponding equations, allowing the system to be solved.
The system of equations is presented in Equation 4.32 to Equation 4.36. The first two equations are analogous
to those in the DF 4 model, as the mass transfer equations remain unchanged. Additionally, the pressure
is assumed to be equal in both phases. The third and fourth equations arise from the additional energy
equation. The five unknowns are Ωg , Ωl , Tg , Tl , and Æg . Again, all known variables are indicated with a tilde.
The solution methodology for this set of equations is detailed in section 6.3.

Æg ·Ωg = ( ˜ÆgΩg ), (4.32)

(1°Æg ) ·Ωl = ( ˜ÆlΩl ), (4.33)

eg (Ωg ,Tg ) =
Ẽg

˜(ÆgΩg )
° 1

2
ṽ2, (4.34)

ÆgΩg eg (Ωg ,Tg )+ (1°Æg )Ωl el (Ωl ,Tg ) = Ω̃ẽ, (4.35)

pg (Ωg ,Tg )°pl (Ωl ,Tl ) = 0. (4.36)

4.4.6. Phase diagram
In Figure 4.1, the phase diagram of CO2 is plotted for the density and internal energy. For each location in the
diagram of the saturation space, it is possible to find the volume fractions of each specific condition. While
this diagram is specifically for the case where the Gibbs free energy is the lowest (the HE M and DF 3 case),
the same principle applies to all three UV flash methods.

Figure 4.1: Phase diagram for density vs specific internal energy for CO2. In the saturation space, CO2 is in the two-phase regime.
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4.5. Summary
This chapter provides a comprehensive overview of the thermodynamic framework necessary for modelling
two-phase CO2 flows. It begins with a discussion on the fundamental thermodynamic properties and their
interrelations. The chapter details the Span-Wagner (SW) EOS, noted for its exceptional accuracy in mod-
elling pure CO2 across a wide range of conditions, and the Peng-Robinson (PR) EOS, a simpler cubic model
used for phase behaviour predictions.

The determination of primitive variables is explored, with distinct methodologies outlined for single-phase
and multi-phase regimes. The chapter discusses the UV flash approach for the three flow models, and its
reduced variant, which can simplify the calculations under specific assumptions.



�
Numerical Method

In order to solve the transport equations, numerical methods are used to determine solutions for PDEs. This
chapter delves into the techniques and algorithms used to approximate solutions for the flow equations. It
starts with the explanation of the FVM in section 5.1, and the HLLC method in section 5.2 for each model.
Then, the stability requirement is explained in section 5.3 and a short description is given for how the deriva-
tive of ODEs are computed in section 5.4. Furthermore, in section 5.5, the method is described for calculating
the mass transfer from the HE M and DF 3 models. Lastly, in section 5.6, the discretization of the source term
in the T F 5 & T F 5°2 models is evaluated.

5.1. Finite Volume Method
The Finite Volume Method (FVM) is a numerical technique used to approximate solutions for differential
equations, especially those related to conservation laws, such as the Euler flow equations with the conserva-
tion of mass, momentum, and energy. FVM is widely used in computational fluid dynamics, heat transfer,
and related fields because of its ability to ensure conservation properties at the discrete level. The key char-
acteristic that differentiates FVM from other methods, such as the finite difference or finite element methods,
is that it inherently conserves quantities.

The FVM is based on dividing the computational domain into small, finite control volumes (or cells) and
solving the integral form of the governing equations over these volumes. Assuming one-dimensional flow, the
control volumes are defined as intervals along the x-axis. Each control volume is assigned a property value,
™n , at its midpoint, representing the average value, √, within the volume at a given time step, n. The method
description below is mostly based on LeVeque, Chapter 4 [53]. Below is the derivation for one-dimensional:

™n
i = 1

¢x

Zx
i+ 1

2

x
i° 1

2

√(x, tn)d x, (5.1)
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¢xi
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¢xi
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The first term (time derivative) is discretized with a first-order forward Euler method. This becomes:

d
d t

Z

¢xi

√d xi =
√n+1

i °√n
i

¢t
¢x. (5.5)

The flux term is expressed as: h
F(√)
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2
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i° 1
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= F(√)i+ 1
2
°F(√)i° 1

2
, (5.6)
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and the source term is discretized as: Z

¢xi

S(√)d xi = Si (√)¢x. (5.7)

The discretized equation becomes then:

√n+1
i °√n

i

¢t
¢x +F(√)n

i+ 1
2
°F(√)n

i° 1
2
= Si (√)n¢x. (5.8)

Rearranging the known terms to the right hand side and the unknowns to the left hand side, it finally becomes:

√n+1
i °√n

i

¢t
+

F(√)n
i+ 1

2
°F(√)n

i° 1
2

¢x
= Si (√)n , (5.9)

√n+1
i =√n

i ° ¢t
¢x

µ
F(√)n

i+ 1
2
°F(√)n

i° 1
2

∂
+Si (√)n¢t . (5.10)

Figure 5.1: Illustration of the finite volume method as given in Equation 5.10. The value √i changes with the flux. The source term, Si , is
neglected in the figure.

The flux F depends on √. However, at the cell boundaries, it is not known what √ is. Therefore, the determi-
nation of the fluxes Fi° 1

2
and Fi+ 1

2
presents a hurdle when employing the approach provided in Equation 5.10.

A possible method to determine the fluxes is using the upwind differencing scheme or central differencing
scheme. The problem with these methods is that they cannot handle discontinuous situations correctly. A
different method used for handling the discontinuous situations is the HLLC method, known as an approxi-
mate Riemann solver.

5.2. HLLC method
The HLLC (Harten, Lax, van Leer, Contact) method is a numerical approach for approximating solutions to
the Riemann problem in computational fluid dynamics (CFD), particularly when dealing with systems of hy-
perbolic conservation laws. It is an extension of the original HLL (Harten-Lax-van Leer) method, where an
additional middle wave speed is included. It is known for the good accuracy, giving exact resolutions on shock
and contact waves, while still being an easy solver to implement. As stated by Batten et al. [54] ’We further
demonstrate that the resulting scheme is positively conservative. This property, which cannot be guaranteed
by any linearized approximate Riemann solver, forces the numerical method to preserve initially positive
pressures and densities.’. The method is based on the description done by Toro, Chapter 10, [17].

5.2.1. Overview of the HLLC method
The main concept is to consider a wave configuration in which four constant states are separated by three
waves for the solution. It is assumed that the middle wave is a contact discontinuity, and the two outer waves
are shock waves. In reality, this can be shock waves, rarefaction waves or one of both. Application of the
integral form of the conservation laws yields a closed-form approximate formula for the flux, assuming that
the wave speeds are provided by some algorithm. This is seen in Figure 5.2. The full derivation is given in
Appendix D. The state vector is:

U HLLC
K =

µ
SK ° vK

SK °S§

∂
·

0
B@

ΩK
ΩK S§

EK + (S§ ° vK )
≥
S§ΩK + pK

(SK °vK )

¥

1
CA , (5.11)
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Figure 5.2: HLLC regions defined by the wave speed SL ,S§,SR .

with SL and SR being:

SL = min(uL ° cL ,uR ° cR ), (5.12)

SR = max(uL + cL ,uR + cR ). (5.13)

5.2.2. HLLC for the DF 4 model
The DF 4 model has obviously a different U and thus a different reference state is needed. Since the momen-
tum and energy equations are not modified, the corresponding components of the state vector will remain
identical. For the mass transfer, the derivation for the gas equation is given in Appendix D, which is similar
for the liquid equation. The state vector then becomes:

U HLLC
K =

µ
SK ° vK

SK °S§

∂
·

0
BBB@

Æg ,KΩg ,K
Æl ,KΩl ,K
ΩK S§

EK + (S§ ° vK )
≥
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(SK °vK )

¥

1
CCCA . (5.14)

5.2.3. HLLC for the T F 5 model
For the T F 5 model, the first four equations in the state vector identical as Equation 5.14. The fifth term
accounts for the energy balance specific to the gaseous phase. The derivation is done in Appendix D. It
should be noted that an additional assumption is made, that is Æ§

g =Æg . The final state vector then becomes:

U HLLC
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∂
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5.3. Stability requirement
One crucial aspect of the numerical approach is its numerical stability. The maximum allowable time step,
¢t , is constrained by the stability requirement, which is typically determined using the Courant-Friedrichs-
Lewy (CFL) condition. Named after its inventors [55], the CFL number is defined as:

C F L = |∏|max¢t
¢x

. (5.16)

Here, |∏|max represents the maximum eigenvalue in the simulation, ¢t is the time step, and ¢x is the spatial
resolution. It effectively means that the eigenvalues are computed for every cell in the domain, and the largest
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eigenvalue is used to enforce the CFL condition. In order to ensure stability in an explicit method, the CFL
condition must be satisfied, which requires that the CFL number is less than one. This requirement implies
that the time step, ¢t , is chosen such that a wave cannot travel further than one grid cell during a single time
step. While the time step may vary depending on the conditions in the simulation, it often remains constant
in practice. This is because the maximum eigenvalue usually occurs when the fluid is in the liquid phase,
as explained in section 3.4. Physically, the CFL condition ensures that wave propagation remains resolved
within the grid, avoiding instabilities that could arise if waves travel distances greater than the grid resolution
during a single time step.

5.4. Differentials EOS
As seen in chapter 4, the calculation for different primitive variables consists of calculating differentials. Al-
gebraic or symbolic manipulation is impossible to do because of the complexity. Another option could be
to use numerical differentiation. However, the drawback hereby is that round-off errors are introduced. A
third method, yet less known method, is by using forward or backward automatic differentiation. Hereby,
no round-off errors are made and the results are correct up to machine precision. In this project, forward
automatic differentiation is used, instead of backward.

Forward Automatic Differentiation (FAD) is a method for computing the derivative of a function by applying
the chain rule at each elementary operation in the function’s computational graph. It is based on the con-
cept of dual numbers, where each variable is extended to a dual form , x≤ = x + ≤ẋ, with ≤ being infinitely
small and ≤2 = 0. As a result, both the value of the function and its derivative are propagated simultaneously.
At each step of the computation, the real part gives the function value, while the infinitesimal part tracks
the derivative. For instance, if a function involves operations like addition, multiplication, or transcenden-
tal functions (e.g., sine or exponentials), FAD computes the derivative of each operation by leveraging the
chain rule and combining the derivatives of the inputs. This yields exact derivatives up to machine precision
for each intermediate step, effectively providing the final derivative of the overall function without explicit
symbolic manipulation. For further reading, the book by Iri & Kubota [56] and article by Fang et al. [57] are
recommended.

5.5. Calculating mass transfer for the HE M & DF 3 model
In the HE M and DF 3 models, the bulk mass conservation equation, as given in Equation 3.1, is equal to
zero as the total mass in the system needs to be conserved. However, since it represents the bulk equation,
it sums the contributions of both phases, as shown in Equation 5.17. While these models incorporate mass
transfer between phases, the exact details of the transfer are not explicitly specified. If the phase densities,
phase volume fractions, and velocity, Ωg ,Æg ,Ωl ,Æl , v , are known for each cell and at every time step, the mass
transfer rate ° can be calculated in reverse.
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(5.17)

To calculate °, the derivatives in the equations must be discretized using the same numerical approach as
in the original flow equations. The time derivative is discretized using the forward Euler method, while the
spatial derivative is discretized using the HLLC method. The state vector for the flux computation includes the
top two components of Equation 5.14. The final discretization is given in Equation 5.18. The same approach
can be applied to compute °° for the liquid phase.
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5.6. Discretization non-conservative models (T F 5 & T F 5°2)
In order to simulate the non-conservative models, special treatment is required for terms involving deriva-
tives outside the flux. These terms, which involve a constant multiplied by a differential, are handled as source
terms using a method proposed by Johnsen & Colonius [58] and later by de Böck et al. [38]. All these terms are
put to the right side of the equation and seen as source terms. This is than added up to the equation, the same
way as in Equation 5.10. The derivatives are computed using a HLLC-like method, ensuring consistency and
reliability based on established practices.

5.6.1. Discretization for the T F 5°2 model
The method proposed by Johnsen & Colonius [58] and by de Böck et al. [38] has only be applied for the
T F 5°2 model, and thus, only the velocity had to be discretized in the HLLC method. When doing the same
steps from Equation 5.19, but now with the velocity instead of the density, it gives Equation 5.20. The steps
are done in Appendix D. Note that as mentioned before, vL§ = vR§ = S§.

F§
K = FK +SK (U§

K °UK ), (5.19)
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(5.20)

The discretized source term is then Equation 5.21:
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5.6.2. Discretization for the T F 5 model
For the T F 5 model, in addition to the velocity, the gaseous volume fraction, Æg , and the pressure, p, must
also be discretized. This is again done with the method of HLLC, and thus Equation 5.19. When discretizing
the volume fraction, Equation 5.23 is obtained. Æ can be the gas or liquid volume fraction, but for the T F 5
model, it is the gas volume fraction Æg .

Æ(x, t )HLLC =

8
>>>>><
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ÆR , if x
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(5.23)

The pressure is also discretized with the HLLC method. However, for p§
L and p§

R , Equation 5.24 is used (The
derivation is done in Appendix D). The discretized pressure is then Equation 5.25. The final source term for
the T F 5 model is Equation 5.27. Note that here Æ=Æg .

p§
K = pK +ΩK (SK °uK )(S§ °uK ), (5.24)
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The final source term for the T F 5 model is Equation 5.27:
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Note that here Æ=Æg . ¡ is:
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5.7. Summary
This chapter discusses the numerical methods used to solve transport equations, focusing on techniques and
algorithms for approximating solutions to PDEs. It begins with an explanation of the Finite Volume Method
(FVM), a numerical technique for solving differential equations, in particularly conservation laws. The FVM
divides the computational domain into small control volumes and solves the integral form of the govern-
ing equations over these volumes. The chapter also introduces the HLLC (Harten, Lax, van Leer, Contact)
method, an approximate Riemann solver used in CFD for systems of hyperbolic conservation laws. The HLLC
method considers a wave configuration with four constant states separated by three waves, providing accu-
rate solutions for shock and contact waves. The method is applied to the DF 3, DF 4 and T F 5 flow models,
with specific state vectors for each.

The chapter further explains the stability requirement using the CFL number to ensure numerical stability,
where the time-step¢t must satisfy the CFL condition. It also covers FAD, a method for computing derivatives
by applying the chain rule at each elementary operation. Additionally, the chapter describes the calculation
of mass transfer in the HE M and DF 3 models using reverse computation with the conservation equations.
Lastly, the discretization of the non-conservative terms in the T F 5 model is discussed, as special treatment is
needed for these terms.
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6
Implementation in Compute Code

To carry out numerical simulations for the two-fluid model, a custom JULIA code was developed. While the
SW and PR EOS were previously implemented by P. Kumar, the code for this project integrates the discretized
models discussed earlier. However, problems and non-trivial solutions will be discussed in this chapter. It
starts with the flow solver in section 6.1, then the EOS and thermodynamics in section 6.2. In addition, the
method of solving the UV flashes is explained in section 6.3 and the implementation of the BCs is described
in section 6.4. Finally, the different checks and balances are explained for each model, with their non-trivial
solutions.

6.1. Flow solver
The discretization of the two-fluid models is implemented using the state variables in the conservative form.
To compute the primitive variables, an iterative approach is used.

Initialization
Firstly, the initial condition (IC) is given in pressure and temperature. Using this information, the density is
computed via an optimization solver, as it is known whether the condition is in liquid or gaseous phase. All
the other state variables are subsequently calculated as functions of density and temperature.

Primitive variable calculation
With the state vector, all primitive variables need to be calculated. The UV flash method is applied, for each
specific model, as explained in section 6.3. Before the calculation of the primitive variables, it is checked if
the system is in single-phase or two-phase conditions. This determination is made using the mixture density
at the new time-step and the temperature from the previous time-step. If the mixture density lies between
the saturation density of the liquid and gas, the system is in two-phase. Otherwise, it is in single-phase. This
process is outlined in Equation 4.17. If in single-phase, Equation 4.20 is solved. When convergence has not
been reached, the solver calculates the two-phase equations, depending on which fluid dynamics model is
used.

State vector update
With the primitive variables computed, the flux is calculated using the HLLC approximate Riemann solver.
The fluxes are then used to update the state vector. With the intermediate state vector, intermediate primitive
variables are again calculated using the UV flash method, allowing the source terms to be computed accu-
rately. The source terms are then added to the state vector, and the simulation time is incremented. This loop
repeats itself until the final time is reached. An overview of the algorithm is given in section 6.6.
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6.2. Thermodynamics
The SW EOS & PR EOS were both programmed in the JULIA programming language by P. Kumar. All the
derivates in the thermodynamics are computed with the FAD method, as explained in section 5.4. This is
very easily done in JULIA with the ForwardDiff package. The Grüneisen parameter is calculated with the
derivative of p over T , as the EOS are both a function of T :

∞(T,Ω) = 1
Ωcv

µ
@p
@T

∂

Ω
. (6.1)

Another option is to use the Thermopack library in python [59]. The PR EOS is built in, and all the derivates
are easily obtained from the package. While, the SW EOS is not built in, the GERG-2008 EOS is, and this EOS
simplifies back to the SW EOS if only CO2 is used as a component. The EOS is obtained with the following
line:

1 eos = multiparam ("CO2", eos=" GERG2008 ")

6.3. Solving UV flash
In section 4.4, the different methods were mentioned to solve the primitive variables with a set of equations.
The method used, is the Trust Method. Instead of searching for the minimum along a line (as in line search
methods), the trust region method defines a "trust region" around the current solution. This region is a sub-
set of the variable space where the model is considered to be a good approximation of the objective function.
Within this trust region, a model quadratically approximates the objective function. The goal is to minimize
this model rather than the original function directly. The advantage is that the method is generally more ro-
bust than line search methods. Compared to the Newton-Rapson method, the initial guess is less important
and can be more reliable, especially in the beginning of the simulation where there are big gradients.

The way this has been implemented is by using the NLsolve library in JULIA. Here, it is important to rewrite
the set of equations into a mixed complementarity problem. In Equation 6.2, it is done for the DF 4 model, but
the same principle applies to the other UV flashes. The code is given in Listing 6.1. It is found that lowering
the xtol and ftol settings does not change the end result, and therefore 1e-4 is chosen. In addition, the method
was also changed to ’:newton’. For higher CFL values, it did not converge, but for lower CFL values, it gave the
same result as using the ’trust region’ method.

f =

0
BB@

ÆgΩg ° (ÆgΩg )n + 1

(1°Æg )Ωl ° (ÆlΩl )n + 1

ÆgΩg eg (Ωg ,T )+ (1°Æg )Ωl el (Ωl ,T )° (Ωe)n + 1

pg (Ωg ,T )°pl (Ωl ,T )

1
CCA= 0. (6.2)

1 using NLsolve
2

3 function create_2phase_flash_4eq(rho , e, rhoG_alphaG , rhoL_alphaL)
4

5 function flashProblem(x)
6

7 T, rho_G , rho_L , alpha_G = x
8

9 F_1 = alpha_G * rho_G - rhoG_alphaG
10 F_2 = (1 - alpha_G) * rho_L - rhoL_alphaL
11 F_3 = alpha_G * rho_G * InternalEnergy(rho_G , T) +
12 (1.0 - alpha_G) * rho_L * InternalEnergy(rho_L , T) - rho * e
13 F_4 = pressure(rho_G , T) - pressure(rho_L , T)
14

15 return [F_1 , F_2 , F_3 , F_4]
16 end
17

18 flashProblem
19 end
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20

21 flashFunc = create_2phase_flash_4eq(rho , e, rhoG_alphaG , rhoL_alphaL)
22 u_guess = [T, rho_G , rho_L , alpha_G] ### Values from last time step
23 result = nlsolve(flashFunc , u_guess; xtol = 1e-4, ftol = 1e-4,
24 method = :trust_region , autodiff= :forward , show_trace = false)
25 T, rho_G , rho_L , alpha_G = result.zero

Listing 6.1: UV flash for DF 4 model in JULIA

6.4. Boundary Conditions
Two boundary conditions (BCs) were implemented for the simulations: the reflective boundary condition
and the outflow boundary condition.

The reflective BC assumes an impermeable wall where the fluid velocity at the wall is zero. The state vector
of the ghost cell is the same as the state vector of the previous cell. The only difference is that the momentum
is inverted. It is shown in Equation 6.3.

8
><
>:

U conti nui t y
i+1 =U conti nui t y

i ,

U momentum
i+1 =°U momentum

i ,

U ener g y
i+1 =U ener g y

i .

(6.3)

The outflow BC assumes that the state vector of the ghost cell is identical to that of the adjacent cell. This
assumption is based on the observation that, in the test cases, the pipeline is ruptured, allowing CO2 fluid
to escape. Consequently, a rarefaction wave propagates within the pipeline. Given that this wave does not
constitute a discontinuity and considering the proximity of the cells, it is reasonable to assume that the prop-
erties within the ghost cell remain largely unchanged. The exception to this is the pressure, which is set to
atmospheric pressure. The implementation of this BC is seen in Listing 6.2. Note that only the relevant code
necessary to understand the BC is provided.

1 nx = 402 ### number of cells + ghost cells
2

3 rho_1 , v_1 , E_1 , p_1 , ... = compute_primitive_vars_3eq(U[:, 1])
4 rho_2 , v_2 , E_2 , p_2 , ... = compute_primitive_vars_3eq(U[:, 2])
5

6 prim_1 = [rho_1 , v_1 , E_1 , p_1 , ...]
7 prim_2 = [rho_2 , v_2 , E_2 , p_2 , ...]
8

9 for i = 2:(nx - 1)
10 rho_3 , v_3 , E_3 , p_3 , ... = compute_primitive_vars_3eq(U[:, i+1]
11

12 if i == nx -1
13 p_3 = p_amb
14 end
15

16 prim_3 = [rho_3 , v_3 , E_3 , p_3 , ...]
17

18 F_l = HLLC(prim_1 , prim_2)
19 F_r = HLLC(prim_2 , prim_3)
20

21 prim_1 = prim_2
22 prim_2 = prim_3
23 end

Listing 6.2: Outflow boundary condition in JULIA
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6.5. Checks & Differences between models
The HE M & DF 3, DF 4 and T F 5 models all had there own problems, and so different programming tricks
were used in order to make the models work and get results without (or with as little as possible) numerical
fluctuations.

6.5.1. HE M & DF 3 model
The first model, comprising the HE M and DF 3 models, is extensively utilized in the literature due to its rel-
ative simplicity and reliable predictive capability. However, the experimental test cases present significant
challenges, particularly due to the pressure difference exceeding a factor of 100. Notably, during the initial
stages when the system transitions to a two-phase state, convergence becomes more difficult. This difficulty
arises from the initial guesses for the four unknowns in the thermodynamics algorithm (see subsection 4.4.2).

Initially, the mixture density of CO2 was employed as the initial guess for both the liquid and gaseous densi-
ties. This approach was successful for test cases with the highest initial temperatures in the pipeline. How-
ever, the three tests with the lowest temperatures failed to converge. It was subsequently determined that
using the initial pipeline density, Ω0, as the initial guess for the liquid density was effective. For the initial
guess of the gas density, the density of CO2 was calculated based on ambient pressure and temperature. This
method proved successful for all experimental test cases.

1 rho_L_guess = rho_0
2 rho_G_guess = rho_amb

Another problem was that the solution of the thermodynamics was not always physical. This is shown in
Figure 6.1. From this graph, it was observed that a solution is found for the temperature of 200 [K ]. However,
as mentioned before, the SW EOS is only reliable from 217 [K ] up to 1100 [K ]. Therefore, if a solution is found
outside of the domain, the converged solution can not be seen as reliable and correct. The simple approach is
then to disregard the solution, assume that the four unknowns are exactly the same as the previous time-step,
and try again for the next time-step. This proved to work correctly, and the right solution could be found for
the next step.

Figure 6.1: Density vs Temperature for the SW EOS at 50 bar pressure. It is shown that for a density, multiple solutions for the temperature
exist, what can lead to complications.

6.5.2. DF 4 model
In the DF 4 model, an initial guess is similarly required. Initially, the same value, Ω0, was used for both the
liquid and gaseous density guesses. However, this approach resulted in identical densities for both phases,
such as a liquid and gaseous density of 900 [kg /m3]. This outcome was inconsistent with the thermody-



6.6. Algorithm 51

namics of the previous model, which required the phase densities to match the mixture density, indicating a
single-phase flow. To address this issue, the initial values for the two-phase flow from the DF 3 model were
used as the guess values for each cell. Subsequently, the values from the preceding time step were found to
be adequate for the initial guess.

Despite the fact that the correct results have been obtained using the Friedel friction model in the literature,
it will be demonstrated in section 8.2 that the Churchill method of computing the friction has a negligible
influence on the overall results. Subsequently, the Churchill friction method was employed, yielding accurate
results. Therefore, it is recommended to use the Churchill friction method due to its ease of implementation.

6.5.3. T F 5 model
It was observed that Æg , the gas volume fraction, could approach or exceed 1 due to numerical dissipation,
which is physically unrealistic and could cause the simulation to fail. To prevent this, a conditional check was
implemented to round Æg to one if it was close to this value within a predefined tolerance. The threshold for
this adjustment was set to 1£10°4, although a lower threshold is recommended for longer simulations. In
JULIA, this adjustment can be implemented as follows:

1 if isapprox(alpha_g , 0, atol = 1e-4)
2 alpha_g = 0
3 ...
4 else isapprox(alpha_g , 1, atol = 1e-4)
5 alpha_g = 1
6 ...
7 end

6.6. Algorithm
An outline of the numerical algorithm for the unsteady compressible two-flow model is provided in this sec-
tion. The overall algorithm is identical for the DF 3, DF 4 and T F 5 models.

• Set ICs: p0, v0 & T 0. Calculate Ω0 & e0 and determine the state vector, U0. In addition, calculate c0 for
the stability requirement.

while t < t f i nal

• Calculate ¢t with the CFL number

for i in 2 : N °1

• Calculate primitive variables of i °1, i & i +1.

– If in single-phase,

¶ With the state vector U, calculate the density Ω, velocity, v , and specific internal energy, e,

¶ Calculate T with the Newton-Rapson method,

¶ Use T and Ω to calculate all other primitive variables.

– If in multiphase,

¶ With the state vector U, calculate the density Ω, velocity, v , and specific internal energy, e,

¶ Use the respectively UV flash to calculate Ωg , Ωl Æg and T or Tg & Tl , according to the flow
model,

¶ Use T or Tg and Ωg to calculate all other primitive variables.

• Calculate fluxes using HLLC method.

• Update new state vector U
1
2 with F.

• Store maximum wavespeed.

• If DF 3 or DF 4 model, calculate primitive variables i ,
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– Calculate source term(s).

– Update final state vector U with S.

• If T F 5 model, calculate primitive variables i °1, i & i +1.

– Calculate source terms.

– Update final state vector U with S.

• Update U1 & UN with their respectively BCs.

• Write primitive variables to file.

end

• Post process

6.7. Summary
This chapter presents the implementation of numerical simulations for the two-fluid model using the JU-
LIA programming language. The implementation begins with the flow solver, which discretizes the two-fluid
models based on state variables in their conservative form. Initial conditions are specified in terms of pres-
sure and temperature, from which density is derived using an optimization solver. Primitive variables are
computed using the UV flash method, which determines whether the system is in a single-phase or two-
phase regime. The fluxes are calculated with the HLLC method, and the state vector is iteratively updated
until the simulation reaches the final time.

The chapter also details the implementation of the SW and PR EOS in JULIA. Forward automatic differen-
tiation (FAD) is employed to efficiently compute thermodynamic derivatives, ensuring high precision. The
method for solving UV flashes is explained, utilizing the Trust optimization method implemented with the
NLsolve library in JULIA to ensure robustness and accuracy.

Boundary conditions are discussed next, covering reflective and outflow boundary conditions. Reflective
conditions assume impermeable walls with inverted momentum, while outflow conditions allow for fluid
escape with pressure set to ambient levels. The specific implementation details for these conditions are pro-
vided.

Finally, the chapter addresses the challenges encountered and solutions devised for the HE M , DF 3, DF 4,
and T F 5 models. These include adjustments to initial guesses for thermodynamic variables, handling un-
physical solutions, and numerical stabilization techniques. The chapter concludes with an outline of the
overall algorithm used for the program, emphasizing its adaptability across different models.



�
Verification

Verification plays a critical role in ensuring the accuracy and reliability of numerical models. This chapter
is dedicated to assessing the implemented models by comparing their results with theoretical expectations
and established benchmarks. It begins with the verification of single phase in section 7.1. In section 7.2 two-
phase flow scenarios are examined, for two different test cases. Additionally, in section 7.3 further explores
the convergence behaviour of the mesh and time-step to validate the stability and precision of the numerical
schemes. Finally, a two fluid test for the T F 5 model is presented to evaluate its fidelity in section 7.4.

Table 7.1: Initial values for different verification problems

Test case Pressure left [bar ] Pressure right [bar ] Temperature [K ] End time [s]
Giljarhus 30 10 300 0.08
Hammer 1 100 30 250 0.2
Hammer 2 30 1 300 0.06

7.1. Single phase
For a correct evaluation of the output from the model simulation and to ensure reliable outcomes, a proper
verification of the results is needed. The verification begins with single phase flow, applying the SW EOS and
the PR EOS. A test case inspired by Giljarhus et al. [60] involves a 100 [m] long thermally insulated horizon-
tal pipeline closed at both ends. Initially, the left half of the pipe is set at 30 [bar ], and the right half at 10
[bar ], with a uniform temperature of 300 [K ]. The initial conditions are summarised in Table 7.1. Although
the reflective BC has been imposed on both ends, the BC does not influence the results as the waves did not
reached an end of the pipeline at the final time. At time zero, the diaphragm between the two sections is
removed; this is the set-up of the Riemann problem. The CO2 is only in the gaseous form, and thus the flow
is in single phase. With the simulation results of Giljarhus et al. [60] it is possible to verify the working of the
SW EOS.

In this test case, the HE M model was used. The test is run for 0.08 [s], with a CFL condition set to 0.9 and 1000
cells, consistent with the original paper [60]. In Figure 7.1, the results are displayed. The outputs—pressure,
temperature, density, and velocity—align perfectly with the results presented by Giljarhus et al., confirming
that the solver, the implementation of the SW EOS, and the optimization algorithm are accurate.

Seven distinct regions can be identified in Figure 7.1. From 0 to 20 [m], the wave has not yet propagated,
and the conditions remain identical to the initial state. Subsequently, a rarefaction wave emerges, resulting
in a gradient decline in pressure, temperature, and density. This wave is identified as a rarefaction wave, as
it invariably forms in the region with higher pressure. In the third region, a region with uniform flow is ob-
served, representing an intermediate state between waves. In the next region, a contact discontinuity wave is
observed. Here, the density exhibit a steep decline and the temperature rises. However, the pressure remains
constant. As explained in subsection 3.2.1, a contact discontinuity affects only the density and temperature,
not the pressure. In the fifth region, again a region with uniform flow is observed. The sixth region features
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(a) Pressure at t = 0.08 [s] (b) Temperature at t = 0.08 [s]

(c) Density at t = 0.08 [s] (d) Velocity at t = 0.08 [s]

Figure 7.1: Results of the Giljarhus simulation with HE M , CFL = 0.9, 1000 cells.

the third and final wave, a shock wave, characterized by a steep drop in pressure, density, and temperature,
indicating a discontinuity. This shock wave always occurs in the low-pressure region of the Riemann prob-
lem. In the final region, the initial condition of the low-pressure region remains unchanged, as the wave has
not yet reached this area.

7.2. Multi-phase
The next step is to get the verification of the computational model for a multi-phase problem. The verification
process for multiphase flow is inherently more complex due to the need to solve a system of four equations to
solve, see Equation 4.21 to Equation 4.24. A simulation has been done by Hammer et al. [31], where the initial
conditions where 100 [bar ] inside the pipeline and 1 [bar ] outside. This simulation is referred to as ’Ham-
mer 1’. At 0.2 [s], the pressure at the pipeline outlet decreased to 30 [bar ]. Therefore, to avoid BC effects,
the length of the pipeline was doubled, setting the second half to 30 [bar ], effectively creating a Riemann
problem. The results for the pressure is seen in Figure 7.2. This configuration ensured that the waves did not
reach the boundaries within the simulation time, maintaining the integrity of the results. The starting values
are also given in Table 7.1.
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Figure 7.2: Pressure at t = 0.08 [s] with the extended BC shown for the Hammer 1 simulation. The simulation is done with HE M , CFL =
0.5 and 2000 cells.

For this test case, the HE M model was used, the CFL condition was set to 0.5, and 2000 cells were used,
ensuring 1000 cells in the initially pressurized pipeline, as in Hammer et al.’s original study. The test is run
for 0.2 [s]. In Figure 7.3, the results are shown for the pressure, temperature, density and liquid holdup. The
observed behaviour aligns closely with the reference results, confirming that the multi-phase flow model is
implemented correctly. Minor discrepancies at the boundary are attributed to differences in boundary con-
dition setups.

In Figure 7.3, four distinct regions can be identified. The first region corresponds to the initial state, where
conditions remain unchanged. Following this is a rarefaction wave, leading to a decrease in pressure, tem-
perature, and density as it propagates from right to left. In the SW EOS model, this wave travels slightly faster,
reaching further along the pipeline after 0.2 [s]. The third region features a plateau between two waves, where
the CO2 remains in a single-phase state at the boiling pressure. This pressure is higher in the SW EOS model,
indicating that the PR EOS may not fully capture the two-phase boiling dynamics correctly. Finally, the fourth
region represents a slower-moving rarefaction wave, during which boiling occurs, transitioning the CO2 from
a single-phase state to a two-phase system.
A second simulation is done, and compared with the results by Hammer et al. [31]. This problem is referred
to as ’Hammer 2’. The initial conditions are 30 [bar ] at the left half and 1 [bar ] at the right half of the pipeline.
The temperature of the whole pipeline was set to 300 [K ]. The starting values are also given in Table 7.1.

Again, the HE M model is used. The CFL condition was set to 0.5, in accordance with the paper. 1000 cells
were used. Hammer et al. used 4000 cells. However, as will be explained in section 7.3, convergence is still
met with 1000 cells, reducing computational effort.

The result of the simulation is displayed in Figure 7.4. The simulation closely resemble Hammer et al.’s find-
ings, with pressure, density, velocity, and temperature profiles following similar trends. A notable difference
is the presence of a small hump in the pressure profile, which Hammer et al. attributed to the formation of
dry CO2 ice. This phenomenon, occurring due to low temperature and pressure, results in latent heat release
as CO2 transitions to a solid phase. Since the current model does not account for solid CO2 formation, the
temperature drops further than in Hammer et al.’s study. The results of Hammer et al. are obtained with
the use of a graph reading tool1. The consequence is that slight differences can occur. This could explain
the pressure difference at the beginning of the pipeline. Despite these differences, the overall agreement is
strong, verifying the model’s performance under two-phase conditions.

1https://plotdigitizer.com/app is used for obtaining the results from the graphs
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(a) Pressure at t = 0.08 [s]. (b) Temperature at t = 0.08 [s].

(c) Density at t = 0.08 [s]. (d) Liquid holdup at t = 0.08 [s]. Note that the distance is from 80 [m].

Figure 7.3: Results of the Hammer 1 simulation with HE M , CFL = 0.5, 2000 cells.

7.3. Mesh & time-step convergence
Convergence studies are critical for verifying the correctness and robustness of numerical simulations. For
an explicit Euler method, the numerical solution must converge with increasing mesh density and decreasing
time step size. This section examines the convergence behaviour of the Hammer 2 test case by varying the
mesh size and CFL number. The objective is to identify the optimal configuration that balances accuracy and
computational efficiency.

First, a mesh convergence study was conducted using grids with 200, 400, 800, and 1600 cells. The results for
pressure and temperature at t = 0.06 [s] are displayed in Figures 7.5a and 7.5b.

The pressure results in Figure 7.5a show that the 200-cell grid deviates significantly from the finer grids, par-
ticularly at the rarefaction wave and the shock wave near 70 [m]. This behaviour is expected, as a coarser grid
smooths out sharp discontinuities, whereas finer grids capture sharper transitions.
The temperature results in Figure 7.5b further highlight the inadequacy of the 200-cell grid. The coarse grid
fails to capture the full flow dynamics, evident in the underestimation of the top plateau and the inaccurate
representation of the contact discontinuity at 65 [m]. With finer grids, the temperature rise near 65 65 [m]
becomes sharper, indicating improved resolution.

The maximum temperature differences across grid sizes were as follows:

• 1600 cells: Maximum temperature 313.4 [K ].

• 800 cells: Maximum temperature 312.6 [K ] with a 0.2 % relative difference (absolute difference of 0.8
[K ]).
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(a) Pressure at t = 0.06 [s]. (b) Temperature at t = 0.06 [s]

(c) Density at t = 0.06 [s]. The cross denotes a slight decrease in density. (d) Velocity at t = 0.06 [s]

Figure 7.4: Results of the Hammer 2 simulation with HE M , CFL = 0.5, 1000 cells.

• 400 cells: Maximum temperature 311.1 [K ] with a 0.7 % relative difference (absolute difference of 2.3
[K ]).

• 200 cells: Maximum temperature 304.0 [K ] with a 3.1 % relative difference (absolute difference of 9.4
[K ]).

Based on these results, a 400-cell grid is deemed optimal, offering a good trade-off between accuracy and
computational cost while maintaining a relative difference below 1%.
Time-step convergence was evaluated by varying the CFL number for a 400-cell grid. The CFL numbers tested
were 0.9, 0.7, 0.5, 0.3, and 0.1. Figures 7.5c and 7.5d illustrate the pressure and temperature results, respec-
tively. The results show negligible differences between simulations with different CFL numbers, except for
the pressure drop at the beginning of the rarefaction wave. This discrepancy can be mitigated by refining the
mesh. Consequently, the highest possible CFL number is used to minimize simulation time without compro-
mising accuracy.

7.4. T F 5 model

Table 7.2: Initial values for high pressure, high density Sod problem

Fluid Density [kg /m3] Velocity [m/s] Pressure [Pa] Liquid Holdup [°] Gamma [°]
Water 10.0 0.0 10.0 1.0 1.4
Air 0.125 0.0 0.1 0.0 1.6
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(a) Pressure at t = 0.06 [s] for different meshes, CFL = 0.5. (b) Temperature at t = 0.06 [s] for different meshes, CFL = 0.5.

(c) Pressure at t = 0.06 [s] for different CFL numbers, 400 cells. (d) Temperature at t = 0.06 [s] for different CFL numbers, 400 cells.

Figure 7.5: Results of the Hammer 2 simulation with HE M , for different mesh sizes and CFL numbers.

The T F 5 model differs significantly from the DF 3 and DF 4 models due to its non-conservative formula-
tion, which introduces additional numerical complexities. To verify the numerical implementation, a water
vapour-air shock tube problem, commonly referred to as the Sod shock tube problem [61], was used. This
setup involves a diaphragm initially separating two regions of differing states in the pipeline, with the left
state filled with water vapour, and the right state filled with air. At t=0 [s], the diaphragm is removed, initiat-
ing the simulation. The initial conditions are outlined in Table 7.2. For simplicity, the ideal gas law was used
instead of the PR or SW EOS. This test case consists therefore out of 2 non-mixing gases, so there is no phase
change and mass transfer between the fluids.

The verification began with the T F 5°2 model, as literature has established methods for handling fluxes and
source terms using the HLLC solver and HLLC-based approaches, respectively, as detailed in Section 5.6.
Once the T F 5°2 model was validated, the same discretization approach was extended to the T F 5 model.

The results of the T F 5 model are shown in Figure 7.6, comparing numerical outcomes to the analytical solu-
tion. The pressure, density, and velocity align well with the analytical solution, demonstrating the accuracy
of the numerical implementation.

Notably, the liquid volume fraction graph highlights the importance of incorporating the source term. With-
out the source term, the liquid holdup fraction overshoots significantly, leading to inaccurate results. With
the source term included, the simulation accurately reproduces the expected behaviour. This confirms that
the source term has been implemented correctly.
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(a) Pressure at t = 0.075 [s] (b) Density at t = 0.075 [s]

(c) Velocity at t = 0.075 [s] (d) Liquid volume fraction at t = 0.075 [s]

Figure 7.6: The Sod shock problem for a water vapour-air combination. The initial conditions are given in Table 7.1. A CFL of 0.9 and
1000 cells have been used.

7.5. Summary
This chapter verified the numerical implementation of the models through a series of test cases. For single
phase verification, the Giljarhus test case demonstrated the accuracy of the SW equation of state and the nu-
merical solver, reproducing expected pressure, temperature, density, and velocity profiles.

The multi-phase verification used two Hammer test cases. The results matched the behaviour observed in
the literature, verifying the implementation of the multi-phase flow model. Minor deviations in pressure and
temperature, attributed to solid CO2 formation, were noted but did not detract from the overall accuracy.

Mesh and time-step convergence studies for the Hammer 2 test case confirmed the reliability of the numer-
ical solution. A grid of 400 cells and a high CFL number were found to provide an optimal balance between
computational efficiency and accuracy.

Finally, the T F 5 model, with its non-conservative formulation, was verified using the Sod shock tube prob-
lem. The results showed strong agreement with the analytical solution, verifying the flux and source term
implementations with mass transfer.

In conclusion, the chapter established confidence in the numerical implementation of all models and their
ability to accurately simulate single phase and multi-phase flows under various conditions.
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8
Results

This chapter presents the results obtained from the different models for various test cases. Additionally, it
examines the differences between these models. The chapter begins by analysing the flow development over
time, describing how pressure and temperature evolve in the pipeline during depressurization events. Sub-
sequently, the pressure and temperature results along the pipeline for the DF 3 model are discussed in sec-
tion 8.2. These results are also compared with those obtained from OLGA, a state-of-the-art multiphase flow
simulator. Furthermore, the results for the DF 4 model are presented and compared with those of the DF 3
model in section 8.3. In section 8.4, the pressure variation over time is analysed, with a discussion of its
implications. Finally, the temperature evolution over time is detailed in section 8.5.

8.1. Flow development
As mentioned in section 2.5, pipeline depressurization tests have been conducted by Munkejord et al. [21]
and Log et al. [22] [23] [24], to quantify the effects of such events. In the tests, the pipeline is initially pressur-
ized to a target pressure. Subsequently, a rupture disk is opened at the left side of the pipeline at t = 0 [s]. The
high pressure CO2 fluid is exposed to the ambient conditions. The starting conditions are shown in Figure 8.1

Figure 8.1: Initial conditions of the test-cases on the PT diagram of CO2. The saturation line and all the regions are calculated with the
SW EOS.

Following the rupture, high-pressure CO2 begins to escape the pipeline. The significant pressure difference
between the pipeline and ambient accelerates the flow to Mach 1, reaching the critical outflow speed. A
sketch is given in Figure 8.2, where it is seen that the CO2 escapes at the left end of the pipeline, where the
rupture disk is opened. The rapid drop in pressure also causes a significant temperature drop, primarily due
to adiabatic expansion as the gas expands rapidly without heat exchange. However, as found in the literature
and explained in subsection 2.1.2, the temperature drop is expected to occur on a longer timescale compared
to the pressure drop.

63
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Figure 8.2: Sketch of the flow development in the pipeline. The CO2 fluid in the pipeline moves from right to left, into the ambient.
A represents the shock wave in the ambient, B is the contact discontinuity, likewise in the ambient, C is the slow moving two-phase
rarefaction wave and D is the fast moving single phase rarefaction wave, both moving in the opposite direction of the CO2 fluid.

Figure 8.3: Sketch of an expected time-frame in the pipeline. Region 1 is where the IC conditions still are present, region 2 is where the fast
moving single phase rarefaction wave drops the pressure and temperature, region 3 is where the plateau for pressure and temperature
sits as the flow is chocked, and region 4 is where the slow moving two-phase rarefaction wave drops the temperature and pressure further,
as the flow transits into a two-phase regime.

To simulate this scenario, a Riemann problem setup, as described in section 3.2, can be employed. The rup-
ture disk acts as a diaphragm separating two distinct regions: the pipeline conditions on the right and am-
bient conditions on the left. Due to the higher pressure on the right side, the fluid always flows from right
to left. Consequently, the simulation only requires one boundary condition cell for the ambient state, as no
information propagates back into the pipeline.

Upon opening the pipeline, three distinct waves are observed:

• Shock Wave: This wave propagates into the low-pressure ambient region (Wave ’A’ in Figure 8.2). Since
it does not affect conditions inside the pipeline, it can be ignored for this analysis.

• Contact Discontinuity: This wave travels with the fluid’s velocity (Wave ’B’ in Figure 8.2). As the fluid
exits the pipeline, the contact discontinuity wave also propagates into the ambient region, rendering it
irrelevant for the pipeline’s internal conditions.

• Rarefaction Waves: This wave travels into the high-pressure region within the pipeline and plays a sig-
nificant role in the results. Two rarefaction waves are produced, a fast moving single phase rarefaction
wave (Wave ’D’ in Figure 8.2), and a slow moving two-phase rarefaction wave (Wave ’C’ in Figure 8.2).

In Figure 8.3, a sketch of the pressure and temperature at a time-frame are sketched. The sketch is divided
into four regions. In region 1, nothing has yet happened and the pressure and temperature are still at the
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Table 8.1: Speed of sound for the initial conditions. While the speed of sound is different for different conditions, the highest speed of
sound is always when the fluid is in a liquid phase.

Test no. Pressure avg. [bar ] Temperature avg. [±C] Speed of sound [m/s]
25 122.7 4.6 635.9
19 124.7 10.2 598.0
22 124.8 14.9 563.4
4 125.4 21.1 516.7
8 122.2 24.6 484.0

23 121.9 31.5 428.6
24 115.6 35.8 373.0
6 104.0 40.0 289.6

ICs, as the fast moving rarefaction wave did not yet reached the pipeline end. In region 2, the fast moving
rarefaction wave causes a drop in pressure and temperature within the pipeline. These quantities decrease
until reaching a stable plateau, which is seen in region 3. This plateau is at the pressure where boiling of
liquid CO2 into two-phase CO2 begins. The flow is choked and at this point, the mass flow rate is maximized.
Further reductions in downstream pressure do not increase the escape rate of CO2. If friction would not be
included, this plateau would be horizontal. Once the slow moving rarefaction wave appears, seen in region
4, the pressure inside the pipeline falls below this plateau, CO2 transitions into a two-phase regime, resulting
in further reductions in pressure and temperature as liquid and vapour phases coexist.

8.2. DF 3 model
Figure 8.4 to Figure 8.7 shows the simulation results for the experiments of tests 25, 19, 22 and 6 using the
DF 3 model. The results are given for the pressure and temperature at a time of 0.1 [s]. All simulations are
done with the friction calculated by the Friedel method, the friction calculated by the Churchill method, and
without any friction. The latter is essentially the HE M model. The effects of gravity are set to zero, because
it is a horizontal pipeline setup. All the simulations are done with a CFL number of 0.95, and with 400 cells.
Table 8.1 can be used to check which test number corresponds to which initial condition. These simulation
tests were also carried out by Log et al. [24] [22] [23].

8.2.1. Pressure results
The pressure results for test 25, 19, 22 and 6 are presented in Figure 8.4 to Figure 8.7. The other results are
found in Appendix F. The analysis indicates that the difference between the two friction methods is negli-
gible. Therefore, it is recommended to use the Churchill method, as detailed in subsection 3.3.2, due to its
significantly simpler implementation compared to the Friedel method.

Additionally, the results of the DF 3 model with friction align more closely with the experimental data than
those of the HE M model. This discrepancy is particularly evident in simulations with lower initial tempera-
tures. The plateau in the DF 3 model is declining from right to left, unlike the horizontal plateau observed in
the HE M model. This phenomenon is attributed to friction, which causes momentum loss to the environ-
ment, resulting in a pressure decrease.

Furthermore, it is observed that the decompression wave propagates faster when the initial conditions have
lower temperatures. As shown in Table 8.1, the speed of sound at the initial condition for test 25 is more than
twice that for test 6. This is clearly illustrated in Figure 8.4a and Figure 8.7a. In test 6, the pressure did not
change beyond 30 meters up to a time of 0.1 [s], whereas in test 25, the pressure wave had already reached
the end of the pipeline within the same time-frame. This is expected, as the speed of sound of test 25 is 635.9
[m/s], so after 0.1 [s], the decompression wave would have travelled 63.6 [m], which is more than the length
of the pipeline (61.67 [m]).

The only mismatch with the experimental result occurs in test 25, shown in Figure 8.4a. A clear explanation
for this discrepancy has not been identified. However, experimental data indicates that at 0.1053 [s], the
pressure at the end of the pipeline was 80.67 [bar ], which aligns with the simulation results. This implies that
only 5.3 [ms] were required for the pressure to drop by 20 [bar ]. Given this small time-scale, the discrepancy
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could potentially be attributed to a measurement error. Since this issue does not appear in any of the other
tests, it is reasonable to conclude that the mismatch is not caused by a physical phenomenon.

(a) Pressure of test 25 at t = 0.1 [s]. The flow left from the vertical gray line is in
the two-phase region, right it is in single phase.

(b) Temperature of test 25 at t = 0.1 [s]. The flow left from the vertical gray line
is in the two-phase region, right it is in single phase.

Figure 8.4: Pressure and temperature results of test 25 t = 0.1[s] for the DF 3 model. All simulations are done with a CFL of 0.95 and 400
cells.

(a) Pressure of test 19 at t = 0.1 [s]. The flow left from the vertical gray line is in
the two-phase region, right it is in single phase.

(b) Temperature of test 19 at t = 0.1 [s]. The flow left from the vertical gray line
is in the two-phase region, right it is in single phase.

Figure 8.5: Pressure and temperature results of test 19 t = 0.1[s] for the DF 3 model. All simulations are done with a CFL of 0.95 and 400
cells.
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(a) Pressure of test 22 at t = 0.1 [s]. The flow left from the vertical gray line is in
the two-phase region, right it is in single phase.

(b) Temperature of test 22 at t = 0.1 [s]. The flow left from the vertical gray line
is in the two-phase region, right it is in single phase.

Figure 8.6: Pressure and temperature results of test 22 t = 0.1[s] for the DF 3 model. All simulations are done with a CFL of 0.95 and 400
cells.

(a) Pressure of test 6 at t = 0.1 [s]. The flow left from the vertical gray line is in
the two-phase region, right it is in single phase.

(b) Temperature of test 6 at t = 0.1 [s]. The flow left from the vertical gray line
is in the two-phase region, right it is in single phase.

Figure 8.7: Pressure and temperature results of test 6 t = 0.1[s] for the DF 3 model. All simulations are done with a CFL of 0.95 and 400
cells.

8.2.2. Temperature results
The temperature results for test 25, 19, 22 and 6 are presented in Figure 8.4 to Figure 8.7. The other results are
found in Appendix F. The simulation results for temperature do not align well with the experimental data. In
all test cases, the temperature wave appears to rise earlier in the simulations than observed experimentally.
Interestingly, reducing the simulation runtime to 0.085 [s] or 0.08 [s] results in better agreement between the
simulations and experimental data. This is demonstrated for tests 25, 19, 22 and 6 in Figure 8.8 and Figure 8.9.
The other tests are shown in Appendix F.

One possible reason for this delay is that the temperature requires more time to respond to pressure changes.
As supported by findings in the literature, and mentioned in subsection 2.1.2, temperature typically evolves
over a slower time-scale than pressure. However, in the HE M & DF 3 model, this delay is not captured, and
the changes happen with the same velocity as the decompression wave. A second reason could be that there
is no heat exchange term with the wall and the ambient. However, due to the short simulation time, this
effect is likely minimal. Besides, introducing a heat exchange source term would likely result in a declining
temperature plateau, analogous to the impact of friction on pressure. A third yet less satisfied reason for this
mismatch could be simply that the temperature sensors have a delay in the measuring. These temperature
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(a) Different temperature simulations of test 25. (b) Different temperature simulations of test 19.

Figure 8.8: Different temperature simulations for test 25 and 19, with a CFL number of 0.95 and 400 cells.

(a) Different temperature simulations of test 22. (b) Different temperature simulations of test 6.

Figure 8.9: Different temperature simulations for test 22 and 6, with a CFL number of 0.95 and 400 cells.

results have not been published by Log et al. [24] and Munkejord et al. [21] for this short time-span, and can
therefore not be compared.

In addition the temperature delay, discrepancies arise in measurements at the same location but from differ-
ent positions within the cross-sectional area of the pipeline. These locations, which have multiple sensors,
are situated at the end of the pipeline. Especially in test 25, indicated in Figure 8.4b, and test 19, shown in
Figure 8.5b, the temperatures measured at 46 [m] are for three positions in the pipe showing a difference of
1.5 [±C ]. The dotted grey vertical line in the figures delineates the boundary between two-phase flow (left of
the line) and single-phase flow (right of the line). Since these discrepancies occur in the single phase region,
they cannot be attributed to two-phase flow. AA plausible explanation could be thermal stratification, where
hotter fluid rises, resulting in higher temperatures measured at the top. This is seen in test 22, in Figure 8.6b,
at the end of the pipeline. But here, the flow is not disturbed yet. When looking at the temperatures of the
disturbed flow, for example in test 19, in Figure 8.5b and test 22, in Figure 8.6b, the side measurement device
shows the highest temperature. Again, a clear physical explanation is elusive. Slight measurement errors may
also contribute to these discrepancies.

8.2.3. DF 3 model comparison with OLGA
OLGA is an industry-standard tool used for modelling transient flow behaviour in pipelines and well-bores. It
is a numerical tool for simulating one-dimensional multiphase flow and it is used by production, process, and
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(a) Pressure of test 19 at t = 0.1 [s] (b) Temperature of test 19 at t = 0.1 [s]

Figure 8.10: Pressure and temperature results of test 19 at t = 0.1 [s] for the DF 3 model & OLGA software for a different number of cells.

flow assurance engineers to ensure efficient and safe operations in the oil and gas industry. Version 2024.2 of
OLGA [62] was used for these simulations, with the settings configured for no-slip between the phases and
adiabatic flow while enabling friction with the pipeline. The results are displayed in Figure 8.10 for test 19
and in Figure 8.11 for test 6. Test 19 and test 6 have been chosen, representing one scenario with an initially
high CO2 temperature in the pipeline and another with an initially low CO2 temperature.

In test 19, the simulation results of the DF 3 model perfectly match those obtained using OLGA. Although
OLGA used a significantly higher number of grid cells (20,000 vs 1600) due to its advanced optimization ca-
pabilities and faster computational speed, this did not yield any noticeable advantage. Both simulations
converged to the same solution, confirming the robustness and accuracy of the DF 3 model.

However, in test 6, discrepancies between the DF 3 model and OLGA simulations were observed. While the
overall flow dynamics are similar, notable differences persisted even with increased grid resolution. The first
difference, is that while friction is enabled in the OLGA software, it seems that the results are not as expected.
With the DF 3 model, the pressure plateau is slightly increasing from left to right, which is expected. For the
OLGA software simulation, the plateau is not increasing, and with closer inspection in the zoomed in pic-
tures, it is even decreasing.

This difference is not due to an issue with friction modelling in OLGA but rather stems from its treatment of
conditions near the critical point during depressurization. The reason for this phenomenon with the OLGA
software is that with the depressurization of test 6, the conditions come very close to the critical point, and
the software has a different method of handling situations close to the critical point condition. The difference
is clearly shown in Figure 8.12a. The liquid volume fraction increases from 0 to 8 [m], yet decreases after 8
[m] and finally increases again at 15 [m]. This decrease in liquid volume is non-physical.

Further analysis, as shown in the depressurization paths at x = 0.08 [m], Figure 8.12, highlights how both sim-
ulations navigate near the critical point. Here it is observed how the OLGA software tries to avoid the critical
point, leading to the observed discrepancies. Although these differences do not significantly impact pipeline
design outcomes, they are noteworthy. In the author’s opinion, there is potential for OLGA to improve its
handling of conditions near the critical point to better align with physical expectations.

8.2.4. Span Wagner vs Peng Robinson EOS
The SW EOS is widely regarded as the reference equation of state for modeling pure CO2 fluid due to its high
accuracy. However, it is computationally more expensive compared to the PR EOS. If the PR EOS can provide
comparable results with significantly lower computational costs, it may serve as a valuable alternative in sce-
narios where runtime is a critical factor.
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(a) Pressure of test 6 at t = 0.1 [s] (b) Pressure of test 6 zoomed in at t = 0.1 [s]

(c) Temperature of test 6 at t = 0.1 [s] (d) Temperature of test 6 zoomed in at t = 0.1 [s]

Figure 8.11: Pressure & temperature results of test 6 at t = 0.1 [s] for the DF 3 model & OLGA software for a different amount of cells.

(a) Liquid volume fraction of test 6 at t = 0.1 [s] for the DF 3 model & OLGA
software

(b) Pressure vs Temperature graph. The depressurization of test 6 with the
DF 3 model & the OLGA software are shown.

Figure 8.12: A comparison of the OLGA software and the DF 3 model simulation for test 6.
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(a) Pressure of test 19 at t = 0.1 [s]. (b) Temperature of test 19 at t = 0.1 [s]

Figure 8.13: Pressure and temperature results of test 19 at t = 0.1[s] for the DF 3 model. All simulations are done with a CFL of 0.95 and
400 cells.

(a) Pressure of test 6 at t = 0.1 [s]. (b) Temperature of test 6 at t = 0.1 [s]

Figure 8.14: Pressure and temperature results of test 6 at t = 0.1[s] for the DF 3 model. All simulations are done with a CFL of 0.95 and 400
cells.

The pressure and temperature results for test 19 and test 6 are presented in Figure 8.13 and Figure 8.14. In
test 19, the pressure predictions from the PR EOS closely align with those from the SW EOS. However, the
decompression wave in the PR simulation lags behind that of the SW simulation. This delay results in a pres-
sure drop at 50 [m], while experimental data indicates that the decompression wave should have propagated
further along the pipeline.

Interestingly, the slower decompression wave in the PR simulation appears to result in a more accurate pre-
diction of the temperature drop. However, this agreement seems to be coincidental rather than a reflection
of the underlying physics captured by the PR EOS. Besides, while the PR EOS predicts the magnitude of the
temperature drop more closely, it fails to accurately capture the temperature distribution following the drop,
as shown in the range from 5 [m] to 45 [m] in Figure 8.13b.

In test 6, the results obtained using the PR EOS demonstrate noticeable discrepancies compared to the SW
EOS. Both the predicted pressure and temperature plateaus are underestimated. Additionally, the pressure
and temperature profiles exhibit a distinct kink during the drop. This behaviour is attributed to the inherent
limitations of the PR EOS when modelling fluid behaviour near or across the critical point. Such conditions
arise in test 6, as will be further elaborated in the subsequent section.
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(a) Total mass in the pipeline until 0.1 [s] for test 19. (b) Vapour mass in the pipeline until 0.1 [s] for test 19.

Figure 8.15: The mass in the pipeline until 0.1 [s] for test 19. The simulations are done with the DF 3 model and a CFL of 0.95.

8.2.5. DF 3 total mass & mass transfer
In the state vector of the DF 3 model, one of the variables is the density. With the density known, the area of
the pipeline and the cell size, the mass in the whole pipeline can be calculated with Equation 8.1.

M = A
NX

i=1
(Ωi¢xi ). (8.1)

The results are shown in Figure 8.15 for test 19. The mass calculation seems to be converged as increasing the
number of cells gives less difference in the results. The difference between 400 cells and 1600 cells is 0.05 [kg ]
after 0.1 [s]. Compared to the total mass 72.8 [kg ], the difference is less than 0.1 %. What is observed from
these graphs is that the total mass decreases by 3 [kg ], while the vapour mass only increases by 0.1 [kg ]. It
means that most of the mass has left the pipeline.

Additionally, the mass transfer term for the DF 3 model, as explained in section 5.5, has been calculated for
test 19. The result for test 19 is shown in Figure 8.16. The results for the other tests are given in Appendix F,
but due to the same behaviour, only test 19 is shown and discussed. A notable observation is that the mass
transfer does not easily converge upon mesh refinement. This is first seen in Figure 8.16a. Here, the mass
transfer rate is plotted against the distance. The simulations are done with a CFL of 0.1, to ensure stability.
The simulation with 12,800 cells was performed at a higher CFL of 0.8, to achieve a reasonable computation
time. Despite the higher CFL, the same behaviour is observed: with increasing cell numbers, the mass trans-
fer exhibits a more pronounced spike and a larger parabola shape when plotted over the pipeline’s distance.

When examining the depressurization paths in Figure 8.17, all tests depressurize to the saturation line, tran-
sitioning into a two-phase flow. This behaviour is expected with the DF 3 model, as it enforces phase equilib-
rium conditions. The spikes in the mass transfer likely arises because the DF 3 model enforces phase equi-
librium conditions, requiring the mass transfer to adjust rapidly to maintain consistency with the saturation
state during depressurization.

In Figure 8.16b, the mass transfer is plotted over time at 0.08 [m] from the pipeline outlet. The results again
show a distinct spike, suggesting that this feature propagates through the pipeline. A definitive reason for this
spike is not found, and more research needs to be done. Especially, as later will be shown in subsection 8.3.3,
this phenomena is not seen in the DF 4 model.

Efforts were made to determine the mass transfer using simulations conducted with the OLGA software for
verification purposes. However, due to the lack of understanding the precise flux calculation methodology
employed by the software, this proved to be unfeasible, rendering the results unreliable.
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(a) Mass transfer for test 19 at 0.02 [s]. The simulation is done with a CFL of
0.02. Only for the simulation with 12800 cells has a CFL of 0.8 been used.

(b) Mass transfer for test 19 at 0.08 [m] until 0.05 [s]. The simulation is done
with 4000 cells and a CFL of 0.95.

Figure 8.16: The mass transfer rate in the pipeline for test 19. The simulations are done with the DF 3 model.

Figure 8.17: Depressurization paths of the CO2 fluid modelled by the DF 3 model up to a time of 0.02 [s]. The simulations have been
done with a CFL number of 0.95 and 4000 cells.

8.3. DF 4 model
As explained more thoroughly in subsection 3.1.3, the DF 4 model consists of four flow PDEs, with two mass
conservation equations, one bulk momentum conservation equation and one energy conservation equation.
In Figure 8.20 to Figure 8.22, the simulations of multiple experiments, specifically tests 25, 19, and 22, are pre-
sented using the DF 3 and DF 4 models. For simulations that cross closer to the critical point, the results were
inaccurate. According to Log et al. [22], this inaccuracy was due to the use of an explicit method of calculating
the primitive variables. Log et al. recommended using an implicit method for other test cases. More will be
explained in ??. However, due to time constraints, it was not feasible to implement the implicit method.

The pressure results are provided for t = 0.02 [s] and for t = 0.1 [s]. All simulations were conducted with friction
calculated using the Churchill method. The effects of gravity are absent, as the setup involved a horizontal
pipeline. All simulations were performed with a CFL number of 0.5 and 400 cells. Table 8.1 shows the initial
conditions for each test number and the value of µ used in calculating °, as detailed in subsection 3.3.3.
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Table 8.2: The initial conditions with µ defined for the tests that were successful. The value for µ is taken from Log et al. [23].

Test no. Pressure avg. [bar ] Temperature avg. [±C] µ [ms]
22 124.8 14.9 2.0
19 124.7 10.2 2.5
25 122.7 4.6 2.8

(a) Pressure of test 19 at t = 0.02 [s]. (b) Pressure of test 19 at t = 0.1 [s].

Figure 8.18: Pressure results of test 19 t = 0.02 [s] & t = 0.1 [s] for the DF 4 model with Churchill friction. Both simulations have been done
with a CFL number of 0.5, and with 400 cells.

(a) Temperature of test 19 at t = 0.02 [s]. (b) Temperature of test 19 at t = 0.1 [s].

Figure 8.19: Temperature results of test 19 at t = 0.02 [s] & t = 0.1 [s] for the DF 4 model with Churchill friction. Both simulations have
been done with a CFL number of 0.5, and with 400 cells.

8.3.1. DF 4 with Churchill friction
In Figure 8.18, the simulations are shown with the DF 4 model with and without the (Churchill) friction. The
results are only shown for test 19, as all the other tests showed the same behaviour. The simulations are done
with 400 cells, and a CFL of 0.95. µ = 2.5e-3 [s] in this simulation, as shown in Table 8.2. The simulations are
done until 0.02 [s] and 0.1 [s]. Note that for the results on 0.02 [s], the pipeline is shown until 20 [m].
As previously observed with the DF 3 model, friction results in momentum loss and a decrease in the pressure
plateau along the length of the pipeline. At the early stage of 0.02 [s], however, friction has minimal influence
on mass transfer. This is evident from the near-identical pressure distributions with and without friction,
indicating that the effect of friction on the mass transfer rate is negligible in the initial phase.
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In addition to the pressure, temperature results for the DF 4 model are also shown in Figure 8.19, compar-
ing simulations with and without friction. The data reveal that friction has little to no effect on the tem-
perature distribution. This result is consistent with physical expectations, as temperature variations in this
context are predominantly governed by heat transfer mechanisms, while friction primarily impacts momen-
tum. Although friction dissipates energy in the form of heat, the amount of heat generated is relatively small
compared to the system’s overall thermal energy. Consequently, the effect of friction on the temperature is
minimal and does not significantly alter the thermal behaviour of the flow.

8.3.2. DF 4 vs DF 3
In order to find the differences and benefits of the DF 4 model, it is compared with the DF 3 model. This is
done for the pressure and temperature. These are shown from Figure 8.20 till Figure 8.25. This is for a final
simulation of 0.02 [s] and 0.1 [s].

Pressure results
A key observation is that the present simulation aligns closely with the results obtained by Log et al. [22]. This
is seen in the simulation up to a time of 0.02 [s], Figure 8.20a, Figure 8.21a and Figure 8.22a. The simulations
match almost perfectly until the point where the pressure begins to drop from the initial value. This diver-
gence can be attributed to Log et al.’s use of 2500 cells, resulting in a more converged solution. Additionally,
the differences in the phase transfer region, from 0 to 7.5 [m] in all three testcases, may be due to the method
Log et al. employed to derive their results. Their results were obtained using a graph digitization tool1, which,
while generally accurate, can introduce minor errors.

The most notable differences between the DF 3 and DF 4 models are observed at the beginning of the pipeline,
where the flow transitions into the two-phase regime. In the provided figures, the marker indicates the
boundary between the two-phase and single-phase regions. To the left of the marker lies the two-phase flow,
while the region to the right represents the single-phase flow. It is evident that the two-phase region extends
further along the pipeline in the DF 4 model compared to the DF 3 model. This difference is attributed to the
delayed mass transfer in the DF 4 model, resulting in a prolonged two-phase regime. However, as simulations
progress to 0.1 [s], the results of the DF 4 model converge toward those of the DF 3 model, diminishing the
observed benefits of the former.

A limitation of the DF 4 model is that its mass transfer is governed by the relaxation constant µ, which was
set at a specific value in this work. While this can be validated against experimental results, determining an
accurate value for µ is challenging in the absence of experimental data, making it difficult to quantify the
correct mass transfer for novel scenarios.

(a) Pressure of test 25 at t = 0.02 [s]. (b) Pressure of test 25 at t = 0.01 [s].

Figure 8.20: Pressure results of test 25 at t = 0.02[s] & t = 0.1[s] for the DF 4 model compared with the DF 3 model. All four simulations
were done with a CFL of 0.5 and 400 cells.

1https://plotdigitizer.com/app
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(a) Pressure of test 19 at t = 0.02 [s]. (b) Pressure of test 19 at t = 0.01 [s].

Figure 8.21: Pressure results of test 19 at t = 0.02[s] & t = 0.1[s] for the DF 4 model compared with the DF 3 model. All four simulations
were done with a CFL of 0.5 and 400 cells.

(a) Pressure of test 22 at t = 0.02 [s]. (b) Pressure of test 22 at t = 0.01 [s].

Figure 8.22: Pressure results of test 22 at t = 0.02[s] & t = 0.1[s] for the DF 4 model compared with the DF 3 model. All four simulations
were done with a CFL of 0.5 and 400 cells.

Temperature results

When examining temperature simulations, the differences between the DF 3 and DF 4 models are minimal.
Figure 8.23 through Figure 8.25 illustrate that, for simulations up to 0.1 [s], the temperature results of both
models largely overlap throughout most of the pipeline. The only notable difference appears at the begin-
ning of the pipeline, where the transition from liquid to two-phase flow occurs. In the DF 4 simulation, this
transition is more gradual, aligning more closely with experimental observations, as seen in Figure 8.23b, Fig-
ure 8.24b, and Figure 8.25b. However, this difference is minor in magnitude (less than 0.5 [] for the three test
cases) and occurs over a short timescale, making it unlikely to have significant practical implications.

For simulations up to 0.02 [s], the temperature results do not align with experimental data. A steep tem-
perature drop coincides with the location of a steep pressure drop, a phenomenon not observed in the tem-
perature measurements. The reason for this mismatch is due to the inability of both models to accurately
capture the slower temperature adaptation timescale, as discussed in subsection 2.1.2. When comparing the
DF 3 and DF 4 models, similar behaviour is observed, with the temperature profiles of the two models nearly
overlapping. The only noticeable difference occurs at the beginning of the pipeline, where the delayed mass
transfer in the DF 4 model results in a slightly different temperature response.
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(a) Temperature of test 25 at t = 0.02 [s]. (b) Temperature of test 25 at t = 0.1 [s].

Figure 8.23: Temperature results of test 25 at t = 0.02 [s] & t = 0.1 [s] for the DF 4 model compared with the DF 3 model. The simulations
until 0.02 [s] were done with a CFL of 0.95 and 400 cells. The simulations until 0.1 [s] were done with a CFL of 0.5 and 400 cells.

(a) Temperature of test 19 at t = 0.02 [s]. (b) Temperature of test 19 at t = 0.1 [s].

Figure 8.24: Temperature results of test 19 at t = 0.02 [s] & t = 0.1 [s] for the DF 4 model compared with the DF 3 model. All four simulations
were done with a CFL of 0.95 and 400 cells.

(a) Temperature of test 22 at t = 0.02 [s]. (b) Temperature of test 22 at t = 0.1 [s].

Figure 8.25: Temperature results of test 22 at t = 0.02 [s] & t = 0.1 [s] for the DF 4 model compared with the DF 3 model. All four simulations
were done with a CFL of 0.95 and 400 cells.
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(a) Total mass in the pipeline up to a time of 0.1 [s] for test 19. (b) Vapour mass in the pipeline up to a time of 0.1 [s] for test 19.

Figure 8.26: The mass in the pipeline up to a time of 0.02 [s] for test 19. For both the DF 3 and DF 4 models, the simulation is done with a
CFL of 0.95 and 400 cells.

8.3.3. Total mass & mass transfer
A comparison of the total mass within the pipeline between the DF 3 and DF 4 models reveals that the DF 4
model exhibits a faster decrease in total mass, as shown in Figure 8.26a. This indicates a higher rate of CO2
expulsion from the pipeline for the DF 4 model, primarily attributed to its higher mixture speed of sound. The
increased speed of sound leads to a higher critical velocity at the pipeline’s exit, which governs the maximum
mass flow rate under the choking condition. Consequently, the DF 4 model allows more mass to escape the
pipeline within the same time-frame.

Additionally, Figure 8.26b displays the vapour mass within the pipeline. Although the DF 4 model generally
predicts a faster mass transfer rate, an exception is observed during the first 10 [ms], where the DF 3 model
exhibits a higher vapour mass. This behaviour is further reflected in the mass transfer results shown in Fig-
ure 8.27.

The spatial distribution of the mass transfer at 0.1 [s] is illustrated in Figure 8.27a. Results show convergence
with increasing mesh resolution. Although the different mass transfer rate between 400 cells and 3200 cells
is almost twice the rate, the overall behaviour is the same and with increasing cell density, the differences
become smaller. In addition, the mass transfer rate is compared for the DF 3 and DF 4 models, shown in Fig-
ure 8.27b. There is a big spike for the mass transfer rate in the DF 3 model. However after 0.02 [s], the mass
transfer rate of the DF 3 model drops below the rate of the DF 4 model, and stays below up to a time of 0.05
[s]. This behaviour could be explained by looking at the depressurization paths.

In Figure 8.28, the depressurization paths for various test cases are presented, as modelled by the DF 3 and
DF 4 models. The DF 3 model demonstrates a drop in pressure and temperature until reaching the saturation
line, after which the flow closely follows the saturation curve. In contrast, the DF 4 model exhibits a drop
in pressure below the saturation line, a phenomenon referred to as pressure undershoot, as explained in
subsection 2.1.3. This pressure undershoot in the DF 4 model allows for a more gradual relaxation of the
mass transfer. Meanwhile, the DF 3 model enforces an increase in mass transfer to ensure the flow adheres to
the saturation line, resulting in distinct mass transfer behaviours between the two models.

8.3.4. Relaxation time
The relaxation parameter µ has a significant impact on the pressure results, as illustrated in Figure 8.29a.
This figure depicts the pressure as a function of distance at t = 0.02 [s]for test 19. It can be observed that, as µ
decreases, the DF 4 model converges toward the DF 3 model. This behaviour is expected, as the limit of µ! 0
is anticipated to yield results equivalent to the DF 3 model. In Figure 8.29b, the mass transfer is presented for
the same test. As expected, with larger values of µ, the mass transfer rate is lower. Interestingly, with larger
values of µ, the mass transfer appears to be more diffused compared to the DF 3 model. This suggests that
the DF 3 model imposes a constraint that drives the system towards a pressure plateau.
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(a) Pressure of test 19 at t = 0.02 [s] with different µ. (b) Mass transfer of test 19 at t = 0.02 [s] with different µ.

Figure 8.29: The pressure and mass transfer of test at t = 0.02 [s]. The simulation has been done with a CFL number of 0.5 and 400 cells.

(a) Mass transfer for test 19 using the DF 4 model. The figure shows the
result at 0.1 [s]. The simulation is done with a CFL of 0.1.

(b) Mass transfer for test 19 at 0.08 [m] up to a time of 0.02 [s]. The simu-
lation is done with 4000 cells and a CFL of 0.95.

Figure 8.27: The mass transfer in the pipeline versus the distance and versus the time.

(a) Depressurization paths of the CO2 fluid modelled by the DF 3 model
up to a time of 0.02 [s].

(b) Depressurization paths of the CO2 fluid modelled by the DF 4 model
up to a time of 0.02 [s].

Figure 8.28: The depressurization paths of the different testcases modelled by the DF 3 and DF 4 models. The simulations have been
done with a CFL number of 0.95 and 4000 cells.
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8.4. Pressure over time
In Figure 8.31, test 19 and test 6 are shown with the pressure evolving over time. The remaining test results,
which exhibit similar behaviour, are included in Appendix F. The results are shown up to a time of 0.02 [s], at
a distance of 0.08 [m] from the open end of the pipeline.

8.4.1. Simulation setup
These tests were performed with 4000 cells and simulated over a 20 [m] segment of the pipeline. This setup
ensures an extremely dense discretization, guaranteeing converged results. Since the propagation wave would
not reach beyond 20 [m] within the simulation time-frame, the shortened pipeline length was sufficient for
accurate modelling. Additionally, the pressure jumps in the experimental data were aligned with the simu-
lations. For example, in test 19, the experimental data was delayed by 0.00288 [s] to synchronize the timing
of the pressure jump with the simulation. For the DF 4 model, only the results of tests 25, 19, and 22 are
included, as the solver encountered stability issues for other test cases.

8.4.2. Observations
The DF 3 model consistently predicts a higher pressure plateau compared to the experimental results. This
observation aligns with findings by Log et al. [22]. The discrepancy arises because the pressure difference
between the pipeline conditions and the ambient was so significant that the fluid could not maintain its sat-
uration state. In literature, this phenomenon is described as a metastable condition, where the fluid rapidly
seeks to return to its stable state. The DF 4 model captures this behaviour more effectively by delaying the
mass transfer, resulting in the earlier mentioned pressure undershoot. For example, in test 19, shown in Fig-
ure 8.30a, the DF 4 model closely aligns with the experimental data. However, also the DF 4 model is not able
to fully replicate the pressure evolution, with the used mass transfer model in this research.

However, for test 6, shown in Figure 8.30b, the DF 3 model aligns well with the experimental data, with no
observed undershoot. This contrasts with other tests, such as tests 8 and 23, shown in Figure 8.31a and
Figure 8.31b respectively, which share similar saturation pressures of around 40 [bar ]. The absence of un-
dershoot in test 6 may be attributed to its higher initial temperature, which results in a lower speed of sound.
The slower pressure wave propagation allows the fluid to remain on its saturation curve.

(a) Pressure of test 19 at x = 0.08 [m] (b) Pressure of test 6 at x = 0.08 [m]

Figure 8.30: Pressure evolution at x = 0.08 [m] for test 19 & test 6. Both simulations have been done with a CFL of 0.95 and 4000 cells.
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(a) Pressure of test 8 at x = 0.08 [m] (b) Pressure of test 23 at x = 0.08 [m]

Figure 8.31

8.5. Temperature over time
The temperature evolution over time for test 19 and test 6 is illustrated in Figure 8.32. Results for other tests,
which exhibit similar behaviour, are provided in Appendix F. As for the pressures, the simulations were con-
ducted up to 20 [ms], at a location 0.08 [m] from the open end of the pipeline, using 4000 cells over a 20 [m]
segment to ensure a high level of discretization.

8.5.1. Observations
The differences here are much greater than in case of pressure. In the DF 3 model, the temperature of the sim-
ulation spikes quickly downwards after the opening of the valve. Nevertheless, the results of the experiment
display different behaviour. It takes time for the temperature to change and drop down to its equilibrium
state.

In the DF 3 model, the simulated temperature rapidly drops immediately after the valve opens, forming a
sharp downward spike followed by a short plateau. However, experimental results indicate that the tempera-
ture takes longer to adjust, showing a more gradual decrease to the equilibrium state. This discrepancy was
also noted in section 8.2, where the temperature profile at a given time did not align with the experimental
data.

In section 8.2, it was also found that at a given time, the results of the simulation and the experiments did
not match. A reason for the behaviour could be that it takes time for the measurement device to adjust to
the temperature of the fluid. What is different in these scenarios, is that there is an immediate drop of tem-
perature, and then a plateau is formed for a short time. This plateau is in the order of milliseconds, and so it
could be that the measurement device can not catch this phenomenon. However, this is unlikely, as in test
25, shown in Figure F.13a, the plateau is there for 2.5 [ms], and the results of the experiment show no change
compared with the initial condition. The more likely explanation is that the DF 3 model does not capture the
physics behind it correctly, and a relaxation time is needed to implement into the model.

While at the start of the simulation the results do not match, both the experimental results and the simulation
results tend to ’converge’ to the same equilibrium condition. It is remarkable that this happens more quickly
with the test conditions with a lower initial temperature (such as test 19). The reason could again be that these
test conditions have a higher speed of sound. Yet, while the higher speed of sound tends to undershoot the
pressure, for the temperature, it enables the fluid to more quickly converge to the equilibrium temperature,
as the time-scale of temperature changes are slower than for pressure changes.

What is surprising is that the DF 4 model has less accurate results, compared with the DF 3 model. The higher
spike downwards can be explained by the higher mass transfer. However, after the downwards spike, the
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temperature also tries to converge to the equilibrium state, but the path is unexpected. It tends to go slower
to the equilibrium state than the DF 3 model, and even than the experiment. While the DF 3 model shows a
big difference with the experiments, it is always with a lower temperature, and improvements can be made
to correct this. For the DF 4 model, there is not a physical reason why it behaves like this, and how it can be
improved. This is very surprising, and the DF 4 model can therefore not be used to model the temperature
adequately.

(a) Temperature of test 19 at x = 0.08 [m] (b) Temperature of test 6 at x = 0.08 [m]

Figure 8.32: Temperature results of test 19 and 6 at x = 0.08 [m]. The simulations have been done with 4000 cells and a CFL number of
0.95

8.6. Summary
This chapter presented the results of the depressurization tests simulated using the DF 3 and DF 4 models,
alongside comparisons with experimental data and OLGA software simulations. The chapter highlighted the
pressure, temperature, and mass transfer dynamics across various test cases, providing insights into the per-
formance and limitations of the models under different conditions.

The DF 3 model demonstrated good agreement with experimental pressure data, particularly for cases with
lower initial temperatures, where the plateau pressures aligned well. However, discrepancies were observed
in high-temperature tests, where the model failed to capture the undershoot in pressure attributed to metastable
conditions. The DF 4 model, with its enhanced mass transfer mechanism, addressed these undershoots effec-
tively and aligned more closely with experimental data. Nonetheless, the DF 4 model’s reliance on predefined
relaxation parameters like µ introduced complexities in cases lacking experimental validation.

Temperature results revealed significant challenges for both models. The DF 3 model exhibited a rapid tem-
perature drop immediately after depressurization, forming an unrealistic plateau inconsistent with exper-
imental measurements. The DF 4 model, despite its improved handling of pressure dynamics, performed
worse in capturing the temperature evolution. The irregular transition towards equilibrium in the DF 4 simu-
lations lacked physical justification, raising concerns about its reliability for temperature modelling. Overall,
neither model adequately captured the delayed temperature response observed in experiments, suggesting
the need for additional mechanisms to simulate thermal relaxation processes.

Comparisons with OLGA software highlighted areas where the DF 3 model performed well but also under-
scored limitations in its handling of near-critical point conditions. The OLGA simulations occasionally di-
verged from experimental trends, likely due to differences in how critical conditions were modelled. While
the DF 3 and DF 4 models showed convergence in long-term results, their transient behaviours revealed con-
trasting strengths and weaknesses.



8.6. Summary 83

Finally, the analysis of mass transfer dynamics confirmed that the DF 4 model predicted faster mass transfer
rates than the DF 3 model, particularly in the early stages of depressurization. However, this did not always
translate to improved accuracy, as the underlying assumptions about mass transfer rates remained depen-
dent on empirical parameters.

In conclusion, while the DF 3 model proved robust for pressure predictions, it fell short in accurately mod-
elling temperature dynamics. The DF 4 model provided better alignment with experimental pressure data but
struggled with temperature and introduced additional complexities. Both models require further refinement,
particularly in representing thermal relaxation, to achieve comprehensive accuracy in pipeline depressuriza-
tion scenarios.
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Discussion

9.1. Pressure accuracy
The DF 3 model demonstrated accurate predictions for pressures when the CO2 fluid was in a dense-phase
regime and depressurized to the saturation line. However, this implies that the CO2 fluid should be at a high
temperature (higher than 31 [±C]) . When transporting CO2, this not always possible (such as in pipelines in
deep cold water). For lower initial temperatures (lower than 31 [±C]), where the CO2 fluid is in a liquid phase,
the DF 3 model fails to capture the pressure undershoot below the saturation line, as is mentioned by Log et
al. [22] [23] [24]. This limitation is due to its forced adherence to the saturation line.

The DF 4 model addresses this issue by incorporating a configurable mass transfer term, °, which allows it
to model the pressure undershoot effectively. In this research, an accurate method for calculating the mass
transfer is used for the specific test-cases. The method is developed by Log et al. [22] [23] [24] with the ex-
perimental work that was done, and the method could be validated. Nevertheless, the goal is to develop a
method which is reliable without knowing beforehand what the result will be. Hereby, the mass transfer of
the DF 3 model can be used.

Looking at the timescale, these results are done in a matter of milliseconds, and after 20 [ms] the results of
the experiments and the simulations are (almost) aligned. The biggest misalignment is of the DF 3 model in
test 22, shown in Figure 9.1. However, this difference at 20 [ms] is only 4 [bar ]. This means the benefit of
using a non-equilibrium mass transfer quickly vanishes, and the DF 3 model can give accurate results for the
pressure.

Figure 9.1: Pressure of test 22 at x = 0.08 [m]. Done with a CFL of 0.95 and 4000 cells.
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9.2. Temperature accuracy
As mentioned in chapter 8, the accuracy of the temperature results is smaller compared to the pressure re-
sults. The temperature effects are not simulated correctly, and discrepancies occur. To start, the DF 3 and
DF 4 models could both not correctly capture the delayed temperature effects. In literature, and described in
subsection 2.1.2, it was found that the temperature time-scales are in a higher order compared to the pressure
time-scales. In other words, it takes more time for the temperature to change with different conditions.

Taking a closer inspection in the DF 3 and DF 4 models, the reason for this discrepancy becomes more clear.
In the energy equation, (Equation 9.1, repeated here for convenience reasons), the only changes are con-
tributed by the flux and the pressure changes, which both travel with the velocity of the shock wave, contact
discontinuity and rarefaction wave. It is therefore expected that in both models, the time-scales of the pres-
sure and the temperature changes are identical.
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Interestingly, the DF 4 model predicts temperature less accurately than the DF 3 model, even though the en-
ergy equations are identical. This suggests that the modified mass transfer in DF 4 impacts the total energy
evolution, leading to greater inaccuracies in temperature predictions.

To improve temperature modelling, additional source terms could be incorporated into the energy equation.
Even without the T F 5 model where two each phase has a separate energy equation, the bulk energy equa-
tion still can be improved as the discrepancies where observed in the single-phase. A delay mechanism for
temperature, analogous to the delayed mass transfer in DF 4, may offer a solution. Further investigation is
required to explore whether similar approaches have been used for other substances and whether they can
be adapted for CO2.

9.3. Impact on pipeline design
With the design of pipelines, the question arises if this discrepancies have a noticeable effect on the strength
and the material properties. It is of course important to understand what happens within the flow, and one
can only be confident about it if a model is able to simulate the flow behaviour as what experimental results
show.

However, when looking at the results, the discrepancies happen at very short time scales, and after, the simu-
lations and the experiments quickly tend to go towards each other for the pressure. The biggest discrepancies
happen in the first 20 [ms] of the simulation. Here the pressure drop is greater than predicted with the DF 3
model, with a possible pressure difference of 20 [bar ]. However, the question arises what kind of impact this
will have on the pipeline.

In addition, the temperature discrepancies are found because of the slower temperature changes. However,
the temperature of the fluid in the simulation eventually drops to more or less the same temperature level
that is found by the experimental results. his indicates that pipelines will still experience the predicted low
temperatures. The problem is that it could be that the pipeline is over designed, as the temperature over time
plots, such as Figure 8.32, show that the drop in temperature is more gradually instead of more instant as
predicted by the DF 3 model. With an instant drop, the stresses on the pipeline are calculated to be higher
compared to a gradual drop.
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9.4. Research questions
The research questions posed in subsection 2.4.1 are revisited here:

Research question 1.1.1: What where the shortcomings of the DF 3 model?

• The DF 3 model cannot simulate pressure undershoots due to its constraint to the saturation line. How-
ever, this discrepancy is most significant in the first 20 [ms], after which the model predicts pressure
within a 4 [bar ] margin.

• . The temperature predictions, while accurate in magnitude, are not aligned temporally. Furthermore,
discrepancies at longer timescales (e.g., 2–10 [s]) may exceed 40 [±C], highlighting the need for improve-
ments in long-term temperature modelling.

Research question 1.2.1: What where the shortcomings of the DF 4 model?

• It was found that the model can more accurately the pressure behaviour, most noticeable in the first
20 [ms]. At a longer timespan, the advantages seem to vanish and both the DF 3 and DF 4 models
approach the same pressure plateau.

• It was found in addition that the temperature is modelled less accurately compared to the DF 3 model.
Therefore, the conclusion can be made that while the DF 4 predicts the physics of the pressure evolu-
tion better, it does not does not necessarily translate to better temperature predictions.

Research question 1.3: Why did the DF 4 model better predict in comparison to the DF 3 model?

• Comparing the mass transfer of the DF 3 and DF 4 models, it was found that the mass transfer of the
DF 3 spikes in the first 20 [ms]. By delaying the mass transfer in the DF 4 model, it is possible to model
the undershoot in pressure. With this difference, it could be possible what the differences are and if a
general model for the difference can be invented. More research needs to be done on this problem.

Research question 1.4: Which equation of state is used and recommended? The SW and PR EOS were
used in this research. As already found in literature, the SW EOS is the reference EOS for modelling pure CO2
fluid, and this research has found the same conclusion.

Research question 2.2.2: Can the HLLC approximate Riemann solver be used for flux calculation? In
section 7.4, the HLLC method is applied with the T F 5 model, for a non-mixing two-fluid problem. It was
hereby found that the HLLC method with the 1st order FVM and explicit Euler method in time is able to
capture the flow dynamics, and that the T F 5 model could be modelled hereby. Nevertheless, due to time
constraints, it was not found to test the T F 5 model on a problem with mass transfer, or a problem with CO2
fluid. Therefore, more research needs to be done.

Research question 2.3: Does the T F 5 model predict CO2 flow more accurately? Unfortunately, no defi-
nite answer could be given in this research. However, it was found that the DF 3 and DF 4 models have their
discrepancies with simulating the temperature, and therefore, there is reason to further investigate into the
T F 5 model.
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9.5. Future work and recommendations
Building upon the findings of this study, several opportunities for future research and development are iden-
tified:

• The first possibility for improvement is to discretize the DF 4 model in an implicit method. In this study,
the primitive variables are calculated by an explicit method. However, close to the critical point, this
method fails. Log et al. [24] suggested to use an implicit method for calculating the primitive variables,
whereby the mass transfer term is incorporated into the calculation. This is shown in Equation 9.2. The
same can be done for the calculation of the primitive variables in the T F 5 model.
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• The pressure undershoot suggest the need for more robust formulations of mass transfer terms, par-
ticularly under rapid depressurization scenarios. Future research could explore adaptive mass transfer
models, whereby the mass transfer is developed based on the mass transfer of the DF 3 model. Hereby,
a general mass transfer model could be developed which differs based on the initial conditions of the
CO2 fluid.

• The temperature discrepancies may be solved by the use of adding source terms in the energy equation.
Firstly, there is the possibility to add a heat exchange term with the ambient. However, this will not
solve the delayed temperature effects. In order incorporate the delay, a same principle can be applied
as for the mass transfer delay. Nevertheless, in the literature research, there has not been searched for
a temperature delay equation, and if it has already been used for other substances. Therefore, it is first
recommended if other methods have been used to model the temperature delay, and try to implement
it for CO2 fluid.

• Further development of the T F 5 model, incorporating mass transfer and CO2 thermodynamics, is ex-
pected to enhance its ability to accurately simulate the underlying physics of temperature variations.
It is clearly seen that the DF 3 and DF 4 models do not accurately find the solution, and improving the
modelling of the temperature is essential for the design of pipelines, as a low temperature can massively
increase the brittleness of the material.

• Lastly, the models can be compared with experimental results from vertical pipelines. will demonstrate
their viability, particularly as more CCS projects are being implemented, with the goal of underground
CO2 storage.
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10.1. Conclusions
The main objective of this research was to investigate different multiphase flow models based on the Eu-
ler equations, with the special focus on differentiating between relaxing various flow parameters. In this
research, three different multiphase models were implemented, with the first two models, DF 3 and DF 4
models, being tested for CO2 simulations in a depressurizing pipeline. Based upon the work presented in this
research, the following conclusions can be drawn:

• The friction impacts the pressure plateau, causing it to decrease along the length of the pipeline. How-
ever, it has a negligible effect on the phase transfer of the CO2. In addition, two different methods
of calculating the friction were used for the DF 3 model, namely the Friedel method and Churchill
method, and no significant differences was found in the simulations. It is therefore suggested to use
the Churchill method as it is more easy for implementation.

• The DF 3 model accurately captures the pressure variations overall. However, during the initial 20 [ms],
the model underestimates the pressure drop when starting in the liquid phase compared to the mea-
sured values in the pipeline. This difference is in certain scenarios 20 [bar ]. Nevertheless, the DF 4
model successfully captures this initial pressure drop with greater accuracy, aligning closely with the
measured values in the pipeline. According to the research of Log et al. and the present research, it is
done by arbitrarily decreasing the mass transfer, °, in the flow equations. While this was performed by
changing the µ parameter by hand, it does prove that with a more sophisticated model for °, the pres-
sure drop can be modelled more accurately compared to the DF 3 model. It should be noted that both
models did converge to the same equilibrium state after 20 [ms], as found in the experimental results.
The benefit of using the DF 4 model is therefore mainly valuable at the start of the experiment.

• Contrary to the pressure, the temperature is less accurately simulated by the DF 3 and DF 4 models. The
DF 3 model predicts a downwards spike of the temperature immediately after the burst op the pipeline,
however, this phenomenon is not seen in the experimental results. Afterwards, a plateau is formed until
the temperature drops again, yet more smoothly now. However, over time, the DF 3 model evolves in
line with the experimental results, suggesting that both are progressing toward the same equilibrium
state.

• The DF 4 model cannot accurately capture the temperature changes in the beginning of the depressur-
ization. As with the DF 3 model, the DF 4 model predicts an even greater spike downwards. Afterwards,
the prediction of the temperature seems to also evolve to the equilibrium state, however, with a sur-
prising path and the results do not seem to be trustworthy.

• The mass transfer in the DF 3 model is initially higher than that of the DF 4 model, indicating that the
DF 3 model compensates to remain on the saturation line. However, the results from the DF 3 model
highlight the distinctions between the two approaches, offering valuable insights that could serve as a
foundation for developing a more versatile mass transfer model applicable to a wider range of scenar-
ios.
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10.2. Limitations of the Study
While this research provides valuable contributions, several limitations must be acknowledged:

• The DF 3 and DF 4 models fail to replicate the delayed temperature response observed experimentally.
This highlights a limitation in the energy equation, which assumes that temperature changes occur on
the same timescale as pressure changes—an oversimplification during rapid depressurization.

• The focus on horizontal pipelines two-phase CO2 flow neglects the differences introduced by vertical
pipelines. While the experimental data provided by Log et al. were invaluable, vertical pipeline condi-
tions are likely to be encountered in real-world CCS applications and require further investigation.

• The explicit numerical schemes used to calculate the primitive variables in the DF 4 model exhibit sta-
bility challenges near the critical point. Implementing implicit schemes could address these issues,
improving reliability at the cost of increased computational time.

10.3. Recommendations
Building on the findings and limitations of this study, several avenues for future research are proposed:

• Incorporating a numerical implicit method for simulating the primitive variables in the DF 4 and T F 5
models. Although computationally intensive, this approach will enhance the reliability and stability of
simulations, particularly near the critical point of CO2.

• When the CO2 is initially in the liquid phase, in a depressurization setting, the CO2 fluid will undergo
a pressure undershoot, where the pressure and temperature initially drop below the saturation line in
the first 20 [ms], and then converges back to the saturation line. This phenomena is captured by the
DF 4 model, by implementing a model for the mass transfer. However, this method of calculating the
mass transfer is not applicable in all situations, as a pre-defined relaxation parameter, µ, is needed.
A future research could look at the mass transfer of the DF 3 and DF 4 models, and by comparing the
models’ behaviours, it may be possible to design a mass transfer model that eliminates the need for a
pre-defined relaxation parameter, µ, making it applicable to a wider range of scenarios.

• It was found that for short time-frames (until 0.1 [s]), the DF 3 and DF 4 models incorrectly predict
the velocity of the cooling wave. A possible solution is to add a source term to the energy equation, and
delay the cooling of the system. Because the phenomenon happens in the single-phase, the T F 5 model
will not provide additional benefits for this scenario.

• However, further development of the T F 5 model can provide more accurate results for simulations
of longer time-frames (2 [s] till 10[s]), addressing discrepancies of up to 40 [±C] observed in the DF 3
model. Improved temperature predictions are critical for pipeline design, as low temperatures signifi-
cantly increase material brittleness.

• Future studies should extend these models to vertical pipelines, which are expected to play a significant
role in CCS applications. The no-slip condition assumed for two-phase flow in horizontal pipelines may
also hold in certain vertical scenarios, offering potential for high-accuracy simulations using the DF 3,
DF 4, and T F 5 models.
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A
Derivation speed of sound

Consider a pipeline with a constant cross-sectional area. The mass flow rate in the pipeline is:

d M
d t

= d(ΩV )
d t

= d(ΩAx)
d t

= ΩA
d x
d t

= ΩAv. (A.1)

The mass flow in and out of the pipeline is naturally equal. However, when a sound wave propagates, the
wave produces small perturbations in the density, pressure and velocity. The continuity equation states that
the mass flow rate should be constant, so it becomes:

ΩAv = (Ω+@Ω)A(v +@v). (A.2)

The area AA remains constant and can be cancelled. Additionally, because the perturbations are assumed to
be small, the product @Ω ·@v is negligible. This simplifies to:

ΩAv = (Ω+@Ω)A(v +@v), (A.3)

Ωv = Ωv +Ω@v + v@Ω+@Ω@v , (A.4)

0 = Ω@v + v@Ω, (A.5)

°v = Ω@v
@Ω

. (A.6)

The force on the fluid is the sum of the pressure times the area. This is expressed as:

F = p d y d z ° (p +@p) d y d z =°@p d y d z, (A.7)

m
@v
@t

=°@p d y d z, (A.8)

@v
@t

= °@p d y d z
m

= °@p d y d z
Ω d x d y d z

= °@p
Ω d x

, (A.9)

@v = °@p
Ω

1
v

. (A.10)

Substituting Equation A.10 into Equation A.6, it becomes:

°v = Ω

@Ω

°@p
Ω

1
v

, (A.11)

v2 = @p
@Ω

. (A.12)

Thus, the speed of sound c is:

c2 = @p
@Ω

. (A.13)
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B
T F 6 model derivation

This is the standard model for two phases with the assumption that the pressure is the same over the two
phases.

@

@t

°
ΩgÆg

¢
+ @

@x

°
ΩgÆg vg

¢
= 0 (B.1)

@

@t

°
ΩlÆl

¢
+ @

@x

°
ΩlÆl vl

¢
= 0 (B.2)

@

@t

°
ΩgÆg vg

¢
+ @

@x

≥
ΩgÆg v2

g

¥
+Æg

@p
@x

+øi = ΩgÆg gx (B.3)

@

@t

°
ΩlÆl vl

¢
+ @

@x

°
ΩlÆl v2

l

¢
+Æl

@p
@x

°øi = ΩlÆl gx (B.4)

@Eg

@t
+ @

@x

°
Eg vg +Æg vg p

¢
+p

@Æg

@t
+ vøøi = ΩgÆg vg gx (B.5)

@El

@t
+ @

@x

°
El vl +Æl vl p

¢
+p

@Æl

@t
° vøøi = ΩlÆl vl gx (B.6)

Here vø and øk are given below to ensure hyperbolicity:

vø =
Æl∞g vg +Æg∞l vl

Æl∞g +Æg∞l
(B.7)

øi =¢i p
@Æg

@x
+F (vg ° vl ) (B.8)

Now we want to write it with the material derivative equation, this is the following equation:

D©i

Dt
= @©i

@t
+ vi

@©i

@x
(B.9)

Furthermore, the partial differential equations are decomposed with the product rule. For Equation B.1, it
becomes:

Ωi
@Æi

@t
+Æi

@Ωi

@t
+ viÆi

@Ωi

@x
+Ωi

@

@x
(Æi vi ) = 0 (B.10)

Æi (
@Ωi

@t
+ vi

@Ωi

@x
) =°Ωi

@Æi

@t
°Ωi

@

@x
(Æi vi ) (B.11)

Æi
DΩi

Dt
=°Ωi

µ
@Æi

@t
+ @

@x
(Æi vi )

∂
(B.12)

With the same process, we get the following equations for momentum transfer and energy:

ΩiÆi
Dvi

Dt
+Æi

@p
@x

°øi = ΩiÆi gx (B.13)

ΩiÆi
D

Dt
(ei +

1
2

v2
i )+ @(Æi vi p)

@x
+p

Æi

@t
° vøøi = ΩiÆi vi gx (B.14)
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Now we multiply Equation B.13 with vi , and we subtract it from Equation B.14. This becomes:

ΩiÆi vi
Dvi

Dt
+Æi vi

@p
@x

°øi vi = ΩiÆi vi gx

@(Æi vi p)
@x

= p
@(Æi vi )
@x

+Æi vi
@p
@x

D
Dt

(ei +
1
2

v2
i ) = Dei

Dt
+ D

Dt
(

1
2

v2
i ), vi

Dvi

Dt
= D

Dt
(

1
2

v2
i )

ΩiÆi
D

Dt
(ei +

1
2

v2
i )°ΩiÆi vi

Dvi

Dt
+ @(@Æi vi p)

@x
+°Æi vi

@p
@x

+p
Æi

@t
° vøøi+viøi = ΩiÆi vi gx°ΩiÆi vi gx

ΩiÆi
Dei

Dt
=°p

@(Æk vi )
@x

°p
@Æi

@t
°øi (vi ° vø) (B.15)

however, it is hard to model @Æi /@t . Therefore, we want to rewrite it. This are a lot of steps and so, we start at
the beginning. First, the thermodynamic parameter is derived, and then an equation for @Æi /@t . It is started
with:

d p =
µ
@p
@Ω

∂

s
dΩ+

µ
@p
@s

∂

Ω
d s = c2dΩ+

µ
@p
@s

∂

Ω
d s (B.16)

µ
@p
@s

∂

Ω
=

µ
@p
@T

∂

Ω

µ
@T
@s

∂

Ω
(B.17)

d s = d qr ev

T
, Cv = d qr ev

dT
, ) d s

dT
= Cv

T
(B.18)

∞¥ 1
ΩCv

µ
@p
@T

∂

Ω
(B.19)

d p = c2dΩ+∞ΩCv ·
T

Cv
d s = c2dΩ+∞ΩT d s (B.20)

Then we use the first law of thermodynamics:

T d s = de +pd
1
Ω

(B.21)

Using reciprocal rule, we can rewrite it into:

g
0
(x) = ° f

0
(x)

f (x)2

d
1
Ω
=° 1

Ω2 dΩ

Hereby, the first law can be rewritten into:

T d s = de ° p
Ω2 dΩ (B.22)

Then filling Equation B.22 into Equation B.20, it becomes:

d p = c2dΩ° ∞p
Ω

dΩ+∞Ωde (B.23)

This can be rewritten by multiplying with Æi into:

Æi
Dp
Dt

= (c2
i °

∞i p
Ωi

)Æi
DΩi

Dt
+∞iΩiÆi

Dei

Dt
(B.24)

Now we will use Equation B.12 and Equation B.15 and fill in forÆK ·DΩk /Dt andÆkΩk ·Dek /Dt . This will lead
to the following:

Æi
Dp
Dt

=°Ωi c2
i
@Æi

@t
°Ωi c2

i
@(Æi vi )
@x

+∞i p
@Æi

@t
+∞i p

@(Æi vi )
@t

°∞i p
@Æi

@t
°∞i p

@(Æi vi )
@t

°∞i (vi ° vø)øi (B.25)

Æi
Dp
Dt

=°Ωi c2
i
@Æi

@t
°Ωi c2

i
@ (Æi vi )
@x

°∞i (vi ° vø)øi (B.26)

Dp
Dt

= @p
@t

+ vi
@p
@x

(B.27)
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Filling in k = g and k = l , we get:

Æg (
@p
@t

+ vg
@p
@x

) =°Ωg c2
g
@Æg

@t
°Ωg c2

g
@
°
Æg vg

¢

@x
°∞g

°
vg ° vø

¢
øg (B.28)

Æl (
@p
@t

+ vl
@p
@x

) =°Ωl c2
l
@Æl

@t
°Ωl c2

l
@ (Æl vl )
@x

°∞l (vl ° vø)øl (B.29)

@Æg

@t
+ @Æl

@t
= 0 (B.30)

With Equation B.30, rewriting Equation B.28 and Equation B.29 into @p/@t = ... and using the fact that
øi = øl =°øg , we get the following equation:

æ
@Æl

@t
= ΩgÆl c2

g
@

@x

°
Æg vg

¢
°ΩlÆg c2

l
@

@x
(Æl vl )+ÆgÆl

°
vg ° vl

¢ @p
@x

°øi
°
Æl∞g

°
vg ° vø

¢
+Æg∞l (vl ° vø)

¢

æ=ÆgΩg c2
l +ÆlΩl c2

g

(B.31)

In addition, it is assumed the following formula for vø. Hereby, we can simplify Equation B.31.

Æl∞g
°
vg ° vø

¢
+Æg∞l (vl ° vø) ) Æl∞g vg +Æg∞l vl ° vø(Æg∞l +Æl∞g )

Æl∞g vg +Æg∞l vl °Æl∞g vg °Æg∞l vl = 0
(B.32)

æ
@Æl

@t
= ΩgÆl c2

g
@

@x

°
Æg vg

¢
°ΩlÆg c2

l
@

@x
(Æl vl )+ÆgÆl

°
vg ° vl

¢ @p
@x

(B.33)

Now that we have an equation for @Æl /@t , we can fill it in Equation B.6. This then becomes the final set of
equations:

¥= p

ΩlÆg c2
l +ΩgÆl c2

g
(B.34)

@El

@t
+ @ (El vl )

@x
+
@
°
Æl vl p

¢

@x
+¥ΩgÆl c2

g
@(Æg vg )

@x
°¥ΩlÆg c2

l
@(Æl vl )
@x

+¥ÆgÆl (vg ° vl )
@p
@x

= ΩlÆl vl gx + vøøi

(B.35)

@
°
Æl vl p

¢

@x
= p

(@Æl vl )
@x

+Æl vl
@p
@x

(B.36)

°¥ΩlÆg c2
l
@(Æl vl )
@x

+p
@(Æl vl )
@x

= ¥ΩgÆl c2
g
@(Æl vl )
@x

(B.37)

@El

@t
+ @ (El vl )

@x
+

°
Æl vl +¥ÆgÆl (vg ° vl )

¢ @p
@x

+¥ΩgÆl c2
g
@

@x
(Æg vg +Æl vl ) = ΩlÆl vl gx + vøøi (B.38)

With the same logic, we can fill in @Æg /@t =°@Æl /@t in Equation B.5, and this becomes:

@Eg

@t
+
@
°
Eg vg

¢

@x
+

°
Æg vg °¥ÆgÆl (vg ° vl )

¢ @p
@x

+¥ΩlÆg c2
l
@

@x
(Æg vg +Æl vl ) = ΩgÆg vg gx ° vøøi (B.39)
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Now we can write the whole set of equations in the following mathematical form:

@u
@t

+ @ f (u)
@x

+B (u)
@w (u)
@x

= s(u) (B.40)

(u) =

2
66666664

ΩgÆg
ΩlÆl

ΩgÆg vg
ΩlÆl vl

Eg
El

3
77777775

, f (u) =

2
66666664

ΩgÆg vg
ΩlÆl vl
ΩgÆg v2

g
ΩlÆl v2

l
Eg vg
El vl

3
77777775

, s(u) =

2
66666664

0
0

ΩgÆg gx °øi
ΩlÆl gx +øi

ΩgÆg vg gx ° vøøi
ΩlÆl vl gx + vøøi

3
77777775

(B.41)

B (u) =

2
66666664

0 0 0
0 0 0
Æg 0 0
Æ` 0 0

°¥ÆgÆ`
°
vg ° v`

¢
¥Ω`Ægc2

`
¥Ω`Ægc2

`
¥ÆgÆ`

°
vg ° v`

¢
¥ΩgÆ`c2

g ¥ΩgÆ`c2
g

3
77777775

(B.42)

w (u) =

2
4

p
Æg vg
Æl vl

3
5 (B.43)
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The assumption is made that F !1 or in other words, the limit of stiff velocity relaxation. The results will
be that vl = vg = v , and this makes øi = 0 (Equation B.8). In addition, Equation B.3 and Equation B.4 should
be replaced with their sum. This gives the following momentum transfer equation:

@

@t
((ΩgÆg +ΩlÆl )v)+ @

@x
((ΩgÆg +ΩlÆl )v2)+ @p

@x
= (ΩgÆg +ΩlÆl )gx (C.1)

When looking at Equation B.3 and Equation B.4, the limit must satisfy:

lim
F!1

øi =
µ

ΩgÆg

ΩgÆg +Ω`Æ`
°Æg

∂
@p
@x

(C.2)

Filling this in the energy equations, the total set of equations becomes then:

@

@t

°
ΩgÆg

¢
+ @

@x

°
ΩgÆg v

¢
= 0

@

@t

°
ΩlÆl

¢
+ @

@x

°
ΩlÆl v

¢
= 0

@

@t
((ΩgÆg +ΩlÆl )v)+ @

@x
((ΩgÆg +ΩlÆl )v2)+ @p

@x
= (ΩgÆg +ΩlÆl )gx

@Eg

@t
+ @

@x
(Eg v)+ v

ΩgÆg

ΩgÆg +ΩlÆl

@p
@x

+¥ΩlÆg c2
l
@v
@x

= ΩgÆg v gx

@El

@t
+ @

@x
(El v)+ v

ΩlÆl

ΩgÆg +ΩlÆl

@p
@x

+¥ΩgÆl c2
g
@v
@x

= ΩlÆl v gx

¥= p

ΩlÆg c2
l +ΩgÆl c2

g

(C.3)

Rewriting energy into entropy
We want to derive the energy equations into entropy equations as it can then be rewritten into the material
derivative. It is started from the entropy equation and that is derived until the same energy equations as in
Equation C.3.

ΩiÆi Ti

µ
@si

@t
+ v

@si

@x

∂
=

X

j 6=i
Hi j (T j °Ti ), Hi j ∏ 0, Hi j °H j i = 0 (C.4)

Using Equation B.22 and filling in for d s, the following is obtained

ΩiÆi

µ
@ei

@t
+ v

@ei

@x

∂
° pÆi

Ωi

µ
@Ωi

@t
+ v

@Ωi

@x

∂
=

X

j 6=i
Hi j (T j °Ti ) (C.5)
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Now using Equation C.6 and rewritten into @ei = ..., we get Equation C.7. Then, we can get rid of all the terms
outside ei , as the mass transfer terms are equal to 0

@eiΩiÆi

@t
= ΩiÆi

@ei

@t
+ei

@ΩiÆi

@t
, ! ΩiÆi

@ei

@t
= @eiΩiÆi

@t
°ei

@ΩiÆi

@t
(C.6)

@eiΩiÆi

@t
°ei

@ΩiÆi

@t
+ @eiΩiÆi v

@x
°ei

@ΩiÆi v
@x

° pÆi

Ωi

µ
@Ωi

@t
+ v

@Ωi

@x

∂
=

X

j 6=i
Hi j (T j °Ti )) (C.7)

@eiΩiÆi

@t
+ @eiΩiÆi v

@x
° pÆi

Ωi

µ
@Ωi

@t
+ v

@Ωi

@x

∂
=

X

j 6=i
Hi j (T j °Ti ) (C.8)

The pressure term can be rewritten, using Equation C.7 again, in the following way:

@ΩiÆi

@t
+ @ΩiÆi v

@x
=Æi

@Ωi

@t
+Ωi

@Æi

@t
+Æi v

@Ωi

@x
+Ωi

@Æi v
@x

= 0 (C.9)

@Ωi

@t
+ v

@Ωi

@x
=°Ωi

Æi

µ
@Æi

@t
+ @Æi v

@x

∂
(C.10)

@eiΩiÆi

@t
+ @eiΩiÆi v

@x
+p

µ
@Æi

@t
+ @Æi v

@x

∂
=

X

j 6=i
Hi j (T j °Ti ) (C.11)

We fill in Equation B.20 into Equation C.4 to get:

@p
@t

= c2
i
@Ωi

@t
+∞iΩi Ti

@si

@t
(C.12)

@p
@x

= c2
i
@Ωi

@x
+∞iΩi Ti

@si

@x
(C.13)

@si

@t
+ v

@si

@x
= 1
∞iΩi Ti

µ
@p
@t

+ @p
@x

° c2
i
@Ωi

@t
° c2

i
@Ωi

@x

∂
(C.14)

@p
@t

+ v
@p
@x

= c2
i

µ
@Ωi

@t
+ v

@Ωi

@x

∂
+ ∞i

Æi

X

j 6=i
Hi j (T j °Ti ) (C.15)

Then again with using Equation B.1, we fill in for @Ω,

@ΩiÆi

@t
+ @ΩiÆi v

@x
=Æi

@Ωi

@t
+Ωi

@Æi

@t
+Æi v

@Ωi

@x
+Ωi

@Æi v
@x

= 0 (C.16)

@Ωi

@t
+ v

@Ωi

@x
=°Ωi

Æi

µ
@Æi

@t
+ @Æi v

@x

∂
(C.17)

@p
@t

+ v
@p
@x

=°c2
i

µ
Ωi

Æi

@Æi

@t
+ Ωi

Æi

@Æi v
@x

∂
+ ∞i

Æi

X

j 6=i
Hi j (T j °Ti ) (C.18)

Æi

Ωi c2
i

µ
@p
@t

+ v
@p
@x

∂
+ @Æi

@t
+ @Æi v

@x
= ∞i

Ωi c2
i

X

j 6=i
Hi j (T j °Ti ) (C.19)

When summing both equation, all @Æ disappears as Æl +Æg = 1 so @(Æl +Æg ) = 0. it becomes then:

µ
@p
@t

+ v
@p
@x

∂√
Æg

Ωg c2
g
+ Æl

Ωl c2
l

!
+ @v
@x

=
X

j 6=i
Hi j

√
∞l

Ωl c2
l

°
∞g

Ωg c2
g

!
(Tg °Tl ) (C.20)

This can be simplified by using the ’Wood’ speed of sound [50]:

c2 =
√
Ω

NX

i

Æi

Ωi c2
i

!°1

(C.21)

Equation C.20 becomes:



107

µ
@p
@t

+ v
@p
@x

∂
+Ωc2 @v

@x
= Ωc2 X

j 6=i
Hi j

√
∞l

Ωl c2
l

°
∞g

Ωg c2
g

!
(Tg °Tl ) (C.22)

This is called the ’pressure evolution’ equation. Now we want to obtain the internal energy evolution equa-
tion. This is done by substituting Equation C.19 into Equation C.11:

@Æi

@t
+ @Æi v

@x
= ∞i

Ωi c2
i

X

j 6=i
Hi j (T j °Ti )° Æi

Ωi c2
i

µ
@p
@t

° v
@p
@x

∂
(C.23)

@eiΩiÆi

@t
+ @eiΩiÆi v

@x
+p

√
∞i

Ωi c2
i

X

j 6=i
Hi j (T j °Ti )° Æi

Ωi c2
i

µ
@p
@t

° v
@p
@x

∂!
= Hi j (T j °Ti ) (C.24)

@eiΩiÆi

@t
+ @eiΩiÆi v

@x
° Æi p

Ωi c2
i

µ
@p
@t

+ v
@p
@x

∂
=

√
1° ∞i p

Ωi c2
i

!
X

j 6=i
Hi j (T j °Ti ) (C.25)

Now, the final intern energy evolution equation can be obtained by filling in Equation C.22 into Equation C.25:

µ
@p
@t

+ v
@p
@x

∂
= Ωc2 X

j 6=i
Hi j

√
∞l

Ωl c2
l

°
∞g

Ωg c2
g

!
(Tg °Tl )°Ωc2 @v

@x
(C.26)

@eiΩiÆi

@t
+ @eiΩiÆi v

@x
+Æi p

Ωc2

Ωi c2
i

@v
@x

= µi
X

j 6=i
Hi j (T j °Ti )+ Ωc2

Ωi c2Æi
X

k, j>k
Hk j (µ j °µk )(T j °Tk ) (C.27)

µi = 1° ∞i p

Ωi c2
i

Lastly, we want to rewrite it to an evolution equation for E , so that we proved how the energy evolution
equation can be rewritten into an entropy evolution equation.

@

@t
(

1
2
ΩiÆi v2)+ @

@x

µ
1
2
ΩiÆi v3

∂
+ ΩiÆi v

Ω

@p
@x

= 0 (C.28)

We sum up Equation C.27 and Equation C.28 to obtain the final equation:

@

@t

µ
1
2
ΩiÆi v2 +eiΩiÆi

∂
+ @

@x

µ
1
2
ΩiÆi v3 +eiΩiÆi v

∂
+ ΩiÆi v

Ω

@p
@x

+Æi p
Ωc2

Ωi c2
i

@v
@x

=Z (C.29)

Z = µi
X

j 6=i
Hi j (T j °Ti )+ Ωc2

Ωi c2Æi
X

k, j>k
Hk j (µ j °µk )(T j °Tk )

Filling in the formula for E , the final equation becomes:

Ei = ΩiÆi

µ
ei +

1
2

v2
∂

(C.30)

@E
@t

+ @Ev
@x

+ ΩiÆi v
Ω

@p
@x

+Æi p
Ωc2

Ωi c2
i

@v
@x

=Z (C.31)

Which can be rewritten to:

@El

@t
+ @

@x
(El v)+ v

ΩlÆl

ΩgÆg +ΩlÆl

@p
@x

+¥ΩgÆl c2
g
@v
@x

=Z (C.32)



108 C. T F 5 model derivation

Rewriting mass conservation into mass advection
We start with the mass conservation equation for both component. This are the top two equations of Equa-
tion C.3. This can be rewritten:

Yi =
ΩiÆi

Ω
(C.33)

@(YiΩ)
@t

+ @(YiΩv)
@x

= 0 (C.34)

Ω

µ
@Yi

@t
+ v

@Yi

@x

∂
+Yi

µ
@Ω

@t
+ @(Ωv)

@x

∂
= 0 (C.35)

When summing up top two equations of Equation C.3, it becomes:

@Ω

@t
+ @(Ωv)

@x
= 0 (C.36)

NX

i=1
Yi = 1 (C.37)

This can be filled in Equation C.35 and becomes 0. Furthermore, because of Equation C.37, there is only
1 independent advection equation. The two mass conservation equations becomes then:

@Ω

@t
+ @(Ωv)

@x
= 0 (C.38)

@Yi

@t
+ v

@Yi

@x
= 0 (C.39)

Eigenvalues
With the entropy derivation and Y , it can be rewritten in the following equations:

@Ω

@t
+ @

@x
(Ωv) = 0

@

@t
(Ωv)+ @

@x
(Ωv2)+ @p

@x
= 0

@Y
@t

+ v
@Y
@x

= 0

ΩlÆl Tl

µ
@sl

@t
+ v

@sl

@t

∂
= 0

ΩgÆg Tg

µ
@sg

@t
+ v

@sg

@t

∂
= 0

(C.40)

It should be noted that all source terms are discarded as the eigenvalues are based indifferent of the source
terms. In Equation C.40, the first and second equation can be rewritten to only a variable of v and p in the
derivative, and so the material derivative can be deducted. We first start with the second equation:

Dp
Dt

= @p
@t

+ v
@p
@x

= @p
@Ω

@Ω

@t
+ v

@p
@Ω

@Ω

@x
(C.41)

Rewriting the continuity equation and filling it in Equation C.41

@Ω

@t
+ @

@x
(Ωv) = 0,

@Ω

@t
=°Ω @v

@x
° v

@Ω

@x
(C.42)

Dp
Dt

= @p
@Ω

µ
°Ω @v

@x
° v

@Ω

@x

∂
+ v

@p
@Ω

@Ω

@x
(C.43)

Dp
Dt

=°v
@p
@Ω

@Ω

@x
+ v

@p
@Ω

@Ω

@x
°Ωc2 @v

@x
(C.44)



109

For the first equation in Equation C.40, the continuity equation is rewritten as in Equation C.42 and filled in
the momentum equation.

v
@Ω

@t
+Ω @v

@t
+2vΩ

@v
@x

+ v2 @Ω

@x
+ @p
@x

= 0 (C.45)

v
µ
°Ω @v

@x
° v

@Ω

@x

∂
+Ω @v

@t
+2vΩ

@v
@x

+ v2 @Ω

@x
+ @p
@x

= 0 (C.46)

°vΩ
@v
@x

° v2 @Ω

@x
+2vΩ

@v
@x

+ v2 @Ω

@x
+Ω @v

@t
+ @p
@x

= 0 (C.47)

@v
@t

+ v
@v
@x

+ 1
Ω

@p
@x

= 0 (C.48)

Now that the top two equations are rewritten, everything is stated in the material derivative and it is much
easier to find the eigenvalues.

@v
@t

+ v
@v
@x

+ 1
Ω

@p
@x

= 0

@p
@t

+ v
@p
@x

+Ωc2 @v
@x

= 0

@Y
@t

+ v
@Y
@x

= 0

ΩlÆl Tl

µ
@sl

@t
+ v

@sl

@t

∂
= 0

ΩgÆg Tg

µ
@sg

@t
+ v

@sg

@t

∂
= 0

(C.49)

It can be seen that the third, fourth and fifth equation can be rewritten into the material derivative as in
Equation B.9. The Jacobian matrix then becomes Equation C.51. The characteristic equation is then given by
(v °∏)3 °

(v °∏)2 ° c2¢= 0. The final eigenvalues are stated in Equation C.54.

@u
@t

+ A(u)
@u
@x

= 0 (C.50)

A(u) =

2
666664

v 1
Ω 0 0 0

Ωc2 v 0 0 0
0 0 v 0 0
0 0 0 v 0
0 0 0 0 v

3
777775

(C.51)

∏1(u) = v ° c (C.52)

∏2(u) =∏3(u) =∏4(u) = v (C.53)

∏5(u) = v + c (C.54)

Here c is the speed of sound defined in Equation C.21.
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Speed of Sound
The derivation is based on the paper of Flatten et al. [49], section 3.1. Consider the differential:

d(ΩlÆl )
Ωl

+
d(ΩgÆg )

Ωg
(C.55)

It can be rewritten into:

d(ΩlÆl )
Ωl

+
d(ΩgÆg )

Ωg
= Ωl

d(Æl )
Ωl

+Ωg
d(Æg )

Ωg
+Æl

d(Ωl )
Ωl

+Æg
d(Ωg )

Ωg
(C.56)

= d(Æl )+d(Æg )+Æl
d(Ωl )
Ωl

+Æg
d(Ωg )

Ωg
(C.57)

c2
i = d p

dΩi
(C.58)

=Æl
d p

Ωl c2
l

+Æg
d p

Ωg c2
g
+O(dÆi ) (C.59)

Equation C.55 can also be written as:

d(ΩlÆl )
Ωl

+
d(ΩgÆg )

Ωg
= d(ΩYl )

Ωl
+

d(ΩYg )

Ωg
(C.60)

= Yl

Ωl
d(Ω)+

Yg

Ωg
d(Ω)+ Ω

Ωl
d(Yl )+ Ω

Ωg
d(Yg ) (C.61)

= Yl

Ωl
d(Ω)+

Yg

Ωg
d(Ω)+O(dYi ) (C.62)

combining both equations, we get:

√
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Ωl c2
l

+
Æg

Ωg c2
g

!
d p =

µ
Yl

Ωl
+

Yg

Ωg

∂
dΩ (C.63)

d p
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= c2
mi x =

Yl
Ωl

+ Yg
Ωg

Æl
Ωl c2
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(C.64)
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√
Æg

Ωg c2
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Ωl c2
l

!#°1

(C.65)



D
HLLC scheme

The method is based on the description done by Toro, described in Chapter 10, [17]. It starts by looking first
at the integral form of the conversation laws, as seen in Equation D.1

Figure D.1: HLLC regions defined by the wave speed SL ,S§,SR

U t +F (U )x = 0,

U (x,0) =
(

ULi f x < 0,

UR i f x > 0
ZxR

xL

U (x,T )d x =
ZxR

xL

U (x,0)d x +
ZT

0
F (U (xL , t )d t °

ZT

0
F (U (xR , t )d t

(D.1)

When evaluating, it gives:
ZxR

xL

U (x,T )d x = xRUR °xLUL +T (FL °FR ) (D.2)

This is called the consistency condition. Now, the integral is split into three different integrals:

ZxR

xL

U (x,T )d x =
ZT SL

xL

U (x,T )d x +
ZT SR

T SL

U (x,T )d x +
ZxR

T SR

U (x,T )d x

ZxR

xL

U (x,T )d x =
ZT SR

T SL

U (x,T )d x + (T SL °xL)UL + (xR °T SR )UR

(D.3)
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When substituting Equation D.1 into Equation D.3, the following relationship is obtained:

xRUR °xLUL +T (FL °FR ) =
ZT SR

T SL

U (x,T )d x + (T SL °xL)UL + (xR °T SR )UR (D.4)

ZT SR

T SL

U (x,T )d x = T (SRUR °SLUL +FL °FR ) (D.5)

Now when dividing Equation D.5 by the length, T (SR ° SL), the integral average is given. This is because
T (SR °SL) is the width of the solution between the slowest and fastest signals at the time. If the speeds, SL
and SR are known, the whole solution is known and thus the middle state is known.

1
T (SR °SL)

ZT SR

T SL

U (x,T )d x = SRUR °SLUL +FL °FR

SR °SL
(D.6)

U HLL = SRUR °SLUL +FL °FR

SR °SL
(D.7)

Now for the HLLC method, there are two middle states. This is simply the integral from the left wave till the
middle wave and from the middle wave until the right wave:

1
T (SR °SL)

ZT SR

T SL

U (x,T )d x = 1
T (SR °SL)

ZT S§

T SL

U (x,T )d x + 1
T (SR °SL)

ZT SR

T S§
U (x,T )d x (D.8)

(D.9)

So each state has it’s own values. The integral averages are defined as follow:

U§
L = 1

T (S§ °SL)

ZT S§

T SL

U (x,T )d x

U§
R = 1

T (SR °S§)

ZT SR

T S§
U (x,T )d x

9
>>>=
>>>;

(D.10)

note the difference between 1/[T (S§°SL)] and 1/[T (SR °SL)] for Equation D.8 and Equation D.10. The same
for U§

R . Now substituting Equation D.7, Equation D.8 and Equation D.10, the following is obtained:
µ

S§ °SL

SR °SL

∂
U§

L +
µ

SR °S§

SR °SL

∂
U§

R =U hll (D.11)

The Riemann solver with the matching flux algorithm is given as:

U (x, t ) =

8
>>>><
>>>>:

U L , if x
t < SL ,

U§
L , if SL ∑ x

t < SC ,

U§
R , if SC ∑ x

t < SR ,

U R , if x
t ∏ SR ,

(D.12) F i+1/2 =

8
>>>><
>>>>:

F L , if 0 < SL ,

F§
L , if SL ∑ 0 < SC ,

F§
R , if SC ∑ 0 < SR ,

F R , if 0 ∏ SR ,

(D.13)

With these two systems, there are four unknowns. Namely U§
L ,U§

R ,F§
L ,F§RL. Now applying the Rankine-

Hugoniont Conditions three new equations can be stated. These are:

UL ·SL °FL =U§
L ·SL °F§

L (D.14)

U§
L ·S§ °F§

L =U§
R ·S§ °F§

R (D.15)

U§
R ·SR °F§

R =UR ·SR °FR (D.16)

This gives three equations. For the fourth equation, it is needed to look specifically at the set of equations of
the model, in this case for the DF3 model. Equation D.14 and Equation D.16 will be used to define the fourth
equation, which is an equation for solving the pressure. First, fill in the mass equation in Equation D.14,
where the flux is Equation D.17.

F (U ) = v ·U +p ·D, D = [0,1, v]T (D.17)
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ΩLSL °ΩL vL = Ω§
L SL °Ω§

L v§
L (D.18)

ΩL(SL ° vL) = Ω§
L (SL ° v§

L ) (D.19)

Then, filling in the momentum equation in Equation D.14, the following is obtained:

ΩL vLSL °ΩL v2
L °pL = Ω§

L v§
L SL °Ω§

L (v2)§L °p§
L (D.20)

ΩL vL(SL ° vL)°pL = Ω§
L (SL ° v§

L )v§
L °p§

L (D.21)

ΩL vL(SL ° vL)°pL = ΩL(SL ° vL)S§ °p§
L (D.22)

p§
L = pL +ΩL(SL ° vL)(S§ ° vL) (D.23)

Note that the assumption can be made that v§
L = v§

R = S§, so the middle wave. The same can be done for the
right side, which gives:

p§
R = pR +ΩR (SR ° vR )(S§ ° vR ) (D.24)

Because the states U§
R and U§

L are separated by an contact discontinuity and not a shock, it can be said that
the pressures on both side are the same. With this insight, it is possible to get the following formula for S§,
assuming p§

R = p§
L :

pL +ΩL(SL ° vL)(S§ ° vL) = pR +ΩR (SR ° vR )(S§ ° vR ) (D.25)

pL +ΩLS§(SL ° vL)°ΩL vL(SL ° vL) = pR +ΩR S§(SR ° vR )°ΩR vR (SR ° vR ) (D.26)

ΩLS§(SL ° vL)°ΩR S§(SR ° vR ) = pR °pL +ΩL vL(SL ° vL)°ΩR vR (SR ° vR ) (D.27)

S§
≥
ΩL(SL ° vL)°ΩR (SR ° vR )

¥
= pR °pL +ΩL vL(SL ° vL)°ΩR vR (SR ° vR ) (D.28)

S§ = pR °pL +ΩL vL(SL ° vL)°ΩR vR (SR ° vR )
ΩL(SL ° vL)°ΩR (SR ° vR )

(D.29)

Lastly, the state vector for U HLLC
K needs to be derived. This is done by rewriting Equation D.14 and Equa-

tion D.16 into:

F§
K = FK +SK (U§

K °UK ) (D.30)

Where K is L or R. Now the mass, momentum and energy equation are filled in. This becomes the following
for the mass equation:

SK (Ω§
K °ΩK ) = Ω§

K v§
K °ΩK vK (D.31)

Ω§
K (SK ° v§

K ) = ΩK (SK ° vK ) (D.32)

Ω§
K = ΩK

(SK ° vK )
(SK ° v§

K
) (D.33)

Ω§
K = ΩK

(SK ° vK )
(SK °S§)

(D.34)

Below is for the momentum equation (note that Equation D.24 is used):

SK (Ω§
K v§

K °ΩK vK ) = Ω§
K (v2)§K °ΩK v2

K +p§
K °pK (D.35)

Ω§
K v§

K (SK ° v§
K ) = ΩK vK (SK ° vK )+pK °pK +ΩK (SK ° vK )(S§ ° vK ) (D.36)

Ω§
K v§

K (SK °S§) = ΩK vK (SK ° vK )°ΩK vK (SK ° vK )+ΩK S§(SK ° v§
K ) (D.37)

Ω§
K v§

K = ΩK S§ (SK ° vK )
(SK °S§)

(D.38)
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And lastly for the energy equation (again, Equation D.23 is used):

SK (E§
K °EK ) = E§

K v§
K °EK vK +p§

K v§
K °pK vK (D.39)

E§
K (SK ° v§

K ) = EK (SK ° vK )+p§
K v§

K °pK vK (D.40)

E§
K (SK ° v§

K ) = EK (SK ° vK )+
≥
pK +ΩK (SK ° vK )(S§ ° vK )

¥
v§

K °pK vK (D.41)

E§
K (SK ° v§

K ) = EK (SK ° vK )+ΩK v§
K (SK ° vK )(S§ ° vK )+pK (v§

K ° vK ) (D.42)

E§
K = EK

(SK ° vK )
(SK °S§)

+ΩK S§(S§ ° vK )
(SK ° vK )
(SK °S§)

+pk
(S§ ° vk )
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(D.43)

The state vector therefore is:

U HLLC
K =

µ
SK ° vK

SK °S§

∂
·

0
B@

ΩK
ΩK S§

EK + (S§ ° vK )
≥
S§ΩK + PK

(SK °vK )

¥

1
CA (D.44)

With SL and SR being

SL = min(uL ° cL ,uR ° cR ), (D.45)

SR = max(uL + cL ,uR + cR ) (D.46)

DF 4 model
The difference in the DF 4 model is the two mass conservation equations. Again, to find the state vector, the
derivation is started from Equation D.30. This becomes as follow:

SK (Æ§
KΩ

§
K °ÆKΩK ) =Æ§

KΩ
§
K v§

K °ÆKΩK vK (D.47)

Æ§
KΩ

§
K (SK ° v§

K ) =ÆKΩK (SK ° vK ) (D.48)

Æ§
KΩ

§
K =ÆKΩK

(SK ° vK )
(SK °S§)

(D.49)

The state vector then becomes:

U HLLC
K =

µ
SK ° vK

SK °S§

∂
·

0
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Æg ,KΩg ,K
Æl ,KΩl ,K
ΩK S§
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1
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T F 5 model
Compared with the DF 4 model, the first four entries of the state vector of the T F 5 model will be the same.
Only an additional entry is added accounting for the extra energy equation. Because the extra energy equa-
tion is for the gaseous phase, the derivation will also be done for the gaseous phase, while it being identical
for the liquid phase. The derivation starts again from Equation D.30, and the derivation is as follow:

SK (E§
K ,g °EK ,g ) = E§

K ,g v§
K °EK ,g vK +Æ§

K ,g p§
K v§

K °ÆK ,g pK vK (D.51)

E§
K ,g (SK ° v§

K ) = EK ,g (SK ° vK )+ÆK ,g p§
K v§

K °ÆK ,g pK vK (D.52)
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K ,g (SK ° v§

K ) = EK ,g (SK ° vK )+
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pK +ΩK (SK ° vK )(S§ ° vK )

¥
ÆK ,g v§

K °ÆK ,g pK vK (D.53)

E§
K ,g (SK ° v§

K ) = EK ,g (SK ° vK )+ÆK ,gΩK v§
K (SK ° vK )(S§ ° vK )+ÆK ,g pK (v§

K ° vK ) (D.54)

E§
K ,g = EK ,g

(SK ° vK )
(SK °S§)

+ÆK ,gΩK S§(S§ ° vK )
(SK ° vK )
(SK °S§)

+ÆK ,g pk
(S§ ° vk )
(SK °S§)

(D.55)

Note that the assumption of Æ§
K ,g =ÆK ,g is made. The state vector then becomes:
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U HLLC
K =
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SK ° vK
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·
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E
Experiment data

16 fast-response pressure transducers and 23 type E thermocouples are flush-mounted to the test section’s
inner surface in order to record temperature, pressure and fluctuations during depressurisation. The Kulite
CTL-190(M) kind of pressure sensors are used. The bandwidth of these high-frequency pressure sensors is
up to 200 [kH z]. Eleven of the thermocouples are positioned axially, matching where a pressure sensor is
located. The remaining 12 thermocouples are mounted at the top, bottom and side of the pipe at four posi-
tions. The thermocouples have a measurement speed of 1 [ms]. With this, it is possible to measure different
temperatures in the cross-section. Hereby, it can be determined if the flow is stratified or dispersed. It has
been found that the temperature readings have an uncertainty of ±0.22±C and the pressure measurements
have an uncertainty of about 60 [kPa] with a 95% confidence interval, as noted by Munkejord et al. [21]. All
locations of the sensors are indicated in Table E.2. A schematic overview, drawn by Austegard & Deng [24]
[21] is seen in Figure E.1

At the rear end of the test section, the CO2 or CO2-mixture enters. For combination testing, circulation of
the fluid is made possible by a return pipeline close to the open end of the test section, which guarantees a
consistent temperature and composition. To measure the composition of the combination, a micro gas chro-
matograph is attached. The test portion and the second compressor are followed by pressure-relief valves
that open at a pressure of 20 [MPa]. The system is emptied via the drain lines following every test. Before
every test, a vacuum pump is set up on the same line to clear the system.

The following text is a citation by Log et al. [22] on the procedure of the experiments:
"The experimental procedure is as follows. First, the rupture disk is installed and the system is evacuated.
Then the test section is filled with CO2 and pressurized. When the pressure reaches about 70% of the desired
value, the fluid is circulated to achieve a uniform temperature along the test section. The fluid temperature
is controlled using heating elements wrapped around the test section. The pressure and temperature are
then increased at a controlled rate by alternating filling and circulation of CO2 until the disk ruptures. Upon
disk rupture, the inlet valves at the closed end of the pipe, and outlet valve at the open end of the pipe are
automatically closed to stop the circulation/filling. The heating cables are also automatically turned off at
this point. The released CO2 is vented through an exhaust pipe. The exhaust pipe is designed with a large
enough flow area that it will not disturb the flow from the pipe."
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(a) System (RV: relief valve, OV: one-way valve, PV: pneumatic valve) (Zetten in Nomenclature)

(b) Test section (dimensions are not to scale; pipe no. 5–10 and corresponding sensors are omitted).

Figure E.1: Schematic of the ECCSEL depressurization facility drawn by Austegard & Deng [21].

Table E.1: Specifications of the pipeline, obtained from Munkejord et al. [21].

Parameter Value
Pipe steel density 8000 [kg /m3]
Pipe steel thermal conductivity 15 [W /(m ·K )]
Pipe steel specific heat 500 [J/(kg ·K )]
Pipe inner diameter 40.8 [mm]
Pipe outer diameter 48.3 [mm]
Pipe length 61.668 [m] at 25 [±C]
Pipe mean roughness 0.3 [µm]
Insulation layer density 75 [kg /m3]
Insulation layer thermal conductivity 0.032 [W /(m ·K )]
Insulation layer specific heat 840 [J/(kg ·K )]
Insulation thickness 60 [mm]
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Table E.2: Locations of pressure and temperature sensors at 25 ±C, obtained from Munkejord et al. [21].

Distance from
open end [m]

Pressure
sensor

Temperature
sensor (side)

Temperature sensor
(bottom, side, top)

0.080 PT201 TT201
0.180 PT202
0.280 PT203
0.484 PT204
0.800 PT205
1.599 PT206 TT206
3.198 PT207 TT207
4.798 PT208 TT208
6.397 PT209 TT209
7.996 PT210 TT210
9.595 PT211 TT211

15.292 TT241, TT242, TT243
19.990 PT212 TT212
29.986 PT213 TT213
30.686 TT251, TT252, TT253
39.984 PT214 TT214
46.085 TT261, TT262, TT263
49.982 PT215 TT215
61.280 TT271, TT272, TT273
61.479 PT216

Figure E.2: Initial conditions of the test-cases on the PT diagram of CO2.





F
Additional figures with results

(a) Pressure of test 19 at t = 0.1 [s] (b) Temperature of test 19 at t = 0.1 [s]

Figure F.2: Pressure & temperature results of test 19 t = 0.1[s] for the DF 3 model. All simulations are done with a CFL of 0.95 and 400 cells.

(a) Pressure of test 25 at t = 0.1 [s] (b) Temperature of test 25 at t = 0.1 [s]

Figure F.1: Pressure & temperature results of test 25 t = 0.1[s] for the DF 3 model. All simulations are done with a CFL of 0.95 and 400 cells.
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(a) Pressure of test 22 at t = 0.1 [s] (b) Temperature of test 22 at t = 0.1 [s]

Figure F.3: Pressure & temperature results of test 22 t = 0.1[s] for the DF 3 model. All simulations are done with a CFL of 0.95 and 400 cells.

(a) Pressure of test 4 at t = 0.1 [s] (b) Temperature of test 4 at t = 0.1 [s]

Figure F.4: Pressure & temperature results of test 4 t = 0.1[s] for the DF 3 model. All simulations are done with a CFL of 0.95 and 400 cells.

(a) Pressure of test 8 at t = 0.1 [s] (b) Temperature of test 8 at t = 0.1 [s]

Figure F.5: Pressure & temperature results of test 8 t = 0.1[s] for the DF 3 model. All simulations are done with a CFL of 0.95 and 400 cells.
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(a) Pressure of test 23 at t = 0.1 [s] (b) Temperature of test 23 at t = 0.1 [s]

Figure F.6: Pressure & temperature results of test 23 t = 0.1[s] for the DF 3 model. All simulations are done with a CFL of 0.95 and 400 cells.

(a) Pressure of test 24 at t = 0.1 [s] (b) Temperature of test 24 at t = 0.1 [s]

Figure F.7: Pressure & temperature results of test 24 t = 0.1[s] for the DF 3 model. All simulations are done with a CFL of 0.95 and 400 cells.

(a) Pressure of test 6 at t = 0.1 [s] (b) Temperature of test 6 at t = 0.1 [s]

Figure F.8: Pressure & temperature results of test 6 t = 0.1[s] for the DF 3 model. All simulations are done with a CFL of 0.95 and 400 cells.
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(a) Pressure of test 25 at x = 0.08 [m] (b) Pressure of test 19 at x = 0.08 [m]

Figure F.9: Pressure evolution over time for test 25 and test 19, done at x = 0.08 [m]. A CFL of 0.5 and 4000 cells are used.

(a) Pressure of test 22 at x = 0.08 [m] (b) Pressure of test 4 at x = 0.08 [m]

Figure F.10: Pressure evolution over time for test 22 and test 4, done at x = 0.08 [m]. A CFL of 0.5 and 4000 cells are used.

(a) Pressure of test 8 at x = 0.08 [m] (b) Pressure of test 23 at x = 0.08 [m]

Figure F.11: Pressure evolution over time for test 8 and test 23, done at x = 0.08 [m]. A CFL of 0.5 and 4000 cells are used.
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(a) Pressure of test 24 at x = 0.08 [m] (b) Pressure of test 6 at x = 0.08 [m]

Figure F.12: Pressure evolution over time for test 24 and test 6, done at x = 0.08 [m]. A CFL of 0.5 and 4000 cells are used.

(a) Temperature of test 25 at x = 0.08 [m] (b) Temperature of test 19 at x = 0.08 [m]

Figure F.13: Temperature evolution over time for test 25 and test 19, done at x = 0.08 [m]. A CFL of 0.5 and 4000 cells are used.

(a) Temperature of test 22 at x = 0.08 [m] (b) Temperature of test 4 at x = 0.08 [m]

Figure F.14: Temperature evolution over time for test 22 and test 4, done at x = 0.08 [m]. A CFL of 0.5 and 4000 cells are used.
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(a) Temperature of test 8 at x = 0.08 [m] (b) Temperature of test 23 at x = 0.08 [m]

Figure F.15: Temperature evolution over time for test 8 and test 23, done at x = 0.08 [m]. A CFL of 0.5 and 4000 cells are used.

(a) Temperature of test 24 at x = 0.08 [m] (b) Temperature of test 6 at x = 0.08 [m]

Figure F.16: Temperature evolution over time for test 24 and test 6, done at x = 0.08 [m]. A CFL of 0.5 and 4000 cells are used.
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(a) Mass transfer of test 25 at x = 0.08 [m] (b) Mass transfer of test 19 at x = 0.08 [m]

(c) Mass transfer of test 22 at x = 0.08 [m] (d) Mass transfer of test 4 at x = 0.08 [m]

(e) Mass transfer of test 8 at x = 0.08 [m] (f) Mass transfer of test 23 at x = 0.08 [m]

(g) Mass transfer of test 24 at x = 0.08 [m] (h) Mass transfer of test 6 at x = 0.08 [m]

Figure F.17: mass transfer results of test all tests at x = 0.08 [m]. A CFL of 0.5 and 4000 cells are used.


