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Chapter 1

Summary

In 1969, the theorem of Reichert was formulated [13]. Since then, two proofs have been found,
both by Z. Jiang and Malcolm C. Smith, one of which in collaboration with Sara Y. Zhang
[9][13]. These proofs are based on the transfer functions of the electrical networks.
The aim of this paper is to work toward a proof based on graph theory, linear algebra and
differential equations. Whereas a proof has not been found, this paper provides insight on what
the theorem of Reichert means, on ways to describe graphs and electrical networks with matrices
and on the connection between those matrices. Lastly, we will take a look at Kron reduction: a
way to remove resistors from resistive networks by manipulating their descriptive matrices.
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Chapter 2

Preface

This report is the result of my BEP (Bachelor Eind Project) for the Bachelor Applied Mathemat-
ics at Delft University of Technology. I have read many papers and books about the theorem of
Reichert, on impedance matrices, on RLC-networks and on reducing resistive networks. I have
combined the knowledge all those articles and books brought me in this report. Although I have
not reached the goal of proving the theorem through graph theory, linear algebra and differential
equations, I hope that this report will be a helpful source of information should anyone else want
to try to prove the theorem this way.

I would like to thank my supervisor Dr. J.W. van der Woude for his support and feedback
thoughout the process.

Delft, 3 July 2017
Bodine van Leeuwen
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Chapter 3

Definitions

There are a few types of (network) matrices that will be used throughout this paper. Their
definitions can be found in this section.

3.1 Matrices general

In this subsection, some abstract definitions will be introduced, concerning only some theoretical
properties of matrices (not their connections to graph theory or electrical networks).

Definition 1. A paramount matrix is a symmetric matrix whose principal minors are not less
in magnitude than any other minor built from the same rows [3].

An example of a paramount matrix as provided by [4] is 20 −10 0
−10 35 −30

0 −30 36

 .

Definition 2. A unimodular matrix A is an n × m matrix such that aij ∈ {0,−1, 1},∀i =
1, ..., n, j = 1, ..,m, and all subdeterminants of A also equal either 0, 1 or − 1 [2].

An example of a unimodular matrix is
−1 0 0 −1

0 1 0 1
0 0 1 0
1 0 −1 0

 .

3.2 Graphs and Matrices

It is useful to distinguish between different kind of graphs and different kinds of matrices to
describe them. The kinds that will be used in this paper, will be described in this section.

Definition 3. A connected graph is a graph with a path between any two vertices.

The graph in Figure 3.1 is a connected graph.

Definition 4. A tree is a connected graph that has no cycles.

The graph in Figure 3.2 is a tree.

11
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Figure 3.1: A connected graph

Figure 3.2: A tree

Definition 5. A weighted graph is a graph all of whose edges are assigned a certain weight.

The graph in Figure 3.3 is a weighted graph. The graph in Figure 3.1 is an unweighted
graph.

Definition 6. A directed graph is a graph whose edges can only be crossed in one direction.

The graph in Figure 3.4 is a directed graph. The graph in Figure 3.1 is an undirected graph.

Definition 7. An incidence matrix of an undirected graph is an n×m matrix A, representing
a graph with n vertices and m edges. All elements of A equal either 0 or 1. If aij = 1 (i =
1, ..., n; j = 1, ...,m), edge j has vertex i as endpoint. If aij = 0, edge j does not have vertex i
as endpoint [1].

For example, the undirected graph as shown in Figure 3.1 is represented by the following
incidence matrix: 

1 0 0 0 1
0 0 1 1 0
0 1 1 0 1
1 1 0 1 0

 .

Definition 8. An incidence matrix of a directed graph is an n ×m matrix A, representing a
graph with n vertices and m edges. All elements of A equal either 0,−1 or 1. If aij ∈ {−1, 1} (i =
1, ..., n; j = 1, ...,m), edge j has vertex i as endpoint. The edge is directed from the element equal
to 1 towards the vertex represented by the element equal to −1.
If aij = 0, edge j does not have vertex i as endpoint.
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Figure 3.3: Weighted graph

Figure 3.4: Directed graph

For example, the directed graph shown in Figure 3.4 is represented by the following incidence
matrix: 

−1 0 0 0 1
0 0 1 1 0
0 1 −1 0 −1
1 −1 0 −1 0

 .

Definition 9. An unweighted adjacency matrix is an n × n matrix A all of whose elements
equal 0 or 1. It represents an undirected, unweighted graph with n vertices: if an element
aij = 1 (i, j = 1, ..., n), vertices j and i are endpoints of the same edge; if ai,j = 0 (i, j = 1, ..., n),
vertices j and i are not endpoints of the same edge.

For example, the undirected, unweighted graph shown in Figure 3.1 is represented by the
following adjacency matrix: 

0 0 1 1
0 0 1 1
1 1 0 1
1 1 1 0

 .

Definition 10. A weighted adjacency matrix is an n×n matrix A. It represents an undirected,
weighted graph with n vertices: if an element aij > 0 (i, j = 1, ..., n), vertices j and i are
endpoints of the same edge and the value of aij then equals the weight of the corresponding edge;
if ai,j = 0 (i, j = 1, ..., n), vertices j and i are not endpoints of the same edge.

For example, the undirected, weighted graph shown in Figure 3.3 is represented by the
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following adjacency matrix: 
0 0 4 1
0 0 5 3
4 5 0 3
1 3 3 0

 .

3.3 Matrices describing electrical networks

There are also matrices that describe electrical networks without providing straightforward
information about the synthesis of the network they describe. The most important of those is
the impedance matrix. Impedance is the classical term for the ratio between voltage and current
[7].

Definition 11. An impedance matrix is an N × N matrix Z that represents an N -port: it
satisfies the equation V = ZI, where V is an N × 1 vector where Vi (i = 1, ..., N) represents the
voltage at port i and I an N × 1 vector where Ii (i = 1, ..., N) represents the current at port i.

An example of an impedance matrix is

Z =
1

24


12 6 0 0
6 13 8 −4
0 8 16 −8
0 −4 −8 16

 .

The synthesis of an electrical network from an impedance matrix is not straightforward. It
will be explained in section 5.2.2. The electrical network belonging to this particular matrix will
be found in section 5.2.4.

Definition 12. An admittance matrix is an N × N matrix Y that represents an N -port: it
satisfies the equation I = Y V , where V is an N × 1 vector where Vi (i = 1, ..., N) represents the
voltage at port i and I an N × 1 vector where Ii (i = 1, ..., N) represents the current at port i.

The synthesis of an electrical network from an admittance matrix is not straightforward.
However, an admittance matrix is the inverse of the impedance matrix [6]. Therefore, once we
know how to realise an impedance matrix, we will know how to realise an admittance matrix.
For example, the inverse of the impedance matrix mentioned above is

Y =


3 −2 1 0
−2 4 −2 0

1 −2 3 1
0 0 1 2

 .

Consequently, this admittance matrix will be realised in 5.2.4.



Chapter 4

The theorem of Reichert

Theorem 1 (Reichert). Any impedance of a one-port electrical network which can be realised
with two reactive elements and an arbitrary number of resistors can be realised with two reactive
elements and three resistors.

Here, impedance refers to a 1× 1 impedance matrix. Indeed, following definition in section
3.2 we find that for a one-port the impedance is a 1× 1 matrix Z satisfying V = ZI, where V
represents the port’s voltage and I its current.

An N -port is a network with N connections to the outside world. We can view an N -port
as a black box in which any number of resistors, capacitors and inductors may be tucked away;
all we know is that out of that box, there are N ports connecting it to the outside world. These
ports are made up of pairs of terminals [7].

For example, we can picture a 2-port as shown in Figure 4.1.

Figure 4.1: A 2-port

What happens inside the box is not directly clear from the network’s impedance matrix. More-

15
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over, there is still uncertainty as to what exactly are the sufficient and necessary conditions for
impedance matrices to be realisable at all [12].

That leaves one term for explanation: reactive elements. There are two types of these: the

capacitor and the inductor. The capacitor’s symbol is a C, its law is C
dV

dt
= I and its schematic

representation is as shown in Figure 4.2 [11].

Figure 4.2: A capacitor

The inductor’s symbol is L, its law is V = L
dI

dt
and its schematic representation is as shown in

Figure 4.3 [11].

Figure 4.3: An inductor

Lastly, a restistor’s symbol is R, its law is V = RI and its schematic representation is as shown
in Figure 4.4. [11].

Figure 4.4: A resistor

So what the theorem of Reichert states, is that any impedance that can be realised with
either

• one capacitor, one inductor, an arbitrary number of resistors;

• two capacitors, an arbitrary number of resistors;

• two inductors, an arbitrary number of resistors;

can be realised with, respectively,

• one capacitor, one inductor, three resistors;

• two capacitors, three resistors;

• two inductors, three resistors.



Chapter 5

Electrical networks and impedance
matrices

5.1 From electrical network to impedance matrix

An impedance matrix is an N ×N matrix Z that represents an N -port: it satisfies the equation
V = ZI, where V is an N × 1 vector where Vi (i = 1, ..., N) represents the voltage at port i and
I an N × 1 vector where Ii (i = 1, ..., N) represents the current at port i.
This provides us with the following equations:

V1 = Z11I1 + ... + ZN1IN
...

...
...

VN = Z1NI1 + ... + ZNNIN .

It is clear that, in order to find element Zpq of Z, all we have to do is open circuit (meaning
I = 0) every port but p [10]. Then we can find Zpq by using Kirckhoff’s and Ohm’s laws.

5.1.1 Example: 2-port

We will take a look at the network in Figure 5.1. This network is called a T-network because
its resistors are ordered in a T-shape.

We let VA denote the voltage across ZA, VB the voltage across ZB and VC the voltage across
ZC ; IA the current through ZA, IB the current through ZB, IC the current through ZC ; V1 the
voltage across port 1, V2 the voltage across port 2 and I1 the current through port 1, I2 the
current through port 2.

Since this network is a 2-port, its impedance matrix must be 2× 2:

Z =

(
Z11 Z12

Z21 Z22

)
.

Now, to find Z11, we open circuit port 2, meaning I2 = 0. Using Kirckhoff’s laws, we find
V1 = (ZA + ZC)I1, so Z11 = ZA + ZC . To find Z21 we also open circuit port 2; first, we use
Ohm’s law to find VB = I2ZB and VC = (I1 + I2)ZC . Then, we use Kirchhoff’s law to find
V2 = VB + VC = (I1 + I2)ZC + I2ZB = I1ZC (because I2 = 0). So Z21 = ZC . We can find Z12

and Z22 in similar ways, which provides us with

Z =

(
ZA + ZC ZC

ZC ZB + ZC

)
.

17
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Figure 5.1: A T-network

5.2 From impedance matrix to electrical network

An impedance matrix provides information about the currents and the voltages of the ports of
an electrical network. Such a network can be represented by a graph: edges represent elements
such as resistors, capacitors or inductors. An incidence matrix provides information about what
vertice is the endpoint of what edge. Therefore, both matrices describe a network. Yet it is easy
to find a representing network out of an incidence matrix, whereas an impedance matrix does
not directly tell us anything about its realisation. Many impedance matrices cannot be realised
in the first place and research is still being carried out on the necessary and sufficient conditions
that make an impedance matrix realisable [12].

5.2.1 Example: 2-port

We will take another look at the network in Figure 5.1. Since an impedance matrix has to be
paramount [3] and all impedance matrices for reciprocal networks are symmetrical [10], we see
that all 2 × 2 impedance matrices are realisable by a T-network: paramountcy means that the
diagonal elements of a matrix will always be larger than (or equal to) its off-diagonal elements.
So if we let ZC = Z21 = Z12, ZA = Z11−Z21 and ZB = Z22−Z12, we can realise the impedance
matrix with the T-network shown in 5.1.

5.2.2 Step by step guide

We will now go through the process of retrieving the incidence matrix of a network from its
impedance matrix step by step as described in [2] and [3].
Let Z be an n× n impedance matrix.

1. Find Y = Z−1.

2. Find the element Yij of Y such that Yij is the off-diagonal non-zero element with the
smallest absolute value.

3. Construct a vector v1 of length n with v1i, v1j ∈ {−1, 1} and all other elements in {0,−1, 1}.
This construction has to follow a set of rules, which will be explained later on.

4. Substract the matrix A1 = |Yij |v1vT1 from Y .
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5. Work through step 1 to 3 again for Y −A1, then Y −A1 −A2 etc, until you are left with
a diagonal matrix Y −A1 − ...−Ak.

6. For the diagonal elements Ak11, ..., Aknn of Y −A1− ...−Ak let u1, ..., un be the zero-vector
if Akii = 0 and ei (the unit vector) if Akii 6= 0.

7. Construct Ã = [v1 v2 ... vk u1 ... un].

8. Remove al zero-rows from Ã. Call this matrix A.

9. Find K,Q such that A = −K−1Q, where K is the incidence matrix of a tree and Q the
incidence matrix of a connected network. It is easiest to start with trying out a K and
then solving the equation A = −K−1Q to find Q until you find a K that results in a
unimodular Q with at most one 1 and one −1 in every column.

10. If Q and K are not yet incidence matrices, add a row with every element a 0,−1 or 1 such
that the result is an incidence matrix.

Q is the incidence matrix of the network. Using the definition in section 3.2, the electrical
network can now easily be drawn.

We will now go into the rules described by [3] applying to picking v1, ..., vk. This means we
assume that Y −A1, ..., Y −A1− ...−Ak is the diagonal matrix we were left with in step 5. We
can then formulate the rules as follows:

1. The element Yij found in step 2 must be eliminated in step 4.

2. You may not choose four vectors such that A would have a submatrix (possibly after row

permutations) of the following form:

∗ ∗ 0 ∗
∗ 0 ∗ ∗
0 ∗ ∗ ∗

, where ∗ represents non-zero elements.

This is called Tutte’s characterisation [8].

3. The matrices Y −A1, ..., Y −A1 − ...−Ak must all be paramount (note that Y is always
paramount, since the inverse of an impedance matrix is an admittance matrix [6] and
admittance matrices are always paramount [3]).

4. If (Y −A1− ...−Ai)pq (p, q ∈ {1, ..., n}) is negative, then (Y −A1− ...−Ai−Ai+1)pq must
either be negative or zero ∀i ∈ {0, ..., k − 1}, where A0 = 0. In other words, a negative
elements may not undergo a sign switch in step 4.

5. If (Y − A1 − ... − Ai)pq (p, q ∈ {1, ..., n}) is positive, then (Y − A1 − ... − Ai − Ai+1)pq
must either be positive or zero ∀i ∈ {0, ..., k − 1}, where A0 = 0. In other words, positive
elements may not undergo a sign switch in step 4.

6. If (Y − A1 − ... − Ai)pq (p, q ∈ {1, ..., n}) equals zero, then (Y − A1 − ... − Ai − Ai+1)pq
must also equal zero ∀i ∈ {0, ..., k − 1}, where A0 = 0. In other words, an element with
value 0 must remain 0 in step 4.

7. For all p, q ∈ {1, ..., n} the inequality |(Y −A1− ...−Ai)pq| ≤ |(Y −A1− ...−Ai−Ai+1)pq|
must hold ∀i ∈ {0, ..., k − 1}, where A0 = 0. In other words, an element may not increase
in absolute value.
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5.2.3 Example: 2-port

We will take a look at the impedance matrix we found in 5.2.1. Its inverse is

Z−1 = Y =
1

(ZA + ZC)(AB + ZC) + Z2
C

(
AB + ZC −ZC

−ZC ZA + ZC

)
.

The off-diagonal element with the smallest absolute value is − ZC

ZAZB + ZAZC + ZBZC
. There

are four vectors we could choose from:(
1
1

)
,

(
−1
−1

)
,

(
1
−1

)
,

(
1
−1

)
.

The first two would not eliminate the choosen element in step 4, so we can choose either one of

the other vectors (the effect will be the same). We choose

(
1
−1

)
. Next, we compute

1

ZAZB + ZAZC + ZBZC

(
AB + ZC −ZC

−ZC ZA + ZC

)
− ZC

ZAZB + ZAZC + ZBZC

(
1 −1
−1 1

)
=

1

ZAZB + ZAZC + ZBZC

(
AB 0
0 ZA

)
.

This means that

Ã = A =

(
1 1 0
−1 0 1

)
.

For the decomposition A = −K−1Q, we choose

K =

(
1 0
0 1

)
, Q =

(
1 1 0
−1 0 1

)
.

In order to make incidence matrices out of these we have to add a row to both matrices:

K =

 1 0
0 1
−1 −1

 , Q =

 1 1 0
−1 0 1

0 −1 −1

 .

Before we draw the network this results in, we want to know the values of the resistors on the
three edges. We do this by decomposing Y as follows:

Y =

(
1 1 0
−1 0 1

)
ZC

ZAZB+ZAZC+ZBZC
0 0

0 ZB
ZAZB+ZAZC+ZBZC

0

0 0 ZA
ZAZB+ZAZC+ZBZC


 1 −1

1 0
0 1

 [4].

Here, the values in the diagonal matrix represent the values of the resistors on the corresponding
edges. It results in the network shown in Figure 5.2. Indeed, this network is equivalent with the
one in Figure 5.1 we started with [1].

5.2.4 Example: 4-port

To illustrate the guide with a more complicated example, we will follow the example of the
impedance matrix

Z =
1

24


12 6 0 0
6 13 8 −4
0 8 16 −8
0 −4 −8 16


as shown briefly in [3].
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Figure 5.2: The resulting network

1. Inverting the matrix gives

Z−1 = Y =


3 −2 1 0
−2 4 −2 0

1 −2 3 1
0 0 1 2

 .

2. Choose Y13 = 1.

3. There is only one essentially unique option for v1, and that is

v1 =


1
−1

1
0

 .

For the process of eliminating options, see appendix A.1.

4.

Y − |Yij |v1vT1 =


3 −2 1 0
−2 4 −2 0

1 −2 −3 1
0 0 1 2

−


1 −1 1 0
−1 1 −1 0

1 −1 1 0
0 0 0 0



=


2 −1 0 0
−1 3 −1 0

0 −1 2 1
0 0 1 2

 .

5. Going through the process again until we are left with a diagonal matrix, we find v2 =
1
−1

0
0

 , v3 =


0
1
−1

0

 and v4 =


0
0
1
1

 .
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6. We are left with the diagonal matrix
1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

 .

It follows that u1 = e1, u2 = e2, u3 = 0, u4 = e4.

7.

Ã =


1 1 0 0 1 0 0 0
−1 −1 1 0 0 1 0 0

1 0 −1 1 0 0 0 0
0 0 0 1 0 0 0 1

 .

8.

A =


1 1 0 0 1 0 0
−1 −1 1 0 0 1 0

1 0 −1 1 0 0 0
0 0 0 1 0 0 1

 .

9. We start the last step by looking at options for K−1 and find that there is only one
possibility. For this process, see appendix A.2.
Once we have K, all we have to do is invert it and solve Q. We find:

K =


1 0 0 0
−1 −1 0 0

0 1 1 0
0 0 −1 1

 , Q =


−1 −1 0 0 −1 0 0

0 0 1 0 1 1 0
0 1 0 −1 0 −1 0
1 0 −1 0 0 0 −1

 .

10. We notice that both K and Q contain rows with only one element. This means that, to
realise the network, we have to add an extra vertex. We simply add an extra row to both
K and Q and fill it such that every column contains exactly one −1 and one 1:

K =


1 0 0 0
−1 −1 0 0

0 1 1 0
0 0 −1 1
0 0 0 −1

 , Q =


−1 −1 0 0 −1 0 0

0 0 1 0 1 1 0
0 1 0 −1 0 −1 0
1 0 −1 0 0 0 −1
0 0 0 1 0 0 1

 .

This results in the network shown in Figure 5.3.

5.3 Impedance matrices of RLC-networks

So far, we have only looked at impedance matrices of networks with scalar inputs. However, as
we recall the laws stated in chapter 4, when inductors and capacitors are involved, impedance
matrices will have to contain functions. We call a network with resistors, capacitors and induc-
tors an RLC-network.

Let us look, for example, at the simple one-port network in Figure 5.4. We cannot include

the equations C
dV

dt
= I, V = L

dI

dt
and V = RI in our matrix immediately; we first have to
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Figure 5.3: The resulting network

apply a Laplace transformation, which gives us V = IR, V = ILs and V =
I

Cs
[7]. So Ohm’s

law states, in this case, that V = (R+Ls+
1

Cs
)I. Thus we find the impedance Z = R+Ls+

1

Cs
.

We know that an impedance Z can be represented as Z = ADA−1 with A as found in the
method described in section 5.2.2 and D a diagonal matrix [2]. If Z is the impedance matrix of
a resistive matrix, element dii represents the weight of the edge represented by Q’s ith column.

If Z is the impedance matrix of an RLC-matrix, D can be written as D = D1 +
1

s
D2 + sD3,

where D1 represents the values of the resistive edges, D2 of the capacative edges and D3 of the

inductive branches [2]. This means that Z = AD1A
−1 + A

1

s
D2A

−1 + AsD3A
−1.

In the next section we will go into Kron reduction on resistive networks, which means that
theoretically we could reduce the network represented by AD1A

−1. However, reducing it would
imply changes in A; therefore, we cannot change the resistive edges without risking changing
the capacitive and inductive edges.
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Figure 5.4: A simple RLC-network



Chapter 6

Kron reduction on resistive networks

Suppose we have a resistive network with n vertices. Kron reduction will help us reduce this to
a network to a chosen number of vertices between 2 and n − 1. The idea behind this, is that
we rearrange a network’s adjacency matrix such that we capture all the information about the
vertices we want to keep in one submatrix (Qaa) and all the information about the other vertices
in three other submatrices, shaping Q as follows:(

Qaa Qab

Qba Qbb

)
.

Then, we manipulate the four submatrices such that all information is captured a new matrix
with the same size as Qaa, meaning that we have found a new network with the same properties
for the vertices we choose to keep and without all the other vertices.

In this chapter, we will give an explanation of the Kron reduction method as mentioned in
[5] and illustrate it with an example.

6.1 Step by step guide

Given a network’s adjancency matrix A (n × n), we reduce the network to a network with m
vertices, with m ∈ {2, ..., n− 1} in the following way:

1. Choose the m ≥ 2 vertices you want to keep and call those v1, ..., vm. Call the other
vertices vm+1, ..., vn.

2. Reorder A such that its first m rows and columns represent v1, ..., vm and rows m+ 1, ..., n
represent vm+1, ..., vn. Call this reordered matrix Ã.

3. Calculate Q(Ã) as follows: qij =

{
−aij for i 6= j

aij +
∑n

j=1 aij for i = j
.

4. Let Qab denote the submatrix of Q(Ã) with the elements qij : i ∈ a, j ∈ b, where a =
{1, ...,m}, b = {m + 1, ..., n}.

5. Compute Q̃ = Qaa −QabQ
−1
bb Qba.

6. The weighted adjacency matrix of the Kron reduced network is given by

−Q̃ + diag


n∑

j=1,j 6=i

Qij


n

i=1

 .

25



26 CHAPTER 6. KRON REDUCTION ON RESISTIVE NETWORKS

6.2 Example

We will take a look at the network in Figure 6.1 from [5].

Figure 6.1: A resistive network [5]

First, we need to find its adjacency matrix:

0 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 0 0 1 0 1
1 0 0 0 0 0 1 1 1 0 0 0
0 1 0 0 0 1 0 0 1 0 0 0
0 0 1 0 1 0 1 0 0 0 0 0
0 0 0 0 1 0 0 1 0 0 1 0
0 1 0 0 1 1 0 0 1 1 1 1
0 0 0 1 0 0 0 0 1 1 0 1
0 0 1 0 0 0 0 1 1 0 1 0
0 0 0 1 0 0 0 0 1 1 0 0



.

Here, we have have labeled the vertices from left to right, then top to bottom. The red vertices
are the ones we want to keep, the blue ones are the ones we want to keep. The white resistors
are not vertices, they are edges.
Because we labeled the vertices before finding the adjacency matrix, we do not have to re-order
it.
Now, we find that

Q(A) = diag(1, 3, 2, 3, 4, 3, 3, 3, 7, 4, 4, 3) + diag(0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0)−A

=



1 0 0 0 −1 0 0 0 0 0 0 0
0 3 0 0 0 −1 0 0 −1 0 0 0
0 0 2 0 0 0 −1 0 0 0 −1 0
0 0 0 3 0 0 0 0 0 −1 0 −1
−1 0 0 0 4 0 −1 −1 −1 0 0 0

0 −1 0 0 0 3 0 0 −1 0 0 0
0 0 −1 0 −1 0 3 0 0 0 0 0
0 0 0 0 −1 0 0 3 0 0 −1 0
0 −1 0 0 −1 −1 0 0 7 −1 −1 −1
0 0 0 −1 0 0 0 0 −1 4 0 −1
0 0 −1 0 0 0 0 −1 −1 0 4 0
0 0 0 −1 0 0 0 0 −1 −1 0 3


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This means that

Qaa =


1 0 0 0
0 3 0 0
0 0 2 0
0 0 0 3

 ,

Qab =


−1 0 0 0 0 0 0 0

0 −1 0 0 −1 0 0 0
0 0 −1 0 0 0 −1 0
0 0 0 0 0 −1 0 −1

 ,

Qbb =



4 0 −1 −1 −1 0 0 0
0 3 0 0 −1 0 0 0
−1 0 3 0 0 0 0 0
−1 0 0 3 0 0 −1 0
−1 −1 0 0 7 −1 −1 −1

0 0 0 0 −1 4 0 −1
0 0 0 −1 −1 0 4 0
0 0 0 0 −1 −1 0 3


,

Qba =



−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 0
0 −1 0 0
0 0 0 −1
0 0 −1 0
0 0 0 −1


.

Next, we have to invert Qbb:

Q−1bb =
1

18760



6072 396 2024 2316 1188 432 876 540
396 6653 132 253 1199 436 363 545

2024 132 6928 772 396 144 292 180
2316 253 772 7733 756 276 2123 345
1188 1199 396 759 3597 1308 1089 1635
432 436 144 276 1308 5592 396 2300
876 363 292 2123 1089 396 5493 495
540 545 180 345 1635 2300 495 7565


.

We find

Q̃ =
1

18760


12688 −1584 −2900 −972
−1584 43632 −1980 −3924
−2900 −1980 24515 −1215
−972 −3924 −1215 38523

 .

So we find the new weighted adjacency matrix

−Q̃− diag(5456, 7488, 6095, 6111)

=
1

18760


7232 1584 2900 972
1584 36144 1980 3924
2900 1980 18420 1215
972 3924 1215 32412

 .

This corresponds to the network shown in Figure 6.2.
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Figure 6.2: A reduced resistive network [5]

6.3 Kron reduction and impedance matrices

We have seen that an N ×N impedance matrix represents a black-box with N connections to
the outside world; it only discribes the ratio between voltage and current of the ports connecting
the black box to the outside world. In section 5.2 we have seen how we can find a network to
a realisable resistive impedance matrix. There is no telling how many resistors this process will
leave our network with. Now, if there more than we want there to be, we can use Kron reduction
to reduce the number of resistors without changing the currents and voltages at the ports and,
therefore, without affecting the impedance matrix.



Chapter 7

Conclusions

The theorem of Reichert is a theorem that states that any one-port impedance that can be
realised with two reactive elements and an arbitrary number of resistors can be realised with
two reactive elements and three resistors.

Impedance matrices cannot be read as a straightforward representation of an electrical net-
work. However, they can be decomposed as a product of incidence matrices and diagonal
matrices that do. If the impedance matrix is resistive, after this process Kron reduction can be
used to reduce the network to a network of two or more resistors. If the impedance matrix is also
partially inductive and/or capacitive, Kron reduction cannot be applied on the resistive part of
the network without risking affecting the inductive and/or capacitive part of the network.

Further understanding of RLC-networks is required if the theorem is to be solved through
graph theory, linear algebra and differential equations.

29
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Appendix A

Justifying the choices in section 5.2.4

A.1 The choice of v1

Now we find a suitable vector v1. Since we picked element Y13, we have to choose elements
v11 and v13 from {−1, 1}; this leaves us with 36 options. However, all 24 options that have
a non-zero element v14 cannot be chosen, for they would violate rule 6. We also find that

1
0
−1

0

 ,


−1

0
1
0

 ,


1
1
−1

0

 ,


1
−1
−1

0

 ,


−1

1
1
0

 ,


−1
−1

1
0

 are not options, for they would

violate rule 1. We will illustrate this using


1
0
−1

0

:

Y − |y13|v1vT1 =


3 −2 1 0
−2 4 −2 0

1 −2 −3 1
0 0 1 2

−


1 0 −1 0
0 0 0 0
−1 0 1 0

0 0 0 0



=


2 −1 2 0
−2 4 −2 0

2 −2 −4 1
0 0 1 2

 .

Clearly, Y13 is not eleminated.

The vectors


1
1
1
0

 and


−1
−1
−1

0

 violate rule 3. We will illustrate this using


1
1
1
0

:

Y − |Y13|v1vT1 =


3 −2 1 0
−2 4 −2 0

1 −2 −3 1
0 0 1 2

−


1 1 1 0
1 1 1 0
1 1 1 0
0 0 0 0



=


2 −3 0 0
−3 3 −3 0

0 −3 −4 1
0 0 1 2

 .
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In the new matrix, 2 = |Y11| < |Y12| = 3, meaning the matrix is no longer paramount.

Lastly, the vectors


1
0
1
0

 and


−1

0
−1

0

 will violate rule 7, which we will illustrate using


1
0
1
0

:

Y − |Y13|v1vT1 =


3 −2 1 0
−2 4 −2 0

1 −2 −3 1
0 0 1 2

−


1 0 1 0
0 0 0 0
1 0 1 0
0 0 0 0



=


2 −2 0 0
−2 4 −2 0

0 −2 −4 1
0 0 1 2

 .

We see that Y33 has increased in value.

Therefore, the only two vectors we can choose are


−1

1
−1

0

 and


1
−1

1
0

. They will both

result in the same matrix |Yij |v1vT1 , which agrees with the statement that the matrix Q we will
find will be essentially unique [3]: essential uniqueness allows differences in the order or sign (or
both) of columns of Q [3].

A.2 The choice of K

In section 5.2.4 we mentioned that there is only one possibility for K and Q. We will illustrate
this here.

There are 27 different possibilities for the network represented by K, as shown in Figure
A.1. We will go through the process of checking whether a network can produce an incidence
matrix Q for the top left network. Its incidence matrix is

K =


−1 0 0 0

1 −1 0 0
0 1 −1 0
0 0 1 −1

 .

Which means that

−K−1 =


1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1

 .

Next, we solve the equation A = −K−1Q. In this case, this results in

Q =


−1 0 0 0 1 1 0

1 −1 −1 0 −2 −2 0
0 2 1 0 3 1 1
0 −1 0 −1 −1 0 0

 .
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Figure A.1: Possible choices

We see that this matrix does not fit into the definition of an incidence matrix and therefore the
top left network is not an option for the solution of this problem. In the top two rows of options,
all but one have the same problem: they all have at least one element in Q with absolute value
larger than one. The only one that provides us with an incidence matrix for Q is the network
in A.2, with K,−K−1 and Q as follows:

K =


1 0 0 0
−1 −1 0 0

0 1 1 0
0 0 −1 1

 ,

−K−1 =


−1 0 0 0

1 1 0 0
−1 −1 −1 0
−1 −1 −1 −1

 ,

Q =


−1 −1 0 0 −1 0 0

0 0 1 0 1 1 0
0 1 0 −1 0 −1 0
1 0 −1 0 0 0 −1

 .

All networks in the last four rows are unable to produce an incidence matrix Q, due to the
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Figure A.2: Only possible network

column


1
−1

1
0

 in A: it will either cause Q to have a column with more than three elements,

or it will cause Q to have a column with two elements of the same value. Both are not possible
in an incidence matrix. Therefore, the only possibility for K is the matrix representing A.2.


