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Convolutional neural network-based regression for biomarker
estimation in corneal endothelium microscopy images

Juan P. Vigueras-Guillén*1,3, Jeroen van Rooij2, Hans G. Lemij2,
Koenraad A. Vermeer1, and Lucas J. van Vliet3

Abstract— The morphometric parameters of the corneal
endothelium – cell density (ECD), cell size variation (CV),
and hexagonality (HEX) – provide clinically relevant infor-
mation about the cornea. To estimate these parameters, the
endothelium is commonly imaged with a non-contact specular
microscope and cell segmentation is performed to these images.
In previous work, we have developed several methods that, com-
bined, can perform an automated estimation of the parameters:
the inference of the cell edges, the detection of the region of
interest (ROI), a post-processing method that combines both
images (edges and ROI), and a refinement method that removes
false edges. In this work, we first explore the possibility of
using a CNN-based regressor to directly infer the parameters
from the edge images, simplifying the framework. We use a
dataset of 738 images coming from a study related to the
implantation of a Baerveldt glaucoma device and a standard
clinical care regarding DSAEK corneal transplantation, both
from the Rotterdam Eye Hospital and both containing images
of unhealthy endotheliums. This large dataset allows us to
build a large training set that makes this approach feasible.
We achieved a mean absolute percentage error (MAPE) of
4.32% for ECD, 7.07% for CV, and 11.74% for HEX. These
results, while promising, do not outperform our previous work.
In a second experiment, we explore the use of the CNN-based
regressor to improve the post-processing method of our previous
approach in order to adapt it to the specifics of each image. Our
results showed no clear benefit and proved that our previous
post-processing is already highly reliable and robust.

I. INTRODUCTION

In the last decade, Convolutional Neural Networks (CNNs)
have become a very popular approach for image classification
[1], [2], [3] and image segmentation, either via pixel classi-
fication or semantic segmentation [4]. Regression problems
in images have also been solved with CNNs by adding fully
connected layers with linear activations functions at the end
of the network [5]. Overall, CNNs have led to a series of
breakthroughs in the recent years, being employed with high
success in many disciplines.

In corneal endothelium images, it is clinically relevant
to determine the morphometric parameters of the cells in
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order to assess the quality and health status of the cornea. A
quantitative analysis can provide information on endothelial
cell density (ECD, reported as the number of cells per
mm2), cell size variation (CV, expressed by the coefficient of
variation in cell size), and hexagonality (HEX, defined as the
percentage of 6-sided cells). These image-based biomarkers
can be easily estimated if the cell boundaries are identified
in the image, therefore image segmentation has been the
approach most commonly employed for solving this task
[6], [7], [8]. In previous work, we achieved state-of-the-
art results by employing a CNN U-net to segment the cell
boundaries [9], but in order to make the process completely
automated we developed a dense U-net to infer the area in
the image (region of interest, ROI) in which the biomarkers
could be reliably estimated [10]. Furthermore, it is not a
trivial task to combine both CNN output images (the edge
probability image and the ROI image) and transform them
into the final binary edge image to perform the biomarker
estimation. Indeed, any small error or discontinuity in an
edge could cause a significant error in the resulting estimates.
This step was called post-processing in our previous work
[9].

In this work, we explore the possibility of using a CNN-
based regressor, named DenseNet-R35, to directly estimate
the biomarkers from the edge probability images, substituting
the inference of the ROI, the post-processing, and refinement.
In addition, we explore the use of DenseNet-R35 to improve
the post-processing itself, and we compare it against a
simpler approach based on Fourier analysis.

II. MATERIALS AND PREVIOUS WORK

The images used in this work are part of one ongoing
study regarding the implantation of a Baerveldt glaucoma
drainage device and one retrospective standard clinical care
regarding the visual function after corneal transplantation
(Descemet Stripping Automated Endothelial Keratoplasty,
DSAEK), both from the Rotterdam Eye Hospital. For the
Baerveldt study, images were retrieved before the surgical
implantation and 3, 6, 12, and 24 months after surgery, in
both the central and the temporal superior (TS) cornea. Here,
we used 400 images from 100 patients. For the DSAEK
group, 338 images from 41 patients were acquired 1, 3, 6,
and 12 months after surgery, only from the central cornea. In
both cases, images were obtained with a non-contact specular
microscope Topcon SP-1P (Topcon Co., Japan). Data was
collected in accordance with the tenets of the Declaration
of Helsinki. Signed informed consent was obtained from all
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Fig. 1. Flow chart of our previous framework for biomarker estimation. CNN-Edge infers the edge probability images, CNN-ROI estimates the region
of interest, the post-processing combines both images to provide a binary edge image, and the refinement method removes potential false edges (magenta
lines in E) before estimating the biomarkers. The different images at each step (A-E) are displayed below the dashed line. For (D) and (E), the results are
binary images, depicted in blue (superimposed to the intensity images for display purposes).

participants. For the Baerveldt study, approval was obtained
from the Medical Ethical Committee of the Erasmus Medical
Center (Rotterdam, The Netherlands), with trial registration
NTR4946.

The images were saved as grayscale images of 240×528
pixels, covering an area of 0.25 mm × 0.55 mm. Images
from the Baerveldt study generally show a good contrast
between cell edges and cell bodies. The main challenge is
that large fractions of the TS images are out of focus due to
the curvature of the cornea at that position (as in Figure 1-
A). In contrast, images from the DSAEK group are more
prone to appear blurred, with low contrast, and slightly out
of focus due to the optical distortions produced by the graft-
recipient interface and the rough surface of the graft. An
expert created the gold standard for each image by manually
delineating the cell boundaries.

Previously, we presented a fully automated framework
to estimate the endothelial biomarkers from specular mi-
croscopy images (Figure 1). This framework is subdivided
into four different methods: a CNN based on a Dense U-net
to segment endothelial cells using an intensity image as input
and providing an edge probability image as output (CNN-
Edge) [9], [10]; a CNN based on a Dense U-net to segment
the region of interest where cells are correctly detected using
the edge probability image as input (CNN-ROI) [10]; a post-
processing method based on Fourier analysis and watershed
that combines both output images and yields the binary edge
image [9], [11]; and a machine learning approach based on
Support Vector Machines (SVM) that removes potential false
edges from the binary edge image [8]. The biomarkers could
then be estimated from the final binary image.

III. METHODS

A. Biomarker estimation from edge images

In the first approach, we aim to use the DenseNet-R35
(Figure 2) after the CNN-Edge (Figure 1) in order to directly
infer the biomarkers from the edge probability image. Ideally,
it would be preferred to use DenseNet-R35 as a substitution
of the whole previous framework, but that would require a
much larger annotated dataset. This possibility was tested,
but failed to obtain reliable results. As described below, we

Fig. 2. (A) A schematic overview of the proposed DenseNet-R35 ; and
(B) a schematic overview of one dense block and one downsampling block.

can perform more data augmentation on the edge probability
images, thereby making this approach feasible.

The proposed DenseNet-R35 (Figure 2) borrows the con-
cept of densely connected convolutional layers from Huang
et al. [3]. In dense blocks, a layer receives the feature
maps of all preceding layers, which improves the direct
information flow, helping back-propagating gradients and
thereby facilitating better network learning during training.
Huang et al. [3] used dozens of convolutional layers in each
dense block, which creates bottlenecks due to the excessive
number of piled up layers. To solve this, they added one 1×1
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Fig. 3. Representative output images of our previous Dense U-net (CNN-Edge) for four configurations based on the dropout rate of the dropout layers:
5% (B), 20% (C), 35% (D), and 50% (E), given (A) as input. Image (1) belongs to the Baerveldt study, whereas image (2) comes from the DSAEK study.

convolutional layer before each 3×3 convolutional layer in
order to reduce the number feature maps. Here, we use only
three 3×3 convolutional layers in each dense block, hence
the 1×1 convolutional layers are not needed. Each layer in a
dense block provides k feature maps, where k is the growth
rate parameter. We set k = 16 in the first dense block, adding
16 more features at each new resolution step. After each
dense block, the feature maps are reduced to k by a 1×1
convolutional layer in the downsampling block. Furthermore,
we introduce the edge probability image, properly scaled, at
the beginning of each resolution step. Finally, the dense layer
of neurons and the output neuron employ a linear activation
function. The chosen loss function is the mean squared error
(MSE), and the mean absolute percentage error (MAPE) is
computed for analysis.

Another key aspect is the absence of batch normalization
or dropout layers in the convolutional part, which either
increased the MSE loss or prevented the network to converge,
respectively. In contrast, the use of dropout in the layer of
densely connected neurons was highly beneficial, obtaining
the best performance for a dropout rate of 35%. This archi-
tecture was computationally efficient, avoiding bottlenecks
during network training. It has a receptive field of 379×379
(approx. (height + width)/2), which showed to be optimal
as either adding or removing a convolutional layer in each
block was detrimental.

Data augmentation was a critical aspect in our training.
Horizontal and vertical flipping multiplied the available data
by four. Rotation had the inconvenience of losing the corners
of the image once rotated, and thus it was evaluated. We
obtained that uniform sampling of the rotation angle between
±35◦ yielded the best performance. Elastic deformations and
translation were detrimental once rotation was employed.
Finally, we further increased the training data by employing,
for the same intensity image, slightly different versions of the
edge probability images, obtained as discussed in our pre-
vious work [10]. Briefly explained, the Dense U-net (CNN-
Edge, Figure 1) could be tuned to provide more conservative
edge images by simply increasing the dropout rate, thereby
not inferring potentially spurious cell boundaries in highly
blurred and/or noisy areas (Figure 3). For images with high
contrast (Figure 3-1A), the resulting edge images at different
dropout rates did not show major differences unless the
dropout was largely increased. However, for images with

low contrast (Figure 3-2A), larger areas of the images were
rapidly not inferred after just small increments of the dropout
rate. We argued that the biomarkers estimated from those
images should, in principle, be very similar if enough cells
were detected. The DenseNet-R35 performance improved
drastically as we were including more images built with
larger dropout rates, reaching the minimum test loss when
images up to a dropout rate of 35% were used. Therefore,
they were added to the training with the same labels and were
named twin sets. Considering all augmentation, the original
738 images could be converted to 1.6 million images.

We employed a 10-fold cross-validation, and the same
fold order was applied to all twin sets. The validation set
contained images from all twin sets, but the test set only
contained the original dataset so that it could be compared
to our previous framework. The original dataset (here and in
our previous work) was obtained with a dropout rate of 5%.

B. Improvement of the post-processing method

In a second approach, the DenseNet-R35 was used to im-
prove the post-processing method from our previous frame-
work. The post-processing involved estimating the most com-
mon cell size in the edge probability images by using Fourier
analysis (l = 1/f∗, being f∗ the characteristic frequency),
then smoothing the edge probability images with a Gaussian
filter whose standard deviation (SD) is σ = kσ/(αf

∗),
and finally applying the classic watershed [12], which does
not require any parameter. The scaling factor of the sigma,
kσ = 0.20, was estimated in previous work [11], which
assumed α = 1.

The idea of estimating the cell size by Fourier analysis was
proposed after observing that the 2D Fourier Transform (FT)
of an endothelium image shows a distinctive ring related to
the regular hexagonal patterns of the cells [13]. If the 2D FT
was applied to the edge probability image instead, we got rid
of the noisy patterns of the intensity image that could obscure
the ring in Fourier domain. By simply computing the radial
mean of the magnitude of the 2D FT [11], we could estimate
the peak of the ring, f∗ (Figure 4). In previous work [11], we
proposed a model based on an exponential and a Gaussian
to fit the radial mean, thereby estimating the ring size with
the fitted Gaussian mean. This method is highly reliable to
estimate the ECD of the image (Figure 5-A), obtaining a high
linear correlation between the estimated f∗ and the true ECD
(Pearson correlation coefficient r = 0.965, p < 0.001).
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Fig. 5. (A) Relation between the estimated characteristic frequency in
Fourier domain and the true ECD; and (B) the relation between the estimated
characteristic SD and the true CV. Each circle is an image and the red line is
the first degree polynomial that best fits the data (in a least-squares sense).

The main benefit of our post-processing step is the de-
tection of faded, true edges in the edge probability images.
Since watershed requires a single local minimum per cell in
order to yield a good segmentation, the former smoothing
of the edge image is crucial. Given the robustness of the
estimation of f∗, our post-processing is simple yet very
reliable. However, two flaws are observed in this approach:
it does not take into account the (1) variation in cell size and
(2) the blurriness of the edge probability image. Indeed, an
image with high variation in cell size requires to reduce the
filter size in order to avoid merging nearby edges and thereby
missing small cells (Figure 4-top), whereas edge images with
some blurred areas and regular cell size would benefit from
a larger smoothing filter (Figure 4-bottom). To correct this,
we define a scaling factor, α, to f∗.

In summary, our goal is to employ DenseNet-R35 to
determine the best α for each image. We hypothesize that
our network would be able to learn the characteristics of
each image and therefore able to adapt the post-processing.
For this, we estimated the best α for each image (twin sets

included). Specifically, we computed two values from the
binary edge output images: the total number of cells detected
(ntotal) and the number of cells correctly segmented (ncorr);
as well as one value from the gold standard: the number of
real cells (nreal). Precision, p = ncorr/ntotal, and recall,
r = ncorr/nreal, were computed and combined into the F -
measure, F = 2pr/(p + r). We performed this evaluation
for values of α between 0.7 and 1.3 in steps of 0.05, being
the best α the one that provides the largest F -measure.
Therefore, DenseNet-R35 would have an edge probability
image as input and its best α as target. The same 10-fold
cross-validation was used.

C. Improvement of the post-processing by Fourier Analysis

The Fourier Analysis also showed a weak correlation
between the fitted Gaussian SD (named ‘characteristic SD’)
and the biomarker CV (Figure 5-B, Pearson correlation
coefficient r = 0.658, p < 0.0001). Indeed, if the endothe-
lium exhibits a large variation in cell size, many frequency
components appear in the FT (Figure 4-top), whereas if the
cells are rather uniform in size, only a very narrow range of
frequencies are enhanced (Figure 4-bottom). Therefore, we
consider the use of the characteristic SD, which seems to
roughly encode information about the cell size variation, to
estimate the best scaling factor α in our post-processing. For
this, we employ a sigmoid model, defined as

α =
a

1 + exp(−b · SD + c)
+ d, (1)

where a, b, c, and d are the parameters of the model. We set
d = 1− a/2 to center the sigmoid at α = 1. The remaining
parameters are estimated by employing a grid search and the
F -measure defined above.

IV. RESULTS

A. Experiment for biomarker estimation

The training did not show over-fitting and converged
rapidly. The error produced in each biomarker was signifi-
cantly different, being HEX the most complicated parameter
to predict (Figure 6). In the test set, the MAPE for the
DenseNet-R35 was 4.32% for ECD, 7.07% for CV, and
11.74% for HEX, whereas our previous framework, with
post-processing and solving for oversegmentation, achieved
a MAPE of 2.34% for ECD, 5.56% for CV, and 6.08%
for HEX (Figure 7). The non-parametric Wilcoxon signed
rank test on the MAPE distributions revealed a statistically
significant difference (p < 0.0001, all biomarkers), thereby
suggesting that the error in our previous framework was
significantly smaller.

The endothelium of a healthy adult usually shows an ECD
around 2500 cells/mm2 (or higher), a CV around 30% (or
lower), and a HEX around 60% (or higher) [14]. It is clini-
cally more relevant to assess an accurate estimation in images
with low ECD or HEX, or high CV. In this respect, Figure 7-
A shows an ECD error with similar magnitude for images
with low and high ECD in both methods (within ±100
cells/mm2, slightly higher for the DenseNet-R35), with the
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exception of some outliers (around 5% of images). While that
error can be considered high for cases with very low ECD,
both methods present a robust, stable inference of the ECD
along different types of images, which means they are not
affected by either a high or a low number of detectable cells.
In contrast, the CV error is large with respect to the reference
CV (Figure 7-B), and there is a small CV overestimation in
images with low CV and an underestimation in images with
high CV (same with HEX). Regression analysis determined
that the errors were significantly correlated with the reference
parameter (p < 0.001 for all biomarkers in both methods),
yielding a slope of -0.03, 0.04, and 0.29 for ECD, CV, and
HEX (respectively) in DenseNet-R35, and -0.01, 0.07, and
0.15 for ECD, CV, and HEX in our old framework. Thus,
the correlation was very small for ECD and CV, but not for
HEX. In previous work, these problems were the results of
just a few minor errors in the segmentation since CV and
HEX are biomarkers highly sensitive to segmentation errors.
In this sense, DenseNet-R35 cannot overcome this problem.

B. Experiment for post-processing (α estimation)

The histogram distribution of the true α showed a Gaus-
sian shape (Figure 8-B), which suggested that, for the major-
ity of images, an α close to 1 yields the best segmentation.
However, DenseNet-R35 was unable to detect the pattern
in the image that would determine the best α and instead
estimated all values around α ≈ 1 (Figure 8).

C. Experiment for post-processing (α estimation) by Fourier
Analysis

The grid search provided the largest F -measure = 0.947
for the parameters a = 0.4, b = 300, and c = 1.8. The
sigmoid resembled a linear response for an SD of 0–0.01
with an α range 0.85–1.10. In contrast, an F -measure =
0.949 was obtained if α = 1 was employed in the post-
processing method. Therefore, it was counterproductive to
employ the characteristic SD for the inference of α.

V. DISCUSSION

The use of a CNN regressor to directly infer the biomark-
ers from edge probability images is a simple and fast method,
yielding good results considering the complexity of the
dataset under study, but it does not outperform our previous
method [10]. In the latter, the selection of the ROI, the post-
processing, and the subsequent refinement (Figure 1) were

designed to detect, discard, and/or minimize any mistake in
the edge probability images yielded by the CNN-Edge. The
substitution of those three methods by a single CNN-based
regressor would simplify this task, and the main challenge
was to build a large annotated dataset (in the order of millions
of images). In this respect, the creation of twin sets was a
simple way to increase the data. Different from other types
of data augmentation, twin sets did not provide unrealistic
cases, and they had enough differences to make a profitable
contribution to the training. However, due to the time cost of
obtaining the true biomarkers from each image in the twin
sets, we assumed they had the same parameter estimates as
their respective original edge images. We believed this might
be the major cause of our modest results, which also can
explain why HEX had a considerably larger error. Indeed,
since the twin sets show less detectable cells (Figure3-C,D),
the real HEX in those images could be significantly different,
whereas ECD would be barely affected.

Once we concluded that DenseNet-R35 could not outper-
form our previous method, we considered its use to improve
it instead. As discussed in Section III-B, our post-processing
method does not consider the blurriness of the image or its
variation in cell size. Although the latter could be roughly
inferred by Fourier analysis (Figure 5-B), it had a significant
estimation error. The experiment in Section IV-C indicated
that the inference of α based on the characteristic SD from
Fourier analysis degraded the performance, therefore sug-
gesting that blurriness might be the major factor to consider.
Subsequently, we tested the use of DenseNet-R35 to infer the
scaling factor α, thereby allowing the network to find the
relevant features directly from the edge images. Different
from the first experiment, we computed the target α for
each independent image in the twin sets, thus avoiding any
bias. However, DenseNet-R35 could not converge towards
a reasonable solution. It is indubitable that this problem
implies a larger complexity. For instance, blurriness might
appear only in a fraction of the image while having high
intensity contrast in the rest, and a CNN should be able to
find the appropriate α for that small blurred portion while
overlooking the characteristics of the rest of the image.
Probably, a dataset of dozens of millions of images would
be necessary to solve this problem.

The lack of convergence and similar behavior as in Fig-
ure 8-A was also observed if we attempted to estimate the
biomarkers from the intensity images directly. Even with the
use of more data augmentation (adding blurriness or noise),
the network could not perform regression from the intensity
images.

VI. CONCLUSIONS

This study has shown that our CNN-based regressor, which
directly infers corneal endothelium biomarkers from the edge
probability images (created by our previous work), does
not provide a better solution than aiming for the binary
segmentation instead. Based on our experiments, the amount
of annotated data that would be required to provide similar
accuracy seems unreasonable. Indeed, the augmentation of
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Fig. 7. Error of the biomarkers estimates – ECD (A), CV (B), and HEX (C) –, for the DenseNet-R35 (black) and our old framework (colored). The
x-axis indicates the value for the gold standard, and the y-axis indicates the error computed as the difference between the proposed estimates and the gold
standard. Each point corresponds to one image in the dataset (738 images in total). Dashed lines indicate the average error.

the data up to 1.6 million of annotated images were not
enough to outperform our previous work. While it is possible
that the limitation of the proposed data augmentation might
have jeopardized the success, it is not clear whether a
flawless augmentation would have made a large impact.
Further work needs to be done to this respect. Nonetheless,
considering that these biomarkers are defined based on the
shape of the cells, it is reasonable to conclude that cell
segmentation is still the preferable approach.

This study has also shown that the post-processing method
of our previous work, which uses the average cell size
estimated by Fourier analysis to smooth the edge images
such that a subsequent watershed provides the proper seg-
mentation, is simple and yet very robust. Our attempts to
improve the post-processing by using more information from
the Fourier analysis (the characteristic SD, which encodes
the variation in cell size) have been unfruitful. We believe
this is because the correlation between the characteristic SD
and the cell size variation is not strong enough and the
blurriness of the edge images should also be considered.
This conclusion made us hypothesize that our CNN-based
regressor could be satisfactorily employed for this task, as it
could encode both factors (blurriness and cell size variation)
to adapt the smoothing filter of the post-processing. However,
our experiments were unsuccessful, suggesting that these
features might be too subtle to identify. A possible alternative
could be to adapt α to a local window instead of inferring a
global α for each image.
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