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Abstract—Reliable mobile communications is of critical
importance, and should be maintained even in case of extremely
crowded events or emergency scenarios. In such scenarios the
deployment of drone-mounted base stations offers an agile and
cost-efficient way to sustain coverage and/or provide capacity
relief. In this paper we develop an analytical method to estimate
the blocking and coverage probabilities of drone-assisted cellular
networks using information that is readily available from network
planning tools. We demonstrate how this method can be used to
determine the minimum required number of drones and their
corresponding locations for a given target performance level.

Index Terms—Beyond 5G, drone base station positioning, call
success rate, multi-class loss systems

I. INTRODUCTION

In case of unanticipated incidents, such as network
disruptions (due to disasters such as earthquakes or floodings)
or crowded events, the quality of service in wireless cellular
networks may be severely degraded. In such situations, it is
of utmost importance to swiftly add capacity and/or restore
coverage of the network. An agile and cost-efficient way to
achieve this in beyond 5G networks is by deploying drone-
mounted base stations [1]. Effective deployment of drone
base stations involves optimization of the number of deployed
drones and their associated (initial) control parameters (e.g.,
locations and cell selection biases).

In view of the goal to improve capacity and/or coverage,
a natural optimization objective is to maximize the Call
Success Rate (CSR), minimize the fraction of blocked users
or minimize the number of users that do not have coverage.
However, these performance metrics are strongly influenced by
the number of deployed drones and their control parameters.
Moreover, in an online setting (where the control parameters
are adjusted based on real-time measurements), it takes a long
time to accurately measure the CSR. This implies that adaptive
optimization based on the CSR can be prohibitively slow when
the initial set of control parameters has poor performance,
which is especially undesirable in emergency scenarios. Thus a
good initial set of control parameters provides crucial benefits
for the online optimization and the CSR performance.

In this paper we propose and demonstrate an iterative
method to find a suitable set of control parameters in an
offline setting. Specifically, the method relies on an analytic
model consisting of several coupled multi-class loss systems,

where the different classes reflect the heterogeneous resource
requirements of the users. Furthermore, the parameters of
these loss systems are functions of the number of drones
and associated control parameters. These functions in turn
depend on the ambient network parameters and environmental
characteristics (e.g., the spatial traffic distribution and the
propagation environment), which can be extracted from a
network planning tool. Given the environmental characteristics
and the control parameters of the drones, the model provides
estimates for the CSR and blocking and coverage probabilities.

The proposed method is suitable for offline optimization
since it only requires information that can be obtained from
a planning tool. In particular, the method can be used to
determine the number of drones needed to achieve a desired
CSR level, along with the corresponding set of control
parameters. This obtained set of control parameters can then
be further tuned and dynamically adjusted using real-time
measurements, which dovetails with the online algorithm for
drone positioning proposed in [2].

A. Related literature

Optimization of the number and positioning of drone base
stations has been studied in several papers. In [3] the authors
consider a method for the deployment of drone base stations
based on the notion of truncated octahedron shapes, which
ensures full coverage for a given space with a minimum
number of drones. In this method, the number of drones is
equal to the number of truncated octahedron cells needed to
cover a 3D space. In [4], the authors use simulated annealing
and a genetic algorithm to find the minimum number of drones
and their locations such that the selected area is fully covered
with least cost while also considering data rates, latency and
throughput. Another paper [5] considers the deployment of
various numbers of drones and demonstrates that the proposed
mobility control algorithm reduces the number of required
drones, while optimizing the spectral efficiency. In [6] the
authors formulate a joint optimization problem with the goal
to maximize the number of served users with a minimum
number of drones and propose a low-complexity heuristic for
this. In [7] a method based on particle swarm optimization is
proposed to find the minimum required number of drones and
their positions such that all users are served. In [8] the authors
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formulate the drone deployment as a minimization problem
subject to coverage constraints. Furthermore, an improved
genetic algorithm is proposed for static user scenarios, and a
modified version for dynamic user scenarios. In [9] the authors
propose an artificial bee colony algorithm for the positioning
of drone base stations, and evaluate the performance for
various numbers of drones.

As opposed to [3]–[9], we consider a cellular network that
consists of both drones and regular sites. Moreover, the method
that we propose only relies on the spatial user distribution and
propagation characteristics, and does not depend on particular
realizations of the user locations. In fact, the method that we
propose is more analytic in nature and does not require many
or long simulation runs to obtain accurate results.

B. Contributions

The main contributions of this paper are the following:
1) we provide a method to estimate the CSR, blocking and
coverage of drone-assisted wireless cellular networks; 2) we
demonstrate how the method can be used to determine the
required number of drones and their locations to achieve a
target CSR level. The found number of drones and associated
control parameters in turn provide a good initial set of control
parameters for the drone base stations in case of site failures
or crowded events.

C. Organization of the paper

In Section II we describe a model that can be used to
estimate the blocking and coverage probabilities and CSR.
Section III explains how the parameters of the model depend
on the propagation environment, spatial user distribution
and control parameters, and how these can be calculated.
In Section IV we determine the number of classes that
the proposed model needs to provide accurate results.
Furthermore, we demonstrate for some illustrative scenarios
that the proposed model can be used to iteratively find suitable
locations for a given number of drone base stations. Section V
summarizes the results of this paper and suggests some topics
for further research.

II. PERFORMANCE EVALUATION MODEL

In order for a call to be successful, it must have coverage
and sufficient resources need to be available to accept it. In our
method we first determine the arrival rates of calls that have
coverage, and then use these as input parameters for a multi-
class loss model. Specifically, we consider each of the Nr

regular cells and Nd drone cells to be a multi-class loss system.
Thus the drone-assisted cellular network will be modeled as
N = Nr + Nd coupled multi-class loss systems denoted by
N = {1, 2, . . . , N}.

For each loss system we consider C different user classes
denoted by C = {1, 2, . . . , C}, where each user class
corresponds to users having a resource requirement within
a specific range. Moreover, the model parameters of these
loss systems depend on the scenario characteristics (traffic
intensity, path loss, antenna gain and shadow fading) and the

number of drones and associated control parameters (drone
locations and cell selection biases, which can be used to
steer traffic towards or away from a cell). Specifically, let
λ = (λi,k, i ∈ N , k ∈ C) and β = (βi,k, i ∈ N , k ∈ C),
where λi,k and βi,k denote the Poisson arrival rates, and mean
service times of the various user classes at the different loss
systems (note that this refers to users that have coverage).
Furthermore, let ω = (ωi,k, i ∈ N , k ∈ C), with ωi,k the
fraction of resources required by a class-k user at system i.

As mentioned before, the model parameters of the loss
systems are functions of the number of drones and associated
control parameters. These functions in turn depend on the
system model (i.e., propagation characteristics, the locations
of the regular sites and their antenna features, etc. which will
be described in Section III-A), and we show how λ, β and ω
can be calculated in Section III-B.

Let us now explain how for given model parameters λ, β
and ω, the multi-class loss systems can be used to estimate
the fraction of blocked calls. First we identify the state space
Si for each loss system i ∈ N , namely

Si =

{
n = (n1, n2, . . . , nC) ∈ NC

∣∣∣ ∑
k∈C

nkωi,k ≤ 1

}
,

where N = {0, 1, 2, 3, . . .}. Second, we calculate the steady-
state distribution πi of system i, i.e., the long-term average
probability that system i resides in each state of Si using the
standard formula for multi-class loss systems [10]

πi,n =
1

Gi

∏
k∈C

(λi,kβi,k)
nk

nk!
, n ∈ Si,

with Gi the normalization constant. Third, using the PASTA
(Poisson arrivals see time averages) property, the probability
that a class-k user at system i will be blocked is given by

pblocking,i,k =
∑

n∈Si,
n+ek /∈Si

πi,n,

where ek is the k-th unit vector of length C.
Then we can also calculate the overall fraction of users that

have coverage but will be blocked, as

pblocking =
∑
i∈N

∑
k∈C

λi,k
λcoverage

pblocking,i,k.

with

λcoverage =
∑
i∈N

∑
k∈C

λi,k

representing the total arrival rate of users that have coverage.
Denote by Λ ≥ λcoverage the total arrival rate of users

(including ones without coverage as will be specified later).
The fraction of users that are in outage (and thus not even
assigned to one of the loss systems) is

poutage = 1−
λcoverage

Λ
.
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The CSR can then be calculated as

CSR = (1− poutage)(1− pblocking)

=
1

Λ

∑
i∈N

∑
k∈C

λi,k (1− pblocking,i,k) .

III. DERIVATION OF MODEL PARAMETERS

In Section III-A we first describe the system model (i.e., the
propagation characteristics, spatial user density, base station
features, etc.). These modeling assumptions are similar to [2].
Then in Section III-B we show how the system model impacts
the functions that determine the parameters (λ, β and ω) of
the performance evaluation model.

A. Characterization of system model

For the cellular network, we consider a hexagonal layout of
twelve three-sectorized sites with an inter-site distance (ISD)
corresponding to a dense urban or rural scenario. Together
these sites comprise Nr = 12 × 3 = 36 cells. Besides the
regular cells we also have Nd drone cells. Each of the cells
in this network is assigned a B = 5 MHz carrier in the 3.5
GHz band, where we assume that a fraction κ = 0.25 of the
bandwidth is consumed by control signaling.

Each regular cell is equipped with a directional antenna
at height hantenna, with a θtilt-degree downtilt. To determine
the antenna gains corresponding to these regular cells, we use
the model from [11] with parameters from [12], with a total
transmit power of 20 W for each regular cell.

For the drone cells, we assume that each drone is equipped
with a simple antenna for which we use a rotated version of the
model provided in [13, Table 7.3-1], with an adapted vertical
component to ensure a circular footprint, and a total transmit
power of 0.5 W for each drone cell.

To determine the path loss between a regular cell and a
user, we use the path loss models provided in [13, Tables 7.4.1
and 7.4.2] and calculate the path loss as the weighted average
of the path loss for a line-of-sight (LoS) and a non line-of-
sight (NLoS) link, with weights given by the probability of
having a LoS or NLoS link. In view of the higher altitudes of
the drones, we use the model described in [14] for the path
loss corresponding to the drone cells, with ηLoS and ηNLoS
path loss components corresponding to LoS and NLoS links,
respectively. The probability of having a LoS link is

pLoS = 1− pNLoS =
1

1 + ζ exp(−ψ[arctan(h/d2D)− ζ])
,

with ζ and ψ environmental parameters and h and d2D the
height difference and horizontal distance between the user and
the drone, respectively.

Besides the path loss and antenna gain, shadow fading also
affects the propagation gain. To incorporate this, we determine
spatially and site-to-site correlated shadow fading maps for
each of the sites according to the model provided in [15], for
which we use a site-to-site correlation of 0.5, a decorrelation
distance ddecorr and a standard deviation σshadowing. Moreover,
we impose a minimum coupling loss Lcoupling.

For the traffic characteristics, we assume that users arrive
according to a spatially uniform Poisson process with rate λ̂
users/s/km2 (including users in outage) and require a data rate
of R = 0.4 Mb/s where the mobile device is located at an
altitude of 1.5 m. In some examples, we also incorporate the
presence of a circular traffic hotspot with radius rhotspot, where
we assume that the arrival rate in this hotspot is ρ times higher
than elsewhere. For ease of numerical implementation, we will
only consider a finite set of possible user locations u ∈ U
(e.g. pixels in commercial radio network planning tools) where
users can initiate a call. For each of these pixels, we assume
that users arrive/initiate a call with intensity λ̃u. This means
that for pixels in the hotspot the arrival rate is λ̃u = ρλ̂, and
pixels outside the hotspot have an arrival rate of λ̃u = λ̂. We
assume the mean call duration to be 2 minutes, i.e., βi,k ≡
β = 2 for all i ∈ N and k ∈ C.

Once a user tries to initiate a call, we first determine which
cells provide coverage, if any. To do this we calculate the
Reference Signal Received Power (RSRP) in dBm for each
cell based on the antenna gain, path loss, shadow fading and
transmit powers, and say that a cell provides coverage when
the associated RSRP value is at least −120 dBm. In case at
least one cell provides coverage to the user, we determine the
serving cell as the covering cell with the highest RSRP value.
Given this cell selection rule, we define the set Ui ⊆ U as all
pixels u ∈ U that have cell i as serving cell.

For the pixels that are associated with one of the cells, we
can now calculate the fraction of resources that a user in this
pixel requires using ωu = R/ ((1− κ) ·B log2 (1 + SINRu)).
In this formula, SINRu denotes the Signal-to-Interference-
plus-Noise Ratio experienced by pixel u. For the calculation
of the SINR, we assume a thermal noise of −106.94 dBm and
a noise figure of 8 dB.

B. Derivation of performance evaluation model parameters
To determine the model parameters, we first calculate the

total load offered to cell i, which is given by

ωtot
i = β

∑
u∈Ui

λ̃uωu.

We assign pixels to the different classes such that users in
pixels of class k require less resources than users in pixels of
class k+1, but at the same time all classes offer approximately
the same amount of load to the serving cell. For this we define

ω̂i,k = max

{
(ωv)v∈Ui

∣∣∣ β ∑
u∈Ui

λ̃uωu1{ωu≤ωv} ≤ k

C
ωtot
i

}
as the maximum fraction of resources users of class k ∈ C in
cell i require, and set ω̂i,0 = 0. Then for u ∈ Ui define

1i,u,k = 1{ω̂i,k−1<ωu≤ω̂i,k},

which evaluates to 1 if a user in pixel u of cell i belongs to
class k and 0 otherwise. Using this we can express the arrival
rate of class-k users at cell i as

λi,k =
∑
u∈Ui

λ̃u1i,u,k
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System model e.g. propagation environment, spatial
user distribution, base station features (Section III-A)

Iterative optimization of number of drones and
corresponding control parameters (Section IV-C)

Number of drones and associated control
parameters (locations and selection biases)

Calculation of parameters λ, β and ω for
the performance evaluation model based
on the system model, number of drones
and control parameters (Section III-B)

Evaluation of CSR, blocking and coverage
using the performance evaluation model

(coupled set of multi-class loss systems) for
given parameters λ, β and ω (Section II)

adjust

Figure 1: Illustration of the model aspects and their relation.

and the average fraction of resources that class-k users at cell
i require as

ωi,k =

∑
u∈Ui

λ̃uωu1i,u,k

λi,k
.

Note that the class structure provides a discretization of the
resource requirements ωu. Therefore, having more user classes
increases the granularity and thus the accuracy of the model,
but it also increases the computational complexity.

To briefly recapitulate, Figure 1 shows how the different
aspects of the model come together and in which section each
aspect is described.

IV. EXPERIMENTAL VALIDATION

In this section we first describe a set of illustrative scenarios
in which the deployment of drone base stations can be useful.
Using these scenarios, we determine the number of classes C
that the multi-class loss systems of the proposed performance
evaluation model require to give accurate results. Furthermore,
we show how the performance evaluation model can be used
in an iterative optimization to determine the required number
of drones and corresponding control parameters to achieve a
given target performance level.

A. Scenarios

Recall that our method serves to determine an effective
deployment of drone-mounted base stations with the goal
to resolve capacity and/or coverage problems. Examples of
scenarios for which this method can be used include network
disruption events (think of a disaster like a flooding or an
earthquake) which results in one or more site failures but
also events with massive crowds like festivals or large-scale
demonstrations. The decisions that a network operator needs
to make are how many drones to deploy, and how to choose
their locations and cell selection biases.

To illustrate the use of the proposed method, we will
consider a set of ten scenarios. To label these scenarios, we

will use the following notation, DU and RU for a dense
urban and rural setting, respectively, followed by the number
of failing sites and an H if a hotspot is present. With this
notation, we consider the following set of scenarios: DU-0-H,
DU-1, DU-1-H, DU-2, DU-2-H, RU-0-H, RU-1, RU-1-H, RU-
2 and RU-2-H. For these scenarios we consider the parameter
values provided in Table I. These values are based on [13],
[14], [16], [17]. Furthermore for the dense urban setting, we
set the arrival intensity λ̂ such that the CSR values are above
98% in normal situations (when all regular base stations work
normally, no hotspot has emerged and no drones are deployed).
Since coverage should not be a problem in the dense urban
setting, the CSR will mainly be determined by the fraction
of blocked users. For the rural setting even under normal
circumstances few coverage holes may exist, which in general
implies that capacity plays a less significant role. Therefore we
have chosen the arrival intensity for the rural setting such that
approximately 0.1% is blocked in normal situations. However,
when a site failure occurs not only the fraction of users without
coverage increases, also the fraction of blocked calls increases.
The reason for this is that the still operational sites will start
to serve part of the area previously served by a failing site,
which leads to an increased load of these sites and thus an
increased fraction of blocked users.

Table I: Scenario parameters.

Parameter Dense urban Rural Unit

ISD 500 3500 m
hantenna 25 35 m

λ̂ 1.2 0.014 users/s/km2

θtilt 7 4 ◦

ζ 12.08 2.23
ψ 0.11 0.83
ηLoS 1.7 0.1 dB
ηNLoS 24 22 dB
ddecorr 45 80 m
σshadowing 5 6 dB

Lcoupling 70 80 dB

rhotspot 100 300 m

ρ 4 20

In all scenarios we will only consider different values for
the x and y coordinates of the drones. We assume the altitude
of the drones to be fixed at 120 m, and do not consider any
cell selection biases, or any other optimization parameters like
the beam width of the drone antennas. Furthermore, for the
calculation of the CSR, we consider a subset of the most
impacted regular cells including the cells of the failing sites
(if any) and their neighboring cells as well as the drone cells.

B. Impact of C on performance evaluation model accuracy

To determine the number of classes that the model requires
to provide sufficiently accurate results, we need to compare
the CSR provided by the proposed model to a baseline. For
this baseline, we use simulations based on the same modeling
assumptions, except that the user locations are continuous
instead of the pixels used in the proposed model. Furthermore,
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Figure 2: CSR values of theoretical model for different number of classes, and simulation results for various scenarios, where
the last number represents the number of deployed drones.

we do not categorize users in classes but account for their
actual required fraction of resources.

For the comparison of the CSR values of the proposed
model and the simulations, we compare the scenarios
described in the previous section and consider no drone
deployment when there is no failing site, the deployment of
0, 1 or 3 drones in case of a single failing site and 0, 2, or 6
drones in case of two failing sites. When the number of drones
is equal to the number of failing sites (1 or 2), the drones are
positioned right above the failing site. For the deployment of
3 or 6 drones, we roughly position these drones above the
center of the failed cells (165 m and 1165 m from the failing
sites along the azimuth directions for the dense urban and rural
setting, respectively). Note that these drone locations are only
chosen to compare the CSR of our model to the CSR values
obtained from simulations.

Figure 2 shows the CSR values for 1, 2, 3, 5 and 10 classes
for the various scenarios. In order to assess the accuracy of
the results, we have also added the average CSR of 100 runs
of the simulations (the baseline), where the CSR of a single
run is measured over a time period of four hours. As we
can see, for three or more classes, the CSR of our method is
close to the simulated values. To be more precise, using three
classes the relative error is less than 1% for all scenarios, and
less than 0.5% for 22 out of 26 scenarios. In conclusion, the
proposed model requires only three classes to give accurate
results, hence we use this to determine the optimal number of
drones and their positions in an iterative manner.

C. Optimal drone deployments

As mentioned before, in an emergency scenario it is useful
to know how many drones need to be deployed to restore
the CSR to a desired level, and what the corresponding set
of control parameters of the drones should be. To determine
these, we use an iterative procedure that calculates the CSR
(using the performance evaluation model) for different sets of

control parameters and selects new sets of control parameters
based on the CSR values obtained in the previous iteration. For
these new sets of control parameters, we consider the set of
control parameter that has the highest CSR so far, and select
sets of control parameters that are the same except for one
parameter that is slightly different.

So given the number of available drones, we can use this
optimization procedure to determine the optimal set of control
parameters in a given scenario. Let us consider the scenarios
listed in Section IV-A with various numbers of deployed
drones. Table II presents the theoretical CSR (using three
classes) for the best-found set of control parameters for these
scenarios. This table shows that in most cases we need at least
three drones for each failing site to restore the CSR to the level
before the site failures. However, suppose that the goal is to
restore the CSR to a target value of 98%, then for the rural
setting with a single failing site, the deployment of one or two
drones achieves this goal.

Moreover, we observe a decreasing performance benefit
from additionally deployed drones. Although not addressed in
this paper, in general we note that the deployment of additional
drones may also require careful tuning of their altitudes and
cell selection biases in order to optimize the performance gains
and avoid excessive interference.

Let us now also show the optimal locations found for the
various numbers of drones in case of a site failure for the dense
urban setting without and with a hotspot in Figures 3a and
3b, respectively. In these figures, the colored dots indicate the
best-found locations of the drones, where the different colors
correspond to the number of drones that are deployed. The
gray shaded areas indicate the best server areas of the network
before the site failure, the black triangles mark the location of
the failing site and the black circle in Figure 3b indicates the
hotspot area.

These figures show that it is not trivial to find the optimal
drone locations. For example, for a single drone in the “DU-1”
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Table II: CSR for best-found locations for a given number of
drones.
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DU-0-H 0.9645 0.9645 0.9733 0.9764 0.9788 0.9800 0.9805 0.9822 N/A N/A
DU-1 0.9830 0.9088 0.9483 0.9661 0.9808 0.9846 0.9870 0.9885 N/A N/A
DU-1-H 0.9645 0.8617 0.9233 0.9505 0.9715 0.9771 0.9821 0.9855 N/A N/A
DU-2 0.9830 0.8327 0.8817 0.9172 0.9417 0.9560 0.9690 0.9810 0.9846 0.9868

DU-2-H 0.9666 0.7842 0.8672 0.9045 0.9338 0.9500 0.9639 0.9745 0.9809 0.9841

RU-0-H 0.9904 0.9904 0.9975 0.9977 0.9979 0.9980 0.9981 0.9984 N/A N/A
RU-1 0.9983 0.9591 0.9825 0.9895 0.9947 0.9961 0.9971 0.9976 N/A N/A
RU-1-H 0.9904 0.9161 0.9756 0.9884 0.9930 0.9959 0.9969 0.9976 N/A N/A
RU-2 0.9983 0.8986 0.9352 0.9598 0.9728 0.9797 0.9857 0.9910 0.9928 0.9945

RU-2-H 0.9820 0.8415 0.9337 0.9544 0.9734 0.9799 0.9859 0.9910 0.9932 0.9942

scenario it might seem logical to position the drone right above
the failing site, which however turns out to be sub-optimal due
to the shadow fading.

Moreover, in the scenario without a hotspot we see that the
optimal drone locations are somewhat evenly spread around
the failing site. On the other hand, in the presence of a hotspot,
the drone locations are more concentrated around the hotspot
as more users are located there.

V. CONCLUDING REMARKS

In this paper we have proposed a method to determine the
blocking and coverage probabilities as well as the CSR of
drone-assisted cellular networks. We demonstrated that this
method can be used to determine the required number of
drones and associated control parameters to restore/improve
the CSR to a desired level. As a result, the found optimal
number of drones and their control parameters can serve as
a good initial configuration for drone deployment in case of
crowded events or emergency scenarios. In future research we
plan to extend the dynamic adjustment algorithms proposed in
[2] for a single drone to a setting with multiple drones.
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