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1
Introduction

1.1. Research Formulation
Motivated by advancements in autonomous navigation technologies and with a desire to safely expand the

navigational capabilities of existing aircraft designs, the field of aerospace engineering has experienced a

consistent move towards the investigation of highly agile aircraft configurations that enable exceptional

maneuverability. At the same time, with novel applications such as Advanced Air Mobility and a rising

interest in the use of air vehicles to support other tasks, Vertical Take-Off and Landing (VTOL) capabilities

have become highly valued as they allow for greater control at lower speeds and hovering potential enables

a large set of possible applications for vehicles, such as search and rescue, reconnaissance, and precision

transport of loads. As operational tasks become more complex, ensuring safety, efficiency and precision

in navigation under a number of highly variable circumstances and flight conditions therefore becomes an

increasingly more crucial requirement.

As increasing focus is put on achieving complex manoeuvres and difficult flight geometries, limitations of

traditional modelling and control system development approaches have become more apparent. Notably,

attitude representation with Euler angles suffers from issues like gimbal lock—a condition that creates

singularities during complex maneuvers—and imposes considerable computational complexity when

modelling the nuanced geometries of agile flight: while Euler angles remain highly useful for their intuitive

interpretation, these deficiencies pose limitations to the implementation of controllers capable of complex

manoeuvres and naturally increase the computational cost of online trajectory reconstruction operations.

Addressing these reasons, engineers have begun to explore quaternions as an alternative solution for

aircraft control.

Naturally avoiding the limitations of Euler angles, quaternions inherently eliminate the risk of singularities

while offering more streamlined computations. Quaternions are a four-dimensional extension of complex

numbers used to represent rotations in three-dimensional space, consisting of one scalar and three vector

components. Quaternion algebra introduces a unique formulation of multiplications and rotations, which

allow to represent attitudes and rotations without encountering singularities and only using linear equations.

Because of these characteristics, quaternions facilitate more reliable and efficient tracking of dynamic,

complex maneuvers: for agile helicopters, this shift enables a more complete and accurate expression

of high mobility, which is crucial for developing a robust autonomous full flight control system. Despite

their many advantages, the use of quaternions in modelling and controller development has noticeably

remained limited to highly specific fields such as satellite attitude control and control of highly agile Micro

Air Vehicles (MAV): the exploration of the implementation of quaternions to more conventional air vehicles

remains a topic of active interest and a prominent trend for future developments in the field of aircraft control.

Contributing to the current academic discussion and body of research around the implementation of

quaternions to the control and modelling of air vehicles, this report proposes a method to convert existing

Euler-based models to quaternion-based models, and fully details the development of a quaternion-based

flight control system for the autonomous execution of offline-calculated agile manoeuvres: both these

contributions are applied on the MBB Bo105 agile helicopter, which is used as a test case. In the interest of

creating a control system capable of leveraging the high manoeuvrability characteristics of the helicopter,

quaternions provide significant benefits as they allow for an efficient and flexible method of attitude

1
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parametrization, free of the limitations imposed by other more common approaches commonly used; these

reasons make them highly desireable in modelling and control applications, especially when applied to

agile aircraft and complex tracking tasks.

Further - with the rise of machine learning (ML) and artificial intelligence (AI) - many of the current research

trends in the field of control engineering and especially regarding the autonomous execution of manoeuvres

have become increasingly more data-driven, requiring large amounts of data and resources, the collection

and processing of which is a highly expensive and time-consuming process. In contrast, this report will rely

primarily on analytical methods for trajectory generation and model study, with the entire process clearly

detailed throughout the text, to define an accessible and effective methodology to develop control systems

for autonomous control. In particular, trajectory generation will be performed using polynomial trajectories

and simple dynamic relations to extract position, velocity, and attitude references, while autonomous

flight will be enabled using a Finite State Machine (FSM) autopilot. The execution of manoeuvers will

be facilitated by the introduction of a full flight control system, which integrates Linear Quadratic Integral

(LQI) control with quaternions to control the helicopter’s attitude and Proportional-Integral (PI) control to

command velocity and position. The tuning of the controller, to limit the need for hand-tuning, is performed

using the Particle Swarm Optimization (PSO) method, with its implementation discussed in the thesis.

1.2. Research Questions and Research Objectives
To guide the development of the project, research questions were defined to drive the research process

and research objectives were identified to identify a path for the progression of the thesis work. Here

the research questions and objectives identified will be delineated and motivated, to provide a global

understanding of the project’s scope, the challenges being addressed, and the methodological framework

adopted.

As one of the primary objectives of this report is the contribution to existing literature regarding quaternion-

based control systems, it is first essential to understand and highlight what are the advantages of the

quaternion formulation when compared to other - more commonly used - methods of attitude parametrization.

As such, the first research question defined is:

How are quaternions beneficial to the modelling of helicopter dynamics and to the development

of control systems?

Research Question 1

To answer this first question, quaternions must be introduced from a mathematical standpoint and

compared to other commonly utilized means of attitude representation: Euler angles and Direction Cosine

Matrices (DCM). To emphasise the use of quaternions as means of attitude parametrization, specific

examples will be introduced, focusing on the practical implementation of quaternions. All considerations

delineated in this analysis will be generally applicable to all air vehicles, but given the focus of this thesis,

emphasis will be given to helicopters in particular.

With quaternions introduced and discussed, and their usefulness demonstrated, the baseline existing

linearized model of the BO105 helicopter used for the purpose of this thesis must be presented and studied.

In an effort to fully incorporate quaternions in the model and the control system, the existing linearized

model of the helicopter - an identified model using Euler angles - needs to be manipulated to have an

internal attitude representation using quaternions. From this, the following question arises:

How can an existing state-space flight dynamics model be augmented to include quaternions for

its attitude representation?

Research Question 2
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To this end, a procedure is discussed to modify the model to include the relevant quaternion representation.

By addressing this research question, a methodology for the rapid conversion of already existing models

to a quaternion formulation can be defined, which in turn would allow to leverage the robustness and

computational advantages of quaternions and facilitate the use of advanced control algorithms without the

need for a complete re-identification of the system. The validity of this procedure will be discussed by

comparing the original model and the quaternion model, identifying if the modes and characteristics of the

system are properly maintained throughout the procedure.

With the model defined and appropriately modified, the control strategy best suited to the control of this

model needs to be identified. As such, the following research question arises:

How can a quaternion-based autonomous full flight control system be optimally developed for an

agile helicopter?

Research Question 3

To answer this question, a detailed analysis of the model needs to be performed from a control theory

standpoint: analysing the modes of the aircraft, the stability characteristics of the BO105 helicopter model,

as well as the states and inputs of the model itself. With the characteristics of the system defined and a

control strategy analysed. Further sub-questions emerging from RQ 3 are:

• What are the controllability/observability characteristics of the linearized model?

• What are possible control methods and what is the best suited for this specific system?

• How can controller parameter tuning be systematically executed to achieve desired agile maneuver-

ing?

With these questions answered, the tuned system is to be developed and the performance of the final

tuned system verified.

To verify the performance of the controller, a set of manoeuvres will be simulated via desktop simulations

to test the capabilities of the controlled helicopter to execute specific manoeuvres and tracking tasks. To

answer this, another fundamental research question arises:

How can maneuver reference trajectories be systematically designed to evaluate the tracking

performance of a helicopter control system?

Research Question 4

Verification is fundamental in the process of development as it ensures the correct implementation of

the system for the purpose of testing and simulation. For the purpose of this thesis, verification will be

evaluated by simulating relevant tracking tasks that emphasise the manoeuverability of the air vehicle.

Lastly, appropriate systems need to be established to enable the helicopter to precisely navigate

through the designed manoeuvers. As navigation based on continuous reference signals generally causes

poor tracking and is unreliable in the presence of disturbances, to improve online tracking performance

the controlled system is to be augmented with a simple autonomous navigation system. From this, the

following research question is posed:

How can an autonomous flight system be designed to optimize reference tracking for agile

maneuvers in helicopters?

Research Question 5

In the context of this thesis, a baseline solution using a Finite State Machine (FSM) architecture was

explored to produce a functioning simple autopilot for reference tracking that could later on be expanded
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further, allowing for the introduction of more sophisticated autonomous behaviours as needed.

With the research questions that will drive forward the development of the thesis defined, the following

research objectives have been delineated to allow for a smooth progression of the work:

• Convert the linearized model into a proper quaternion formulation.
• Analyse the models and verify the quaternion conversion.
• Develop a quaternion-based control system to perform manoeuvre tracking.
• Identify a structured tuning strategy to identify the best controller parameters.
• Develop a methodology to implement manoeuvres to test the helicopter’s capabilities.
• Develop a simple autopilot architecture to navigate offline-planned trajectories.
• Verify implementation and performance of the controller by simulating the manoeuvres.

Research Objective

1.3. Structure of the Report
With the research questions and research objectives defined in Section 1.2, the structure of the report will

now be delineated to provide an understanding of the modulation of the discussion around the report. The

report is divided in a total of seven parts, each dealing with a specific area of the research process and

expanding upon the methodology and the intermediate and final results obtained. Here the various parts

of the thesis will be briefly presented.

To start the report, Part I and Part II provide a comprehensive understanding of the thesis and of

the motivations that brought about it. Part I contains the research paper resulting from the thesis study,

which details a complete collection of the results as well as a complete and concise explanation of the

process followed, complete with a brief analysis and discussion of the results and of the methodologies.

Complementing this, Part II goes over the preliminary analysis of the thesis, with Chapter 2 containing a

literature review of current research (further motivating the interest in the research topic and contextualizing

this work in the broader academic discussion), and Chapter 3 detailing the methodology identified to

provide comprehensive answers to the research questions discussed above. To conclude the compre-

hensive presentation of the results, Chapter 4 presents a punctual overview of the contributions of this thesis.

Expanding upon the overview of the work provided in the first two parts, Part III to Part VI contain the

bulk of the work performed during the thesis. These parts describe the considerations and decisions made

during the entire research and study, providing a more in-depth analysis of the research process and

discussing the intermediate results and their relevance.

Part III and Part IV will deal with the modelling aspect of the thesis, introducing quaternions and delving

into a discussion of the available linearized models and their conversion to a quaternion formulation.

To introduce the discussion on the modelling section of the thesis, Part III provides an introduction to

quaternion mathematics, presenting the arithmetic formulation of various fundamental operations specific

to quaternions. To clarify the applicability of quaternions in the context of control system engineering and

aircraft control and provide practical and useful information, this initial part will focus on providing clear

explanations of how quaternion operations apply to attitude representation and clear comparisons will be

provided between quaternions and other more commonly used forms of attitude parametrization to further

justify the choice of this specific attitude representation.

With quaternions fully defined and their relevance explained, Part IV will delve in a description of the

helicopter model. To achieve this, the BO105 will first of all be discussed from an engineering standpoint,

discussing the mechanical characteristics of the helicopter: this will justify the choice of this model for the

purpose of agile manoeuvering and will introduce the helicopter itself and its characteristics. Afterwards,

the available linearized state-space models will be discussed from a control theory standpoint: discussing

the system’s inputs, outputs, and states; detailing the modes and stability characteristics of the helicopter;



and analysing other relevant characteristics, such as the controllability and observability of the model.

Concluding this part, in Chapter 7 the internal model attitude representation will be changed from the

original Euler angles parametrization to the quaternion parametrization.

With the modelling aspects of the thesis discussed, Part V and Part VI will delve in the development of

the control system and the execution of autonomous flight manoeuvres.

Having presented the model and discussed its characteristics, Part V will discuss the development of

the controller, which for the purpose of this thesis is selected to be a nested-loop architecture mixing

Linear Quadratic Integral (LQI) control and PID control. To start, the overall controller architecture is

discussed in Chapter 8: here the chosen control techniques will be motivated, stating their advantages and

limitations, and their implementation in the overall control system design will be discussed. Afterwards, in

Chapter 9 a reliable and repeatable approach to controller tuning is provided and its algorithm representation

implemented for the tuning of each of the controller’s loops.

Finally, Part VI will present the discussion on the definition of manoeuvres and the implementation of

an autopilot system. This part will be further divided in three chapter. Chapter 10 will first discuss the

offline definition of manoeuvres. Here a systematic approach to the definition of all parameters required to

fully define the manoeuvres will be identified, and this procedure will be applied to the identification of

two representative manoeuvres: the slalom and the pull-up/push-down. With the manoeuvres defined,

Chapter 11 will discuss the implementation of an autopilot system. To start, the reference data identified

will be divided in waypoints equally spaced in time and a waypoint interpolation algorithm to reconstruct the

trajectory between waypoints. Afterwards, a simple autopilot will be implemented with an FSM architecture:

this enables the identification of a simple structure that can easily be augmented to enable more complex

behaviours. Finally, the methodologies developed and the implementation of both the autopilot and the

control system will be verified by simulating the identified manoeuvres.

Concluding the discussion of the thesis, in Part VII, Chapter 13 will serve as the concluding section of

the work. First, in Section 13.1 the closing remarks of the thesis will be provided, overviewing the obtained

results and providing explicit answers to the research questions posed previously, while also reviewing the

research process followed. Complementing this, in Section 13.2 recommendations for future developments

and continuations of this work will be provided to further expand upon the continuation of research on

quaternions applications in the modelling and autonomous flight of full-scale vehicles.
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Modelling and Control of Autonomous Agile Helicopter Flight using Quaternion
Methods

Riccardo Barbaglia∗

Control and Simulation Section, Faculty of Aerospace Engineering
Delft University of Technology, Delft, The Netherlands

Demand for fully autonomous VTOL aircraft with high agility has exposed the shortcomings of Euler-angle
models: limiting factors such as the presence of singularities and the need for expensive trigonometric operations
impact the reliability and safety of autonomous systems and impair the execution of highly-aggressive manoeuvres.
Quaternions offer a singularity-free alternative, yet their use on full-scale helicopters remains underexplored.
Addressing this gap in research, this paper introduces a methodology for converting existing Euler-based linear
models of a Bo105 helicopter to quaternion form, preserving model fidelity. A hierarchical flight control system is
then designed, controlling attitude with a novel implementation of Linear Quadratic Integral (LQI) control with
quaternions, and commanding velocity and position using PI and P controllers. The controller is tuned using
a structured approach implementing the Particle Swarm Optimization (PSO) algorithm. The system is then
augmented with a Finite State Machine (FSM) autopilot to follow offline-generated trajectories. The implemented
system was evaluated by simulating a slalom and a pop-up manoeuvre: the simulations demonstrated maximum
tracking errors of 5 m for slalom and 7 m for pop-up, primarily due to velocity-loop delays, while achieving zero
steady-state error in the position. These results confirm the effectiveness of quaternion-based modelling and
control for agile, autonomous VTOL operations.

I. Introduction
The evolution of autonomous navigation technologies has reignited interest in vertical take-off and landing (VTOL) aircraft, whose

hovering capability and low-speed precision promise transformative applications in search and rescue, reconnaissance, and precision
logistics [1, 2]. As aerospace engineering pushes the boundaries of high-agility configurations, designers face increasingly complex
mission profiles that demand safety, efficiency, and accuracy under diverse conditions [3]. In this search for ever-improving agility and
manoeuvrability, traditional control frameworks remain constrained by the Euler-angle parametrization of attitude, which introduces
singularities (gimbal lock) during large rotations and burdens the system with computationally expensive trigonometric transformations.

In an effort to overcome the limitations of traditional modelling and control approaches, research has recently advocated for the
use of attitude parametrization with quaternions [4], a mathematical construct that allows for a continuous, numerically efficient, and
singularity-free representation of attitude [5], with early studies suggesting that quaternions could enable significant improvements in
modelling accuracy and control performance [6, 7]. These characteristics also find application in autonomous navigation, allowing for an
efficient and streamlined planning of tasks to be executed by the vehicle [8].

Motivated by these advantageous characteristics, studies have been performed on the application of quaternions to the modelling of
autonomous small-scale vehicles [9–11], such as drones and quadrotors, but crucially little research is present regarding the implementation
of quaternions to full-scale aircraft and autonomous control systems, two areas of relevance in the academic and industrial fields. In
response to this gap in scientific literature, and to meaningfully contribute to the broader academic discourse in the aerospace engineering
field, this work explores the implementation of quaternions in the modelling and autonomous control of a full-scale Bo105 helicopter, an
aircraft with remarkable performance and high manoeuvrability, to enable it to perform autonomous agile navigation of offline-defined
trajectories.

This work contributes to existing research in quaternion modelling and control and autonomous flight in four primary ways.
• In Section III.B, a methodology to convert existing Euler angles linearized models to have their attitude represented using quaternion

elements is presented and applied to the Bo105 linearizations. This procedure is instrumental in facilitating the study of quaternions
and of their implementation in control systems, as it allows the use of already existing Euler angles models without requiring
re-linearizations and system identification procedures.

• In Section IV.A, an approach for the implementation of Linear Quadratic Integral (LQI) control to a quaternion-based linearized
model is presented. This result serves as a guideline to the application of powerful optimization-based LQ techniques to quaternion
systems, facilitating the design of complex and robust controllers.

• In Section IV.B, tuning of the control system is performed using the Particle Swarm Optimization (PSO) algorithm. This multimodal
optimization is used to tune the LQI and PID controllers. The tuning is discussed for each of the control loops, clarifying the cost
function used and providing an intuitive understanding of the role of each of its terms.

• In section V, the implementation of an autopilot system based on the Finite State Machine (FSM) architecture is discussed, a flexible
automation framework that enables autonomous navigation. This modular design supports autonomous navigation and can be
extended for advanced behaviors, such as online trajectory planning for obstacle avoidance.

∗MSc Student, Department of Control and Simulation, Faculty of Aerospace Engineering, Delft University of Technology.
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II. An Introduction to Quaternions
Quaternions are a mathematical construct useful in representing rotations in 3D space, which offer significant advantages over

Euler angles and other attitude parametrizations. Here, quaternions will be introduced mathematically, presenting their fundamental
mathematical operations and stating their advantages over other commonly used attitude parametrizations, the Euler angles and the
Direction Cosine Matrix (DCM). Here only the quaternion operations essential to the modelling of systems and the integration of
controllers will be presented; for a more exhaustive overview of quaternions and a comparison with other attitude formulations, consult [12].

Here the mathematical properties of quaternions are introduced for the purpose of attitude representation; for a more comprehensive
understanding of their properties, a general explanation is provided in [13]. To accurately represent attitudes, quaternions are required to
have unitary norm: as such, in this paper quaternions will always be assumed to be normalized [5]. The way quaternions encode attitude is
well explained by considering Euler’s rotation theorem [14], which states that a rigid body can be driven to any attitude by rotating around
an adequate rotation axis (called Euler axis) by an adequate angle (called Euler angle). Considering two reference systems A and B and
letting n𝐴2𝐵 and 𝜃𝐴2𝐵 represent the Euler axis and the Euler angle required to drive A to coincide with B, the quaternion representing the
attitude of frame B with respect to frame A, the quaternion expressing this rotation is:

q𝐴2𝐵 =


𝑞0
𝑞𝑖

𝑞 𝑗

𝑞𝑘


=

[
𝑞0
q̄

]
=

[
cos(𝜃𝐴2𝐵/2)

sin(𝜃𝐴2𝐵/2){n𝐴2𝐵}𝐴

]
(1)

This four-dimensional representation of rotations allows quaternions to overcome gimbal lock, the primary limitation of Euler angles
which causes discontinuities when expressing rotations in 3D space, but also introduces an ambiguity relevant in control system design.
From Equation 1 it follows that q𝐴2𝐵 and −q𝐴2𝐵 are equivalent quaternions as they represent the same relative attitude, with the only
difference being that the former represents a rotation of 𝜃𝐴2𝐵 around n𝐴2𝐵 while the latter represents a rotation of 2𝜋 − 𝜃𝐴2𝐵 around
−n𝐴2𝐵. It follows naturally that one rotation will span a longer angle than the other: the quaternion describing the shortest rotation will
be the one where 𝑞0 ≥ 0. This process is usually referred to as "disambiguation". To simplify notations, in this paper the quaternion
encoding the shortest rotation is used.

Quaternions also enable an intuitive and computationally effective method to concatenate successive rotations. Let quaternions q𝐴2𝐵
and p𝐵2𝐶 respectively denote the relative attitude of frame B with respect to frame A and of frame C with respect to frame B. The
quaternion q𝐴2𝐶 denoting the relative attitude of frame C with respect to frame A can be immediately identified via the quaternion
multiplication operation [15]:

q𝐴2𝐶 = q𝐴2𝐵p𝐵2𝐶 =

[
𝑞0

q̄

] [
𝑝0

p̄

]
=

[
𝑞0𝑝0 − q̄ · p̄

𝑞0p̄ + 𝑝0q̄ + q̄ × p̄

]
(2)

Because of the cross-product operation, quaternion multiplication is not commutative except when the two quaternions being multiplied
are one the inverse of the other. Considering quaternion q𝐴2𝐵, the inverse of q𝐴2𝐵, which defines the relative attitude of frame A with
respect to B, is defined as:

q−1
𝐴2𝐵 =

[
𝑞0
−q̄

]
= q𝐵2𝐴 (3)

and satisfies the equation q𝐴2𝐵q𝐴2𝐵−1 = q𝐴2𝐵−1q𝐴2𝐵 = [1 0 0 0]𝑇 . Note that Equation 3 is only valid for unit quaternions.
As another point of note, rotation concatenation via quaternion elements is an entirely linear operation that does not require trigonometric
or transcendental operations: because of this, rotation concatenation via quaternion multiplication can be immediately written in the
matrix multiplication form shown in Equation 4.

pq =


𝑝0 −𝑝𝑖 −𝑝 𝑗 −𝑝𝑘
𝑝𝑖 𝑝0 −𝑝𝑘 𝑝 𝑗

𝑝 𝑗 𝑝𝑘 𝑝0 −𝑝𝑖
𝑃𝑘 −𝑝 𝑗 𝑝𝑖 𝑝0



𝑞0
𝑞𝑖

𝑞 𝑗

𝑞𝑘


(4)

Consider now reference frame B rotating around frame A with angular rate vector 𝜔: Equation 5 shows the time propagation equation
that allows expressing the quaternion rate vector ¤q𝐴2𝐵 as a function of q𝐴2𝐵 and of the rate vector 𝜔 [15]. By means of Equation 4,
Equation 5 can also be rewritten in matrix multiplication form.

¤q𝐴2𝐵 =
1
2

q𝐴2𝐵

[
0
𝜔

]
(5)

Another property of quaternions used extensively within this report is their ability to compute coordinate transformations using only
linear equations. Discussing coordinate transformations, it is important to distinguish between active and passive rotations [5, 14].
Active rotations allow for the rotation of a vector or point expressed in a fixed coordinate system. As an example, consider vector v
expressed in reference frame A, and let r be the result of rotating v around the Euler axis n𝑣2𝑟 by the Euler angle 𝜃𝑣2𝑟 . The coordinates of
r in reference frame A may then be calculated as shown in Equation 6, where q𝑣2𝑟 = [cos(𝜃𝑣2𝑟/2), sin(𝜃𝑣2𝑟/2){n𝑣2𝑟 }𝐴].[

0
{r}𝐴

]
= q𝑣2𝑟

[
0

{v}𝐴

]
q−1
𝑣2𝑟 (6)
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Passive rotations allow to perform rotations of the reference frame in which a vector is expressed. Passive rotations are highly useful
when identifying the coordinates of a vector in a reference frame different from the one it is originally expressed. Consider, for example,
vector v expressed in reference frame A, and let B be the reference frame obtained when rotating A according to quaternion q𝐴2𝐵. The
coordinates of vector v expressed in reference frame B can therefore be expressed as:[

0
{v}𝐵

]
= q−1

𝐴2𝐵

[
0

{v}𝐴

]
q𝐴2𝐵 (7)

Quaternions can also interpolate with the Spherical Linear Interpolation (SLERP) algorithm [5, 16]. Consider the quaternions q𝐸2𝐵
and q𝐸2𝐶 , encoding the relative attitudes of reference frames B and C with respect to frame E. The shortest rotation that transforms B to
coincide with C is found using the SLERP algorithm in Equation 8, where 𝜃 = arccos (q𝐸2𝐵 · q𝐸2𝐶 ) and 𝑙 ∈ [0, 1] is an interpolating
parameter. This efficient interpolation method allows for a singularity-free transition between two generic orientations represented by
quaternions.

q̂(𝑙) = sin ((1 − 𝑙)𝜃)
sin(𝜃) q𝐸2𝐵 + sin (𝑙𝜃)

sin(𝜃) q𝐸2𝐷 (8)

From these considerations, quaternions have significant advantages over other commonly used attitude parametrizations. Being fully
defined by only four parameters, quaternions offer a concise attitude representation methodology, making them comparable in terms of
numerical efficiency to Euler angles (which require three parameters) and far more efficient than the Direction Cosine Matrix (DCM)
representation (which requires nine parameters), while not suffering from singularities, gimbal lock, and only using linear operations.
Moreover, quaternions only make use of linear equations and offer a highly effective attitude interpolation algorithm using SLERP, while
DCM and Euler angles require complex interpolation algorithms with inefficient operations [17] and singularities [12]. Equations 9 to 11
show the relation between quaternions and Euler angles, which will be useful in the analysis of the system presented in section III, where
the available linearized models will be modified to have the internal attitude parametrization make use of the quaternions. A complete
derivation of these equations is found in [18], which is only cited here for brevity.

𝜙 = atan2
(
2
(
𝑞0𝑞𝑖 + 𝑞 𝑗𝑞𝑘

)
, 1 − 2

(
𝑞2
𝑖 + 𝑞2

𝑗

))
(9)

𝜃 = −𝜋/2 + 2 atan2
(√︃

1 + 2
(
𝑞0𝑞 𝑗 − 𝑞𝑖𝑞𝑘

)
,

√︃
1 − 2

(
𝑞0𝑞 𝑗 − 𝑞𝑖𝑞𝑘

) )
(10)

𝜓 = atan2
(
2
(
𝑞0𝑞𝑘 + 𝑞𝑖𝑞 𝑗

)
, 1 − 2

(
𝑞2
𝑗 + 𝑞2

𝑘

))
(11)

III. Conversion of the Bo105 Model to Quaternion Parametrization
For this study, two 6-DOF identified linearized models of the MBB Bo105 helicopter were provided. The Bo105 is an agile, twin-engine

hingeless helicopter developed by Messerschmitt-Bölkow-Blohm in 1967 [19]. The Bo105 fits in the 2.5-ton class can carry up to 3
passengers and has found a number of applications in transport, search and rescue, offshore operations and even aerobatic flight [20, 21]:
given its high agility, representing this helicopter’s dynamics with quaternions would improve modelling fidelity and enable complex and
unconventional manoeuvres more efficiently. The model identification and linearization procedure were performed by engineers at the
German aerospace centre Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR) [22, 23] and the available linearization points were in
hover and in forward flight with a trim speed of 65kn.

A. Characteristics of the Linearized Models
The available data is composed of two 6-DOF system-identified linearized models, each provided in the form of only a state matrix A

and an input matrix B. Both models contain a state vector comprised of 11 elements: body velocities [𝑢, 𝑣, 𝑤] measured in m/s, Euler
angles attitude states [𝜙, 𝜃, 𝜓] measured in rad, body rotational rates [𝑝, 𝑞, 𝑟] measured in rad/s, and body rotational acceleration [ ¤𝑝, ¤𝑞]
measured in rad/s2. The available inputs are the commands available to the pilot: 𝛿𝑥 and 𝛿𝑦 represent the available longitudinal and lateral
stick deflections, 𝛿0 represents the available collective stick deflection, and 𝛿𝑝 represents the pedal deflection. All inputs are measured
as percentages of the maximum deflections: 𝛿𝑥 , 𝛿𝑦 , and 𝛿𝑝 are defined in [−100%, 100%], 𝛿0 is defined in [0, 100%]. The models
did not include any information regarding the C and D matrices used to represent the available outputs of the system. For this analy-
sis, the systems were considered to have full-state feedback: C was defined as an 11×11 identity matrix, and D as a zero matrix of size 11×4.

Figure 1 shows the pole loci of the available linearizations, distinguishing between the hover and the 65kn models. The hover
linearization is unstable as there is a complex pole pair with positive real part; conversely, the 65kn linearization has only a single pole at
the origin of the complex plane, and as such may be considered marginally stable. The model was further studied by performing an
eigenstructure analysis, which enabled the identification of the states involved in each of the system’s motions; from this analysis, the
system emerged to have significant couplings between the longitudinal and lateral states of the system. Modes were identified using the
results of the eigenvector analysis and via a comparison with the theoretical Bo105 model presented in [20]. Although comparable, the
modes of the system identified model show a much more significant coupling between the states.

The model was also studied in its controllability and observability by applying the Hautus lemma [24]: the results of this test show that the
both linearizations are fully controllable and fully observable. This results is highly relevant in the context of controller development, as
they enable the use of specific optimal control techniques such as Linear Quadratic Regulator (LQR) and of its variants. In the context of
this article, they enable the application of the Linear Quadratic Integral (LQI) in particular.
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Fig. 1 Pole map of the available Bo105 models

B. Conversion of the Models to the Quaternion Attitude Parametrization
In this section, a procedure to convert the original Euler angles models to have their internal attitude be represented using quaternions

is presented and discussed. This procedure facilitates the study of quaternion-based models and control strategies, removing the need to
develop complex models and linearizations when Euler angles-based ones are already available. This conversion will only introduce three
quaternion elements as states in 𝑞𝑖 , 𝑞 𝑗 , and 𝑞𝑘 , omitting the state 𝑞0: this is because quaternions need to remain normalized and, as such,
have an internal constraint. This internal constraint would negatively impact the system’s controllability, as the four attitude elements
could not be individually driven to any desired final state: to preserve controllability for controller analysis, only three quaternion attitude
elements are included.

To convert the linearized models, the A and B matrices are modified using the chain rule. In their general formulations, the states and
input matrices are defined as shown in Equation 12, where f indicates the general nonlinear differential set of equations describing the
states such that ¤x = f (x, u), and x̄ and ū indicate the trim points for the states and the inputs respectively.

A =
𝑑f
𝑑x𝑇

����
x̄,ū

=


𝑑𝑓1
𝑑𝑥1

. . .
𝑑𝑓1
𝑑𝑥𝑛𝑥

...
. . .

...

𝑑𝑓𝑛𝑥

𝑑𝑥1
. . .

𝑑𝑓𝑛𝑥

𝑑𝑥𝑛𝑥



����������
x̄,ū

B =
𝑑f
𝑑u𝑇

����
x̄,ū

=


𝑑𝑓1
𝑑𝑢1

. . .
𝑑𝑓1
𝑑𝑢𝑛𝑢

...
. . .

...

𝑑𝑓𝑛𝑥

𝑑𝑢1
. . .

𝑑𝑓𝑛𝑥

𝑑𝑢𝑛𝑢



����������
x̄,ū

(12)

The first modification to be applied in this methodology is the substitution of the Euler angles with the appropriate quaternion elements
in the state vector x by changing the partial derivative terms corresponding to the attitude states. To achieve this, the chain rule of

derivatives is used to change the matrix elements
𝑑f
𝑑𝜙

,
𝑑f
𝑑𝜃

, and
𝑑f
𝑑𝜓

. These terms are modified as shown in Equation 13.

𝑑f
𝑑𝑞𝑖

����
x̄,ū

=
𝑑f
𝑑𝜙

𝑑𝜙

𝑑𝑞𝑖

����
x̄,ū

+ 𝑑f
𝑑𝜃

𝑑𝜃

𝑑𝑞𝑖

����
x̄,ū

+ 𝑑f
𝑑𝜓

𝑑𝜓

𝑑𝑞𝑖

����
x̄,ū

𝑑f
𝑑𝑞 𝑗

����
x̄,ū

=
𝑑f
𝑑𝜙

𝑑𝜙

𝑑𝑞 𝑗

����
x̄,ū

+ 𝑑f
𝑑𝜃

𝑑𝜃

𝑑𝑞 𝑗

����
x̄,ū

+ 𝑑f
𝑑𝜓

𝑑𝜓

𝑑𝑞 𝑗

����
x̄,ū

𝑑f
𝑑𝑞𝑘

����
x̄,ū

=
𝑑f
𝑑𝜙

𝑑𝜙

𝑑𝑞𝑘

����
x̄,ū

+ 𝑑f
𝑑𝜃

𝑑𝜃

𝑑𝑞𝑘

����
x̄,ū

+ 𝑑f
𝑑𝜓

𝑑𝜓

𝑑𝑞𝑘

����
x̄,ū

(13)

where the various partial derivatives relating Euler angles and quaternions may be derived from Equations 9, 10, and 11. The state
equations of the state-space model obtained after this first step of the algorithm is presented in Equation 14 in matrix form. With this,
the state vector has only partially been redefined, as the derivative terms on the left-hand side of the equation still include the time
derivatives of the Euler angles. Finalizing the conversion of the model to the quaternion formulation, the second step of the conversion
is the substitution of the Euler angles’ kinematic differential equations with the linearized quaternion differential equations (obtained
linearizing the quaternion time-propagation equations presented in Equation 5). Letting ¤q𝐸2𝐵 = h(𝜔, q𝐸2𝐵), the matrix shape of the
concluded transformation is presented in Equation 15.
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.
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.
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=



𝑑𝑓𝑢

𝑑𝑢
. . .

𝑑𝑓𝑢

𝑑𝑟

𝑑𝑓𝑢

𝑑𝑞𝑖
. . .
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𝑑 ¤𝑞
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.

𝑑𝑓𝑟

𝑑𝑢
. . .
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. . .
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𝑑𝑓𝜓
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𝑑 ¤𝑞

𝑑𝑓 ¤𝑝
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. . .
𝑑𝑓 ¤𝑝
𝑑𝑟

𝑑𝑓 ¤𝑝
𝑑𝑞𝑖

. . .
𝑑𝑓 ¤𝑝
𝑑𝑞𝑘

𝑑𝑓 ¤𝑝
𝑑 ¤𝑝

𝑑𝑓 ¤𝑝
𝑑 ¤𝑞

𝑑𝑓 ¤𝑞
𝑑𝑢

. . .
𝑑𝑓 ¤𝑞
𝑑𝑟

𝑑𝑓 ¤𝑞
𝑑𝑞𝑖

. . .
𝑑𝑓 ¤𝑞
𝑑𝑞𝑘

𝑑𝑓 ¤𝑞
𝑑 ¤𝑝

𝑑𝑓 ¤𝑞
𝑑 ¤𝑞



������������������������������������
x,u



𝑢

.

.

.

𝑟

𝑞𝑖

𝑞 𝑗

𝑞𝑘

¤𝑝
¤𝑞



+



𝑑𝑓𝑢

𝑑𝛿𝑥
· · · 𝑑𝑓𝑢

𝑑𝛿𝑝
.
.
.

. . .
.
.
.

𝑑𝑓 ¤𝑝
𝑑𝛿𝑥

· · ·
𝑓 ¤𝑝
𝑑𝛿𝑝



�����������
x,0


𝛿𝑥
.
.
.

𝛿𝑝

 (14)
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𝑑𝑓𝑢

𝑑𝑢
. . .

𝑑𝑓𝑢

𝑑𝑟

𝑑𝑓𝑢

𝑑𝑞𝑖
. . .

𝑑𝑓𝑢

𝑑𝑞𝑘
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. . .
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The methodology presented here delivers a straightforward yet mathematically rigorous pathway for transforming any existing
Euler-angle–based state-space model into its quaternion-parametrized equivalent. By systematically re-expressing the attitude dependencies
through the chain rule and embedding the quaternion kinematics directly into the state matrices, this conversion preserves every dynamic
mode and control-relevant characteristic of the original system. Once again, the C and D matrices were integrated to be an identity matrix
of size 11 × 11 and a zero matrix of size 11 × 4, allowing for full-state feedback.

C. Verification of the Quaternion Conversion Procedure
The procedure presented in subsection III.B enables a conversion of the kinematic representation of attitude of any existing linearized

system to have it represented using quaternions. To verify the correctness of the procedure, three comparisons were identified: comparison
of the systems’ eigenstructures, comparison of the systems’ controllability/observability, and comparison of the system’s dynamic responses.

Starting the verification of the quaternion conversion, the poles and eigenvectors of the systems are compared. Figure 2 shows the
locations of the poles of the original system. The poles are identified to be identical to the ones found for the original system, maintaining
the same stability characteristics. Further, an eigenvector analysis was conducted on the two systems: again, the eigenvectors of the
converted quaternion models coincide with the values of the original systems. The congruency between the eigenstructures of the original
model and of the converted one supports the validity of the procedure presented.

Supporting the results obtained, the observability and controllability of the systems were analysed. These properties were checked by
means of the Hautus lemma, as was already explained in subsection III.A; again, the converted models are both fully controllable and fully
observable, matching the controllability and observability properties of the original linearization. These congruent characteristics support
the validity of the transformation presented. Notice that the retention of the controllability property is subordinate to the inclusion of only
three of the four quaternion elements as states, as the attitude states would not be independent of one another due to the unitary norm
condition; including all four quaternion elements would have impaired controllability, impacting controller design.
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Fig. 2 Pole map of the Bo105 models converted to quaternions

As a final check of the model conversion validity, the responses of the systems to identical inputs are compared. These inputs were
defined to have a total duration of 10s and are composed of a square pulse of 10% amplitude with a duration of 6s and an initial delay of
2s. A total of four inputs were defined, each activating only one of the four available model inputs [𝛿𝑥 , 𝛿𝑦 , 𝛿0, 𝛿𝑝] at a time. The responses
of the models were evaluated and compared for all four inputs and for both linearizations: for brevity, here only the results of the first input
stimulation are shown (square pulse on the longitudinal cyclic in hover). Figure 3 show a comparison of the responses of the two systems
in hover, with the original model represented by blue dots and the quaternion model by red squares. In all cases the states of the systems
overlap exactly, further suggesting that the conversion of the model was successful in maintaining the dynamic properties of the system
unaltered independently of its linearization point, while changing the internal attitude parametrization.

Response to first input: x

0 5 10
Time [s]

-20

-10

0

u 
- 

[m
/s

]

0 5 10
Time [s]

-40

-20

0

v 
- 

[m
/s

]

0 5 10
Time [s]

0

5

w
 -

 [m
/s

]

0 5 10
Time [s]

-0.4

-0.2

0

p 
- 

[r
ad

/s
]

0 5 10
Time [s]

-1

-0.5

0

q 
- 

[r
ad

/s
]

0 5 10
Time [s]

-0.4

-0.2

0

r 
- 

[r
ad

/s
]

0 5 10
Time [s]

-2

-1

0

P
hi

 -
 [r

ad
]

0 5 10
Time [s]

-2

-1

0

T
he

ta
 -

 [r
ad

]

0 5 10
Time [s]

-0.2

-0.1

0

0.1

P
si

 -
 [r

ad
]

0 5 10
Time [s]

-0.4
-0.2

0
0.2
0.4

p_
do

t -
 [r

ad
/s

2 ]

0 5 10
Time [s]

-1

-0.5

0

q_
do

t -
 [r

ad
/s

2 ]

Euler angles Quaternions

Fig. 3 Time response of the hover state-space: input applied on 𝛿𝑥

With the discussion presented in section III, a complete procedure to convert an existing Euler angles-based linearized model has been
presented. In subsection III.A, a description of the available linearizations is provided, discussing the characteristics of the models. In
subsection III.B, a procedure to convert existing linearized models from the commonly-used Euler angles parametrization to the quaternion
attitude parametrization is introduced. Further, in subsection III.C, the procedure is applied to the two available linearizations, and the
conversion is verified by ensuring that the quaternion model is still representative of the original system by comparing eigenstructures,
controllability and observability, and dynamic responses of the original and the converted models for both the available linearizations. The
results are positive and suggest that the conversion procedure was performed correctly.
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IV. Development of a Quaternion-Based Full Flight Control System
Building upon section III, the converted quaternion model is further studied to implement a quaternion-based full flight controller.

Here, the multi-loop controller architecture developed will be presented in subsection IV.A. In subsection IV.B, the tuning of the controller
is discussed, implementing the Particle Swarm Optimization (PSO) algorithm. As this paper investigates the implementation of quaternions
in autonomous agile control, only the 65kn linearization will be considered.

A. Quaternion-Based Controller Architecture
Having changed the internal attitude representation of the system, the implementation of a full quaternion-based controller is now

investigated. Quaternions are naturally adept at encoding smooth rotations in 3D space with no singularities, accounting for simultaneous
changes in yaw, pitch, and roll; this natural flexibility makes their implementation in controllers advantageous, especially when compared to
other commonly used attitude parametrizations [6, 7]. Contributing to the academic discussion about quaternion controllers, a three-loop
controller with LQI for attitude control is presented in this section.

The three nested loops controller is shown in Figure 4. The innermost loop is the Attitude Controller: it leverages the system’s
full-state feedback to implement LQI for quaternion attitude tracking. The intermediate loop is the Velocity Controller: it leverages a
Proportional-Integral (PI) controller architecture to enable good tracking performance and compensate steady-state errors in the velocity
channels. The outermost loop is the Position Controller: it implements a Proportional (P) controller to command adequate velocity
references that drive the system to track a desired trajectory. All the controller stages are augmented with feed-forward commands (denoted
by the ★ superscript) generated by an external autopilot module, accelerating the system’s response. Additionally, in both the velocity and
the position loops, no derivative action is implemented: this is because derivative controllers, while they are effective in speeding up the
system’s response, are inadequate for application in aerospace systems due to their high sensitivity to sensor noise; to create a balanced
structure that could also be applied to real systems, derivative action was avoided in this study.
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Fig. 4 Block diagram of the complete control system

1. Attitude Controller
The innermost loop is the Attitude Controller, tasked with controlling the attitude elements [𝑞𝑖 , 𝑞 𝑗 , 𝑞𝑘] to drive the system’s orientation.

Leveraging the natural controllability and observability of the plant, the attitude loop implements an LQI controller for attitude control. This
control technique, introduced by Young and Willems [25], is a variation of the Linear Quadratic Regulator (LQR) which modifies the system
to introduce integral tracking action. As the system is a highly coupled MIMO system, the optimization-based LQI approach allows for
the control of simultaneous states while granting good robustness [26] at the entrance and exit of the plant and limiting control effort [27–29].

To mimic the control behaviour of helicopter pilots, the attitude of the vehicle is controlled using only the cyclic [𝛿𝑥 , 𝛿𝑦] and the pedal 𝛿𝑝 ,
isolating the collective command 𝛿0 to control the vertical velocity. Only for this loop, the linearized system was modified by removing the
columns of the B and D associated with the 𝛿0 input, which will be instead controlled as a feed-forward heave command (as visible in
Figure 4). Similarly, the 𝑤 state is also removed by eliminating the respective row and column in the linearized matrices. This modified
linearized system was verified to be fully controllable and observable, enabling the use of LQ techniques.

The LQI controller K = [K𝑥 ,K𝑖] integrates both a proportional regulatory action and an integral tracking action and was implemented as
shown in Figure 5, where x indicates the complete state vector of the quaternion-converted system, A, B, C, D represent the state-space
matrices of the system (with 𝛿0 and 𝑤 removed), and y𝑟 = [𝑞𝑖 , 𝑞 𝑗 , 𝑞𝑘] indicates the selected tracked states (C𝑟 is a matrix appropriately
designed to extract the tracked states from x). In the diagram, r is the reference signal vector, generated by accounting for the feedforward
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attitude command and the corrective action generated by the velocity loop (as discussed in Section IV.A.2): the tracking action is applied
on the integral of the tracking error ¤x𝑖 = r − y𝑟 , improving tracking performance. The state-space equation of this augmented system is
represented mathematically in Equation 16.[

¤x(𝑡)
¤x𝑖 (𝑡)

]
=

[
A 0

−C𝑟 0

] [
x(𝑡)
x𝑖 (𝑡)

]
+

[
B
0

]
u(𝑡) +

[
0
I

]
r(𝑡) (16)
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Fig. 5 Block diagram of the LQI attitude controller

To identify the best controller gains K, LQI requires the minimization of the Quadratic Performance Index (QPI) 𝐽, where Q and R are two
user-defined matrices that determine the weighting between higher performance and more conservative control actions, and x and u are the
states and input vectors of the augmented system in Equation 16. In particular, higher values of Q will prompt a faster response, improving
the dynamic behaviour of the system. Conversely, higher values of R will reduce control effort, limiting the activation of the controls.

𝐽 =

∫ ∞

0

(
x(𝜏)𝑇Qx(𝜏) + u(𝜏)𝑇Ru(𝜏)

)
𝑑𝜏 (17)

For this equation to represent a convex optimization problem with an identifiable minimum, Q and R must be, respectively, symmetric
positive semi-definite and positive definite. The controller K that minimizes the QPI is found using Equation 18 [30, 31], where 𝑃 is the
solution to the Algebraic Riccati Equation (ARE) in Equation 19, and A and B are the matrices of the augmented system in Equation 16.
To identify the most adequate values for Q and R, an optimization-based tuning approach was selected, as discussed in Section IV.B.2.

K = [K𝑥 ,K𝑖] = R−1B𝑇P (18)

A𝑇P + PA − PBR−1B𝑇P + Q = 0 (19)

2. Velocity Controller
The intermediate loop is the Velocity Controller, which controls the velocity by appropriately influencing the attitude inner loop

controller and directly commanding the collective. The velocity controller is implemented using a PI architecture, which offers high
flexibility in implementation and effective control action.

A representation of the controller is provided in Figure 6. The velocity reference is first calculated in the global reference frame G by
summing the feedforward velocity signal with the corrective signal produced by the position controller. This reference velocity is then
converted from the global reference frame to the body reference frame B in the Global-to-Body block: this block also takes as an input the
aircraft’s current attitude q𝐸2𝐵 and executes a passive rotation implementing Equation 7. In the B reference frame, the velocity error
Δ[𝑢, 𝑣, 𝑤] is calculated, and each element is then passed through a different PI controller. The heave error is fed directly to the collective
command 𝛿0. The errors on the surge and sway velocities are used to compute the correction angles ΔΘ and ΔΦ, which are used to
produce a quaternion attitude reference in the Quaternion Reference Generation block.
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Fig. 6 Block diagram of the PI velocity controller

The quaternion attitude reference q𝑟 is generated in the Quaternion Reference Generation by concatenating two attitude references, as
per Equation 20. In the equation, q★

𝐸2𝐵 is the feedforward quaternion attitude (which is generated based on offline-defined data by the
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autopilot, as discussed in Section V) and qΔ is the corrective quaternion. This corrective quaternion is generated according to Equation 21,
where Equations 22 to 24 show the generation of the required parameters.

q𝑟 = q★
𝐸2𝐵qΔ (20)

qΔ =


cos(𝜁/2)
𝑐1 sin(𝜁/2)
𝑐2 sin(𝜁/2)

0


(21)

𝜁 =

√︁
ΔΘ2 + ΔΦ2 (22)

𝑐1 =


0 if 𝜁 = 0
ΔΦ

𝜁
else

(23)

𝑐2 =


0 if 𝜁 = 0
ΔΘ

𝜁
else

(24)

The quaternion q𝑟 must be disambiguated to ensure it commands the smallest rotation from the current attitude q𝐸2𝐵, following the most
optimal rotation to achieve the reference attitude. To obtain this, let Δq be the quaternion describing the rotation between the current
helicopter’s attitude and the reference helicopter attitude q𝑟 calculated with Equation 20.

Δq = q−1
𝐸2𝐵q𝑟 (25)

The reference quaternion q𝑟 is then reconstructed using Equation 26, where Δ̂q is equal to Δq if its first component is is greater or equal to
zero, or it is set equal to −Δq otherwise. This ensures that the reference attitude is chosen to have the shortest rotation from the original
attitude, avoiding the unwinding phenomenon that would instead cause the controller to command a longer rotation to the system.

q𝑟 = q𝐸2𝐵Δ̂q (26)

From this corrective equation, it is also worth pointing out that, in this case, no dynamic online corrective action was implemented on the
yaw direction.As such, it was chosen for yaw reference signals to be only determined offline and passed as part of the feedforward attitude.
This was done to allow more flexibility and to streamline the offline trajectory planning and reference generation.

3. Position Controller
The final loop of the control system is the position controller, which generates a corrective velocity signal to drive the system to follow

a predetermined path. The position controller only implements a proportional corrective action with three P controllers: this approach was
chosen because of its simplicity and to avoid unnecessary integrator-like behaviours, which would otherwise slow down the system and
increase its complexity. The implementation of the proportional controller is immediate, as only a proportional action is required to
produce an adequate corrective velocity signal: this is shown in Figure 7.
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Fig. 7 Block diagram of the position controller

With this, the controller architecture has been fully introduced, presenting and motivating the specific control frameworks utilized in
each loop. The implementation of the controller was also exemplified through appropriate block diagram representations, allowing for a
clear interpretation of the control action and of the fundamental insight that brought to this structure. The tuning of the controller is
discussed in subsection IV.B, where the optimization-based approach chosen is presented and applied to the three loops of the system.

B. Tuning of the Controller
Tuning the ontroller, an optimization based approach was followed by implementing the Particle Swarm Optimization (PSO) algorithm.

In Section IV.B.1, the PSO algorithm is introduced and presented, providing guidelines for its implementation. PSO is then applied to the
three loops sequentially: in Section IV.B.2, the tuning of the attitude control is discussed; in Section IV.B.3, the velocity controller tuning
is analysed; and in Section IV.B.4, the tuning of the position controller is shown. For readability, the full results of the controller tuning are
shown only for the position controller; the attitude and velocity controller tuning results will only be shown partially to discuss relevant
trends noticed in the system’s response.
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1. Particle Swarm Optimization (PSO) Algorithm
To tune the controller, an optimization-based approach was chosen by employing the PSO algorithm [32]. This optimization-based

approach was selected to limit the need for hand-tuning and to provide a structured methodology for the identification of controller gains that
could be replicated in other control scenarios [33]. Here, the PSO algorithm is briefly introduced and its algorithmic representation discussed.

PSO is a population-based stochastic optimization technique based on the action of simple particles (agents that encode possible
solutions to the optimization problem) that collaborate through information sharing to explore a complex search space effectively and
converge toward optimal solutions. This concept is based on the observation that social behavior in nature often leads to emergent
intelligence, where the group as a whole can solve problems more efficiently than any individual acting alone [34].

In the context of control system tuning, PSO provides a framework for adjusting controller parameters by simulating a distributed search
process where each particle represents a potential set of parameters, and the collective dynamics guide the search toward improved system
performance. As an added advantage, multimodal optimization is highly effective when using PSO, enabling the definition of objective
functions composed of multiple contrasting terms, finding a balance between high performance and robustness. These characteristics
make the PSO an effective approach to the tuning of control systems, with current research around this method suggesting its validity in
the context of tuning controllers for aircraft, automotive and naval vehicles, and industrial plants alike [33].

In the PSO algorithm, possible solutions are encoded as individual particles p𝑖 , each used to evaluate a user-defined fitness function
J(p) to be minimized. Consider the algorithm to be at iteration 𝑡 and to have been initialized over 𝑁 particles. The parameters contained
in each particle evolve over successive iterations, and at each iteration, the algorithm keeps track of three variables: the current particle
position p𝑖 (𝑡) ∀𝑖 = 1 . . . 𝑁 , the position p★

𝑖
∀𝑖 = 1 . . . 𝑁 that for each particle led to its personal best result J★

𝑖
, and the particle position

g★ associated with the most desirable cost J★ across all 𝑁 particles. The update equation for the PSO solutions is presented in Equation 27,
where v𝑖 is the "particle velocity" term for the considered particle 𝑖.

p𝑖 (𝑡 + 1) = p𝑖 (𝑡) + v𝑖 (𝑡 + 1) (27)

The velocity variable is calculated at each iteration of the algorithm and it is defined by an equation that encapsulates three fundamental
influences: inertia, cognitive drive, and social influence. The inertia term enables the particle to maintain its current momentum, thus
preserving the direction of movement. The cognitive term is a reflection of the particle’s own experience, encouraging a return to positions
that previously yielded high fitness values. The social term, on the other hand, represents the influence of the best-performing particle
in the swarm, guiding the particle toward areas of the search space that have been successful. Mathematically, the velocity update is
calculated using Equation 28. Here, an explanation of the individual terms of the equation is provided afterwards.

• v𝑖 (𝑡) is the velocity of the particle 𝑖 at the previous iteration of the loop (initiated at 0 for the first iteration of the algorithm).
• 𝑤 is the inertia weight, a scalar determining how much of the previous particle velocity is transferred to the current velocity.
• 𝑐1 and 𝑐2 are the cognitive acceleration coefficient and the social acceleration coefficient, which respectively determine how much of

the velocity component is going to drive the particle towards its current best p★
𝑖

or the identified global best g★ respectively.
• r1 and r2 are uniformly-distributed random values in the range [0, 1] which aim at including a stochastic element to the algorithm,

which in turn allows for a better exploration of the solution space.

v𝑖 (𝑡 + 1) = 𝑤v𝑖 (𝑡) + 𝑐1r1 (p★𝑖 − p𝑖 (𝑡)) + 𝑐2r2 (g★ − p𝑖 (𝑡)) (28)

Following the practical recommendations listed in [34], the model’s hyperparameters were selected to be 𝑤 = 1, 𝑐1 = 1.5, 𝑐2 = 2, which
were empirically found to yield good optimization performance across most applications [34]. By setting 𝑤 = 1, each particle carries
over a larger portion of its momentum, and as such is encouraged to fully explore the solution space of the problem. 𝑐1 and 𝑐2 are
generally chosen between 1 and 2: to encourage the particles to have a more coherent global behaviour without neglecting the cognitive
component, the values typically chosen are 𝑐1 = 1.5 and 𝑐2 = 2. These parameters strike a balance between exploration of the solution
space and convergence, encouraging the model to explore more readily the most promising solutions without neglecting the influence of
the individual history of the particles.

2. Tuning of the Attitude Controller
The tuning process started by considering the innermost loop of the system: the attitude loop. The objective of this controller is to

enable the system to perform rapid and precise attitude changes, achieving both good dynamic response and steady-state performance. To
achieve this, the attitude loop makes use of the LQI control framework, which was introduced in Section subsubsection IV.A.1 and is
effective when controlling MIMO systems as it enforces on-axis tracking while limiting off-axis cross-activation.

To completely determine the controller, appropriate Q and R matrices must be identified and their parameters encoded as particles in the
PSO algorithm, however, encoding each individual element in the PSO algorithm may cause the reconstruction of matrices that do not
respect the positive definite and semi-definite properties. To avoid this, the tuning matrices were defined to be diagonal matrices with non-
negative elements, an approach used in LQ tuning to achieve good performance while guaranteeing good margins in MIMO systems [26, 30].

Given the size of the system and recalling the removal of the heave state and of the collective input, the Q matrix must be a square 13 × 13
matrix and the R matrix must be of size 3 × 3. As these were defined to be purely diagonal matrices, each particle of the PSO algorithm p
must contain 16 elements for the tuning: the particles were then defined to be 16 × 1 vectors, where the first 13 elements encode the
diagonal elements of Q and the last 3 elements the diagonal elements of R.
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To determine the allowable values of the particle elements for the PSO algorithm, Bryson’s rule may be used [35], which indicates that the
Q and R matrices may be defined as diagonal matrices, with the diagonal elements of Q defined as the inverse of the squared allowed error
of the respective state they map, and the diagonal elements of R defined as the inverse of the squared maximum acceptable value of the
respective input they map. This empirical rule is summed up in Equation 29 and is commonly used to initialize Q and R.

𝑄 𝑗 , 𝑗 =
1

[𝑚𝑎𝑥 𝑎𝑙𝑙𝑜𝑤𝑒𝑑 𝑒𝑟𝑟𝑜𝑟 𝑜𝑛 𝑥 𝑗 ]2 ∀ 𝑗 = 1, . . . , 14

𝑅𝑘,𝑘 =
1

[𝑚𝑎𝑥 𝑎𝑙𝑙𝑜𝑤𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 𝑜 𝑓 𝑢𝑘]2 ∀𝑘 = 1, . . . , 3
(29)

The tuning was performed by simulating three attitude tracking tasks, each commanding a separate attitude variation along one of
the three helicopter axis. In particular, in the first simulation, a rotation of 25° around the body x-axis was commanded. In the second
simulation, the commanded rotation was of 45° around the body y-axis. Lastly, in the third simulation, a rotation of 60° around the body
z-axis was defined. For the purpose of notation, these values will be indicated in the superscript of the variables (i.e.: 𝑞1

𝑖
(𝑡) indicates the

attitude 𝑞𝑖 element of the first simulation run at time 𝑡).

The cost function for the optimization of the attitude controller’s parameters is shown in Equation 30. The cost has three separate terms,
scaled with an appropriate weight 𝑊 . The first term is the total squared error in the response and aims to improve response accuracy by
minimizing the tracking error over the entire response. The second term penalizes large control deviations from the trim position, avoiding
saturation by adjusting the applied weights 𝑊𝑥 , 𝑊𝑦 , 𝑊𝑝 by increasing their value if the commanded control deflection would saturate the
respective input. The third term weights the 5% settling time of the tracked attitude channels, speeding up the system’s response.

𝑧 =

3∑︁
𝑙=1

𝑊𝑅

(
𝑇∑︁
𝑡=1

(Δ𝑞𝑙0 (𝑡))
2 +

𝑇∑︁
𝑡=1

(Δ𝑞𝑙𝑖 (𝑡))
2 +

𝑇∑︁
𝑡=1

(Δ𝑞𝑙𝑗 (𝑡))
2 +

𝑇∑︁
𝑡=1

(Δ𝑞𝑙
𝑘
(𝑡))2

)
+ ...

3∑︁
𝑙=1

(
𝑇∑︁
𝑡=1

(
𝑊𝑥Δ𝛿𝑥

𝑙 (𝑡)2 +𝑊𝑦Δ𝛿𝑦
𝑙 (𝑡)2 +𝑊𝑝Δ𝛿𝑝

𝑙 (𝑡)2
))

+ ...

𝑊𝑇

(
𝑇𝑠(𝑞1

𝑖 (𝑡)) + 𝑇𝑠(𝑞2
𝑗 (𝑡)) + 𝑇𝑠(𝑞3

𝑘
(𝑡)

)
(30)

The calculation of the attitude error Δq is carried out by first identifying the displacement quaternion. Considering q𝑟 to be the reference
attitude and q𝐸2𝐵 to be the measured attitude of the system, the difference between these two quaternions is identified by the displacement
quaternion qΔ, calculated according to Equation 31. This intermediate quaternion quantifies the rotational distance between the current
and the desired attitude of the system. When two systems are aligned, the quaternion describing the rotation is the identity quaternion
q = [1, 0, 0, 0]𝑇 ; the attitude error is then calculated according to Equation 32.

qΔ = q−1
𝐸2𝐵q𝑟 (31)

Δq = [1, 0, 0, 0]𝑇 − qΔ (32)
As performance of the tuned system are comparable commanding rotations along all three body axes, only the response of the system

to a commanded rotation along the body x-axis is shown in Figure 8, where the tracked attitude states and the controls required to obtain
this command are represented. In the commanded control deflections, it may be noticed that the control band is divided in three sections,
differently coloured based on the weights 𝑊𝑥 , 𝑊𝑦 , and 𝑊𝑧 applied in those sections: the central white regions have the smallest applied
weights, as the input channels remain around the command’s trim point; the green regions have a higher weighting, limiting control action
if not required; the red regions have the highest weighting, discouraging the optimization algorithm from settling at solutions that would
saturate the inputs. Tracking is being performed adequately, with no steady-state error and good dynamic performance without saturating
the control inputs. These performance are consistent along all three control axis, with responsive tracking and contained control usage.
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3. Tuning of the Velocity Controller
Building upon the results of the attitude controller tuning, the velocity controller is tuned next. As the controller architecture is chosen

to have three PI controllers, the tuning algorithm has to identify six parameters: each particle is encoded as a 6 × 1 vector where each
element is one of the system’s gains. The tuning for the velocity controller was carried out in a manner similar to the attitude controller
tuning. Three velocity tracking tasks were defined (each indicated with the index 𝑙 = 1, . . . , 3), each activating one of the available velocity
channels and commanding a variation of 10m/s from the trim point. This variation is not commanded as a step input, but is instead filtered
through a first-order lag with time constant 𝜏 = 0.1s, commanding a smooth but fast variation of the commanded velocity.
The objective function is shown in Equation 33. The function is divided in four terms, each weighted by an appropriate scalar parameter
𝑊 in a manner analogous to the one shown for Equation 30. The first term evaluates the squared error in each of the velocity channels for
all tracking tasks, penalizing poor tracking performance. The second term discourages attitude tracking error, which is calculated using
Equation 32. The third term limits command activation, with weights applied based on the entity of the activation to avoid saturation. The
fourth term weighs the 5% settling time for the velocity term activated in each of the simulations, encouraging faster response.

𝑧 =

3∑︁
𝑙=1

𝑊𝑅𝑣

(
𝑇∑︁
𝑡=1

(𝑢𝑙𝑟 (𝑡) − 𝑢𝑙 (𝑡))2 +
𝑇∑︁
𝑡=1

(𝑣𝑙𝑟 (𝑡) − 𝑣𝑙 (𝑡))2 +
𝑇∑︁
𝑡=1

(𝑤𝑙
𝑟 (𝑡) − 𝑤𝑙 (𝑡))2

)
+ ...

3∑︁
𝑙=1

𝑊𝑅𝑎

(
𝑇∑︁
𝑡=1

(Δ𝑞𝑙0 (𝑡))
2 +

𝑇∑︁
𝑡=1

(Δ𝑞𝑙𝑖 (𝑡) (𝑡))
2 +

𝑇∑︁
𝑡=1

(Δ𝑞𝑙𝑗 (𝑡))
2 +

𝑇∑︁
𝑡=1

(Δ𝑞𝑙
𝑘
(𝑡))2

)
+ ...

3∑︁
𝑙=1

(
𝑇∑︁
𝑡=1

(
𝑊𝑥Δ𝛿𝑥

𝑙 (𝑡)2 +𝑊𝑦Δ𝛿𝑦
𝑙 (𝑡)2 +𝑊𝑝Δ𝛿𝑝

𝑙 (𝑡)2 +𝑊0Δ𝛿
𝑙
0 (𝑡)

2
))

+ ...

𝑊𝑇

(
𝑇𝑠(𝑢1 (𝑡)) + 𝑇𝑠(𝑣2 (𝑡)) + 𝑇𝑠(𝑤3 (𝑡))

)
(33)

The system shows consistent behaviour when commanding velocity changes along all velocity channels: to exemplify the results
of the tuning, only the response when commanding a sway input 𝑣 is shown in Figure 9. The tuning highlights some criticalities
in the velocity controller, with response delays and cross-activations between velocity channels; as predicted by the eigenstructure
analysis, there is a noticeable activation of 𝑤 when commanding inputs on 𝑢 and 𝑣, causing observable differences between the reference
and the response signals. Despite this, the controller demonstrates strong performance overall, achieving accurate tracking of the
desired velocity channels with no steady-state error and maintaining effective attitude control with contained tracking error. The
commanded actuator deflections are also within the allowed limits, allowing for the performance of velocity changes without saturating the
actuators. These results confirm the suitability of the optimized velocity controller and justify the tuning approach considered, as the PSO
algorithm was capable of identifying parameters that could balance dynamic performance and actuator effort for the tracking tasks presented.

When tuning the control system, it was found that the inclusion of the attitude tracking penalization term was highly beneficial to the
overall performance of controlled system, as the attitude error penalization term forced the tuning algorithm to select controller gains that
would not overwhelm the capabilities of the attitude inner loop, ensuring a smoother integration of the velocity controller. Without the
inclusion of this term, the PSO algorithm was found to converge to solutions with higher velocity controller gains, which would cause the
system to produce large attitude references that the innermost loop was unable to follow adequately: while this was effective in achieving
faster velocity response, it also caused a significant degradation in the robustness of the controller, making the system less reliable.
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Fig. 9 Second simulation: 10m/s sway velocity increase
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4. Tuning of the Position Controller
The tuning procedure for the position controller mimics the one defined for the tuning of the velocity controller in Section IV.B.3. The

position controller requires three proportional gains to be defined, so the particles are defined as 3 × 1 vectors. The tuning was performed
defining three isolated tracking tasks, each exciting one position channel while leaving the others unaltered. The tracking inputs for the
position channels were defined by integrating velocity commands identified by applying over a simulation time of 100s a velocity variation
of 10m/s to each velocity axis in the global reference frame, according to Equation 34. The resulting position references are shown in
Figure 10, where the three columns represent the various simulation runs, while the rows indicates the excitation channels 𝑋 , 𝑌 , and 𝑍 .

Δ𝑉 (𝑡) =


10 if 10 < 𝑡 ≤ 20 ∨ 60 < 𝑡 ≤ 70
−10 if 30 < 𝑡 ≤ 50

0 else
(34)
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Fig. 10 Position references for the position controller tuning
Equation 35 is the cost function minimised in the position controller tuning, and it is composed of four terms. The first term calculates

the squared error on the position reference tracking error along the three control axes for all simulations. The second and third terms
weight the velocity and attitude reference tracking error, penalizing the closed-loop system when the position controller interferes with
tracking in the two inner loops. The fourth term penalizes excessive control actuation, as done in the attitude and velocity tunings.

𝑧 =

3∑︁
𝑙=1

𝑊𝑅𝑝

(
𝑇∑︁
𝑡=1

(𝑋𝑙
𝑟 (𝑡) − 𝑋𝑙 (𝑡))2 +

𝑇∑︁
𝑡=1

(𝑌 𝑙
𝑟 (𝑡) − 𝑌 𝑙 (𝑡))2 +

𝑇∑︁
𝑡=1

(𝑍 𝑙
𝑟 (𝑡) − 𝑍 𝑙 (𝑡))2

)
+ ...

3∑︁
𝑙=1

𝑊𝑅𝑣

(
𝑇∑︁
𝑡=1

(𝑢𝑙𝑟 (𝑡) − 𝑢𝑙 (𝑡))2 +
𝑇∑︁
𝑡=1

(𝑣𝑙𝑟 (𝑡) − 𝑣𝑙 (𝑡))2 +
𝑇∑︁
𝑡=1

(𝑤𝑙
𝑟 (𝑡) − 𝑤𝑙 (𝑡))2

)
+ ...

3∑︁
𝑙=1

𝑊𝑅𝑎

(
𝑇∑︁
𝑡=1

(Δ𝑞𝑙0 (𝑡))
2 +

𝑇∑︁
𝑡=1

(Δ𝑞𝑙𝑖 (𝑡) (𝑡))
2 +

𝑇∑︁
𝑡=1

(Δ𝑞𝑙𝑗 (𝑡))
2 +

𝑇∑︁
𝑡=1

(Δ𝑞𝑙
𝑘
(𝑡))2

)
+ ...

3∑︁
𝑙=1

(
𝑇∑︁
𝑡=1

(
𝑊𝑥Δ𝛿𝑥

𝑙 (𝑡)2 +𝑊𝑦Δ𝛿𝑦
𝑙 (𝑡)2 +𝑊𝑝Δ𝛿𝑝

𝑙 (𝑡)2 +𝑊0Δ𝛿
𝑙
0 (𝑡)

2
))

(35)

Results of the tuning procedure are shown in Figures 11 to 13; for brevity, only the position response and the control activation are
presented. Predictably, there is a noticeable cross-activation on the vertical 𝑍 axis whenever commands are given on 𝑋 and 𝑌 , with
altitude deviations of up to 15m from trim (seen in Figure 11a): this is consistent with the velocity cross-activation noticed in the tuning
of the velocity controller and, analysing the velocity response, it is consistent with delays in the velocity tracking discussed in Section IV.B.3.

Nonetheless, the on-axis performance of the control system showed great tracking effectiveness and the attitude controller remained highly
responsive during the designed tracking tasks. In none of the tunings control saturation was achieved, although the high cross-activation of
the vertical position caused the emergence of collective deflections to compensate for the system’s natural couplings. In all cases, the
on-axis input commands match the expected trends, with the especially noticeable rise-and-descent pattern in Figure 13b matching the
commanded altitude variations. The pattern in the use of pedal for the second simulation (Figure 12b) is a consequence of the fact that the
manoeuvre was generated as a side-step, with no heading change included in the system. Similarly to the velocity controller performance,
the inclusion of terms penalizing tracking errors in the velocity and position loops was instrumental in achieving good performance while
maintaining controller reliability: these terms ensure that the PSO converges to solutions that avoid overwhelming the capabilities of the
inner loops, making the system more coherent and capable of tracking diverse reference trajectories.
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Fig. 11 First simulation: velocity variation along the global 𝑋 axis
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Fig. 12 Second simulation: velocity variation along the global 𝑌 axis
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Fig. 13 Third simulation: velocity variation along the global 𝑍 axis
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V. Autonomous Flight: Trajectory Generation and Autopilot
Here the implementation of an autopilot to perform autonomous flight is discussed, integrating autonomous flight with the investigation

of quaternion implementation. In subsection V.A, the procedure followed to generate manoeuvre references is discussed, and results are
shown for the slalom and pop-up manoeuvres. In subsection V.B, a simple autopilot is implemented as a Finite State Machine (FSM).

A. Offline Manoeuvre Synthesis
The procedure followed to define offline manoeuvres to evaluate the system’s performance is presented. The Mission Task Elements

(MTEs) selected are a slalom and a pop-up, as they allow to evaluate the ability of the system to follow precise position changes in the
horizontal and the vertical directions. While results will be shown for both the slalom and the pop-up, for brevity here the procedure used
to identify reference signals is applied only to the slalom manoeuvre. The procedure used can be divided in two subsequent steps: first, the
position, velocity, and acceleration signals are identified for the selected task; then, the acceleration signals are used to determine the
desired attitude reference.

The identification of position and velocity signals is achieved by solving appropriately defined systems of Ordinary Differential
Equations (ODEs). For this simulation, the slalom MTE is divided in three manoeuvre segment: a 10s forward flight entrance, a central
slalom segment, and a forward flight exit of 10s, all performed at constant trim velocity ∥V∥ = 33m/s. Following the recommendations
identified in the Aeronautical Design Standard 33 (ADS-33) [36], the central segment consists of two turns on each side of the manoeuvre’s
centreline with a lateral deviation of at least 50ft separated by a horizontal distance of 500ft. For ease of implementation, the central
segment was defined as a sinusoidal path with shape 𝑌★ = 𝐴 sin (𝐵(𝑋★ − 𝐿)), where 𝐴 = 25m (82ft), 𝐵 = 𝜋/500ft−1 = 𝜋/152.4m−1, and
𝐿 = 330m (the distance covered in 10s at 33m/s). From these, the total velocity can be expressed as in Equation 36.

∥V∥ =
√︁

¤𝑋2 + ¤𝑌2 =

√︃
¤𝑋2 + (𝐴𝐵 cos(𝐵(𝑋 − 𝐿)) ¤𝑋)2 (36)

Two systems of ODEs can then be identified, as shown in Equation 37: on the left, the ODE describing the forward flight segment for
the desired position signals (indicated by the superscript ★) are shown; on the right, the equations for the central slalom segment are
presented. In both cases, the desired arc length 𝑠★ is also included, as it will be used by the autopilot in Section V.B. Solving the systems
with adequate initial conditions allows to determine the position and velocity signals required to perform the manoeuvre.


¤𝑋★ = ∥V∥
¤𝑌★ = 0
¤𝑍★ = 0
¤𝑠★ = ∥V∥



¤𝑋★ = ∥V∥/
√︃

1 + (𝐴𝐵 cos(𝐵(𝑋★ − 𝐿)))2

¤𝑌★ = 𝐴𝐵 cos
(
𝐵(𝑋★ − 𝐿)

)
∥V∥/

√︃
1 + (𝐴𝐵 cos(𝐵(𝑋★ − 𝐿)))2

¤𝑍★ = 0
¤𝑠★ = ∥V∥

(37)

The desired attitude is determined assuming the main rotor’s thrust is aligned with the helicopter’s z-axis [20, 37, 38]. This hypothesis
is supported by two assumptions: the magnitude of the H-forces is much smaller than the magnitude of the main rotor thrust, and
the Tip Path Plane (TPP) is inclined by a small angle. These assumptions are only used to produce feed-forward attitude signals
coherent with the manoeuvre: discrepancies with the desired model behaviour are corrected by the velocity controller. To identify the
desired attitude, first the body-z axis is aligned with the desired acceleration, and then a rotation around z is performed to correct for heading.
The first step of the correction is shown in Figure 14a: starting from the NED frame (E) a rotation is defined to align its z axis with
the total desired acceleration A★ (obtained differentiating Equation 37 and adding the gravitational acceleration 𝑔 = 9.81m/s2 along the
global z direction). Quaternion q̂★

𝐸2𝐵 defines this rotation: it is defined by identifying the Euler angle 𝛼 and the axis n shown in the figure,
where n is the vector perpendicular to A★ and z𝐸 and 𝛼 is the angle enclosed by −A★ and z𝐸 . The second step is a rotation around the
z-axis is performed to correct for heading. In this paper heading is corrected to align the helicopter’s nose with the desired trajectory. This
rotation is described by quaternion q𝜉 , where v = [0, 0, 1]𝑇 is the Euler axis and 𝜉 is the Euler angle, identified as shown in Figure 14b by
projecting the desired velocity V★ on the body x-y plane identified in the first step. The desired attitude is found with Equation 38, which
uses Equation 1 to define the quaternions and concatenates them via quaternion multiplication Equation 2.

q★
𝐸2𝐵 = q̂★

𝐸2𝐵q★𝜉 = [cos(𝛼/2), sin(𝛼/2)n]𝑇 [cos(𝜉/2), sin(𝜉/2)v]𝑇 (38)
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(a) Representation of 𝛼 and n to align
the body z-axis to the acceleration A★
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the body x-axis to the velocity projection
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The second MTE studied is the pop-up, a longitudinal terrain avoidance manoeuvre described in the ADS-33 [36] and the Utility
Tactical Transport Aircraft System (UTTAS) [39]. The helicopter is required to achieve a 25m altitude gain over a horizontal distance
between 250m ≤ 𝑠1 ≤ 350m [40]. To emphasise vertical manoeuvrability, the manoeuvre was defined to gain 25m in altitude over a
horizontal distance of 250m while maintaining trim velocity. As the procedure is formally identical, only the results are shown here.

The references for both MTEs are shown in Figures 15 and 16: both the slalom and pop-up references match the expected behaviours
and verify the trajectory generation approach adopted. In the slalom case (shown in Figure 15), a non-smooth reference was used to
simplify trajectory generation: while this would generally be a limiting factor for accurate trajectory tracking, the presence of an online
trajectory reconstruction autopilot module (presented in V.B) mitigates the impact of discontinuities in velocity and attitude profiles,
improving trajectory tracking. For the pop-up manoeuvre, a smooth polynomial segment was employed, as seen in Figure 16.
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Fig. 15 Identified reference signals for the slalom manoeuvre
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Fig. 16 Identified reference signals for the slalom manoeuvre
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B. Autopilot Implementation
Here, an autopilot module is implemented using the Finite State Machine (FSM) formulation. The main purpose of the autopilot

is to facilitate waypoint-based navigation, generating reference signals based on the helicopter’s position on the desired trajectory.
This facilitates trajectory tracking, as continuous-time references may become inadequate in the presence of system delays or external
disturbances. To discuss the autopilot, first the trajectory reconstruction is discussed, and then the FSM implementation is presented.

1. Implementation of the Trajectory Interpolation
To enable efficient navigation, the reference signals calculated in Section V.A are sampled at specific waypoints and trajectory

references are then reconstructed via interpolation. By using waypoint navigation, smoother trajectories can be reconstructed, over-
all improving the performance of the system while also allowing for a more flexible and efficient path-definition structure [41, 42].
To allow for a sufficiently accurate reconstruction with limited computational resources, waypoints were sampled at regularΔ𝑇 = 1s intervals.

To increase system’s responsiveness, the control system uses feed-forward signals in position X★, velocity V★, and attitude q★
𝐸2𝐵. For

quaternion attitude signals, the SLERP algorithm presented in Equation 8 is used to efficiently and smoothly interpolate attitude references
without incurring in singularities or erratic reconstruction. For position and velocity values, interpolation is instead carried out using a
cubic-spline interpolation on each of the reference vector signals entries [9]. Consider the trajectory to sampled in 𝑁 waypoints with the
helicopter in the trajectory segment delimitated by waypoints 𝑘 and 𝑘 + 1 (a visual representation is given in ??). Let 𝑙 ∈ [0, 1] be a
running variable, such that: if 𝑙 = 0, the helicopter is exactly at waypoint 𝑘; if 𝑙 = 1, the helicopter is at waypoint 𝑘 + 1. Let ℎ𝑘 indicate the
difference between the arc lengths at waypoints 𝑘 + 1 and 𝑘 , such that ℎ𝑘 = 𝑠𝑘+1 − 𝑠𝑘 . The cubic interpolator connecting waypoint 𝑘 and
𝑘 + 1 will have the shape shown in Equation 39, with [𝑎𝑘 , 𝑏𝑘 , 𝑐𝑘 , 𝑑𝑘] unknown.

𝑦𝑘 (𝑙) = 𝑑𝑘ℎ
3
𝑘
𝑙3 + 𝑐𝑘ℎ

2
𝑘
𝑙2 + 𝑏𝑘ℎ𝑘 𝑙 + 𝑎𝑘 with 0 ≤ 𝑙 ≤ 1 (39)

The unknown parameters are computed by fitting Equation 39 to each of the individual position and velocity signals over five trajectory
segments: if the helicopter is position at waypoint 𝑘 , the waypoints selected to perform the interpolation are contained between 𝑘 − 2 and
𝑘 + 3. At each command loop, the algorithm computes the unknown parameters for all five available trajectory waypoints segments, and
then isolates the central one within 𝑘 and 𝑘 + 1 where the helicopter is positioned. In the cases where the helicopter is located in the first
two waypoints 𝑘 = {1, 2} and when the helicopter has reached the final three waypoints 𝑘 = {𝑁 − 2, 𝑁 − 1, 𝑁}, the algorithm always
performs calculations so that five trajectory segment are considered and then isolates the one enclosing the current helicopter’s position.
With the unknown parameters identified, knowing 𝑙 the reference associated with the current helicopter position is determined.

2. Autopilot as a Finite State Machine
A Finite State Machine (FSM) [43] is a discrete-event system model that enables autonomous systems to execute complex behaviours

by transitioning between operational states. Each state corresponds to a specific system action, and transitions occur in response to
changes in the environment or internal system variables. This structured decision-making approach allows for transparent and reliable
implementation of autonomous logic. The FSM was chosen for its flexibility and modularity, allowing for the possible future expansion of
the autopilot to enable more complex autonomous flight behaviours.

The functioning of the autopilot FSM is explained in the state diagram in Figure 17. The autopilot is initialized at the first available
waypoint 𝑘 = 1 and also receives the current position coordinates of the helicopter. These values are used to calculate the running variable
𝑙 which is used in the waypoint interpolation process: if 𝑙 < 1 and 𝑘 < 𝑁 (i.e.: if the helicopter is still within the trajectory segment
contained within 𝑘 and 𝑘 + 1 and the helicopter has not reached the last waypoint 𝑘 = 𝑁), the calculated 𝑙 is used to interpolate the
reference values; if 𝑙 ≥ 1, the helicopter has already reached the next waypoint and the waypoint position is updated, setting 𝑘 := 𝑘 + 1 and
the running variable is recalculated. Once the helicopter has reached the final waypoint 𝑘 = 𝑁 , the simulation is stopped.

To calculate the running variable 𝑙, the autopilot
approximates the completion of the current trajectory
segment via Equation 40, where r𝑘,𝑘+1 = r𝐸,𝑘+1 − r𝐸,𝑘

indicates the linear distance between waypoint 𝑘 +1 and
waypoint 𝑘 , and r𝑘,𝐵 = r𝐸,𝐵 − r𝐸,𝑘 indicates the linear
distance between the helicopter and waypoint 𝑘 . The
value is also increased by 0.05 so that the autopilot pro-
duces reference signals which are always slightly ahead
of the helicopter, allowing for smoother navigation.
With this equation, the autopilot essentially calculates
the projection of the helicopter’s relative position with
respect to its previous waypoint on the distance between
two successive waypoints, thus allowing for a simple
interpretation of the helicopter’s current position within
the trajectory.

𝑙 =
r𝑘,𝑘+1 · r𝑘,𝐵
∥r𝑘,𝑘+1∥2 + 0.05 (40)

(l≥1)∧(k<N)

k:=k+1

k:=1

Calculate
l

(l<1)∧(k<N)

Interpolate
references

Simulate
system

Pass current

position

k=N End

Fig. 17 State diagram of the autopilot FSM
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VI. Autonomous Flight Simulations
To evaluate the controller’s performance, the slalom and pop-up manoeuvre were simulated in MATLAB’s Simulink environment.

Simulations were run with a fixed time resolution of 1ms and using the RK4 solver. These simulation parameters were chosen as they
align with the computational speed of sensors and on-board computers used in the context of aircraft control [44, 45].

Results of the slalom simulation are collected in Figure 18: the results are positive, with good tracking performance across the position
channels. The cross-activation of the vertical position in response to changes in the lateral position is also noticeable in this case, but,
thanks to the feed-forward action of the velocity and attitude commands, these deviations are contained within ±7m from the trim altitude.
Lateral position tracking satisfies the required minimal 15m deviation from the centerline [36], represented in Figure 18a by the addition
of the slalom gates. Notably, thanks to the autopilot’s ability to progressively generate position reference values, the lateral tracking
performance improves over successive turns, with a maximum deviation from the desired position of 5m. Velocity tracking still shows the
delays seen in the controller tuning (Figure 9): these delays are strictly linked to the position tracking performance at the entrance of
the slalom, and further investigations of the central control loop performance would benefit the tracking performance. Attitude tracking
remains highly effective, and commands never saturate, in spite of the aggressiveness of the manoeuvre.

Results of the pop-up manoeuvre are presented in Figure 19. The vertical position tracking is effective in following the reference
trajectory with no steady-state error: when climbing, the aircraft shows a slightly delayed response causing it to slightly lag behind the
reference during the manoeuvre, before overshooting the desired final attitude when exiting the climbing phase of the MTE. Lateral
deviations are minimal, and heading is kept constant throughout the task. Control actuation matches the expected response, with only
collective and cyclic being activated respectively to gain altitude and to provide minor corrections to heading and horizontal velocity. No
command saturation is experienced, further suggesting the validity of the tuning approach used.
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Fig. 18 Results of the slalom manoeuvre simulation
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Fig. 19 Results of the Pop-up manoeuvre simulation
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VII. Conclusion
Within this paper, the implementation of quaternion control in the context of modelling and autonomous control of agile helicopter

flight has been examined, using the MBB Bo105 helicopter as a practical case study. In section II, a comprehensive overview of the
fundamental properties of quaternions was provided. Owing to the linearity of their operations and their ability to smoothly interpolate
and represent complex attitude changes in 3D space without singularities, quaternions are shown to be a powerful tool for the modelling
and control of highly manoeuvrable vehicles. In section III, a procedure for converting existing linearized models from Euler angle
formulations to quaternion-based attitude parametrizations was presented. As this approach is rooted in analytical derivations, it allows
for the direct transformation of established models, greatly facilitating the study and integration of quaternion-based controllers while
minimizing modelling effort and avoiding the need for additional linearizations. With the model reformulated using quaternions, the use
of quaternion representations in control system design was discussed in section IV. The controller was structured using a nested-loop
architecture, with the innermost loop implementing a novel LQI controller in quaternion space for attitude regulation, and the intermediate
and outer loops employing PI and P controllers, respectively, for velocity and position tracking. The controller tuning was carried out
using the PSO algorithm to optimize each loop individually; the implementation of PSO was detailed for each control loop, alongside the
definition of the cost function and the most significant results obtained.

With the system extended to support trajectory tracking, autonomous flight was addressed in section V. Section V.A introduced a
method for generating reference position, velocity, and attitude signals suitable for helicopters, providing a straightforward framework for
creating coherent manoeuvre definitions. This method was also applied to define two representative manoeuvres—slalom and pop-up—for
evaluating the system’s performance. In Section V.B, a simple yet effective autopilot was implemented using an FSM architecture, enabling
modular and flexible mission execution. The performance of the system was subsequently evaluated in section VI through simulation of
the slalom and pop-up tracking tasks. The tracking results support the validity and effectiveness of the methodology employed across all
stages of the study, with the helicopter successfully tracking both trajectories without steady-state errors and maintaining tracking errors
below 5m during the most extreme phases of the slalom and below 7m at the apex of the pop-up manoeuvre.

As this work outlines a comprehensive methodology for the use of quaternions in modelling and autonomous flight control, several
avenues for future research can be identified. From a modelling perspective, the conversion procedure could be applied to other systems
and linearization schemes. Comparing linearizations of native nonlinear quaternion models to those obtained by converting Euler-based
models would help assess the impact and efficiency of the proposed method. From a control standpoint, improving the performance of
the velocity control loop could yield enhanced dynamic response, while extending the controller to accommodate multiple linearization
points would allow for smoother and more robust navigation. The findings presented here may also encourage broader use of PSO in
control applications, supporting the design of efficient, multimodal optimization-based controllers. Finally, in the context of autonomous
flight, the FSM autopilot could be expanded to include online trajectory planning, equipping the system with the capability for dynamic
environmental interaction and obstacle avoidance.
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2
Literature Review

This work has the fundamental objective of exploring the application of quaternions to the study of helicopter

motion, with particular attention to the development of a control system for the aircraft and the achievement

of autonomous flight. Here, a literature review of these topics will be provided, producing a survey of

current relevant research to both identify current trends in the fields of control systems and aerospace

engineering and contextualizing the current study within the broader academic conversation.

To provide an orderly overview of the current research analysed, this chapter will be further divided in

three sections, each focusing on a different aspect of the work. To start, Section 2.1 will provide a brief

overview of current research on the applications of quaternions in the context of modelling and simulation

of aircraft flight, pointing out their relevance and intrinsic advantages over other attitude formulations and

highlighting the small amount of available literature on their application to full-scale systems. Further,

in Section 2.2 current developments in the fields of controller design will be discussed, highlighting the

approaches typically used when developing agile controllers and their characteristics. Lastly, in Section 2.3

an overview of prominent methodologies used to enable autonomous flight are presented and discussed.

2.1. Use of quaternions in modelling and control system design
As this work ultimately aims at investigating the implementation of quaternions in the development of

a flight control system and at addressing their usefulness in aircraft modeling, the first central aspect

the preliminary research step focused on was the investigation of quaternion properties and of their

implementations in control systems, building upon current results and identifying research gaps that

highlight the relevancy of this work.

In the realm of applied mathematics and engineering, quaternions are recognized as a sophisticated

tool for representing rotations in three-dimensional space. First introduced by Hamilton in the 19th century,

quaternions constitute a four-dimensional hypercomplex number system that elegantly represents rotations

in three-dimensional space. Their formulation - comprising one real and three imaginary components -

allows for compact, singularity-free encoding of orientation (thereby avoiding issues such as gimbal lock

encountered with Euler angle representations) and for the generation of smooth omnidirectional orientation

changes with the implementation of simple and powerful interpolation algorithms, such as Spherical Linear

Interpolation (SLERP).

In practical terms, quaternions are applied across several cutting-edge fields. They enhance rotational

dynamics modelling in computer graphics [1], smoothly reconstruct attitude change sequences [2, 3],

and they provide critical orientation solutions in robotics for precise control and movement [4, 5]. Their

role is equally significant in simulation and virtual reality environments, where they contribute to accurate

spatial representations. Conclusively, quaternions have recently seen a rising interest in the fields of

robotics and - most notably in the context of this thesis - aerospace engineering, where their robust

and efficient attitude representation capacity has enabled the synthesis of complex and fluid motion in space.

While quaternions have been a cornerstone in the space engineering sector for many years - particularly

in the context of spacecraft attitude control, owing to their ability to represent rotations without singularities -
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their study in the context of aeronautics and aircraft control has not seen great interest over time, favouring

the Euler angles parametrization. Inverting this trend, recent developments in the field - especially the

surge in interest surrounding Micro Aerial Vehicles (MAVs) and quadcopter drones - have amplified the

focus on quaternion-based methods, as their ability to represent smooth rotations in all directions allowed

to fully leverage the high manoeuvrability of these systems.

With the rising interest in quaternions for the purpose of attitude representation of highly manoeuverable

vehicles, researchers have argued and investigated the feasibility of quaternion-based control systems

and modelling of full scale vehicles. In 2022 Gołkabek et al. [6] proposed an investigation of quaternions

to the control of an agile aircraft and within their paper introduced their implementation as ”an extension

to research on spacecraft attitude control”, highlighting the novelty of the application of quaternions to

the field of aeronautics. Within their paper they developed a quaternion controller for an aircraft and

compared the results obtained with a more traditional Euler angle based controller: the results obtained

showed the quaternion controller was capable of outperforming the more conventional design, showing

promise in the investigation of such a control system. These results are corroborated by other studies

published in recent years - such as [7, 8] - which all go to show the promising nature of the implementation

of quaternions on air vehicles and UAVs for the purpose of agile manoeuvering as they allow for higher

attitude representation precision.

With the increasing interest in agile and unmanned navigation, the possibility of exploring the capabilities

of helicopters becomes highly desirable, as their naturally high mobility around all axes of movement

paired with their hovering flight and vertical take-off and landing abilities would greatly benefit from the

implementation of novel control techniques. As of the development of this thesis, there is only a small

amount of information on the applications of quaternions to the control of full-scale helicopters, with only few

papers being focused on the application to scale models [9, 10, 11] at most. Additionally, implementation

of quaternions in autopilots and autonomous flight controllers have been linked to improved efficiency,

reliability, and performance [12], further increasing the relevance of quaternions in current research trends.

To address the rising interest in the implementation of quaternions in aircraft control and modelling, and to

meaningfully contribute to research topics of current interest and relevance, this work will investigate the

use of quaternions in the description of the attitude and the development of a full flight control system for

the purpose of autonomous helicopter navigation.

To allow for a proper investigation of quaternions and their applications to modelling and control system

design, first an analytical description of their most relevant properties will be carried out within the thesis in

Chapter 5, presenting the fundamental algebraic equations useful in the context of attitude representation.

2.2. Controller development for agile manoeuvering
As discussed in Section 2.1, the diffusion of small-scale drones and air vehicles has in recent years sparked

great interest in the study and applications of agile controllers capable of performing manoeuvers with

significant attitude changes with reduced control effort and high performance. As quaternion controllers

have been praised for their flexibility and precision in attitude representation, they are a natural fit for

agile manoeuvering and as such have found relevance in the current academic conversation. Here,

the development of appropriate flight control systems will be discussed, providing an overview of the

approaches considered in recent publications.

Agile maneuvering is the capability of an aerial vehicle to execute rapid and significant changes in

attitude and trajectory, a performance attribute that is vital for operating in unpredictable and dynamic

environments. This form of maneuvering is characterized by its high demand for control precision, rapid

response, and minimal control effort, making it a subject of intense research. Its growing importance is

evident across a broad spectrum of applications, from small unmanned aerial vehicles (MAVs) to full-scale

aircraft and rotorcraft, where agile performance is increasingly a key requirement.

In response to the increasing relevance of agile and high-performing air vehicles, the rising interest in

control techniques adequate for achieving this type of behaviour has motivated researchers to explore

controller frameworks that could effectively augment aircraft systems to enable agile manoeuvre tracking.

As the performance of a closed loop system are highly dependant on the controller’s capabilities, various
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possible architectures have been analysed: here a brief review of the most prominent control architectures

identified for agile manoeuvering is provided, highlighting their advantages and limitations in the context of

flight control systems.

Given the large variations in attitude implied by the need to achieve agile manoeuvers, control systems

developed for this purpose ought to be able to handle large variations in the system’s states while

maintaining robustness and reliability; with these challenges in mind, non-linear control methodologies

show great promise in the obtainment of effective control behaviour.

The primary approach explored in nonlinear control is the Nonlinear Dynamic Inversion (NDI), an advanced

control technique that seeks to counteract a system’s inherent nonlinearities by effectively ”inverting” its

dynamics, thereby transforming the nonlinear control problem into one that is more tractable and akin

to a linear system. While NDI control has a number of advantages and can effectively handle the task

of controlling most non-linear systems, it is also subject to many limitations. To start, as NDI requires

an internal model of the system to perform the inversion, the effectiveness of NDI depends upon the

accuracy of the underlying dynamic model; any mismatch between the model and the real system can

result in substantial performance degradation. Further, NDI is highly sensitive to external disturbances

that are not accounted for in the system, which may lead to instability if not properly addressed with

specific robustifying procedures [13]; this is especially noticeable in unconventional flight regimes where

baseline model accuracy may falter due to complex nonlinear effects. Addressing these issues, the

original NDI approach has been modified to reduce its reliance on offline-identified system models, leading

to the introduction of the Adaptive Nonlinear Dynamic Inversion (ANDI) and the Incremental Nonlinear

Dynamic Inversion (INDI) frameworks, which leverage advancements in sensor accuracy and online model

identification strategies to allow nonlinear control systems to achieve better overall performance even in

less-explored regions of the flight envelope while limiting the impact of unmodeled dynamics.

Given the novelty of NDI-based control architectures, their applications and full capabilities are still being

explored. NDI has found great success in the study and control of small-scale quadcopters and other

MAVs, which leverage relatively simple dynamics and extremely high maneuverability, making nonlinear

control techniques especially suited to this field of applications. Outside of small air vehicles, current

notable applications of NDI are the Airbus A350 in the field of civil aviation and the Lockheed Martin F-35

in the military field: additionally, nonlinear control is also being considered for the design of TU Delft’s

Flying-V [14]. Regarding the applicability of NDI architectures to helicopter flight, no current commercial

application was identified, although research papers suggest the possibility of applying such modelling

techniques to rotorcraft systems, issues with accurate modelling of vehicle dynamics appear to remain a

primary limiting factor [15, 16].

Another possible control technique highly investigated for the purpose of agile manoeuvering is Model

Predictive Control (MPC) [17, 18], an advanced optimization-based control strategy that utilizes a math-

ematical model of a system to predict its future behavior over a specified time horizon and generates

appropriate control actions by solving a user-defined optimization problem at each control step. Key advan-

tages of MPC include its ability to handle Multiple-Input Multiple-Output (MIMO) systems - a complex task

for most traditional control methods - and explicitly manage constraints, which makes it a robust choice for

complex applications [19]. However, these benefits come with challenges such as significant computational

demands for solving optimization problems in real-time, a strong dependence on the accuracy of the

underlying system model, and the complexity involved in tuning parameters like prediction horizons and

cost weights [20, 21, 22].

With improvements in small-scale hardware and the introduction of highly-optimized optimization algorithms,

MPCs have gained significant interest for their intuitive implementation and flexibility. As of now, the

primary area of application of this control system architecture in the field of aerospace engineering is

found in MAVs [23] which - similarly to NDI - tend to have simpler model descriptions and are capable of

performing fast and agile manoeuvres. On a larger scale MPC has been a topic of interest in the field

of UAVs given its ability to account for multiple objectives online, making it capable of easily minimizing

reference tracking error while managing commanded control actuation and minimizing energy consumption:

implementation of MPC to control of fixed wing aircraft has been studied in a number of research papers

and has proven to be a field with great potential due to its many advantages [24], but many recognize the
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limitations of such control architectures due to limited robustness [25] and reliance on identified model

accuracy [25, 24]. Regarding possible applications in the specific area of rotorcraft flight, researchers have

pointed to many performance advantages such as improved tracking in constrained trajectory[26] and the

ability to reduce the impact of external disturbances [27], but strong couplings and requirements on model

accuracy pose significant challenges to the implementation of MPC [28].

The analysis of published papers and current research trends reveals a significant interest in advanced

nonlinear control methods—such as MPC and NDI—for investigating agile maneuvers. Even so, these

sophisticated techniques have found only limited application in larger air vehicles, particularly in helicopters;

in many cases, classic linear control approaches continue to be the most widely used, primarily because

they offer greater ease of implementation, robustness, and reliability in the face of the complex dynamics

characteristic of full-scale and rotary-wing platforms. Linear controllers are well-established and have a

proven track record, making their implementation a much more streamlined endeavour: consequently,

while nonlinear control techniques offer theoretical advantages for agile maneuvers, their transition to

operational use in larger air vehicles has been constrained by practical considerations, leaving linear

control techniques as the predominant solution in these domains. Given the ubiquity of linear control

systems and the aim of this work to expand upon the research on quaternion implementation to helicopter

use, this work will primarily focus on linear control methodologies to enable agile flight.

Linear control strategies are varied and have been studied for a number of years now, to the point where

they have found impactful applications in all fields of industrial engineering. Linear control techniques

are highly regarded for their simplicity, ease of implementation, and the wealth of established theoretical

tools available for analysis and design. Typically, these controllers are developed based on linearized

models of the underlying system, which are only valid around a specific operating point (or trim condition):

this reliance on linear approximations means that, while linear controllers perform well under nominal

conditions, they are not naturally well suited to handling the strong nonlinearities and rapid, large-angle

maneuvers characteristic of agile flight. To overcome these limitations, researchers have explored hybrid

strategies — such as gain scheduling or integrating advanced sensor fusion and adaptive mechanisms —

that extend the effective range of linear controllers into more dynamic environments.

The most common and well-studied controller architecture is the Proportional-Integral-Derivative (PID).

PID control combines a proportional term that reacts to current errors, an integral term that compensates

for accumulated past errors, and a derivative term that anticipates future errors based on the error’s rate

of change: its advantages lie in its simplicity and the ease with which it can be implemented across a

range of systems, making it a staple in industrial and aerospace applications. Even with this very simple

design, the implementation of a PID controller requires careful consideration: PIDs are notoriously hard to

hand tune, especially with highly coupled MIMO systems (like helicopters) and, to avoid being destabilized

by sensor noise which would cause rapid and unpredictable changes in the error signals, the derivative

element is often omitted, leading to a more robust but slower implementation.

Addressing the limitations of PI controller design, a number of strategies have been identified to increase

its application range, with gain scheduling being the most prominent solution. With gain scheduling PI

controllers remain effective at multiple trim points, allowing for precise flight at multiple speeds and attitudes.

Moreover, the simplicity of PI design still allows them to be implemented as very effective outer-loop

control systems, finding applications in systems where the inner loop may be realized with either linear or

non-linear techniques [29, 30].

Another effective linear control strategy is represented by Linear Quadratic (LQ) control, a family of

optimal control architectures that have received significant interest due to their potential to produce robust

and effective controllers for both SISO and MIMO systems, addressing the main challenges of classic

PID control at the cost of increased complexity in their implementation. The most prominent example of

linear quadratic control is the Linear Quadratic Regulator (LQR), a control framework that allows for the

balancing of controller performance and robustness to generate a robust controller capable of controlling

complex systems, so long as they are stabilizable and that they allow full-state feedback.

With the relevance of the LQR framework, a number of modifications to it have been presented over the

years. One of the most prominent modifications presented is the Linear Quadratic Gaussian (LQG), which
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removes the need for full-state feedback by pairing the optimal regulator with a Kalman filter for the purpose

of state reconstruction, at the cost of reduced robustness - which is addressed by using Loop Transfer

Recovery (LTR) techniques.

Conversely, while LQR-based designs are normally effective in producing controllers with a strong regulating

action. To enhance tracking accuracy the Linear Quadratic Integral (LQI) architecture aims at improving

this aspect with the introduction of an integral action to address steady-state errors. Being a natural

extension of the LQR framework, the LQI is still subject to the same requirements for application as the

LQR, namely: full-state feedback and stabilizability. In spite of these limitations, LQI applications have

found prominent use in the aerospace field for their ability to control MIMO systems while also providing

reliable tracking performance.

While LQ control has a long and proven track record in the control of industrial plants [31, 32], applications

in the field of aeronautical engineering are of great relevance and interest in present years both at an

academic and industrial level in the development of tracking and stabilizing controllers for both small and

large scale air vehicles. MAVs leverage the robustness of optimal control techniques and advancements

in sensor hardware to produce effective controllers [33], to the point of making use of LQ controllers

even in case of complex multi-body designs [34]. On a larger scale, LQ control has been studied for

implementation on aircraft [35, 36], helicopters [37] and other unconventional vehicles such as tiltrotors [38].

Another widely studied approach within linear control theory is the H-infinity (H∞) control framework,

which belongs to the broader class of robust control techniques and has recently become one of the most

polarizing control strategies in research, although it has yet to find widespread use in industry [39]. Unlike

LQ controllers, which optimize performance with respect to a quadratic cost functional, H∞ control is

fundamentally concerned with minimizing the worst-case gain from external disturbances to controlled

outputs while ensuring reference commands are replicated by the output of the system: this is obtained

by controlling the H∞ norm of the closed-loop transfer function that maps exogenous inputs (such as

disturbances, sensor noise, or reference trajectories) to regulated outputs. This approach allows the

designer to explicitly account for model uncertainties and disturbances during the controller synthesis

process, making it especially attractive for aerospace applications where high reliability and robustness

are critical.

The mathematical foundation of H∞ control relies on satisfying specific feasibility conditions that ensure

the internal stability and performance of the resulting controller [39, 40]. This is obtained by adequately

shaping relevant transfer functions of the closed-loop system (such as the sensitivity and co-sensitivity

transfer functions) to limit the effects of exogenous inputs (such as noise and disturbances) while ensuring

references are represented in the output without saturating the actuator’s bandwidths [41]. In practical

terms, H∞ controllers tend to be more conservative than their LQ counterparts. Nonetheless, this

conservative design philosophy can offer significant benefits in aerospace systems, where safety margins

and guaranteed performance bounds are crucial. In spite of these advantages, its high implementation

complexity, the requirement for accurate uncertainty modelling, and limited availability of mature design

toolchains have contributed to its slower transition from theory to practice, now limiting its applications in

the aerospace engineering field to MAVs and small-scale aircraft [42, 43].

Given the interest in the application of LQ control, its flexibility and ability to readily control MIMO

systems, within this work the baseline architecture of the controller will be based around this technique. In

particular - as the aim of this work is to investigate autonomous flight applications where good reference

tracking is paramount - to improve the reference following performance of the controlled system the

innermost attitude loop will implement the LQI controller framework, which introduces an integral action

that can limit the impact of steady-state errors.

To further leverage the flexibility of linear controller design the inner loop will be augmented with appropriate

PID-based outer loops, pairing the tracking and decoupling capabilities of the LQI framework with the

simplicity and effectiveness of PID controllers. To limit the interference and impact of measurement noise,

the P/PI architectures will be implemented to generate an appropriate control actions that can drive the

system to follow a desired trajectory.



2.3. Autonomous flight 33

2.3. Autonomous flight
With current researches presented in both the implementation of quaternions in modelling and controller

development and with typical methods of controller development discussed, the last fundamental area

of interest of this thesis lies in the augmentation of a controlled system to enable autonomous flight. To

provide a better understanding of the topic and to identify the most suitable solution to implement for this

thesis, here the concept of autonomous navigation will be discussed and presented, exploring relevant

literature and clearly identifying its fundamental elements.

Autonomous navigation has emerged as a pivotal area of research and development, driven by the

increasing demand for vehicles that can operate independently in complex and dynamic environments

[44, 45]. Its relevance spans numerous sectors—from industrial automation, to military applications—and

has become especially critical in the realm of aerospace engineering, where the ability to navigate without

human intervention can significantly enhance operational efficiency and safety.

Recent technological advancements have accelerated progress in autonomous navigation [46], leveraging

innovations in sensor technologies, machine learning, and high-speed computation to overcome previous

limitations. Breakthroughs in fields such as computer vision and advancements in artificial intelligence,

lidar and radar sensing, and real-time data fusion have paved the way for more accurate perception and

decision-making capabilities in autonomous systems. While these advancements have found widespread

application in domains such as robotics and automotive engineering, their integration into aerospace

platforms is particularly noteworthy. In full-scale air vehicles—ranging from fixed-wing aircraft to heli-

copters—the adoption of autonomous navigation technologies is poised to revolutionize flight control,

with emerging Urban Air Mobility (UAM) applications further driving the need for enhanced reliability and

security in autonomous flight systems.

At its core, autonomous navigation encompasses a suite of interrelated subtasks that collectively enable

a vehicle to perceive its environment, plan safe trajectories, and execute controlled maneuvers. These

subtasks typically include sensing, mapping, obstacle avoidance and path planning [47, 48], while vehicle

control is generally a task assigned a control system. Autonomous navigation protocols can range from

relatively simple reactive systems, which respond directly to sensor inputs, to sophisticated multi-layered

architectures that integrate high-level decision-making with low-level control [49]. By decomposing the

overall navigation challenge into these distinct components, researchers can more effectively develop,

test, and refine individual algorithms, ultimately leading to more robust and resilient autonomous systems

capable of operating under a wide variety of conditions. For the purpose of this thesis, as only a simple

framework for autonomous navigation is to be developed and implemented, only the specific aspects of

behavior planning and path planning will be considered.

The specific task of determining the behaviours that an autonomous vehicle should have during its

operations is called Behaviour Planning (BP). In particular, BP refers to the high-level decision-making

process that determines a vehicle’s overall actions and strategies based on its environment, mission

objectives, and operational constraints. BP is responsible for selecting appropriate maneuvers - such

as lane changes, obstacle avoidance, or route re-planning - by interpreting sensor data and integrating

information from perception and localization modules. The challenges inherent in BP include managing

dynamic and unpredictable environments, ensuring safety and compliance with navigation rules (such as

road and air traffic rules), and achieving real-time performance despite computational constraints. Here

notable approaches to BP will be presented, broadly divided into classical rule-based methods and more

recent learning-based techniques [50, 51]: for each approach, notable methodologies will be discussed

and for each their associated advantages and limitations will be mentioned.

Classical methods for behavior planning are typically based on rule-based frameworks such as Finite

State Machines (FSM) and Hierarchical Finite State Machines (HFSM). FSMs model behavior as a set of

discrete states with defined transitions triggered by specific events or conditions, making them intuitive and

relatively simple to implement [49]. Expanding on the capabilities of the simple FSM architecture, HFSMs

extend this concept by introducing hierarchical structures that allow for modularity and better management

of complex behaviors. These approaches are generally easy to produce and verify, and offer clear and

deterministic behaviors (a crucial feature for safety-critical applications). While these methods have great
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simplicity, their main disadvantage lies in scalability: as the complexity of the environment increases, the

number of states and transitions can grow exponentially, making the system brittle and less adaptable to

unforeseen situations. Additionally, classical methods require extensive manual design and tuning, which

may limit their performance in highly dynamic or uncertain scenarios as all possible variations in working

environment should be accounted for in the design phase [50, 52].

With the rapid improvement of machine learning frameworks, learning-based methods have recently

seen large interest and success for their ability to more effectively deal with dynamic environments.

Learning-based methods leverage data-driven approaches such as deep learning and reinforcement

learning to model and predict optimal behavior in complex environments: these methods utilize large

datasets to train models capable of generalizing to a variety of scenarios, potentially overcoming the rigidity

of rule-based systems. Deep learning-based techniques can extract high-level features from raw sensor

data, while reinforcement learning methods enable systems to learn optimal policies through trial and error

in simulated or real environments [53]. Although these approaches offer significant promise in adapting to

new and unforeseen situations, they also come with challenges such as high computational requirements,

the need for extensive training data, and issues related to explainability and safety assurance. Despite

these hurdles, the integration of learning-based methods into BP has shown considerable potential in

improving decision-making and responsiveness, with some interest in developing hybrid approaches that

combine classical and learning based methods to compensate for the limitations of each approach [50, 51].

Path planning is the process by which an autonomous vehicle determines an optimal route from its

starting position to its destination while avoiding obstacles and satisfying dynamic constraints. This process

is critical for ensuring safe, efficient, and reliable navigation, but it is fraught with challenges such as

handling uncertainties in the environment, managing high-dimensional state spaces, and coping with

dynamic obstacles in real time. Notable approaches to trajectory generation have been developed to

address these challenges, and they are typically divided into deterministic and learning-based methods

[54]. Each category exhibits distinct characteristics: deterministic methods generally offer guarantees

on optimality and completeness under well-defined conditions, while learning-based methods promise

improved adaptability in complex, uncertain environments. For a comprehensive review of path planning

techniques, see [55, 56].

Deterministic methods for trajectory planning are often based on graph search algorithms and optimization

techniques, implemented to enable the definition of trajectories both online and offline. Classical path-

planning algorithms such as A* and Dijkstra’s are widely used; A* leverages heuristics to efficiently search

for an optimal path in a discretized state space, whereas Dijkstra’s algorithm ensures the shortest path in

weighted graphs without heuristic bias. These approaches are effective in structured, static environments

but may encounter scalability issues and computational challenges when applied online in complex or

highly dynamic settings. In spite of their flaws, these algorithms allow for both offline and online path

planning and as such are considered very valuable in guidance and trajectory definition applications

[49]. In addition to these, offline kinematic motion planning methods have been developed to generate

smooth, feasible trajectories that respect the vehicle’s dynamic constraints, as demonstrated in [57]: these

approaches tend to either generate complete paths and then sample waypoints between them, or to first

place waypoints in space and then generate a trajectory connecting them by using interpolation functions

such as clothoidal paths, base splines, or more complex optimization algorithms [58]. While deterministic

methods provide reliable solutions and clear performance metrics, their rigidity and potential computational

overhead limit their effectiveness in rapidly changing environments.

In contrast, learning-based methods for trajectory planning harness the power of data-driven models to

deal with environmental uncertainties and complex dynamics. Deep learning and reinforcement learning

techniques have recently emerged as promising alternatives, enabling vehicles to learn optimal or near-

optimal paths directly from sensor data and environmental interactions. For instance, deep reinforcement

learning approaches have been successfully applied to navigation tasks, allowing systems to adapt to

dynamic obstacles and continuously evolving scenarios [54, 59]. Although learning-based methods offer

significant flexibility and adaptability, they generally require large amounts of training data, extensive

computational resources during training, and may lack the theoretical guarantees of optimality that

deterministic methods provide. Despite these challenges, the fusion of learning-based strategies with tra-

ditional deterministic planning holds considerable promise for advancing the field of autonomous navigation.
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As this thesis aims at producing an autonomous systems capable of following precise and agile

manoeuvres, the trajectory generation process will not be explored in the context of being able to generate

manoeuvres in a dynamic environment. To thoroughly investigate the capabilities of the helicopter, the

trajectory generation problem will be handled using offline-generated trajectories identified using a kinematic

approach: this will allow to purposefully generate trajectories capable of testing the effectiveness of the

controlled system.



3
Methodology

With the project presented in Chapter 1 and a comprehensive review of relevant literature and the current

trends in research topics presented in Chapter 2, here the methodology used in the development of the

thesis is presented. As discussed in Chapter 1, to properly address the research questions driving this

study, the thesis will be divided in parts, each addressing one key aspect of the overall research objective.

The aim of this project is investigating the potential of quaternion implementation in modelling and

autonomous flight of helicopters, in particular exploring agile and precise manoeuvering. To better address

this the thesis has been clearly divided in parts, each delving into one of the specific subtasks contained

by the research objective.

The first part of the thesis work aims to introduce quaternions from a theoretical standpoint, with

particular attention to attitude representation. This is a fundamental section of the work as it provides the

necessary background to make use of quaternions in the context of attitude description and establishes

the notation used throughout the thesis.

Within this section quaternions and other attitude parametrizations are to be compared to one another,

identifying their characteristics and discussing the advantages of the quaternion formulation to justify its

use in this research work. To achieve this, the following steps are taken:

• First quaternions are defined and introduced in the context of attitude parametrization, establishing

the mathematical operations used to represent rotation concatenations.

• Then quaternions are compared to the two most prominent methods of attitude parametrizations -

Euler angles and the Direction Cosine Matrix (DCM) - to highlight the advantages of quaternions and

justify their use in this work.

With this, quaternions are introduced and their equations are defined while simultaneously justifying their

choice by actively comparing them to the other most common attitude parametrization methods, showing

that quaternions directly address their fundamental criticalities at the cost of increased complexity in the

modelling phase.

The second part of this work aims to analyse the linearized models used in the study. Moreover, since

the available helicopter models use the Euler angles parametrization while the aim of this work is to study

the implementation of a quaternion-based controller, a methodology has to be defined to convert these

models to have their attitude states be expressed as quaternion elements.

To effectively analyse the baseline system and identify a methodology to convert an Euler angles-based

linearized model into a quaternion-based linearized model, the following steps are taken:

• First analyse the baseline linear Euler angles models and discuss their characteristics from a dynamics

and control standpoint:

– Discuss available states/inputs/outputs.

– Study stability via pole analysis.

– Study modes via eigenvector analysis.
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– Discuss controllability/observability via matrix analysis.

• Identify the differential relations between the existing states of the system and the quaternion states.

• Modify the existing linearized matrices with the differential relations identified in the previous step by

incorporating the chain rule of derivatives to have the states be represented as quaternions.

• Analyse the new quaternion-based model and discuss its characteristics:

– Discuss available states/inputs/outputs.

– Study stability via pole analysis.

– Study modes via eigenvector analysis.

– Discuss controllability/observability via matrix analysis.

• Verify the conversion from Euler angles to quaternions is successful by comparing the characteristics

of the two models (stability, controllability, observability, eigenvectors).

• Verify the conversion by also comparing open-loop response to inputs and verify they overlap.

With these steps, a methodology is presented to convert an existing Euler-angles based model into a

quaternion-based model. Further, the models are discussed and analysed: the properties identified will be

crucial in the choice of an appropriate flight control system architecture, which will be handled later in the

study.

With the linearized model discussed and converted to incorporate a quaternion formulation, an ap-

propriate control structure is then introduced. The methodology selected will be highly dependent on the

linearized system’s characteristics. To ensure the controller is understandable in both the implementation

and tuning, the following methodology will be followed:

• Identify a suitable control architecture based on the discussion of the plant performed in the previous

step.

• Develop a control law and plan the implementation of the control system with a block diagram of the

controller, highlighting the signals required and produced by each block to identify how they are to

interact with one another.

• Identify a tuning strategy for the controller loops and identify parameters to evaluate the optimality of

the tuning.

• Perform the tuning of the control system and verify the tuning by simulating the response to sample

signals.

This description allows to produce and test via desktop simulations a control system capable of tracking

signals in position, velocity and attitude, allowing for complete control of the system during flight.

As a last element of this work, the final part of the thesis will focus on enabling autonomous flight

and testing the capabilities of the system to handle agile manoeuvres. This involves the identification of

appropriate manoeuvres to be performed and the implementation of an autopilot to allow for autonomous

navigation. The methodology followed to achieve this is defined hereafter:

• Identify and characterize appropriate agile manoeuvres to test the controlled helicopter, use reference

manuals (e.g.: ASD-33, UTTAS) to define performance metrics.

• Generate the reference signals for position, velocity and attitude to follow these manoeuvres:

– Define via a set of differential equations position and velocity profiles to describe the manoeuvres.

– Identify the acceleration required to follow such references by differentiating the velocity profile.

– Generate an initial attitude reference around the manoeuvre by assuming the main rotor thrust

to be aligned to the helicopter’s body z axis.

– Correct the attitude reference identified to account for heading angle information.

– Sample the manoeuvre signals into waypoints to allow for smoother navigation around the

manoeuvre.

• Implement an FSM to serve as a baseline autopilot for the closed-loop system.

• Simulate the manoeuvres using MATLAB and Simulink.

• Evaluate the performance of the controller by discussing the tracking error around the manoeuvre.



4
Contributions

This thesis serves as an addition to the current body of work produced by the scientific community in

two primary areas of research: quaternion implementation in modelling and flight control systems, and

autonomous flight through agile trajectories. Here the specific contributions of this thesis are highlighted:

• Chapter 7: A complete methodology for the conversion of an identified linearized state-space

model using Euler angles for parametrization into a linearized model using quaternions for attitude

parametrization is presented. The conversion is justified via mathematical derivation of the equations

and the fidelity of the conversion is verified by comparing the principal characteristics of the two

systems: pole location, eigenvectors, controllability and observability, and response to open-loop

signals. The procedure proved beneficial as it enabled the retention of already identified dynamics

and facilitated controller design by integrating quaternion attitude elements directly in the state-space

system’s state vector.

• Chapter 8: A full flight control system architecture is developed to enable controlled flight of the

helicopter vehicle: here the overall structure is identified and each element of the flight control system

is presented and discussed, and particular attention is placed on highlighting the motivation behind

the choice of specific control techniques. To ensure the interpretability of the system and facilitate

the tuning process, the flight control system is developed using nested loops to control. Particular

attention is given to the novel proposed development of an LQI controller for the attitude of the

system, providing a repeatable approach to its implementation.

• Chapter 9: A complete methodology for the tuning of the controller is presented using an optimization-

based approach based on the Particle Swarm Optimization (PSO) algorithm. The optimization

algorithm is applied on an LQI controller, a PI controller, and a P controller sequentially; for each

control loop, a cost function is defined for the optimization of the parameters and its terms are

discussed and analysed. The approach presented is repeatable and can be applied to different

systems with minimal modifications, offering a structured and flexible approach to tuning of MIMO

systems based on closed-loop performance.

• Chapter 11: An implementation of a simple Finite Statemachine (FSM) for the purpose of autonomous

flight and trajectory tracking is provided, allowing for trajectory tracking of offline predefined signals.

The FSM formulation is such that the structure presented can be augmented to allow for more complex

behaviours, such as the implementation of algorithms to determine trajectories online capable of

adapting to dynamic environments. The approach used to generate the autopilot references is based

on kinematic relations and simple dynamic equations, and its application to manoeuvre definition is

presented in Chapter 10.
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5
An introduction to quaternions

In the context of aerospace engineering, the problem of representing a rigid body’s orientation in 3D space

is fundamental: air vehicles and space vehicles are set apart by their ability to function in a number of highly

different flight configurations, even assuming highly unconventional attitudes during complex and agile

manoeuvering. When trying to model a vehicle’s motion through an agile and complex trajectory, classical

methods, such as Euler angles and rotation matrices, have well-known limitations: Euler angles suffer from

gimbal lock, and rotation matrices are computationally expensive and redundant. These criticalities pose

limitations to the application of conventional attitude parametrizations in highly-manoeuvrable systems,

where smooth attitude representation and fast computations are required. In contrast, unit quaternions

offer a compact, efficient, and non-singular representation of attitude, making them an attractive solution

for various applications.

This chapter aims at introducing the fundamental properties of quaternions; providing a simple and clear

description of their mathematical formulation, while also highlighting the advantages of using quaternions

for attitude representation over other more commonly used methods. To orderly introduce quaternions

and their properties, here a description of the layout of the chapter is given. To start, a comprehensive

introduction to quaternions will be provided, giving an understanding of their basic structure and providing

a way for quickly interpreting how they can be used to represent the relative attitude of two reference

frames in 3D space. Further, a discussion of their fundamental mathematical properties will be given

by discussing: mathematical operations between quaternions, rotation concatenation, and the relation

between quaternions and Euler angles. To conclude, the reason behind using quaternions for attitude

representation in aerobatic flight will be highlighted by comparing quaternions with two other commonly

used attitude representation methods: Euler angles and the Direction Cosine Matrix (DCM).

5.1. An introduction to quaternions for attitude representation
Quaternions are a number system invented by mathematician William Rowan Hamilton in 1843, originally

created to propose a type of hypercomplex number that could be described using three-dimensional space

in the same way conventional complex numbers could be described using planar geometry [60].

Quaternions are four-dimensional numbers and - in their most general form - they are generally

presented with the formula:

q = q01 + qii+ qjj + qkk (5.1)

where [q0, qi, qj , qk] ∈ R are scalar coefficients of the quaternions while 1, i, j, k are the fundamental

quaternion units, which also serve as a basis to R4 and essentially act as a multidimensional extension of

the imaginary unit i commonly used for complex numbers. The basis elements i, j, k abide by the following

multiplication rules [60, 9]: 
i2 = j2 = k2 = ijk = −1
ij = −ji = k

jk = −kj = i

ki = −ik = j

(5.2)
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Alongside the extended formula of the quaternion shown in Equation 5.1, an equivalent and more compact

vector representation can easily be defined, as shown in Equation 5.3. In this notation, the quaternions

are generally defined as the concatenation of two distinct parts: a real part (also referred to as scalar part)

q0 and an imaginary part (also referred to as vector part) q̄ = [qi, qj , qk]
T
. This notation is widely used in

scientific papers and its is useful as it allows for the transcription of more complex quaternion operations

as simple matrix multiplications (as discussed in Section 5.2).

q =


q0

qi

qj

qk

 =

[
q0

q̄

]
(5.3)

5.1.1. Pure quaternions and unit quaternions
Of all quaternions belonging to R4, two subcategories of quaternions are of particular interest when

investigating attitude representation: pure quaternions and unit quaternions.

Pure quaternions are a subset of quaternions that have a real part equal to 0. By considering the

imaginary quaternion units i, j, k to be the standard orthonormal basis of R3:

i = [1, 0, 0]T j = [0, 1, 0]T k = [0, 0, 1]T

it follows that every vector element n̂ ∈ R3 can be expressed as a pure quaternion in R4, with the real

part set to zero q0 = 0 and the R3 vector as the imaginary part q̄ = n̂. This representation of vectors in

R3 as pure quaternions in R4 is instrumental in the inclusion of 3D coordinates in quaternion algebra, as

discussed in Section 5.2.

Unit quaternions are essential in the representation of attitudes in 3D space [61] and they are charac-

terised by the additional internal constraint:

‖q‖ = q20 + q2i + q2j + q2k = 1 (5.4)

To intuitively understand how a quantity in R4 - the unit quaternion - may be used to represent an

orientation in R3, one can simply recall Euler’s rotation theorem, which states that the attitude of a rigid-body

can be changed from any given orientation to any other orientation by rotating by a certain angle (called

the Euler angle) the body about an axis (called the Euler axis) that is fixed to the rigid body, as shown

in Figure 5.1. By considering θ to be the Euler angle and the unit vector n ∈ R3 to be the Euler axis,

the unit quaternion in Equation 5.5 can be defined such that it includes all relevant information for the

representation of a body’s relative attitude in 3D space [62].

q =

[
cos (θ/2)

sin (θ/2)n

]
(5.5)

x

y

z

x′

y′

z′

n

θ

Figure 5.1: Graphical rendering of Euler’s rotation theorem,

the Euler angle θ and the Euler axis n are shown explicitly.
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5.2. Quaternion operations
With quaternions introduced in Section 5.1, essential mathematical operations involving them will now be

discussed. To start, Section 5.2.1 the notation used to indicate quaternions throughout the thesis will be

given, providing an explicit and immediate relation between the quaternion itself and its physical interpreta-

tion. After this, in Section 5.2.2 some essential mathematical operations will be discussed: quaternion

inverse, quaternion multiplication, and active and passive rotations. Finally equivalent quaternions will be

introduced, discussing error representation and the ”unwinding phenomenon” in Section 5.2.3.

5.2.1. Quaternion notation
As discussed in Section 5.1.1, unit quaternions expressed as shown in Equation 5.5 can directly be related

to a rotation as per Euler’s rotation theorem. Now - to highlight the physical significance of quaternions

and provide an immediate interpretation - the notation used in this thesis to indicate quaternions will be

presented. Consider the reference frames A and B: the quaternion describing the relative attitude of B
with respect to A is expressed as

qA2B =

[
cos (θA2B/2)

sin (θA2B/2) {nA2B}A

]
(5.6)

meaning that, to align A to B, reference frame A has to undergo a right-handed rotation of angle θA2B

around the unit vector nA2B with coordinates measured in reference frame A. Note that since A rotates

around nA2B to obtain B, the coordinates of the unit vector remain the same in the two reference systems,

i.e.: {nA2B}A = {nA2B}B .

5.2.2. Mathematical operations
Here, the fundamental mathematical operations of quaternions will be discussed, alongside a physical

interpretation of them. For the purposes of attitude representation, there are four essential operations that

must be highlighted: quaternion multiplication, quaternion inversion, active rotations and passive rotations.

Quaternion multiplication

Consider the arbitrary quaternions p and q, expressed as:

p =

[
p0

p̄

]

q =

[
q0

q̄

]

let quaternion r be the result of the Hamilton’s product operation (hereby referred to simply as ”quaternion

multiplication” or ”quaternion product”) [62] of quaternions p and q. The product of p and q may be

expressed using the following equation [63]:

r = pq =

[
q0p0 − q̄ · p̄

p0q̄+ q0p̄+ p̄× q̄

]
(5.7)

Note that, as evidenced by the presence of the cross product (×), quaternion multiplication is non-

commutative. Another way of expressing Equation 5.7 is by means of matrix multiplication, resulting in the

formulation shown in Equation 5.8.

r = pq =


p0 −pi −pj −pk
pi p0 −pk pj

pj pk p0 −pi
Pk −pj pi p0



q0

qi

qj

qk

 (5.8)
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Quaternion multiplication is significant for attitude representation as it allows for a simple and intuitive

way of concatenating successive rotation. Consider reference frames A, B, and C, where B is obtained by

rotating A around the Euler axis {nA2B}A by the Euler angle θA2B and C is obtained by rotating B around

the Euler axis {nB2C}B by the Euler angle θB2C . With the notation described in Section 5.2.1, the relative

attitude of B with respect to A and of C with respect to B are described by quaternions qA2B and qB2C

respectively. By using Equation 5.5, the two attitude quaternions can be written as:

qA2B =

[
cos(θA2B/2)

sin(θA2B/2){nA2B}A

]

qB2C =

[
cos(θB2C/2)

sin(θB2C/2){nB2C}B

]

By means of quaternion multiplication it is possible to immediately find quaternion qA2C expressing relative

attitude of reference frame C with respect to frame A, as shown in Equation 5.9.

qA2C = qA2BqB2C (5.9)

Quaternion conjugation and quaternion inversion

Consider the arbitrary quaternion q ∈ R4, with real part q0 and vector part q̄: the complex conjugate of q -

denoted as q∗ - is immediately identified by Equation 5.10.

q∗ =

[
q0

−q̄

]
(5.10)

Quaternion inversion is another important mathematical operation when it comes to quaternion algebra.

Consider the arbitrary quaternion q ∈ R4: the inverse of q - denoted as q−1 - is identified via Equation 5.11

[61].

q−1 =
q∗

‖q‖2
(5.11)

By multiplying an arbitrary quaternion with its inverse, the result is the identity quaternion, a peculiar unit

quaternion which has unitary real part and null vector part. It is worth noting that - when considering

quaternions as means of expressing relative attitude as per Equation 5.5 - the identity quaternion indicates

that the two reference systems being considered are actually aligned, as it is obtained only when setting

the Euler angle θ to zero.

q−1q = qq−1 =


1

0

0

0

 (5.12)

Better analysing Equation 5.11, it is immediate to notice that - for a unit quaternion - the inverse q−1 and

the complex conjugate q∗ are the same.

Quaternion inversion is also relevant in the context of attitude representation. Consider for example the

quaternion qA2B , which expressed the attitude of reference frame B with respect to frame A: the inverse

quaternion q−1
A2B is still a unit quaternion and it represents the relative attitude of frame A with respect to

frame B [64]. Using the quaternion notation discussed in Section 5.2.1, it follows that:

q−1
A2B = qB2A =

[
cos(θB2A/2)

sin(θB2A/2){nB2A}B

]
(5.13)
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Active and passive rotations

With the introduction of quaternions as means of attitude representation, interest in their for coordinate

transformation rose and intuitive formulations for the application of rotations were identified. Here the

more relevant operations for the application of rotation will be presented, providing clear mathematical

formulas for the application of both active and passive rotations via unit quaternions: in the interest of

brevity proof for these mathematical operations will not be discussed, but note that further information and

clear mathematical derivations may be found in [61, 63, 62].

Active rotations (also known as point rotations or vector rotations) are mathematical operations which

allow for the rotation of a point (or a vector) in a fixed coordinate system. Active rotations are especially

useful when trying to determine the coordinates of a point after a certain rotation has been applied to it.

Consider vector v ∈ R3 with its coordinates expressed in reference frame A: using the notation discussed

in Section 5.2.1 this quantity would be expressed as {v̂}A. Let r ∈ R3 be the result of rotating v around the

unit vector {nv2r}A by angle θv2r, such that the quaternion describing this rotation is:

qv2r =

[
cos(θv2r/2)

sin(θv2r/2){nv2r}A

]

Expressing v and r as pure quaternions, the coordinates of {r}A may then be calculated by applying the

active rotation operator, as shown in Equation 5.14.[
0

{r}A

]
= qv2r

[
0

{v}A

]
q∗
v2r (5.14)

Passive rotations (also known as coordinate frame rotations, or more simply frame rotations) are

mathematical operations that allow for the rotation of the coordinate frame in which a vector is expressed.

Passive rotations are especially useful when trying to express the coordinates of a vector, know in a certain

reference frame, in another reference frame.

Consider vector v ∈ R3 of know coordinates in reference frame A, expressed as {v}A. Let B be the

reference frame obtained by rotating A around the unit vector {nA2B}A by angle θA2B, such that the

relative attitude of B with respect to A may be expressed via the quaternion:

qA2B =

[
cos(θA2B/2)

sin(θA2B/2){nA2B}A

]

Expressing v as a pure quaternion, the coordinates of v in coordinate frame B (i.e.: {v}B) may then be

calculated by applying the passive rotation operator, as shown in Equation 5.15.[
0

{v}B

]
= q∗

A2B

[
0

{v}A

]
qA2B (5.15)

5.2.3. Equivalent quaternions: error representation and unwinding
A final important concept when discussing quaternions, especially in the context of attitude representation,

is the concept of equivalent quaternions. To properly introduce them, consider the reference reference

systems A and B, with B obtained by performing a right-hand rotation of A around the Euler axis nA2B by

the Euler angle θA2B . As per Equation 5.6, the relative attitude of B with respect to A is expressed by the

following quaternion.

qA2B =

[
cos(θA2B/2)

sin(θA2B/2){nA2B}A

]
(5.16)

Notice that rotating around a certain axis by a certain angle is exactly the same as rotating by a negative

angle about the negative axis [65]. With this in mind, letting C be the result of rotating A around the axis
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nA2C = −nA2B by the explementary angle θA2C (such that θA2B − θA2C = ±2π when |θA2C | ≤ 2π [64]), it

follows naturally that the reference systems B and C will have the same final attitude. From Equation 5.6

and considering θA2C = 2π − θA2B , the following relation for equivalent quaternions is derived:

qA2C =

[
cos(θA2C/2)

sin(θA2C/2){nA2C}A

]
=

[
cos((2π − θA2B)/2)

sin((2π − θA2B)/2){−nA2B}A

]

=

[
− cos(θA2B/2)

sin(θA2B/2){−nA2B}A

]
= −qA2B

(5.17)

With the considerations discussed above, it follows that for every unit quaternions q there exists and

equivalent quaternion −q that expresses the same relative attitude via a different rotation.

In the specific context of control systems, equivalent quaternions are especially important for the

purpose of attitude error representation; to clearly understand this, consider a simple generic control

scenario. Let B be the body frame of the aircraft, E to be the local NED frame and D to be the desired

attitude of the aircraft: the objective of the control system is to move B such that it becomes aligned with

D. To perform its task, the control system must first quantify the difference in B and D, which will then

be used to generate appropriate control inputs for the helicopter. With the notation introduced in Section

5.2.1, the relative attitudes of B and D with respect to E are described by quaternions qE2B and qE2D

respectively, and - as per Equations 5.9 and 5.13 - the quaternion describing the relative attitude of D with

respect to B is given by Equation 5.18.

qB2D = qB2EqE2D = q−1
E2BqE2D (5.18)

As per the concept of equivalent quaternions, qB2D and −qB2D effectively express the same relative

attitude and as such they may both be used to define the attitude error for the control system. Even so, the

two quaternions encode fundamentally different information: qB2D represents a rotation by angle θB2D

around the unit vector nB2D, while −qB2D represents a rotation by the explementary angle of θB2D around

the opposite vector −nB2D.

This ambiguity is the root cause of the ”unwinding phenomenon” [66], a peculiar behaviour shown by

quaternion-controlled vehicles in which the vehicle is driven to perform an unnecessarily long rotation

around the target attitude, producing large control displacements and not minimising the angle of rotation.

For the purpose of developing a control system, it is essential to define the desired attitude change in a way

that allows for a rotation by the smallest possible angle. This condition is achieved when the Euler angle of

rotation θ is less than π radians [67, 64], which - for a generic unit quaternion q = [q0, q̄]
T - translates to

the condition:

q0 ≥ 0 (5.19)

With Equation 5.19, a clear condition to discern which equivalent quaternion allows for the smallest desired

rotation has been identified.

5.3. Comparison of various attitude parametrizations
With the information presented above, quaternions have been discussed from a mathematical standpoint

and a focus on their relevance for the field of attitude representation has been given, discussing in particular

the specific application of different mathematical operators (such as quaternion multiplication, inversion,

and active and passive rotations) for the purpose of practical attitude representation and reconstruction.

To add to the information presented thus far in the chapter, this final section aims at comparing quaternions

with other more common methods of attitude representation, briefly discussing each of them individually

and clearly pointing out their advantages and disadvantages over each other. To do so, three forms

of attitude representation will be considered: Euler angles, DCM, and quaternions. Note that, for the

purpose of this thesis, only an overview of the specific formulation will be provided, discussing only the

more relevant information and mathematical equations. The following sources provide a more complete

and in-depth background [68, 69, 70], that is only mentioned here for completeness and to provide other

more in-depth resources.
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5.3.1. Euler angles
Of the three methods of attitude parametrization considered, Euler angles are the most intuitive and most

commonly used. The fundamental concept behind Euler angles is that any orientation in 3D space is

uniquely described by an ordered sequence of rotations around certain axis, also referred to as a ”set”.

Overview and fundamental equations

In the field of aerospace engineering the most common set of rotations in the so-called [3-2-1] Euler angles

set, which is defined as follows. Consider a vehicle aligned with the local North-East-Down (NED) reference

frame E , such that B0 ≡ E : first rotate the vehicle around the z-axis of B0 by the yaw angle ψ, obtaining the

reference frame Bz; then, rotate the current body reference frame Bz around its y-axis by the pitch angle θ,
obtaining the reference frame By; finally, rotate By around its x-axis by the roll angle φ, obtaining the final

attitude of the body reference frame B. The numbers identifying the rotation sequence correspond to the

respective axis of the intermediate reference systems produced by the rotation sequence, and because of

this the [3-2-1] Euler angles set in sometimes also referred to as a [Z-Y-X] rotation set.

As an example Figure 5.2 shows a [3-2-1] Euler rotation set, with first a rotation of 45° around the z-axis

of B0, then a rotation of 30° around the y-axis of Bz and finally a rotation of 40° around the x-axis of By,
obtaining the final reference frame B.
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yE
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y′E

z′E≡z′E

ψ x′
E

z′E

θ

x”E

y′E≡y”E

z”E

y”E

z”E

ϕ

xB≡x”E

yB

zB

Figure 5.2: Reference system rotation using a [3-2-1] Euler angles set

To translate a vector from the NED reference frame E to the body reference frame B, rotation matrices

are used. The mathematical expression of the rotation matrix to be used depends heavily on the specific

Euler angles set considered: for the purpose of translating a vector from E to B, the rotation matrix to be

used is given in Equation 5.20 [68] (for readability c and s respectively indicate the cosine and the sine of

the subscript Euler angle):

R
[321]
E2B =

 cψcθ sψcθ −sθ
−sψcθ + cψsθsφ cψcφ + sψsθsφ cθsφ

sψsθ + cψsθcφ −cψsφ + sψsθcφ cθcφ

 (5.20)

where the superscript [321] indicates the Euler angles set and the subscript E2B the starting and final

reference frames. Note that the matrix describing the opposite transformation, i.e.: R
[321]
B2E , is simply the

inverse of R
[321]
E2B. It is also with noting that since the matrix R

[321]
E2B is an orthonormal matrix, the inverse

operation is trivial as the inverse of an orthonormal matrix is the same as its transpose. These considerations

are summed in Equation 5.21.

R
[321]
B2E =

(
R

[321]
E2B

)−1

=
(
R

[321]
E2B

)T
(5.21)

Other equations of great importance for the purpose of control system design are the time-propagation

equations, which relate the time rate of change of the specific parametrization used to the body rates of

the vehicle considered. For the Euler angles, the time-propagation equations are the following [71].

d

dt

 φ

θ

ψ

 =

 1 0 − sin(θ)

0 cos(φ) sin(φ) cos(θ)

0 − sin(φ) cos(φ) cos(θ)


−1  p

q

r

 (5.22)
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where [ p, q, r ] are the body-fixed rotation rates.

Advantages and disadvantages

While Euler angles provide an intuitive way of expressing attitude and are commonly used in many control

systems, there are a number of disadvantages related to them that make their use undesirable, especially

in the context of high-performance control systems and especially aerobatic control systems.

To start, in order to make the Euler angles parametrization unique, the values that may be assumed by

the Euler angles are limited as shown in Table 5.1.

Table 5.1: Limits of the Euler angles parametrization

Angle Limits

φ [−π, π]
θ [−π/2, π/2]
ψ [−π, π]

These limitations are strictly related to the problem of ”gimbal lock”, a singularity that occurs when two

of the three rotation axes align reducing the degrees of freedom from three to two. This is especially

problematic in aerospace applications, where vehicles perform continuous, arbitrary rotations. When

gimbal lock occurs, control algorithms based on Euler angles can lose the ability to distinguish between

different orientations, leading to instability or control failure.

Another criticality related to the Euler angles parametrization is the frequent use of transcendental func-

tions. Even considering the simple operation of propagating attitude measurements in time, the resulting

functions are highly non-linear and heavily rely on the use of matrix inversion (which is a very computation-

ally expensive and prone to inaccuracies) and on transcendental functions (shown clearly in Equation 5.22).

5.3.2. Direction Cosine Matrix (DCM)
To solve some of the problems of Euler angles, the Direction Cosine Matrix approach is here presented.

Overview and fundamental equations

The fundamental idea behind this representation is that, instead of identifying the Euler angles [φ, θ, ψ]
and then calculating the rotation matrix, an alternative way of expressing the attitude of a body is by direct

calculation of the coefficients of the matrix operator defined in Equation 5.20. This rotational matrix is

referred to as the Direction Cosine Matrix (DCM).

By directing calculating the coefficients of the DCM, the time propagation equation for the Euler angles is

not applicable directly and needs to be redefined. Once again considering [p, q, r] to be the body-fixed

rotation rates of the vehicle considered and considering R
[321]
E2B to be the DCM calculated at a certain time

step, the time propagation equations of the rotation matrix is derived to be [71]:

d

dt
R

[321]
E2B =

 0 r −q
−r 0 p

q −p 0

R[321]
E2B (5.23)

Advantages and disadvantages

While the fundamental advantage of the DCM parametrization is that the transformation matrix is formed

directly, without any need for additional transcendental equations, there are many disadvantages that may

discourage from its use.
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Two immediately noticeable disadvantages of this approach are a loss of interpretability and a higher

computational load. Firstly, by directly constructing the transformation matrix, the immediate interpretation

of the Euler angles is lost in favour of a more mathematically robust implementation, which causes the

information of the DCM to need further transformation if its data is to be displayed to pilots or other

operators in real time. Secondly, another immediate disadvantage of this parametrization is the fact that,

while Euler angles use only three parameters to completely and uniquely define the attitude of a body, the

DCM uses nine, making its calculation and storage much more computationally expensive.

A final disadvantage of this attitude parametrization is the added susceptibility to error propagation

and the expensive correction procedure. The fact that the DCM uses 9 unique elements to represent

information that the Euler angles display with only 3 independent parameters suggests that there are

6 additional constraining equations that the DCM must adhere to: these constraints serve to ensure

that the matrix computed is always orthonormal. These additional constraints are highly nonlinear and

computationally expensive, and in practice, mean that to have a proper representation of attitude, the DCM

must be continually normalised and re-orthogonalized.

5.3.3. Quaternions
With the criticalities of the Euler angles and the DCM parametrizations defined, quaternions are introduced

as an alternative method for attitude parametrization that is capable of overcoming a great number of the

disadvantages discussed thus far.

Overview and fundamental equations

The role and applicability of quaternions in the context of attitude representation has been extensively

discussed in Sections 5.1 and 5.2, with their fundamental idea being connected to Euler’s rotation theorem

and their fundamental mathematical operations defined, with their relevance clearly outlined in the context

of attitude calculations.

An additional equation not discussed thus far for the quaternions is the time propagation, which allows

to express the derivative of a quaternion as a function of its current value and of the body rates of the

vehicle considered. Considering qE2B to be the quaternion describing the relative attitude of the body-fixed

reference frame B with respect to the local NED frame E , and [p, q, r] to be the body-fixed rotation rates of

the vehicle, the time-propagation equation that allows to express q̇E2B as a function of qE2B and [p, q, r]
is [64]:

q̇E2B =
1

2
qE2B

[
0

ω

]
(5.24)

where ω is the body rate vector [p, q, r]T and [0, ω]T represents the pure-quaternion interpretation of the

body-rate vector in 3D space.

An additional advantage of quaternions is the possibility of using the spherical linear interpolation

(SLERP) algorithm for efficient and smooth interpolation. Consider the control task of driving the aircraft

from its initial attitude to a desired attitude, expressed respectively by quaternions qE2B and qE2D. By

using the SLERP algorithm, the shortest rotation between the two quaternions is easily identified, as shown

in Equation 5.25.

q̂(l) =
sin ((1− l)θ)

sin(θ)
qE2B +

sin (lθ)

sin(θ)
qE2D (5.25)

where θ = arccos (qE2B · qE2D) and l is an interpolating parameter varying between 0 and 1. This highly
efficient interpolation method allows for a smooth and singularity-free transition between two generic

orientations represented by quaternions.

For attitude interpolation, the DCM parametrization also supports smooth, singularity-free attitude

reconstruction techniques, but these are fairly complex and computationally expensive [72], making the

procedure costly and with limited effectiveness (especially when compared to the immediacy of the SLERP

algorthm for quaternions).
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Advantages and disadvantages

Similarly to the DCM, the lack of an immediately understandable interpretation of quaternions is indeed a

disadvantage: while the axis-angle interpretation of the rotation shown in Equation 5.5 is easy to under-

stand, the presence of transcendental functions and the complexity of the rotation makes understanding

the attitude of the vehicle in 3D space fairly difficult for the pilot or for other operators, especially in real-time

applications.

Even so, the advantages of quaternions are clear to understand. First of all, the attitude is completely

defined by only 4 parameters, making storing and computational load comparable to those of Euler angles

and much more efficient that DCM. Further, the only additional constraint introduced by quaternions is

the fact that - to properly express an attitude - the quaternion must always remain normalised, which is

computationally more advantageous than performing the re-orthogonalization required by the DCM.

Another clear advantage of the quaternions over Euler angles is the lack of nonlinear and transcendental

functions when discussing quaternion rotations (Equations 5.14 and 5.15) and quaternion multiplications

(Equation 5.7), making rotation concatenations and time-propagation of quaternions extremely efficient,

compact, and robust to computational errors and numerical integration.

One of the most essential qualities of quaternions is the complete avoidance of gimbal lock. This makes

quaternions especially useful when dealing with manoeuvres that require large changes in the vehicle’s

attitude - such as aerobatic control of aircraft and spacecraft attitude control - as there is no need for

additional switching logic. By parametrizing the attitude in 3D space using 4 parameters, quaternions

provide a smooth, non-singular representation of any possible orientation in 3D space, even for large

or continuous rotations. Finally, the SLERP algorithm allows for smooth, singularity-free interpolation of

attitudes.

With this, an exhaustive comparison between the three attitude parametrization methods has been

presented, showcasing the advantages of quaternions over the Euler angles and DCM representation in

terms of numerical stability, memory usage, and computational efficiency, motivating and further advocating

for their use in the modelling and control of complex and agile systems. A summary of the comparison

between quaternions, Euler angles, and DCM is provided in Table 5.2.

Table 5.2: Comparison of attitude representation methods

Feature Euler Angles Direction Cosine

Matrix

Quaternions

Number of

parameters

3 9 4

Singularities Yes No No

Computational

efficiency

Low (transcendental

functions, matrix

inversion)

Low (9 elements,

normalization)

High (simple algebra,

normalization only)

Storage efficiency High Low High

Ease of interpretation Intuitive (roll, pitch,

yaw)

Non-intuitive Non-intuitive

Time propagation Complex (nonlinear) Simple (matrix

multiplication)

Simple (linear in

quaternion)

Numerical

robustness

Poor (singularities,

nonlinearity)

Poor (requires

re-orthogonalization)

High (only

normalization

required)

Interpolation support Difficult and

non-smooth

Not practical SLERP: smooth and

efficient
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5.4. Relation between quaternions and Euler angles
Now that quaternions have been defined in terms of their mathematical operations and their role in

attitude representation has been discussed and their advantages over the more conventional Euler angles

parametrization highlighted, here the equations that relate quaternions and Euler angles will be presented

(considering a [3-2-1] rotation set). These equations allow for a robust conversion between the two attitude

parametrizations, which is especially useful as Euler angles remain the preferred parametrization for

intuitive interpretation and visualization of an aircraft’s attitude in terms of roll, pitch, and yaw.

5.4.1. Euler angles to quaternion conversion
The fundamental equations governing the conversion between Euler angles and quaternions do not

require any specific additional formula, as they can easily be derived from the concatenation of subsequent

rotations via quaternion multiplication.

Considering a [3-2-1] rotation set with angle sequence [ψ, θ, φ ] describing the rotation between the

NED reference frame E to the body reference frame B, the equivalent quaternion qE2B describing this

rotation may be obtained by using the following equation:

qE2B =


cos(ψ/2)

0

0

sin(ψ/2)




cos(θ/2)

0

sin(θ/2)

0




cos(φ/2)

sin(φ/2)

0

0



=


cos(φ/2) cos(θ/2) cos(ψ/2) + sin(φ/2) sin(θ/2) sin(ψ/2)

sin(φ/2) cos(θ/2) cos(ψ/2)− cos(φ/2) sin(θ/2) sin(ψ/2)

cos(φ/2) sin(θ/2) cos(ψ/2) + sin(φ/2) cos(θ/2) sin(ψ/2)

cos(φ/2) cos(θ/2) sin(ψ/2)− sin(φ/2) sin(θ/2) cos(ψ/2)


(5.26)

A more complete source detailing all possible rotation sequences and the respective equations for the

quaternion elements can be found in [73]. Even so, note that Equation 5.26 is essentially a quaternion

multiplication of the three intermediate Euler angles rotations (appropriately ordered as to represent the

specific Euler angles set considered): qE2Bz
describing a rotation of ψ around the reference system E ’s

z-axis, qBz2By
describing a rotation of θ around Bz ’s y-axis, and qBy2B describing a rotation of φ around

By ’s x-axis, with the quaternions having the following equations.

qE2Bz
=


cos(ψ/2)

0

0

sin(ψ/2)

 qBz2By
=


cos(θ/2)

0

sin(θ/2)

0

 qBy2B =


cos(φ/2)

sin(φ/2)

0

0


With the equations described above, the three successive rotations shown in Figure 5.2 can now be

condensed into a single rotation around an axis, as shown in Figure 5.3.
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Figure 5.3: [3-2-1] Euler angles rotation shown in Figure 5.2 condensed in a single rotation using the

appropriate quaternion



5.4.2. Quaternion to Euler angles conversion
The inverse conversion, expressing the equations that allow to express Euler angles as a function of

the quaternion elements, requires the solution of the non-linear system of equations of Equation 5.26.

These equations are highly non-linear and heavily dependant on the specific Euler angles set, making their

solution non-trivial. Given this, here only the results for the specific [3-2-1] Euler angles set will be provided

(amore general algorithm discussing the solution for any arbitrary sequence of rotationmay be found in [74]).

Let the relative attitude of B with respect to E be determined by the quaternion qE2B . Consider that the

same relative attitude may be obtained via a [3-2-1] rotation sequence with the following rotations angles:

ψ around the z-axis of the first reference system E , θ around the y-axis of the first reference system Bz, φ
around the x-axis of the last reference system By to obtain the final attitude B. The equations that allow to

find the Euler angles [φ, θ, ψ ] from the quaternion components [ q0, qi, qj , qk ] are shown in Equations

5.27 to 5.29.

φ = atan2
(
2 (q0qi + qjqk) , 1− 2

(
q2i + q2j

))
(5.27)

θ = −π/2 + 2 atan2

(√
1 + 2 (q0qj − qiqk

)
,
√
1− 2 (q0qj − qiqk)

)
(5.28)

ψ = atan2
(
2 (q0qk + qiqj) , 1− 2

(
q2j + q2k

))
(5.29)
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6
Analysis of the Bo105 model

This chapter will delve in a description of the Bo105 helicopter and of the available 6 DOF model, providing

a complete overview of their characteristics and emphasising their qualities. In order to do so, the chapter

will be divided in two major sections: Section 6.1 will delve in an analysis of the Bo105 linearizations,

presenting the available state-space models and -noting that the attitude representation was incorrect in

the original data- correcting the attitude representation part of the algorithm; finally, Section 6.2 will discuss

the linearized models form a control theory standpoint, performing a stability and modes analysis of the

system and discussing the system’s controllability and observability.

Additional considerations regarding the model analysis of the Bo105 helicopter are found in Appendix A.

In particular, in Section A.1, a description of the Bo105 helicopter from a mechanical and architectural

standpoint is provided to better contextualize the interest in this helicopter for agile flight applications.

Further, in Section A.2, a comparison between the pole maps of the available system-identified linearized

models and of a theoretical model is provided, highlighting the complexity of the system-identified model.

6.1. Discussion of the linearized model
The linearized models available for this study will be here presented and discussed, detailing their

characteristics and providing a discussion of their properties. To allow for an orderly discussion of the

topic at hand, the original raw data for the model will be presented and discussed, including a discussion

of the available states and linearization points. Afterwards, the presented data will be further analysed

and processed, with small modifications and corrections made. With the required modifications and

corrections performed, the model will be studied from a control theory standpoint, discussing crucial

aspects of observability and controllability, as well as an eigenmode analysis.

6.1.1. Description of the linearized model
At the start of the thesis study, two system-identified linearized models of the Bo105 helicopter were made

available at the following velocities: 0 and 65 kn (approximately 33 m/s). A description of these models -

together with some of the data used for their implementation - is provided in the manuals [76, 77] and the

general characteristics of the models will be reported here for completeness. These linearized models

are a set of system-identified models developed by DLR Braunschweig and are provided only in the form

of a pair of matrices, corresponding to the A and B matrices of a state-space system. Considering the

general equation given in Equation 6.1 - where x indicates a vector containing the states of the system, u

the system’s inputs, and y the system’s outputs - to complete the state-space system the remaining C and

D matrices need to be defined. {
ẋ = Ax+ Bu

y = Cx+ Du
(6.1)

For the purpose of this thesis, the state-space representation was considered to have full-state feedback,

meaning that for all flight configurations C and D matrices were considered to be respectively and identity

and a zero matrix of appropriate sizes: C is therefore set to be a nx × nx identity matrix and D and nx × nu
zero matrix, with nx being the number of states and nu the number of inputs. With this consideration, it

follows naturally that y = x. With the models defined, their analysis is carried out.
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Figure 6.1: A Canadian Coast Guard MBB Bo105 over St. Lawrence River [75]

6.1.2. Model inputs, states, and outputs
The available Bo105 models are multiple input-multiple output (MIMO) systems with 12 states x and 4

inputs u. Table 6.1 shows the states (and outputs) of the system. Note that the system used in this analysis

only details the rigid-body states and does not include the higher-order dynamics associated with the rotor:

this absence, while it would reduce model accuracy, still allows for the development of a control system

based on the study of the helicopter response in terms of its rigid body characteristics [78, 79], controlling

the system’s orientation and velocity.

Table 6.1: States and outputs of the linearized model

Description Symbol Unit

Surge velocity u [m/s]

Sway velocity v [m/s]

Heave velocity w [m/s]

Roll rate p [rad/s]

Pitch rate q [rad/s]

Yaw rate r [rad/s]

Roll angle φ [rad]

Pitch angle θ [rad]

Yaw angle ψ [rad]

Roll acceleration ṗ [rad/s2]

Pitch acceleration q̇ [rad/s2]

Yaw acceleration ṙ [rad/s2]

Table 6.2 shows the inputs of the model. As the Bo105 is a conventional helicopter, the inputs vector is

comprised of four commands corresponding respectively to the longitudinal and lateral cyclic, the collective

and the pedal pilot commands. Of these, the first three commands interact with the main rotor (MR),

changing the pitch of the blade by interacting with the feathering hinge via the swashplate. Complementing

their action, the last command δp interacts with the blades of the tail rotor (TR), changing their pitch and as

such impacting the moment around the helicopter’s body z axis. All inputs are expressed as percentages

of the total available deflection, and their allowable ranges are specified in the table:
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Table 6.2: Inputs of the linearized model

Description Symbol Unit Range

Longitudinal cyclic δx [%] -100% pulled +100% pushed

Lateral cyclic δy [%] -100% left +100% right

Collective δ0 [%] 0% pushed down +100% pulled up

Pedal δp [%] -100% pushed left +100% pushed right

As per the model description, it is also worth noting that the input vector is not the commanded deflection

of the control surfaces, but instead the deflections of the pilot’s control stick. While conventionally the

actuator’s dynamics would have to be introduced as a separate dynamic subsystem, with this configuration

the dynamics of the actuators are already included in the model and no further modifications are required

to account for them. Nonetheless, while these dynamics are not to be explicitly modeled, they are still

implied in the model and will be described in Section 6.1.3.

6.1.3. Implied actuator dynamics
As discussed above, the available linearized models of the Bo105 helicopter already account for actuator

dynamics, which are implied in the state-space representations. Even so, the dynamics of the helicopter’s

actuator represent an important part of the system’s representation and, as such, their characteristics are

briefly explained hereafter.

The relation between the pilot’s stick deflections [δx, δy, δ0, δp] and the actuator’s demands [θ0, θs, θc,
θp] as described as per Equations 6.2 to 6.5, where the subscripts U and L indicate respectively the upper

and lower deflections limits of the respective control surface defined in [76] to represent the actuator’s

allowed deflections (values are shown in Table 6.3).

θ0 = (θ0U − θ0L)
δ0
100

+ θ0L (6.2)

θs = (θsU − θsL)
δx
100

+ θsL (6.3)

θc = (θcU − θcL)
δy
100

+ θcL (6.4)

θp = (θpU − θpL)
δp
100

+ θpL (6.5)

The dynamics of the control surfaces - according to [77] - may be defined as either first or second order

transfer functions [76], shown respectively in Equations 6.6 and 6.7 and Equations 6.8 and 6.9, where

τ indicates the first-order actuator time constant, while ε and ω0 indicate respectively the second order

damping factor and natural frequency (the values of these factors are found in Table 6.4).

θ̂X =
θX

τMR s+ 1
X = {0, s, c} (6.6)

θ̂p =
θp

τTR s+ 1
(6.7)

θ̂X =
θX

s2 + 2 εMR ω0MR s+ ω2
0MR

X = {0, s, c} (6.8)

θ̂p =
θp

s2 + 2 εTR ω0TR s+ ω2
0TR

(6.9)

In the context of the thesis, the models were already linearized and the first-order formulation was

implemented in the model definition process. Notice that the first and second-order transfer functions map
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similar frequency responses of the system, essentially acting as delays to the control actuator’s response

when manipulating the position of the swashplate and the tail rotor collective.

With the relation between the pilot’s inputs and the actuator deflections clarified, the cyclic pitch at the blade

can be obtained from a phase combination of the cyclic, collective and pedal values as per Equation 6.10

(where Ψ0 is the cycling phasing angle).
θBl,0

θBl,s

θBl,c

θBl,p

 =


1 0 0 0

0 cos(Ψ0) sin(Ψ0) 0

0 − sin(Ψ0) cos(Ψ0) 0

0 0 0 1



θ̂0

θ̂s

θ̂c

θ̂p

 (6.10)

With this, the relation between the helicopter’s commands and the pitch at the blades has been clarified.

These relations were used in the identification of the model and were naturally implied in the model made

available at the start of the thesis.

Table 6.3: Upper and lower deflection limits

Description Symbol Value Unit

Collective

Upper limit θ0U 18.00 [deg]

Lower limit θ0L 2.00 [deg]

Longitudinal cyclic

Upper limit θsU -5.50 [deg]

Lower limit θsL 10.00 [deg]

Lateral cyclic

Upper limit θcU 4.00 [deg]

Lower limit θcL -6.00 [deg]

Pedal

Upper limit θpU -6.00 [deg]

Lower limit θpL 18.00 [deg]

6.1.4. Analysing and processing of the model data
The discussion carried out so far has presented the Bo105 helicopter and has introduced the characteristics

of its available linearized models. With the linearized systems studied in terms of their inputs and outputs,

the data of the linearized model was further analysed to better understand its dynamic characteristics.

From this initial analysis, two observations were made which prompted the modification of the system’s

original A and B matrices: these modifications will be described and justified in this section.

The objective of these adjustments was to refine the matrix representation to better reflect the physical

dynamics of the helicopter, ensuring the model’s suitability for subsequent control analysis and design

tasks. To this end, two modifications were implemented:

1. removal of the yaw rate derivative ṙ and its associated dynamics.

2. modification of the attitude submatrix to incorporate trigonometric dependencies on the trim angles.

These refinements ensure that the linearized model captures the relevant dynamics accurately, excluding

states that do not contribute meaningfully to the system’s evolution while enhancing the precision of attitude

coupling effects around the trim condition.

Removal of the ṙ state
Upon analysis of the original A and B matrices, it was observed that the entries interacting with the yaw

rate derivative state ṙ were entirely populated with zeros, indicating that ṙ had no effect on, nor was it

affected by, other states or inputs in the linearized model at the specified operating points (hover and 65
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Table 6.4: Control system data [76]

Description Symbol Value Unit

Cyclic phasing angle Ψ0 10.0 [deg]

Main rotor actuator rate limit λMRlim 180 [deg/s]

Tail rotor actuator rate limit λTRlim 360 [deg/s]

First order assumption

Main rotor actuator

time constant
τMR 0.040 [ s]

Tail rotor actuator

time constant
τTR 0.020 [ s]

Second order assumption

Main rotor actuator

natural frequency
ω0MR 80 [rad/s]

Main rotor damping factor εMR 0.4 [−]
Tail rotor actuator

natural frequency
ω0TR 120 [rad/s]

Tail rotor damping factor εTR 0.5 [−]

knots). In state-space representation, a row and column of zeros in the state matrix generally imply that

the respective state is dynamically decoupled from the system, meaning that it neither influences nor is

influenced by the dynamics of other states in this configuration. Consequently, retaining ṙ in the state

vector introduces an unnecessary dimension to the system, complicating the model without contributing to

its accuracy, while also hindering the controllability and observability of the state-space system since an

internal dynamic structurally unrelated to the rest of the system is introduced.

To streamline the model and focus on the dynamics directly relevant to the helicopter’s behaviour in

hover and forward-flight conditions, the ṙ state was removed from the A and B matrices. This operation

entailed eliminating both the row and column associated with ṙ in A and the respective row of the B matrix,

resulting in a reduced-order system. By removing this extraneous state, the dimensionality of the A matrix

is decreased to reflect only the essential dynamics, facilitating a more focused and efficient approach to

control design.

Note that, as the size of the state and input matrices was changed by this transformation, this change

should also be reflected on all other matrices as to keep the state-space system coherent. In particular, in

an effort to maintain the full-state feedback characteristic mentioned above, the C and D matrices had to

be redefined to be respectively and identity matrix of size (nx − 1) × (nx − 1) and a zero matrix of size

(nx − 1)× nu. As all following calculations in this text will consider this modified form of the state-space

system, the values of nx and nu used hereafter will always refer to the number of states and inputs of the

modified system respectively.

Modification of the attitude submatrix

When generating a linearized model, the rates of change of the attitude angles [φ̇, θ̇, ψ̇] are derived from

kinematic relations starting from the trim values of the attitude Euler angles and the helicopter’s body rates

[p, q, r]. Letting φ̄ and θ̄ respectively be the trim point’s roll angle and pitch angle, these angular rates are

related to the body rates [p, q, r] in proximity of the trim point by Equation 6.11:φ̇θ̇
ψ̇

 =

1 sin
(
φ̄
)
tan
(
θ̄
)

cos
(
φ̄
)
tan
(
θ̄
)

0 cos
(
φ̄
)

− sin
(
φ̄
)

0 sin
(
φ̄
)
sec
(
θ̄
)

cos
(
φ̄
)
sec
(
θ̄
)

pq
r

 (6.11)

This relationship describes how the helicopter’s body rates contribute to the changes in its attitude, and

the matrix of Equation 6.11 (computed with the appropriate trim attitude angles) is included in the state
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space model’s A matrix to indicate the dynamics of the attitude states.

In the initial formulation of the A matrix, the submatrix representing these kinematic relationships was

set as an identity matrix in both the hover and forward flight trim. This simplification caused the model to

overlook the coupling between roll and pitch rates, leading to a misrepresentation of the dynamics near the

trim point. This meant that changes in roll angle did not reflect any dependency on pitch orientation and

vice versa, leading to errors in the predicted response of the helicopter’s attitude, particularly in scenarios

requiring precise control.

To address this issue, the above-mentioned identity matrix was replaced with the correct kinematic

relationship that incorporates the relevant trigonometric terms. Specifically, the modified submatrix includes

terms such as cos
(
θ̄
)
, sin

(
φ̄
)
, and cos

(
φ̄
)
, where θ̄ and φ̄ represent the trim values of the pitch and roll

angles, respectively. These trigonometric terms reflect the influence of the aircraft’s orientation on its

attitude dynamics, accurately capturing the way in which the body rates p and q interact with the helicopter’s
current orientation. The corrected submatrices are non-dimensional and are shown in Equation 6.12 for

hover and Equation 6.13 for 65 knots.φ̇θ̇
ψ̇

 =

1 −1.53 · 10−5 6.73 · 10−2

0 1 2.28 · 10−4

0 −2.28 · 10−4 1


pq
r

 (6.12)

φ̇θ̇
ψ̇

 =

1 −1.26 · 10−4 5.22 · 10−3

0 1 2.42 · 10−2

0 −2.42 · 10−2 1


pq
r

 (6.13)

By replacing the identity matrix with the correct kinematic terms, the modified A matrices now accurately

reflect the dependency of the attitude dynamics on the trim angles φ̄ and θ̄. This change improves the

model’s fidelity by incorporating the coupling effects that naturally arise between the pitch and roll dynamics,

providing a more realistic representation of the helicopter’s attitude around the available trim points. This

modification is particularly beneficial for control analysis, as it ensures that the model more closely captures

the helicopter’s true response to control inputs, enabling more accurate prediction and tuning of control

strategies around the trim condition.

6.2. Stability and controllability analysis of the plant
With the model discussed and the modifications applied to it detailed in Section 6.1, an analysis of the

linearized model was performed to understand the eigenmodes of the problem and the characteristics of

the system itself. To perform this analysis, this section will have the following structure: first Section 6.2.1

will deal with the modal analysis of the system, analysing the model by looking at its poles and zeros and

providing an interpretation of the modes themselves; afterwards, Section 6.2.2 will study the controllability

and observability of the model, discussing its effects on the system’s properties.

6.2.1. Stability and modes analysis
Having access to the linearized state-space models of the system, an analysis of the stability of the plant

can be performed by simply analysing its poles (i.e.: the eigenvalues of the A matrix). As a general

condition for stability, a dynamic state-space system can be considered asymptotically stable if all the

poles of the system have a negative real part [41]. The poles of the system at both available trim points are

shown in Figure 6.2, with a detail of the modes shown in Figure 6.3 to better distinguish the poles around

the origin: in this figure, the primary modes of the system were identified by analysing the eigenvector

components and also comparing this model with the theoretical formulation identified by Padfield in [80]

(see also Appendix A). Table 6.5 details all the eigenvalues for both linearizations.
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Figure 6.2: Pole map of the Bo105 model

Figure 6.3: Pole-zero map of the Bo105 model (detail)

Immediately by looking at the graphs it can be seen that the hover model of the Bo105 is unstable as there

is a pair of complex-conjugate poles with real part greater than 0. Conversely, the stability of the 65 kn

model appears to be improved, as the root locus corresponding to the unstable complex-conjugate pair

appears to have moved to have a negative real part. Note that - although the asymptotically unstable

modes of the hover model become naturally stable in the forward flight configuration - the state-space

system linearized at 65 kn can only be considered marginally stable because of the presence of a pole at

the origin of the complex plane. To provide a proper interpretation of the modes of the system and what

they represent, it is crucial to understand which states are primarily involved in their motions. To achieve

this, an eigenvector analysis is appropriate.
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Table 6.5: Eigenvalues of the hover and 65 kn linearizations

Hover [rad/s] 65 kn [rad/s]

0 0

-6.23+13.36i -9.88+10.35i

-6.23-13.36i -9.88-10.35i

-3.44+3.5i -5.5+1.83i

-3.44-3.5i -5.5-1.83i

-0.49+0.66i -0.39+2.22i

-0.49-0.66i -0.39-2.22i

0.27+0.46i -0.03+0.08i

0.27-0.46i -0.03-0.08i

-0.48 -0.49

-0.11 -0.01

The purpose of the eigenvector analysis is to identify the states that primarily contribute to the modes

identified by each of the eigenvalues. As eigenvectors are generally vectors of complex numbers, they

ought to be analysed by accounting for the effects of the real and imaginary parts: to do this, the elements

of the eigenvectors associated with each eigenvalue have been expressed as a magnitude-phase pair.

Let v ∈ Cnx×1 be the eigenvector associated with the generic pole λ ∈ C such that:

λv = Av (6.14)

then, each entry vi of the eigenvector v can be expressed as a combination of two real values: the

amplitude (or modulus) ρi and the phase angle (or - more simply - the phase) εi such that vi = ρie
iεi . The

magnitude and phase of each eigenvector entry can be defined as per the following equations:

ρi =
√

Re(vi)2 + Im(vi)2 (6.15)

εi = arctan

(
Im(vi)

Re(vi)

)
(6.16)

With the magnitude and phase angles defined, the contribution of each state to the various modes can

be quantified. Figures 6.4 and 6.5 show the results of the eigenvector analysis: each plot corresponds to a

certain eigenvalue λ indicated at the top of the graph, the vertical blue bar correspond to the modulus of

each entry, while the number written on top of each bar corresponds to the phase ε (expressed in degrees).

The state corresponding to each modulus-phase pair is found on the x axis of each plot (note the absence

of ṙ, as per Section 6.1).

Further observations can be made by comparing the identified pole loci of Figure 6.2 and Figure 6.3

with the eigenvector analysis. By comparing the two complementary information, a more complete

understanding of the behaviour of the Bo105 helicopter model can be obtained. To start, from Figure 6.3

an initial understanding of the system’s modes can be obtained. To start, the two complex-conjugate pole

pairs can be identified to be the phugoid and the Dutch roll.

The phugoid, which is unstable in hover (with an eigenvalue of 0.27± 0.46i) but later becomes stable at

65kn (with an eigenvalue of −0.03 ± 0.08i), is generally associated with an excitation of the u, w, and θ
states (producing the longitudinal oscillatory motion typically associated with the phugoid); the eigenvector

analysis of the identified model differs from the expected theoretical behaviour, with the largest contribution

being in the surge u sway v velocity states when in hover and with a very large contribution in u at 65kn,
suggesting that for this specific model a higher coupling between the longitudinal and lateral dynamics

is to be expected. Analysing the contribution of the attitude angles, the largest activation is measured

in θ and ψ, but their overall contribution to the eigenvector remains minimal. Additionally, phugoids in

helicopter flight tend to become gradually more stable at moderate speeds, as is confirmed by theoretical

models such as the Helisim [80]: although generally phugoids tend to remain unstable for helicopters, the
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Figure 6.4: Eigenvector analysis: model trimmed at hover

stabilization of these poles in the 65kn linearization remains consistent with the theoretical behaviour of

helicopter pole loci.

Another point of comparison between the two models is the Dutch roll mode, which is typically a stable

lateral mode that is primarily identified by an out-of-phase combination of the yaw ψ and the bank φ angles.

The modes of the identified model more closely matching the behaviour associated with the Dutch roll

are eigenvalues −0.49 ± 0.66i in hover and −0.39 ± 2.22i at 65kn, which from the eigenvector analysis

show large contributions of the surge and sway velocities u and v, alongside the expected out-of-phase

participation of the roll and yaw attitude angles φ and ψ. As expected, this mode remains stable around

the flight envelope.

By studying the results of the eigenvector analysis and comparing them with the pole-zero maps

identified above it becomes immediately apparent that the two pole pairs with higher natural frequencies

identified in Figure 6.2 primarily excite the rotational accelerations states ṗ and q̇: this is to be expected,

as poles with higher natural frequency components will indicate higher-frequency dynamics, which is

consistent with the rotational acceleration terms.

The eigenvector analysis also highlighted a clear interplay between the longitudinal and the lateral states

for the available modes, suggesting a highly-coupled behaviour of the system, which will become more

relevant in the controller development and manoeuvre simulation sections of the thesis. In particular, the

three velocity channels seem to have significant out-of-phase coupling across all modes, with both lower

and higher frequency modes showing significant cross-excitations.
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Bo105 eigenvectors analysis - 65 kn
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Figure 6.5: Eigenvector analysis: model trimmed at 65 kn

Overall, the pole loci of the available identified Bo105 models show some congruency with the expected

behaviour of a typical helicopter, with complex pole pairs identifying the phugoid and the Dutch roll, and

with other uncoupled modes encoding excitation on the heave and on the roll states. All modes show

significant cross-excitations between the longitudinal and lateral states, suggesting complex behaviours

and possible cross-activations, which will become more relevant in the study of the response of the system

and the controller development and will be further discussed in Part V.

To expand upon the analysis of the modes of the system, in Section A.2 a comparison is carried out

between the identified pole loci and modes of the identified system and a theoretical model of the Bo105

helicopter obtained using the Helisim general model [80], highlighting the similarities and differences

between the modes of the systems.

With the system’s linearized model defined and studied via a stability and modal analysis, other relevant

characteristics of the linearized model - its controllability and its observability - will be discussed in Sec-

tion 6.2.2, as they are fundamental information for the design of the control system and the characterization

of the model.

6.2.2. Controllability and observability analysis
Another set of essential characteristics for the analysis and synthesis of a control system are the concepts

of controllability and observability. These allow to determine whether the states of the helicopter can

be effectively controlled and measured using available inputs and outputs, and the knowledge of these

properties is instrumental in the choice of the appropriate control architecture.
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Controllability - generally speaking - means that it is always possible to steer the states of a system from

an arbitrary initial condition to an arbitrary final condition using the admissible sets of controls in a finite

time [81, 82]. Whether a given state-space system is controllable or not can be evaluated by analysing the

controllability matrix MC(A,B), defined as:

MC =
[
B |AB |A2B | . . . |Anx−1B

]
(6.17)

where A and B are the states and inputs matrices of the state space system, and nx is the number of

states of the system. In particular, a state-space system is defined ”controllable” when the controllability

matrix MC has full row rank.

Observability, on the other hand, is generally defined to indicate the ability of all states of the system to

be precisely identified from the information of the available system’s inputs and outputs [82]. Similarly to

the controllability property, observability may be measured by studying the observability matrix MO(A,C):

MO =



C

CA

CA
2

...

CA
nx−1


(6.18)

with A and C being the respective matrices of the state-space models. Similarly to controllability, a system

is said to be ”observable” if the observability matrix has full column rank.

The procedure for evaluating controllability and observability described above was performed on

the available linearizations to evaluate the system’s controllability and observability, showing that for all

linearizations, the system is both controllable and observable. Other than contextualizing the linearized

models in terms of their general characteristics, these characteristics are highly relevant for the development

of an appropriate control system, as the fact that the system is both controllable and observable suggests

the possibility of investigating Linear Quadratic control techniques, which are highly advantageous in the

context of MIMO systems.



7
Conversion of the Bo105 model to the

quaternion formulation

So far, the Bo105 aircraft has been introduced from a structural and mathematical standpoint, analysing

the characteristics that make this specific helicopter fit for agile manoeuvering and then presenting the

available system linearizations. In particular, the system has been discussed from a modelling and control-

theory standpoint, describing it as a MIMO system with highly-coupled modes that is both controllable and

observable. With the choice of the Bo105 helicopter for agile manoeuvering and its available linearized

models described, to work towards a seamless integration of the available system with the quaternion

attitude parametrization, it is essential for the models to be modified to make use of this parametrization

instead of conventional Euler angles.

In an effort to allow for a seamless inclusion of the quaternion-based control system, in this chapter, the

linearized models will be reviewed and modified such that their internal representation of the attitude also

uses the quaternion formulation introduced in Chapter 5. With the process described hereafter, existing

Euler angles-based models can effectively be converted to quaternion-based models, facilitating the study

of possible quaternion controller formulations.

To discuss and motivate this procedure, the chapter will be divided in two major sections: to start,

Section 7.1 will propose a methodology for the conversion of the model, starting from the process of

linearization and appropriately manipulating the entries of the state-space matrices to have change the state

representation; afterwards, Section 7.2 will discuss the validity of the results of the conversion, comparing

the responses of the two systems to certain inputs and comparing the eigenvalues and eigenvectors to

verify the correct conversion of the model.

7.1. Conversion of the model
This section will discuss the linearization logic and the modification of the state-space matrices to have the

internal attitude representation be represented by means of quaternion elements qE2B = [ q0, qi, qj , qk ]
instead of Euler angles [φ, θ, ψ ].

To perform this task, it is first essential to consider what each entry of the state-space matrices represent,

as to appropriately modify them to include the desired attitude representation. Considering ẋ = f(x,u) to
be the general non-linear system of dynamic equations of the Bo105 helicopter and y = g(x,u) to be the

system of output equations, the state-space matrices are defined as follows:

A =
df

dxT

∣∣∣∣
x̄,ū

=


df1
dx1

. . .
df1
dxnx

...
. . .

...
dfnx
dx1

. . .
dfnx
dxnx


∣∣∣∣∣∣∣∣∣∣
x̄,ū

(7.1)
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B =
df

duT

∣∣∣∣
x̄,ū

=


df1
du1

. . .
df1
dunu

...
. . .

...
dfnx
du1

. . .
dfnx
dunu


∣∣∣∣∣∣∣∣∣∣
x̄,ū

(7.2)

C =
dg

dxT

∣∣∣∣
x̄,ū

=


dg1
dx1

. . .
dg1
dxnx

...
. . .

...
dgny
dx1

. . .
dgny
dxnx


∣∣∣∣∣∣∣∣∣∣
x̄,ū

(7.3)

D =
dg

duT

∣∣∣∣
x̄,ū

=


dg1
du1

. . .
dg1
dunu

...
. . .

...
dgny
du1

. . .
dgny
dunu


∣∣∣∣∣∣∣∣∣∣
x̄,ū

(7.4)

To explain the procedure followed to achieve this conversion, the following steps will be performed: first, the

columns of the A and C matrices will be modified to allow for the substitution of the Euler angles in the state

vector; then, the rows of A and B will be modified to include the time propagation equations for the quater-

nions. Note that - for the purpose of verification - the modifications applied will first of all aim at changing

the state vector x but not the output vector y to later compare the outputs of the system to the same inputs.

After the verification is complete, the C and D matrices will be re-included separately, and they will be

kept to be respectively an identity matrix and a zero matrix of appropriate size to allow for full state feedback.

As an additional point of note, while the quaternions are composed of four elements, the modification

of the state-space matrices will only aim at introducing three in the state-space vector. This is because of

the presence of the additional internal unitary constraint shown in Equation 5.4: because of this internal

constraint, were all four quaternion elements to be introduced in the state vector the system would loose

its controllability property, as the states could not - in principle - be steered to achieve an arbitrary final

configuration and the controllability property would therefore be hindered. With this in mind, the state-space

vector will be modified to only include the quaternion vector elements [ qi, qj , qk ]; the remaining element

q0 can always be reconstructed by applying the unitary norm condition.

To modify the columns of the A matrix to include the quaternion terms in the state vector, the matrix

entries that need to be changed are those related to the Euler angles. In particular, the columns:

df

dφ

∣∣∣∣
x̄,ū

df

dθ

∣∣∣∣
x̄,ū

df

dψ

∣∣∣∣
x̄,ū

These need to be changed to express the derivatives of the non-linear dynamic equations with respect to

the quaternion elements. To this end, leveraging the chain rule and the linearity of the derivation operator,

the new columns of the A matrices may be defined as follows:

df

d qi

∣∣∣∣
x̄,ū

=
df

dφ

dφ

d qi

∣∣∣∣
x̄,ū

+
df

dθ

dθ

d qi

∣∣∣∣
x̄,ū

+
df

dψ

dψ

d qi

∣∣∣∣
x̄,ū

(7.5)

df

d qj

∣∣∣∣
x̄,ū

=
df

dφ

dφ

d qj

∣∣∣∣
x̄,ū

+
df

dθ

dθ

d qj

∣∣∣∣
x̄,ū

+
df

dψ

dψ

d qj

∣∣∣∣
x̄,ū

(7.6)

df

d qk

∣∣∣∣
x̄,ū

=
df

dφ

dφ

d qk

∣∣∣∣
x̄,ū

+
df

dθ

dθ

d qk

∣∣∣∣
x̄,ū

+
df

dψ

dψ

d qk

∣∣∣∣
x̄,ū

(7.7)

where the partial derivatives of the Euler angles with respect to the quaternion elements are derived

from Equations 5.27 to 5.29. Note that to effectively apply this modification the derivatives of the Euler

angles with respect to the quaternion elements have to be linearized around the trim point: to identify the
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equilibrium points of the quaternion components, the following equation may be used:

q̄E2B =


cos
(
ψ̄/2

)
0

0

sin
(
ψ̄/2

)


cos
(
θ̄/2
)

0

sin
(
θ̄/2
)

0



cos
(
φ̄/2

)
sin
(
φ̄/2

)
0

0

 (7.8)

with [ φ̄, θ̄, ψ̄ ] being the attitude at the trim point considered. With the columns of A modified as such, all

the dependencies of the dynamic equations on the Euler angles [φ, θ, ψ ] have effectively been modified

to instead show dependency on the states. These modification were also applied in an identical manner to

the respective columns of the C matrix.

With these initial modifications applied, the shape of the state-space matrices is now the following:

u̇
...

ṙ

φ̇

θ̇

ψ̇

p̈
...

r̈



=


df1
du

. . .
df1
dr

df1
d qi

. . .
df1
d qk

df1
d ṗ

. . .
df1
d ṙ

...
. . .

...
...

. . .
...

...
. . .

...
dfnx
du

. . .
dfnx
dr

dfnx
d qi

. . .
dfnx
d qk

dfnx
d ṗ

. . .
dfnx
d ṙ


∣∣∣∣∣∣∣∣∣∣
x̄,ū



u
...

r

qi

qj

qk

ṗ
...

ṙ



+


df1
d δx

. . .
df1
d δp

...
. . .

...
dfnx
d δx

. . .
dfnx
d δp



∣∣∣∣∣∣∣∣∣∣∣
x̄,ū


δx
...

δp



(7.9)



u
...

r

φ

θ

ψ

ṗ
...

ṙ



=


dg1
du

. . .
dg1
dr

dg1
d qi

. . .
dg1
d qk

dg1
d ṗ

. . .
dg1
d ṙ

...
. . .

...
...

. . .
...

...
. . .

...
dgnx
du

. . .
dgnx
dr

dgnx
d qi

. . .
dgnx
d qk

dgnx
d ṗ

. . .
dgnx
d ṙ


∣∣∣∣∣∣∣∣∣∣
x̄,ū



u
...

r

qi

qj

qk

ṗ
...

ṙ



+


dg1
d δx

. . .
dg1
d δp

...
. . .

...
dgnx
d δx

. . .
dgnx
d δp



∣∣∣∣∣∣∣∣∣∣∣
x̄,ū


δx
...

δp



(7.10)

After having modified the columns of A and C appropriately, to fully include the quaternion elements as

states the rows of the A and B matrices have to be modified to remove the Euler angles dynamic equations

and instead include the time-propagation equations of the selected quaternion entries [ qi, qj , qk ]. The
time propagation equations are described in Equation 5.24: these have to be linearized around the trim



7.2. Verification of the conversion 67

point, where the linearized values of the quaternion elements may be found as shown in Equation 7.8.

Letting h(x,u) be the function describing the time-propagation equations of the selected quaternion entries

such that:  q̇iq̇j
q̇k

 = h(x,u) =
1

2

 q0 −qk qj

qk q0 −qi
−qj qi q0


pq
r

 (7.11)

by introducing them in the A and B matrices from Equation 7.9, the final modified matrices are shown in

Equation 7.12. In this final modified state-space system, the output equations remain the same as shown

in Equation 7.10.



u̇
...

ṙ

q̇i

q̇j

q̇k

p̈
...

r̈



=



dfu
du

. . .
dfu
dr

dfu
d qi

. . .
dfu
d qk

dfu
d ṗ

. . .
dfu
d ṙ

...
. . .

...
...

. . .
...

...
. . .

...
dfr
du

. . .
dfr
dr

dfr
d qi

. . .
dfr
d qk

dfr
d ṗ

. . .
dfr
d ṙ

dhi
du

. . .
dhi
dr

dhi
d qi

. . .
dhi
d qk

dhi
d ṗ

. . .
dhi
d ṙ

...
. . .

...
...

. . .
...

...
. . .

...
dhk
du

. . .
dhk
dr

dhk
d qi

. . .
dhk
d qk

dhk
d ṗ

. . .
dhk
d ṙ

dfṗ
du

. . .
dfṗ
dr

dfṗ
d qi

. . .
dfṗ
d qk

dfṗ
d ṗ

. . .
dfṗ
d ṙ

...
. . .

...
...

. . .
...

...
. . .

...
dfṙ
du

. . .
dfṙ
dr

dfṙ
d qi

. . .
dfṙ
d qk

dfṙ
d ṗ

. . .
dfṙ
d ṙ



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
x̄,ū



u
...

r

qi

qj

qk

ṗ
...

ṙ



+



dfu
d δx

. . .
dfu
d δp

...
. . .

...
dfr
d δx

. . .
dfr
d δp

dhi
d δx

. . .
dhi
d δp

...
. . .

...
dhk
d δx

. . .
dhk
d δp

dfṗ
d δx

. . .
dfṗ
d δp

...
. . .

...
dfṙ
d δx

. . .
dfṙ
d δp



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
x̄,ū


δx
...

δp



(7.12)

7.2. Verification of the conversion
With the models appropriately modified to introduce quaternion elements as part of the state vector, the

results of the conversion have to be verified to ensure the system’s characteristics are not modified by the

mathematical operations described above. This verification will be performed in two ways: Section 7.2.1

will compare the eigenvalues of the system and the system’s controllability and observability properties,

while Section 7.2.2 will compare the responses of the system to a set of simple inputs. By performing this

verification, the model can be assessed to have been accurately converted and the implementation of the

quaternion controller can be performed. Note that, for ease of understanding, in this section the Euler

angles system will be referred to as SSEul and the converted system will be referred to as SSquat.
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7.2.1. Comparison of the systems’ eigenvalues
Here, the eigenvalues and eigenvectors of the two state-space systems - the original Euler angles SSEul
described and modified in Section 6.1 and the quaternion converted system SSquat shown in Section 7.1 -

will be compared. To achieve a correct conversion of the model, as the quaternion and the Euler angles

parametrizations essentially codify the same information, the dynamics of the two systems should remain

identical and, as such, the eigenvalues and their respective eigenvectors should not show significant

changes.

The eigenvalues of the converted quaternion system SSquat have been evaluated and are shown in

Figure 7.2 for both the hover and 65 knots linearizations. The numerical values of the eigenvalues are also

shown explicitly in Table 7.1. As an additional point of comparison, the eigenvectors for the respective

systems can similarly be compared, with the results of the eigenvector analysis of the SSquat state-space
system shown in Figures 7.3 and 7.4.

Comparing the eigenvalues of the hover and 65 knots linearizations for SSquat with those for SSEul shown
in Figure 6.2 and Table 6.5, it can be noticed that the systems prior and after the conversion shows the

same eigenvalues for both the linearizations, suggesting that the conversion is effective and has been

performed correctly. The same considerations can also be done when comparing the eigenvectors of the

systems at the different linearizations. Further, the fact that the eigenvector components corresponding to

[φ, θ, ψ] in the SSEul system match exactly the ones of [ qi, qj , qk] in the SSquat system suggests that the

chosen quaternion elements have a good correspondence with the respective Euler angles.

The fact that eigenvalues and eigenvectors match before and after the conversion suggests that the

procedure has successfully transitioned the system’s internal attitude states to the quaternion parametriza-

tion without altering its intrinsic dynamic properties. This result serves as an important initial validation of

the methodological robustness of the conversion process, and also confirms that the system’s fundamental

characteristics remain intact. To provide further validation of the proposed analytical process, in the next

section the success of this conversion will be verified by comparing the responses of the original and con-

verted systems to the same input signals, thereby demonstrating that the internal attitude parametrization

has been preserved.

Figure 7.1: Pole-zero map of the SSquat system: hover and 65 kn linearizations
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Figure 7.2: Pole-zero map of the SSquat system: hover and 65 kn linearizations (detail)
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Figure 7.3: Eigenvector analysis of SSquat: model trimmed at hover
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Bo105 SS_quat eigenvectors analysis - 65 kn
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Figure 7.4: Eigenvector analysis of SSquat: model trimmed at 65 kn

Table 7.1: Eigenvalues of the hover and 65 kn linearizations for SSquat

Hover [rad/s] 65 kn [rad/s]

0 0

-6.23+13.36i -9.88+10.35i

-6.23-13.36i -9.88-10.35i

-3.44+3.5i -5.5+1.83i

-3.44-3.5i -5.5-1.83i

-0.49+0.66i -0.39+2.22i

-0.49-0.66i -0.39-2.22i

0.27+0.46i -0.03+0.08i

0.27-0.46i -0.03-0.08i

-0.48 -0.49

-0.11 -0.01

7.2.2. Comparison of the systems’ response
After confirming that the eigenvalue spectra and corresponding eigenvector orientations of the state-space

systems SSEul and SSquat are congruent, the subsequent step involves verifying the practical implications

of this equivalence. Within this section, the time responses of both models are compared when subjected

to identical inputs. This analysis is pivotal, as it reinforces the accuracy of the conversion and assures that
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the quaternion-based representation faithfully replicates the dynamic performance of the original Euler

angle-based system, thereby setting the stage for appropriate controller evaluation.

To isolate and examine each input channel’s impact on the system, a set of distinct square pulse

signals was applied as inputs to the models. These pulse signals were designed to excite one control input

channel at a time while keeping the other channels inactive. This selective excitation method allows for

a clear interpretation of the system’s response to each individual input, ensuring that any discrepancies

between the Euler and quaternion models would be readily observable. Each input pulse was configured

with the following characteristics:

• Pulse Duration: 6s

• Amplitude: 10%

• Initial delay: 2s

• Simulation duration: 10s

The amplitude was chosen to be an additional 10% deflection to command a small yet sufficient excitation

to produce discernible dynamic responses without pushing the system into very non-linear behaviours.

Further, given the trim points of the inputs shown in Table 7.2, the selected amplitude is adequate as it

allows to keep the actuators far from the saturation point, improving the fidelity of the simulations.

Table 7.2: Trim points of the state-space inputs

Input Hover trim point [%] 65 kn trim point [%]

δx 50.68 2.40

δy 34.82 5.17

δ0 38.26 50.61

δp 45.83 -9.97

Given that both SSEul and SSquat have four control inputs, four separate simulations were performed,

each applying the square pulse to one of the inputs while maintaining the other three at zero. This testing

approach ensures that each input channel’s influence is isolated, making it easier to compare the responses

of the two models on a per-channel basis. As an example of the provided inputs, Figure 7.5 shows the

shape of the square pulse inputs described: in the figure, only the δx channel is activated, while the other

three channels are kept inactive.
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Figure 7.5: Example input activating the δx channel
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For brevity and readability, the results of the above-mentioned simulations (as well as a graphical

representation of the other inputs selected) are shown Appendix B. Here, only the responses to the input

shown above will be presented to show the validity of the model, with Figure 7.6 and Figure 7.7 showing

the time-responses of the SSEul and SSquat systems, linearized in hover and at 65 knots respectively.

The results reveal that the time responses of the two systems overlap exactly: this outcome confirms that

the conversion to an internal quaternion attitude representation was executed successfully and that all

dynamic characteristics have been faithfully maintained.
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Figure 7.6: Time response of the hover state-space: input applied on δx
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Figure 7.7: Time response of the 65 kn state-space: input applied on δx



7.3. Concluding remarks
This chapter has shown the conversion of the state-space system from an internal Euler angle parametriza-

tion of the attitude to a quaternion representation. This was achieved not by acting directly on the non-linear

model or by re-defining it, but instead it was achieved by modifying the available linearization points and

changing the internal configuration of the model. This procedure is inexpensive and shows good results,

providing an effective and efficient way of modifying the state-space systems to achieve a conversion of

the internal attitude parametrization.

The procedure developed to obtain such results is based entirely on mathematical considerations and as

such is based entirely on analytical considerations without needing any experimental data (other than the

data used for the identification of the already existing model). To further verify the correctness of the study,

the original and the modified systems were compared for both the available linearizations in their modes

and characteristics (such as their controllability and observability) and also in their dynamic response to

selected inputs, showing good results that suggest the validity of the approach developed.

With the conversion to quaternions discussed in Section 7.1 and verified in Section 7.2, the rest of the

report will only use the appropriately modified SSquat system (which will be from now on simply referred to

as ”state-space model”): as the rest of the thesis aims at investigating the implementation of quaternion

control for the purpose of autonomous agile manoeuvering, the system that will be considered is the

linearization at 60 knots, to allow for a more accurate representation of the characteristics of the helicopter

during flight. In particular, the A and B matrices will be the ones discussed in Equation 7.12, while - to

maintain the full state feedback hypothesis made in Section 6.1 - the C and D matrices will now be reset to

be an identity matrix and a zero matrix of appropriate sizes.
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Controller development
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8
Control system architecture

With the model studied and augmented in Part IV, to properly evaluate the capabilities of quaternion-based

control, a control system was constructed to allow the helicopter to track references in attitude, velocity,

and position appropriately. This chapter aims at presenting and discussing the developement of the control

system architecture, providing an explanation of its individual components, and detailing their contribution

to the achievement of the desired tracking performance.

To provide a comprehensive discussion of the control system, this chapter is divided as follows. To

start, Section 8.1 will provide a general overview of the control system architecture, highlighting the

inputs and outputs of each major block to provide a high-level understanding of how each subsystem

interacts with the rest of the system. Following this, Section 8.2 will discuss in greater detail the attitude

controller architecture, justifying the choice of the LQI framework and providing a more detailed view

of its inner workings. With the attitude controller presented, the velocity and heave controllers will be

discussed in Section 8.3, showing how they contribute to the generation of appropriate control signals and

attitude references. Finally, Section 8.4 will conclude the presentation of the control system architecture

by presenting the structure of the outer-loop position controller.

8.1. Control structure overview
The control architecture selected for the Bo105 helicopter is structured as a cascade of three nested loops,

as illustrated in Figure 8.1. This allows for a combination of desired feedforward signals (identified by the ?

superscript) produced by the autopilot with corrective signals (identified by the c subscript) produced by

previous loops of the control system, thus enabling the obtainment of a faster response while integrating

the online-calculated corrective signals to ensure the model follows a desired trajectory.
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Figure 8.1: Block diagram of the complete control system

To better understand the overall controller architecture and the role of each block in controlling the

system, a brief explanation of the components is provided hereafter, starting from the innermost loop and

moving outwards.
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The innermost loop consists of an attitude controller that regulates the helicopter’s orientation qE2B to

track a reference attitude qr, which is determined by the velocity controller. To follow this attitude, the

controller commands deflections in the helicopter’s longitudinal and lateral cyclic [δx, δy] and in the pedal δp.
The innermost control loop is typically more exposed to the couplings of the plant, as it is in direct contact

with it. Because of this reason, the innermost loop will be developed using an optimal control technique,

the Linear Quadratic Integral (LQI), as it allows for a structured way of developing controllers for MIMO

systems and naturally enables an attitude tracking behaviour.

The second loop is composed of the velocity controller, which performs two concurring tasks: horizontal

velocity control and altitude control. The horizontal velocity controller is tasked with ensuring that the

helicopter’s horizontal velocity can track a reference horizontal velocity signal by generating an appropriate

reference attitude qr for the inner loop. The altitude controller is instead tasked with ensuring the vertical

velocity of the helicopter tracks an appropriate reference signal by directly commanding the collective

δ0. For both controllers, the generation of the appropriate reference values and outputs is determined by

combining the feed-forward reference signals for the attitude (q?E2B) and the velocity (V?) provided by the

autopilot module with a velocity correction signal (Vc) produced by the outer loop position controller. The

velocity controller will be based on the Proportional-Integral architecture, as it is a widely used controller

technique that is flexible and capable of reducing steady-state errors.

The outermost loop is composed of a position controller, which takes as inputs the helicopter’s current

position X (computed by the ”Position Calculation” block) and the desired position value X? (provided by

the autopilot). This last control loop will be constructed using a set of simple on-axis proportional con-

trollers, enabling the generation of representative velocity correction signals without requiring unnecessary

integrator-like behaviours that would needlessly slow the system’s response.

With a high-level understanding of the control system architecture now provided, the following sections

will discuss in more detail the functioning of the individual controller blocks and loops, detailing their

structures with the aid of appropriate block diagrams and motivating the approach used for the definition of

each loop’s controllers.

8.2. Attitude controller architecture
The first loop directly acting on the helicopter model is the attitude loop, which has the purpose of

generating appropriate command signals along the helicopter’s input channels u = [δx, δy, δ0, δp] such that

the helicopter’s attitude qE2B will follow a certain reference attitude qr. Given that the main helicopter

model is a MIMO system and considering the controllability and observability characteristics identified in

Section 7.2 and accounting for the need of a reference tracking action while stabilizing the system, the

controller structure chosen is the Linear Quadratic Integral (LQI).

To properly introduce and justify the choice of this architecture, Section 8.2.1 will first highlight the

reasons behind the choice of the LQI controller structure, emphasising its ability to handle MIMO systems

while providing good stability margins. Then, Section 8.2.2 will briefly explain the mathematical foundations

of the LQI controller architecture, discussing its relation with the more commonly used Linear Quadratic

Regulator (LQR) and discussing its implementation in this specific case.

8.2.1. Motivation of the LQI architecture
The choice of the LQI structure has a number of significant advantages, which make it very desirable for

the control of complex and coupled systems. Here, the choice of the LQI architecture for the attitude inner

loop is motivated by providing a concise description of three fundamental beneficial characteristics of

this approach: inherent decoupling, guaranteed robustness margins, and the presence of an integral action.

To start, LQI control is well-suited for controlling MIMO systems as it inherently balances control effort

and system performance while handling the coupling between multiple inputs and outputs [83, 84]. This is

especially useful in this case, as helicopters are heavily coupled systems which often require the addition of

cross-fed signals in the controllers or of a control allocation module to obtain good performance. By means

of the LQI approach in the innermost loop, the attitude controllers computed are capable of inherently
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decoupling the system’s motion, facilitating the augmentation of the controller via the introduction of

additional outer loops.

Additionally, LQI controller architectures have the advantage of producing controllers which can

guarantee good phase and gain margins even in the case of MIMO systems [85], providing a measure of

robustness which other control architecture would not be able to naturally obtain. This characteristic is

especially useful in the innermost loops, which are in direct contact with the plant and are tasked with

controlling the vehicle’s faster dynamics: by guaranteeing good stability margins at the plant, the inner loop

provides a stable and responsive foundation that enhances the overall robustness and performance of the

control architecture [86, 84]. This ensures that rapid changes and disturbances are effectively managed at

the lowest level, allowing the outer loop to focus on higher-level objectives - such as trajectory tracking

and mission-specific tasks - without being destabilized by internal oscillations or delays.

Further, compared to the more commonly used LQR control architecture, the added integral action of

the LQI compensates for constant disturbances and model uncertainties, making it reliable for complex

control applications in which reference-tracking manoeuvres have to be performed. The integral action

extends the state-space by incorporating an additional state for the accumulated error (as explained in

Section 8.2.2), reducing steady-state errors and ensuring that the system can maintain accurate reference

tracking even during longer and more complex manoeuvres.

In light of the reasons discussed above, the LQI is a highly desirable control system architecture for

the innermost attitude loop of the system, as it allows for decoupling of selected control signals while

guaranteeing good stability margins and having an improved tracking action thanks to the integral action

on selected signals. With the choice of the LQI architecture now justified, a mathematical description of

the LQI control methodology will be provided in Section 8.2.2.

8.2.2. Description of the LQI implementation
Here a mathematical description of the LQI framework is provided, detailing the construction of the controller

and the fundamental motivations behind its functioning. Note that, as this controller is applied on a linearized

model, all variables discussed in this section are actually variations on the trim values: for the purpose of

readability, here the notation ∆ will be omitted.

To provide a clear explanation of the process used in developing the LQI controller, this section will first

explain the baseline modifications applied to the original quaternion state-space system presented in

Equation 7.12 to obtain the formulation shown in Equation 8.4. With the model modification applied, the

LQI cost minimization method is briefly introduced and the equations to determine the controller K are

presented. Concluding this section, a graphical representation of the complete integrated closed-loop

system is presented in Figure 8.3 to clearly show the introduction of the LQI controller. Notice that here

only a description of the controller implementation is provided. The tuning procedure and its results are

explained in Section 9.2

As discussed previously, LQI is essentially a natural extension of the more commonly used LQR

framework [87]: while the latter method is based on the use of a full-state feedback controller to achieve

state regulation, LQI pairs this proportional action with an integral tracking action to ensure that a specially

computed performance signal yr(t) tracks a user-defined reference signal r(t), where the performance

signal is defined as a linear combination of the base system’s states.

yr = Crx (8.1)

Given that the purpose of the attitude controller is ensuring that the attitude quaternion elements included

in the state vector [qi, qj , qk] track appropriate reference values, the matrix Cr was computed such that:

yr =

qiqj
qk

 (8.2)
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To effectively ensure that the performance signal yr tracks a user-defined reference signal r, LQI aims

at introducing a performance metric xi as an additional state of the system: by then applying the LQR

framework to this augmented system, the regulatory action will ensure that the new error state is driven

to zero, allowing for proper tracking of a reference signal [41, 88]. To this end, the performance metric

presented above has the following equation:

xi(t) =

∫ t

t0

(r(τ)− yr(τ)) dτ (8.3)

As this new state essentially represents the integral of the tracking error, by regulating it to 0 the LQI

controller is capable of ensuring reference tracking while maintaining the guaranteed stability margins of

the traditional LQR controller.

Another point of note for the development of the attitude controller, as discussed in the previous

sections, is the fact that the attitude loop is only tasked with modifying the helicopter’s pedal and cyclic

commands to attain the desired body orientation in space, while the task of maintaining the desired vertical

speed is assigned to the velocity controller by means of a direct feed-forward to the collective control. To

achieve this, in addition to the inclusion of xi, another modification was applied to the baseline system

presented in Equation 7.12 is the removal - for the purpose of tuning - of the the collective input δ0 and
the heave velocity state w by appropriately removing the respective rows and columns of the A and B
matrices. By applying this modification, the controller computed using LQI will not drive any additional

control effort towards the regulation of the heave state and will only have access to the longitudinal and

lateral cyclic commands and the pedal.

Applying both modifications to the system, the resulting augmented state-space model has the following

state-space representation:[
ẋ(t)

ẋi(t)

]
=

[
A 0

−Cr 0

][
x(t)

xi(t)

]
+

[
B

0

]
u(t) +

[
0

I

]
r(t) (8.4)

where A and B are the state and input matrices of the original system given in Equation 7.12 that have

had the heave state and the collective control input removed, and Cr is the matrix used in Equation 8.1 to

isolate the attitude states to be controlled.

A graphical representation of the system augmentation described above is shown in Figure 8.2. It is shown

that the resulting system has two external inputs: u representing the control inputs to the system, and r

representing the generated reference values. Matrices B and A are the state and input matrices of the

baseline system, while Cr is the output matrix described in Equation 8.1.

B (sI−A)
−1 Cr

1

s

x(t) yr(t)
−

ẋi xiu

x0

r

+

Figure 8.2: Block diagram of the augmented system

Note that the system here described was also analysed in terms of its controllability and observability in a

method analogous to the ones discussed in Section 6.2: the results showed that the system maintained its

controllability even after the transformation, meaning that the LQR control framework could indeed be

applied to the augmented system [41, 89].
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With the system modified as discussed, a controller can be produced by applying the LQR method to

the augmented system. This revolves around the minimization of a Quadratic Performance Index (QPI), a

convex cost function described by the equation:

J =

∫ ∞

0

(
x(τ)TQx(τ) + u(τ)TRu(τ)

)
dτ (8.5)

where x represents the augmented system’s state vector, u represents the augmented system’s input

vector, and Q and R are user-defined performance matrices that aim at balancing the control system’s

performance and control effort: in particular, Q is a symmetric positive semi-definite matrix that penalizes

deviations from the trim state and R is a symmetric positive-definite matrix that penalizes large control

activation. By selecting appropriate values for Q and R the performance of the closed-loop system can

be modified ensuring a good balance between control effort and performance. By selecting Q and R to

have these characteristics, the optimization problem shown in Equation 8.5 is well posed and allows for

the identification of an optimal stabilizing feedback controller K.

With the optimization problem described above, the equation for the controller K that can minimize the

QPI is [90, 91]:

K = R−1BTP (8.6)

where P is the solution to the Algebraic Riccati Equation (ARE):

ATP+ PA− PBR−1BTP+Q = 0 (8.7)

The controller K obtained with this procedure is then included in the augmented control system via negative

feedback. Notice that, to emphasize the presence of the integral action, the controller will be represented

as K = [Kx,Ki] [87].

u = −[Kx,Ki]

[
x

xi

]
(8.8)

While Kx focuses on immediate dynamic performance (ensuring the system responds promptly), Ki serves

as a corrective mechanism that eliminates steady-state errors. This separation simultaneously allows

the achievement of a good transient response and long-term accuracy, which is particularly beneficial in

applications such as helicopter attitude control, where both quick responsiveness and precise steady-state

tracking are critical. The controlled system with the LQI attitude control loop implemented is shown in

Figure 8.3.

B (sI−A)
−1 Cr

1

s

−Kx

−Ki
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Figure 8.3: Block diagram of the controlled augmented system

8.3. Velocity ad heave controller architecture
Building upon the attitude controller implemented as discussed in Section 8.2, an additional outer loop

aimed at controlling the velocity signals of the helicopter is developed.

Here an overview of the velocity controller is provided: first, in Section 8.3.1 the use of Proportional-Integral

(PI) controllers is motivated, leveraging their flexibility and seamless integration with the inner attitude

loop; afterwards, a description of the implementation is provided in Section 8.3.2, showing the control

architecture of the system with this additional loop by means of an appropriate block diagram.
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8.3.1. Motivation the PI architecture
To take advantage of the stability and robustness provided by the inner LQI attitude loop, this second loop

makes use of PI controllers, leveraging their simplicity and widespread use in practical application. Here,

the choice of the PI controller framework is justified.

The decision to employ PI controllers in the velocity loop is primarily driven by their simplicity and

flexibility, which make them attractive for practical applications, as they are relatively easy to design and

tune. Because of these characteristics, PI controllers find many practical applications in all engineering

fields, making them a preferrable option over more complex design frameworks.

Further, PI controllers are especially useful when designing tracking controllers, as they are capable of

providing both an immediate correction through their proportional term while also integrating errors over

time via their integral action: this dual action is essential for compensating for persistent disturbances and

steady state errors, which might otherwise lead to sustained velocity errors causing deviations from the

desired trajectory

Moreover, the hierarchical control structure paired with the PI’s flexibility allow to fully leverage the reliable

and robust performance of the inner attitude loop, which is designed using an LQI controller. By using the

control architecture here presented, the velocity controller is capable of integrating seamlessly with this

robust inner loop, ensuring that any adjustments in velocity are accurately translated into corresponding

attitude changes. This integration results in a control system that is both resilient to disturbances and

capable of precise, responsive behavior.

Overall, the PI framework is a simple and effective solution, capable of achieving good tracking response

while having a simple architecture that can interface seamlessly with the previously-designed LQI attitude

controller: in light of these reasons. With the choice of the PI controller architecture now justified, an

in-depth description of the velocity controller implementation is discussed in Section 8.3.2.

8.3.2. Description of the controller implementation
As described in Section 8.1, this second loop can be divided in two parallel structures: a velocity controller

which aims at controlling the helicopter’s surge and sway velocities [u, v]B by generating an appropriate

reference attitude corrective signal qc, and a heave controller controlling the helicopter’s heave velocity

wB to maintain altitude.

This differentiation in the controls is primarily inspired by the approach used by human pilots when controlling

a helicopter: when human pilots wish to adjust horizontal velocity, they typically alter the helicopter’s attitude

to re-orient the main rotor’s thrust; conversely, adjustments in vertical velocity are generally achieved by

modifying the collective pitch directly.

A graphical representation of the interplay between these two controllers is provided in the block

diagram representation of Figure 8.4. In the figure, it can be seen that the reference velocity signals

Vr = [Ur, Vr,Wr] are obtained by summing a feed-forward velocity signal V? = [U?, V ?,W ?] generated by

the autopilot to a correction signal Vc = [Uc, Vc,Wc] generated by the outer-loop position controller such

that:

Vr = V? + Vc (8.9)

this configuration allows for an online correction of the velocity reference values to compensate for real-time

errors in the helicopter’s position, as the correction signals generated by the outer position loop are included

in the generation of the velocity reference.
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Figure 8.4: Block diagram of the velocity controller
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Another point of note is the reference frame in which the various signals are generated: while the

reference velocity signals generated with this approach are expressed in the global reference frame G,
before these are sent to the rest of the system they are converted to the current helicopter’s body frame

B by means of the ”Global-to-Body” coordinate rotation block, which rotates the coordinates to the body

frame by means of the quaternion passive rotation implemented in Equation 8.10.[
0

{V}B

]
= qG2B

[
0

{V}G

]
q−1
G2B (8.10)

where qG2B is the quaternion representing the relative attitude of the body reference frame B with respect

to the global reference frame G. Knowing the relative attitude of the NED reference frame E with respect to

the global reference frame G, the quaternion qG2B is obtained by means of the concatenation quaternion

rotations:

qG2B = qG2EqE2B (8.11)

From this, the reference signal is split between the horizontal velocity controller and the heave controller.

The reference signalWr - now expressed in the body frame - is compared to the helicopter’s heave velocity

w and the error is elaborated by the heave PI controller, which generates a correction signal that directly

commands the helicopter’s collective δ0.

The errors on the reference signals [Ur, Vr] are used to compute the angle variations ∆Θ and ∆Φ, which
are in turn used to compute the quaternion attitude reference qr via the ”Quaternion Reference Generation”

block. These two correction signals (∆Θ and ∆Φ) should be interpreted as commanded variations of

helicopter attitude around its current body Y and X axes respectively, as this mimics the approach used

by human pilots during flight: errors in the surge velocity u are usually corrected by tilting the helicopter’s

nose forward or backward, while errors in the sway velocity v are handled by commanding a rolling motion

on the helicopter.

The ”Quaternion Reference Generation” block is the last component of the velocity controller and

has the purpose of generating an appropriate attitude reference for the inner-loop attitude controller by

merging the corrective signals coming from the horizontal velocity controller [∆Θ,∆Φ] with the attitude

feed-forward signal q?E2B produced by the autopilot module. The generation of the attitude reference

follows the approach proposed by Gerig [9] and revolves around the rotation concatenation property of

quaternions to correct the feed-forward attitude signal q?E2B to account for errors in the horizontal velocity

signals. This attitude correction is obtained by producing a correction quaternion q∆, which unifies the

corrective signals ∆Θ and ∆Φ produced by the horizontal velocity controller in the following structure:

q∆ =


cos(ζ/2)

c1 sin(ζ/2)

c2 sin(ζ/2)

0

 (8.12)

where the parameters ζ, c1 and c2 are calculated according to the equations:

ζ =
√

∆Θ2 +∆Φ2 (8.13)

c1 =

{
0 if ζ = 0

∆Φ
ζ else

(8.14)

c2 =

{
0 if ζ = 0

∆Θ
ζ else

(8.15)

The generation of the reference quaternion leverages the rotation concatenation property, as shown in

Equation 8.16: in this manner the pitch, roll, and yaw angles desired values contained by the desired
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attitude quaternion are seamlessly modified to also consider the current errors in the velocity components

of the control system, allowing for fluid tracking of the planned helicopter motion in both the velocity and

the attitude.

qr = q?E2Bq∆ (8.16)

With this, the velocity controller structure has been fully motivated and described, justifying the choice

of the PI controller framework and the distinction between horizontal velocity control and vertical velocity

control to mimic the behaviour of a human pilot. Further, the interaction with the inner-loop attitude controller

was explained by incorporating the desired attitude signal produced by the autopilot and a corrective

attitude signal produced by the PI controllers in the horizontal velocity.

8.4. Position controller architecture
With the attitude and the velocity controllers motivated and explained, the final element in the design of the

helicopter’s flight control system is the position controller. Being the outermost loop of the control system,

the position controller bridges the gap between high-level commands generated by the autopilot and the

inner-loop controllers by converting a desired position into a velocity reference.

In this section, the position controller will be presented and discussed to provide an overview of its

inner structure. To start, in Section 8.4.1 the choice of a proportional (P) structure for the position loop is

motivated by explaining the underlying rationale and highlighting the key design considerations. Afterward,

Section 8.4.2 provides a detailed description of how the controller functions, with emphasis on the roles of

various signals and their contribution to generating the velocity reference.

8.4.1. Motivation of the P architecture
Given the internal functioning of the helicopter’s inner loops, the outer position loop was developed to

make use of the simple proportional (P) framework. Within this section, the choice of the P controller

architecture is motivated by highlighting the physical relation between the position and the velocity and the

avoidance of needless integration of references.

To start, the fundamental reason behind the choice of the simple P framework for the position controller

is the fact that - as the velocity is the derivative of the position - a command in the velocity channels will

generally be proportional to a delta in the position channels for the helicopter. As the purpose of the

position controller is to make use of an error in the helicopter’s position to generate a reference in the

velocity, a proportional mapping was deemed sufficient and adequate for the outer-loop controller.

Another reason for the choice of a proportional architecture is the avoidance of redundant signal integration.

The inner velocity loop already incorporates a PI controller that addresses steady-state errors and allows

for accurate reference tracking [92]; adding an additional integrator in the outer loop could lead to excessive

phase lag and potential issues such as integrator windup, especially under persistent disturbances, while

only providing limited improvements in the tracking of position commands.

Lastly, the choice of the proportional design is also motivated by its inherent simplicity. By developing the

outer loop using only a P controller reduces the number of tuning parameters, thereby streamlining the

design process. This simplicity is particularly valuable in aerospace applications where robustness and

ease of implementation are critical.

For the reasons proposed above, the utilization of a proportional controller for the outer position loop is

motivated as it allows to leverage the natural relation between position and velocity while maintaining a

simpler controller structure that emphasises ease of tuning and quickness in the response. With the choice

of controller architecture justified, in Section 8.4.2 an in-depth discussion of the outer loop implementation

is provided.

8.4.2. Description of the controller implementation
Concluding the discussion of the control system design presented in Section 8.1, here a detailed description

of the controller implementation is provided.
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The position controller block - of which a block diagram representation is portrayed in Figure 8.5- is

fundamentally tasked with generating an appropriate velocity correction signal Vc that will be fed to the

velocity controller to ensure proper tracking of the desired position command. As explained in Section 8.4.1,

the velocity correction signal is generated by means of a simple proportional controller according to the

following control law:

Vc = KP (X
? − X) (8.17)

where X? and X are - respectively - the desired helicopter position (produced by the autopilot) and the

actual helicopter position and KP represents the introduction of the proportional controller.

As the helicopter’s current position is not a directly available signal, it is calculated in the ”Position

Calculation” block, as shown in Figure 8.1. This block obtains the helicopter’s complete position by first

applying a passive rotation to the body velocity signals [u, v, w] (here not defined as variations but as

complete values) to obtain the respective velocity components in the global reference frame G and then

integrating them over time.

As both the helicopter’s current position and the desired position produced by the autopilot are expressed

in the global reference frame, the resulting velocity corrective signal Vc will also be expressed in the G
reference frame. As the following loop is the velocity loop, which functions in the body reference frame,

after the position controller an appropriate passive rotation is to be applied to convert the velocity reference

signal from the G reference frame to the B reference frame.
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Figure 8.5: Block diagram of the position controller

8.5. Concluding remarks
Within this chapter, the overall control system architecture was presented and explained, highlighting the

structure of each controller loop and motivating the controller development approach used.

To start, in Section 8.1 the complete control system architecture was presented, showing the three-loop

structure of the controller composed of an inner-loop attitude controller, a middle-loop velocity controller,

and an outer-loop position controller, each integrating corrective signals generated by the external loops

and feed-forward signals produced by the autopilot, which will be discussed in Chapter 11.

With a high-level understanding of the controller provided, the rest of the chapter focused on the

construction of the individual controller blocks. First in Section 8.2 the attitude controller was analysed,

motivating the choice of the use of the LQI control algorithm and clearly detailing its implementation.

Afterwards, in Section 8.3 the second control loop was analysed. This control loops was composed of two

parallel controllers: a horizontal velocity controller, tasked with elaborating the errors in the body horizontal

velocity signals to produce an attitude correction signal; and a vertical velocity controller tasked with directly

commanding the helicopter’s collective command. Moreover, the use of a PI architecture for this controller

was motivated, as it is advantageous for its simplicity, flexibility and ability to allow effective tracking while

compensating for constant disturbances.
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Lastly, the position controller was discussed in Section 8.4, first motivating the use of only proportional

controllers and then discussing the generation of the velocity reference signal, and then providing an

explanation of the controller integration with the rest of the system.

With the structure presented the system is capable of handling tracking tasks by leveraging the integral

action of the attitude and velocity loops, while having a flexible and applicable design that leverages on its

simplicity and flexibility to ensure the system is controlled and capable of appropriately tracking desired

reference signals.



9
Tuning of the controller

With the controller structure defined in Chapter 8 and the functioning of each of the control loops presented,

this chapter will discuss the tuning process followed to identify the appropriate gains and tuning parameters

for the system.

In an effort to reduce the need for hand-tuning and to define a solid and robust methodology that

could be flexible and applied to multiple study-cases, the tuning of the controller was performed using an

optimization-based approach. Of the various existing tuning algorithms and procedure used in industry and

in research, Particle Swarm Optimization (PSO) is widely praised for its effectiveness, having successfully

been applied a number of times to the tuning of control systems for plants, vehicles and aircraft alike [93]:

because of these reasons and the supporting evidence available, the PSO tuning algorithm was chosen

for the purpose of this thesis.

To illustrate the tuning process and appropriately showcase the results obtained, this chapter will be

structured as follows. To start, Section 9.1 will provide an overview of the PSO algorithm, introducing the

terminology used and providing a systematic description of the algorithm itself. Following this, Section 9.2

will discuss the utilization of the previously described PSO algorithm to perform the tuning for the LQI

attitude control system and showcasing the results of the tuning process. Afterward, in Section 9.3 the

tuning of the velocity controller is performed, discussing how the PSO algorithm was applied to the tuning

problem and discussing the results of the tuning. To conclude, Section 9.4 will discuss the tuning of the

position controller and the application of the PSO tuning algorithm to the study case described.

9.1. Implementation of the PSO algorithm
As a fundamental element in the tuning of the Particle Swarm Algorithm, here an overview of the tuning

algorithm is provided, discussing its fundamental intuition and implementation.

Particle Swarm Optimization (PSO) is a population-based stochastic optimization technique that draws

inspiration from the collective behavior observed in flocks of birds or schools of fish [93]. The fundamental

intuition behind PSO is that simple agents, or particles, can collaborate through information sharing to

explore a complex search space effectively and converge toward optimal solutions. This concept is based

on the observation that social behavior in nature often leads to emergent intelligence [94], where the group

as a whole can solve problems more efficiently than any individual acting alone. In the context of control

system tuning, PSO provides a framework for adjusting controller parameters by simulating a distributed

search process where each particle represents a potential set of parameters, and the collective dynamics

guide the search toward improved system performance.

At the core of the algorithm is the idea of a swarm, which is composed of N particles that traverse

the multidimensional search space. Each particle i is characterized by a position pi and a velocity vi
(with i = 1 . . . N ), where the position corresponds to a candidate solution for the control system’s tuning

85
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problem, and the velocity determines the direction and rate at which the particle moves through the space.

A user-defined fitness function J = f(p) is used to evaluate the quality of each candidate solution: this

fitness function quantifies the performance of the control system given a specific set of parameters, thereby

providing a measure to compare different solutions. By means of the cost function, the algorithm also

keeps track of the particle position g? associated to the most desirable cost J? and of the position p?i that

for each particle lead to its personal best result J?i .

Initially particles are generated with a uniform random distribution in the search space, afterwards, the

algorithm proceeds in an iterative manner. At the commencement of each iteration, the fitness of every

particle is evaluated at their current position: Each particle then compares its current fitness Ji = f(pi)
with the historical global best fitness J?, updating its personal best p?i if an improvement is observed.

Finally, at each iteration an update to the current particle’s candidate solution is performed by updating

its position. Consider for example the particle i at iteration t: the current solution associated with this

particle will be identified by its position, which is identified by the notation pi(t). The update of particle i’s
position is performed by calculating a velocity auxiliary variable vi(t+ 1), which is then used to produce

the candidate particle’s position at the next iteration t+ 1 according to Equation 9.1

pi(t+ 1) = pi(t) + vi(t+ 1) (9.1)

The velocity variable is calculated at each iteration of the algorithm and it is defined by an equation that

encapsulates three fundamental influences: inertia, cognitive drive, and social influence. The inertia

term enables the particle to maintain its current momentum, thus preserving the direction of movement.

The cognitive term is a reflection of the particle’s own experience, encouraging a return to positions that

previously yielded high fitness values. The social term, on the other hand, represents the influence of the

best-performing particle in the swarm, guiding the particle toward areas of the search space that have

been successful. Mathematically, the velocity update is represented as:

vi(t+ 1) = wvi(t) + c1r1(p
?
i − pi(t)) + c2r2(g

? − pi(t)) (9.2)

where:

• vi(t) is the velocity of the particle i at the previous iteration of the loop (initiated at 0 for the first

iteration of the algorithm).

• w is the inertia weight, a scalar term which determines how much of the previous particle velocity is

transferred to the current velocity.

• c1 and c2 are the cognitive acceleration coefficient and the social acceleration coefficient, which

respectively determine how much of the velocity component is going to drive the particle towards its

current best p?i or the identified global best g? respectively.

• r1 and r2 are uniformly-distributed random values in the range [0, 1] which aim at including a stochastic

element to the algorithm, which in turn allows for a better exploration of the solution space.

A systematic representation of the PSO is given in the pseudocode provided in algorithm 1.

PSO offers several advantages that contribute to its widespread use in the field of control system

tuning. Its implementation is relatively straightforward, and it does not require gradient information, which

is particularly beneficial when dealing with non-differentiable or noisy fitness landscapes. The ability of

PSO to balance exploration and exploitation through the coordinated adjustment of inertia, cognitive, and

social influences allows it to effectively navigate complex, multidimensional search spaces. Moreover,

the PSO algorithm is highly capable of handling complex optimization cost functions and is well suited for

multi-modal optimization, allowing for the simultaneous optimization of different objectives.

Despite these strengths, PSO is not without limitations. One of the principal challenges is the potential

for premature convergence, wherein the particles may become trapped in a local optimum rather than

exploring the broader search space; this risk is further amplified in problems characterized by highly

rugged fitness landscapes with many local optima. Additionally, the performance of PSO is highly sensitive

to the choice of hyperparameters such as the inertia weight and acceleration coefficients: improper

tuning of these parameters can lead to suboptimal convergence behavior. Note however that all these
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Algorithm 1 PSO pseudocode implementation

Init: J = f(p)
Hyperparameters: N,MaxIter, w, c1, c2
Result: g?

for i = 1 to N do
Initialize particle i with random position pi and velocity vi = 0
Evaluate fitness f(pi)
Set personal best p?i ← pi

end

Set g? ← argmini f(p
?
i )

for t = 1 toMaxIter do
for each particle i in the swarm do

Update velocity:

vi ← w · vi + c1 · r1 · (p?i − pi) + c2 · r2 · (g? − pi)
Update position:

pi ← pi + vi
Evaluate fitness f(pi)

if f(pi) is better than f(pi) then
Set p?i ← pi

end

if f(p?i ) is better than f(g
?) then

Set g? ← p?i
end

end

end

Return g?

disadvantages are generally shared by most other optimization algorithms.

Overall, the PSO algorithm is an effective and intuitive approach to optimizing complex optimization

problems. While sharing many of the limitations of other metaheuristic optimization algorithms, PSO

has a number of significant advantages that make it a suitable and desireable choice for the purpose of

control system tuning. To start, its collaborative search mechanism makes it particularly appealing for

applications such as control system tuning, where the objective is to identify optimal parameter settings

within a challenging search space. Additionally, its flexible design and lack of reliance on gradient-based

methods make this approach highly desirable for non-smooth multi-modal optimizations, adding significant

freedom to the cases in which this optimization may be applied.

With the PSO algorithm presented and its use motivated, the application of the PSO algorithm will now

be discussed to the specific tuning of the control system presented in Chapter 8, highlighting how the

optimization is implemented and what cost function is used for the tuning of each control loop.

9.2. Tuning of the attitude controller
With the PSO algorithm introduced and discussed in Section 9.1, the implementation of the optimization

algorithm will be discussed in the context of the tuning of the inner-loop attitude controller. To start, in

Section 9.2.1 the implementation of the optimization algorithm to the specific attitude controller will be

discussed, showing how the tunable parameters of the LQI controller are encoded in the optimization

algorithm. Further, in Section 9.2.2 the cost function used to evaluate the performance of the attitude

controller is motivated and discussed. Afterwards, in Section 9.2.3 the results of the tuning process will be

shown.
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9.2.1. Attitude tuning: PSO implementation
As the inner attitude loop makes use of a LQI control framework (discussed in Section 8.2.2), the PSO

algorithm is implemented to compute a controller capable of regulating the system and tracking specific

attitude references. To properly compute a controller,t two performance matrices - Q and R - have to

be designed: these act as weighting matrices for the calculation of the LQI cost function discussed in

Equation 8.5, with the former determining the quickness of the system’s response and the latter influencing

the amount of control usage.

To encode the matrices in the system, the dimensions and characteristics of these matrices have to be

considered. To start, the Q matrix is a nx × nx positive-semidefinite symmetrical matrix, where nx is

the number of states of the augmented system obtained in Equation 8.4 (in this specific case, nx = 13).
Conversely, the Rmatrix is a nu×nu symmetric positive definite matrix, where nu is the number of inputs of

the augmented system (for the augmented system described in Equation 8.4, nu = 3). As the performance

matrices have the characteristics of being positive semidefinite and definite respectively, a common way of

defining them in the context of tuning via optimization is by simply encoding them as positive diagonal

matrices [95].

With this consideration, the particles for the PSO algorithm were chosen to be 16× 1 vectors, with the first

11 entries of the particle encoding the diagonal elements of the states performance matrix Q and the last 3
elements encoding the diagonal elements of the input matrix R. To determine the allowable values of the

particle elements for the PSO algorithm, Bryson’s rule may be used [96], which indicates that the Q and R

matrices may be defined as diagonal matrices, with the diagonal elements of Q defined as the inverse of

the squared allowed error of the respective state they map, and the diagonal elements of R defined as the

inverse of the squared maximum acceptable value of the respective input they map. This rule is summed

up in Equation 9.3.

Qj,j =
1

[max allowed error on xj ]2
∀j = 1, . . . , 14

Rk,k =
1

[max allowed value of uk]2
∀k = 1, . . . , 3

(9.3)

9.2.2. Attitude tuning: definition of the cost function
With the encoding of the Q and R matrix elements discussed, the cost function used in the tuning of the

LQI controller is presented. The fundamental objective of the tuning process is to produce a controller

that is capable of allowing for simultaneous decoupling and reference tracking in the three attitude axes

[qi, qj , qk], all while avoiding saturation in the available control channels [δx, δy, δp]. To evaluate these

characteristics, the cost function is determined by simulating the control system and evaluating the

closed-loop characteristics of the system’s response to three different input sets, each generated to

command a rotation around the body’s axes.

To produce the simulations, appropriate reference signals must first be generated. As the objective is

to produce a controller capable of independently providing rotations around each of the helicopter’s body

axes, the reference signals are generated by first calculating a final desired attitude using the rotation

concatenation property of quaternions and then using SLERP to produce an attitude path leading from the

initial trim attitude to the calculated final attitude.

For this purpose, three reference sets were produced: for the first reference set, the final attitude is obtained

by commanding a rotation of 25° around the current body x axis; for the second reference set, the final

attitude is obtained by generating a 45° rotation around the body y axis; for the third reference set, the

final attitude is obtained by generating a 60° rotation around the body z axis. With the starting and final

attitudes defined for each iteration, the SLERP interpolation (see Equation 5.25) was used to generate the

appropriate intermediate references for the helicopter to follow.

The reference signals resulting from this process are shown in Figure 9.1. In the figure, each column

shows the references for each input set l; the rows indicate the attitude channels [qi, qj , qk]. From the

figure it can be noticed that, because of the SLERP algorithm used to define the rotation, some small cross

activation on the off-axes is present: even so, as expected, the largest reference activation is on the on

axis elements representing rotations on the [qi, qj , qk] elements. It is also worth noting that in all cases
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the q0 element in the reference also changes its magnitude: this is to reflect the changes in the imaginary

quaternion components and maintain unit module to have an accurate representation of attitude.

Figure 9.1: Attitude references for the attitude controller tuning

The cost function used for the optimization of the attitude controller’s parameters has been developed

to contain three separate terms, as shown in Equation 9.4, each scaled with an appropriate weightW .

z =
3∑
l=1

WR

(
T∑
t=1

(∆ql0(t))
2 +

T∑
t=1

(∆qli(t))
2 +

T∑
t=1

(∆qlj(t))
2 +

T∑
t=1

(∆qlk(t))
2

)
+ ...

3∑
l=1

(
T∑
t=1

(
Wx∆δx

l(t)2 +Wy∆δy
l(t)2 +Wp∆δp

l(t)2
))

+ ...

WT

(
Ts(q1i (t)) + Ts(q2j (t)) + Ts(q3k(t)

)
(9.4)

The first term penalizes the mean squared error (MSE) on the on-axis reference signal tracking error:

the use of the MSE as a measure of the signal performance in this case is especially advantageous, as it

allows to give a higher penalization on higher deviations from the reference, ensuring the attitude follows

the reference more closely. In the notation described above, the attitude error is quantified by the error

quaternion ∆q, which represents the distance between the reference attitude qr and the current attitude

qE2B . To calculate the error quaternion, first the difference between the reference attitude and the current

attitude has to be quantified by means of an intermediate quaternion q∆, obtained via the equation:

q∆ = q−1
E2Bqr (9.5)

Note that, when the two attitudes coincide, the intermediate quaternion produced will be the identity

quaternion:

q∆ =


1

0

0

0

 (9.6)
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The attitude error quaternion ∆q is therefore quantified by the difference between the intermediate

quaternion q∆ and the identity quaternion, as shown in Equation 9.7 [64].

∆q =


1

0

0

0

− q∆ (9.7)

The second term is related to the input activation and aims at penalizing too-large input activations

and preventing actuator saturations: this is achieved by appropriately selecting the weightsWx,Wy,Wp

to have different values depending on the total amplitude of their respective signal, effectively creating

desired areas for the input actuation. An example of the input activation areas is shown in Figure 9.2,

where a sample input signal is shown (in this case, the longitudinal collective δx signal). From the figure, it

is clearly noticed that the area is divided in three sections:

• The central white region is positioned around the actuator’s trim position and is assigned the smallest

weightW , as the actuator activation is not significant.

• The green areas are regions with a higher penalization weight, aimed at discouraging the controller

to command inputs that enter these regions for too long.

• The outside red areas have a very high associated weight and are set to start slightly before

the actuator upper and lower bounds: the aim of these regions is to avoid saturation during the

commanded manoeuvres.
Example of the input weighting bands
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Figure 9.2: Visual representation of the weight selection bands for the input actuation

Lastly, the third term of the cost function is aimed at encouraging the system to achieve a small settling

time Ts on the attitude signal that is primarily activated in each of the simulations. In particular, it is noticed

from Figure 9.1 that in the first simulation l = 1 the attitude signal primarily excited is the qi signal, the
second l = 2 simulation will primarily concern the qj signal, and the third l = 3 simulation will be related to

the qk signal.

The weights used for this tuning were selected to more heavily prioritize control accuracy over control

quickness, as this was found to lead to overall more robust performances over different tracking tasks. As a

hard limitation of the control system was also to avoid control saturation, the weights for the different control

regions were selected to apply a noticeably heavier penalization to the cases in which allowed control

limits were violated: this essentially applies implements the ”big M” method to avoid control saturation in

the command channels [97, 98], discouraging the convergence to solutions with large control actuations.

With the cost function described above, the PSO optimization algorithm will try to find the diagonal Q and R
matrices that are capable of producing a closed-loop system whose response can achieve a good settling

time and match a desired reference while ensuring avoiding control saturation and encouraging small

control deflections.
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9.2.3. Attitude tuning: results of the tuning
With the PSO algorithm implementation discussed and the cost function analysed in Sections 9.2.1 and

9.2.2 respectively, the results of the attitude controller tuning are discussed next. In this case, the tuning of

the PSO was performed with a population of 50 particles over 250 iterations, ensuring a good exploration

of the solution space with the random initialization and allowing for enough time for the particles to reach

optimal solutions. The evolution of the cost over the tuning iterations are shown in Figure 9.3, where the

contribution of each of the cost terms of the final identified global best is also shown in the lower section of

the figure.

By analysing the evolution of the cost over the iterations it is noticed that the PSO algorithm implemented

according to the formulation provided in Section 9.1 is able to converge at an optimal solution over the

various iterations of the tuning. By analysing the evolution of the cost over time is also noticed that there are

noticeable drops at various intervals of the tuning: this suggests that the cost function has discontinuities

which are most likely caused by the changes in cost coefficients for the input activation, making the cost

function non-smooth. As the PSO algorithm is not gradient-based, the impact of these discontinuities

is limited and can be compensated for by using a large enough amount of particles: with the selected

weights, it was deemed appropriate to use 50 to allow for a large exploration of the solution space. By

analysing the contribution of each objective to the final cost function it is noticed that the cost objective is

the smaller of the three components, suggesting that the solution found does not cause control saturation.
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Figure 9.3: Evolution of the cost function of the attitude controller tuning

Overall, the inner-loop tuning algorithm was able to obtain good tracking performance, with a quick

response and no command saturation. The figures presented hereafter show the results of the tuning

process. Figures 9.4a and 9.4b respectively show the attitude signal response and the control usage for

the first simulation set - a commanded 25° rotation around the trim body x axis. The results for the second

reference set - a 45° rotation around the trim body y axis - are shown in Figure 9.5a, while the respective

inputs required to obtain such performance are provided in Figure 9.5b. Lastly, the results for the third

simulation set are shown in Figures 9.6a and 9.6b, where the attitude signal response and the respective

control inputs required to obtain it are shown for a commanded rotation of 60° around the trim body z axis.
The tracking performance is good on all three inputs, with a prompt response on the attitude to follow the

references. The control axis showing the largest activation in all cases is the pedal, which is especially

activated to compensate for the required input on qi (i.e.: the 25° rotation along the φ Euler angle). This

response is expected, as a right turn (i.e.: a positive bank angle) will generally reduce the antitorque action

required by the pedal - as seen in Figure 9.4b [99]. Additionally, this behaviour is justified by the fact that,

because of the structure of the controller, the reference yaw angle ψ to be held by the helicopter is to be

defined as a feedforward attitude command encoded in the quaternion reference: since in these tuning

scenarios no feedforward yaw commands are given, the helicopter is using the pedal to naturally counter

the change in orientation of the helicopter’s nose to maintain its trim yaw even while performing a sidestep
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movement.
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(b) First simulation - control signals

Figure 9.4: First simulation: 25° rotation around the body x axis
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Step Response - input on qj
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(b) Second simulation - control signals

Figure 9.5: Second simulation: 45° rotation around the body y axis
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Step Response - input on qk
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(b) Third simulation - control signals

Figure 9.6: Third simulation: 90° rotation around the body z axis
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9.3. Tuning of the velocity controller
Building upon the results of the attitude controller tuning discussed in Section 9.2, here the tuning of

the velocity controller is discussed. A discussion of the velocity controller architecture is provided in

Section 8.3, where the interplay between the various controller blocks was discussed and the PI framework

was motivated.

To provide an orderly discussion of the tuning process, this section has been further divided in two parts.

To start, in Section 9.3.1 the implementation of the optimization algorithm and the cost function used for

the optimization process are discussed, demonstrating how the controller parameters are encoded as

PSO agents and providing an intuitive understanding of the motivation behind the construction of the cost

function. Afterwards, in Section 9.3.2 the results of the velocity controller tuning are provided and briefly

analysed, discussing the characteristics of the controller tuning results.

9.3.1. Velocity tuning: PSO implementation and cost function
As the velocity loop makes use of the widely-adopted PI formulation on three velocity channels, the

controller will be in total composed of six tunable parameters. As these gains are directly included in the

controller and there is no need of any intermediate auxiliary parameter (as was the case for the LQI attitude

controller in Section 9.2.1, which required the definition of the Q and R matrices), the implementation of

the PI gains as agents of the PSO algorithms is straightforward: in particular, each agent was defined as a

6× 1 vector where the first three elements encoded the values of the proportional controllers, and the last

three elements the values of the integral controllers. With the PSO agents defined, the cost function used

in the tuning of the velocity control system is discussed.

To start, the velocity controller is tasked with enabling the system to perform appropriate tracking of

velocity reference signals, while limiting control usage to avoid saturation and ensuring that the signals

fed to the attitude controller are also being effectively tracked: to evaluate these characteristics, the cost

function is evaluated by simulating the performance of the closed-loop system to three distinct reference

sets, each activating one of the body velocity channels independently of the others.

For this purpose, l = 3 reference sets were produced, each commanding a 10 m/s variation in velocity

on of the three body velocity axes - u, v, and w - while leaving the two other velocity signals at 0. To

avoid sharp variations in the velocity references and provide some for of dynamics to the reference signal,

the reference signal is generated by passing a step velocity command through a first-order filter with a

time-constant of τ = 0.1 s. A graph of the reference signals is provided in Figure 9.7. In the figures, the

columns represent the reference sets l = 1 . . . 3 while the rows represent the respective velocity channels

[u, v, w].
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Figure 9.7: Velocity references for the velocity controller tuning
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To appropriately ensure the velocity controller is able to obtain its design objective, an appropriate

cost function was developed, taking into account the requirement of tracking velocity signals while limiting

control actuation and ensuring the correct functioning of the inner attitude loop. The cost function developed

is presented in Equation 9.8: as it can be seen, the equation can be divided in four separate terms, which

will individually be explained hereafter.

z =

3∑
l=1

WRv

(
T∑
t=1

(ulr(t)− ul(t))2 +
T∑
t=1

(vlr(t)− vl(t))2 +
T∑
t=1

(wlr(t)− wl(t))2
)

+ ...

3∑
l=1

WRa

(
T∑
t=1

(∆ql0(t))
2 +

T∑
t=1

(∆qli(t)(t))
2 +

T∑
t=1

(∆qlj(t))
2 +

T∑
t=1

(∆qlk(t))
2

)
+ ...

3∑
l=1

(
T∑
t=1

(
Wxδx

l(t)2 +Wyδy
l(t)2 +Wpδp

l(t)2 +W0δ
l
0(t)

2
))

+ ...

WT

(
Ts(u1(t)) + Ts(v2(t)) + Ts(w3(t))

)
(9.8)

The first two terms of the cost function ensure the velocity and attitude signals follow the respective

references: this system behaviour is obtained by encouraging the minimization of the respective MSEs

on the reference signals. By using the MSE as a measure of performance, larger deviations from the

reference values are more heavily penalized, which encourages solutions that lead to a closer following of

the references. These terms are calculated once for each simulation run l and appropriately weighted

with the scalar weightsWRv for the velocity signals andWRa for the attitude signals. Note that the attitude

tracking error ∆q is calculated using the same methodology discussed in Equation 9.7.

The third term of the cost function weighs the input command activation to avoid command saturation and

discourage excessive control usage. This is obtained using the same method presented in Section 9.2.2,

where each available input band is divided into three regions, each with a different performance weight

assigned.

The fourth term, similarly to the cost equation presented in Equation 9.4, is a weighting on the on-axis

settling time for the activated velocity signals. This term emphasises response quickness which, when

paired with the accuracy penalization provided by the MSE weighting, allows for a more effective matching

of the desired reference response.

As the main objective of the controller is to ensure velocity tracking, higher penalizations were applied

to the velocity MSE term and the settling time term, ensuring the tuning process prioritized them. The

attitude tracking term was associated with a proportionally smaller weight. On the other hand, analogously

to what was done for the attitude tuning, the control actuation weights were selected to very heavily

penalize solutions that involve actuator saturations, ensuring the control system converged to solutions

that limit commanded control deflections to remain within the allowed bounds.

9.3.2. Velocity tuning: results of the tuning
With the implementation of the tunable parameters as position agents in the PSO algorithm discussed

and the construction of the cost function presented. For the velocity controller tuning, the simulation was

conducted over a population of 30 agents over 50 iterations of the algorithm. Figure 9.8 shows the results

of the tuning process, with the evolution of the identified global best g? over the iterations presented at the

top of the figure and the individual components of the cost function presented at the bottom of the figure.

Figures 9.9 to 9.11 instead show the results of the three simulations used in the tuning process.

From Figure 9.8 it is noticed that the cost follows the typical trend of metaheuristic and learning

algorithms, showing a large reduction in the cost value in the first iterations and then gradually settling

at an optimal solution. As no noticeable improvements were noticed in the last iterations, the tuning was

stopped after 50 iterations. Moreover, by analysing the cost terms shown in the lower half Figure 9.8 it is

observed that the primary contribution to the final cost is provided by the tracking error on the velocity:

this is due to its relatively higher weight, as this term is of primary importance to the tuning of the velocity

controller.
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Figure 9.8: Evolution of the cost function of the velocity controller tuning

Another important factor observed during both the tuning process and the formulation of the cost function

was the critical role played by the attitude tracking penalization term. In its absence, the tuning process

generally yielded faster responses in the velocity channels. However, this apparent improvement in

performance was achieved predominantly by commanding abrupt and large attitude changes within the

innermost control loop. This observation highlights the importance of the attitude tracking penalization term

for attitude tracking errors within the cost function; without such a term, the controller tuning process may

prioritize rapid transient responses at the expense of the overall tracking accuracy and stability, thereby

compromising the system’s ability to maintain the desired attitude over time.

As expected, the relatively small contribution of the control usage term, on the other hand, is justified by

the control actuation graphs shown in figures 9.9c, 9.10c, and 9.11c: in these graphs the commanded

control deflections generally lie within the first penalization region, which has the lowest weighting of the

three zones and as such does not produce a large contribution to the cost.

In terms of dynamic performance, the velocity controller is effective in tracking velocity reference

signals, even with steep commanded variations such as 10m/s. In particular, the results of the tuning

suggest a good decoupling between the u and v axis, which is likely due to the attitude controller (which

is directly involved in the correction of horizontal velocity commands, as was explained in Chapter 8).

Noticeably worse cross-coupling effects are noticed when analysing the heave w response when inputs are

commanded on the surge and sway axis: this result is somewhat expected, as the eigenmode analysis in

Section 6.2.1 showed that the velocity channels of the helicopters were highly coupled to one another. By

further analysing the response, the system shows overshoots and delays in the velocity signal: this would

suggest that an additional derivative action in the control is desired, as it would contribute in significantly

speeding up the response. This was however avoided, as in practical applications derivative actions are

highly subject to signal noise and may cause de-stabilising actions.

Suggesting the validity of the obtained results, the attitude response matches the expected behaviour: an

increase in the surge velocity commands a reduction of the pitch command θ tilting the helicopter forward,

seen as a decrease of the qj quaternion component; an increase in the sway velocity is obtained with an

increase of the bank angle φ tilting the helicopter to the right, seen as an increase in the qi quaternion
component. Variations in the vertical velocity component have little-to-no effect on the attitude and are

obtained only via collective commands δ0: this is expected, as the vertical velocity control has been

completely decoupled from the horizontal velocity control, in a manner analogous to the control actions

that a human pilot would show.

Overall, the velocity loop tuning process was able to produce a responsive control system capable of

following velocity commands with accuracy and limited actuator usage. The velocity tracking penalization

term and the settling time penalization were instrumental in achieving a good performance in the tracking of

velocity commands, while the opposing attitude tracking and input penalization terms ensured the efficacy

of the inner loop attitude controller while reducing the control effort required to achieve the commanded

velocities.
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Figure 9.9: First simulation: 10 m/s surge u command
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Figure 9.10: Second simulation: 10 m/s sway v command
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Figure 9.11: Third simulation: 10 m/s heave w command
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9.4. Tuning of the position controller
Now that the inner attitude and velocity loops have been modelled and defined, the tuning of the outer

loop position controller is expanded on in this section. A discussion of the position controller architecture is

provided in detail in Section 8.4, where the use of proportional controllers is motivated and a description of

the inclusion in the rest of the control system is provided.

Hereafter the controller tuning process is discussed. First, in Section 9.4.1 the implementation of the PSO

optimization algorithm is discussed for this specific design case, explaining how the controller tunable

parameters were encoded as agents of the optimization algorithm and introducing the cost function used

for the tuning process. Afterwards, with the tuning setup defined, the results of the tuning will be presented

in Section 9.4.2.

9.4.1. Position tuning: PSO implementation and cost function
Similarly to the velocity controller, the position controller proportional formulation allows for a straightforward

implementation of the controller tunable parameters as elements of the PSO agents. As the position

controller includes three proportional gains (one per position channel), the PSO agents were defined as

3× 1 vectors where each element represents the value of the controller gain. With the PSO agents defined,

the tuning process and the cost function is discussed hereafter.

As discussed in Section 8.4.2, the purpose of the position controller is to ensure the helicopter follows

a desired trajectory by generating an appropriate velocity correction term Vc to drive the rest of the system,

while ensuring the correct functioning of the inner loop velocity and attitude controllers. To evaluate these

characteristics, the tuning process was set up to perform three separate simulations - each with a different

reference set - to then evaluate the system’s obtained performances by means of an appropriately-defined

cost function.

As the model is linearized in forward flight at 33 m/s, to ensure the simulations remained as representative

of the model as possible, the reference positions were generated by integrating appropriately-defined

velocity signals Vr. The procedure used to generate the velocity reference signals Vr is fully described by

Equation 9.9:

{Vr
l}G = {Vtrim}G + {∆Vl}G (9.9)

where {Vtrim}G indicates the helicopter’s trim velocity expressed in the global reference frame G and

{∆Vl}G indicates a variation term which - for each simulation run l = 1 . . . 3 - is applied to a different

channel of the velocity trim vector, such that:

{∆V1}G =

∆V (t)

0

0

 {∆V2}G =

 0

∆V (t)

0

 {∆V3}G =

 0

0

∆V (t)

 (9.10)

Here the velocity perturbation element ∆V (t) is a user-defined time-dependant velocity deviation. In an

effort to introduce both positive and negative deviations from the trim velocity, the velocity signals were

defined each over a tmax = 100s duration and have the equation defined in Equation 9.11. A graphical

representation of this is provided in Figure 9.12. The resulting velocity signals are then integrated over

time to generate accurate position reference signals for controller tuning.

∆V (t) =


10 if 10 < t ≤ 20 ∨ 60 < t ≤ 70

−10 if 30 < t ≤ 50

0 else

(9.11)

The position references calculated using this method are shown in Figure 9.13, where the columns indicate

the different simulation runs, and the rows indicate the three available position channels X, Y , and Z.
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Figure 9.13: Position references for the position controller tuning

With the procedure followed to generate the reference signals for the various simulation runs l, the
cost function used in the PSO tuning algorithm will be discussed hereafter. Similarly to the tuning process

followed for both the attitude and velocity controllers, the cost function is defined by a number of terms,

each encoding a desired aspect of the controlled system’s behaviour: to achieve this, the cost function

used for the tuning of the position controller is given in Equation 9.12.
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z =

3∑
l=1

WRp

(
T∑
t=1

(X l
r(t)−X l(t))2 +

T∑
t=1

(Y lr (t)− Y l(t))2 +
T∑
t=1

(Zlr(t)− Zl(t))2
)

+ ...

3∑
l=1

WRv

(
T∑
t=1

(ulr(t)− ul(t))2 +
T∑
t=1

(vlr(t)− vl(t))2 +
T∑
t=1

(wlr(t)− wl(t))2
)

+ ...

3∑
l=1

WRa

(
T∑
t=1

(∆ql0(t))
2 +

T∑
t=1

(∆qli(t)(t))
2 +

T∑
t=1

(∆qlj(t))
2 +

T∑
t=1

(∆qlk(t))
2

)
+ ...

3∑
l=1

(
T∑
t=1

(
Wxδx

l(t)2 +Wyδy
l(t)2 +Wpδp

l(t)2 +W0δ
l
0(t)

2
))

(9.12)

The first term of the equation aims at ensuring position reference tracking by minimizing the associated

tracking MSE: in this manner, it is ensured that the control system is capable of tracking reference trajectory

signals generated by the autopilot module.

The second and third terms, on the other hand, are tasked with ensuring the position controller does not

interfere with the functioning of the attitude and velocity loops by minimizing the tracking errors on their

respective reference commands. The application of these terms was found to be beneficial for the general

closed loop system behaviour and ensured the position gains do not cause malfunctioning in the inner

loops.

The fourth term, similarly to the cost function discussed in Equation 9.8, ensures the position controller

does not saturate the controller commands while tracking the reference signals. This is ensured by once

again applying different weights depending on the commanded values, in a manner analogous to the one

discussed in Section 9.2.2.

The weights were selected to prioritize the performance of the position controller, assigning a large

penalization to the position MSE and adjusting the weights on the velocity and attitude MSEs to have

comparable contribution to the cost function. As one of the objectives of the control system is also to avoid

command saturation, the weight on the outermost band of the control saturation is set to be extremely

large to discourage solutions that would lead to excessive control usage, similarly to what was done in the

previous tunings of the system.

9.4.2. Position tuning: results of the tuning
With the structure of the control system defined and the implementation of the PSO optimization discussed,

the results of the controller tuning are discussed hereafter. The tuning was performed on the complete

closed-loop model shown in Figure 8.1; the algorithm was initialized over a population of 30 random PSO

agents and a total of 50 generations. This allows for a good exploration of the solution space while also

giving time to the optimization algorithm to converge to an optimum solution.

The results of the tuning are shown in Equation 9.12, where the top of the figure shows the evolution of

the cost over the various generations of the algorithm and the bottom figure details the contribution of the

various terms of the cost function. The first figure clearly shows the model’s converging behaviour, meaning

that the PSO algorithm has successfully stabilized at an optimum solution: once again, the cost trend over

the iterations mimics the typical behaviour of metaheuristic models, with the largest improvements being

located at the beginning of the iterative process and more marginal improvements at higher iterations once

an optimal solution has been located. The second figure shows the magnitude of the individual terms of

the cost function: again, the contribution of the various terms is comparable to one another, suggesting

that the optimization has found a best compromise between the multiple objectives of the cost function.

The largest contribution is provided by the position tracking error term (which is also the primary objective

of the control system), while the velocity and attitude tracking errors are comparatively more limited in

magnitude. The input penalization is comparable to the velocity and attitude penalizations, suggesting that

the tuning process was able to converge to a solution that does not incur in command saturation in the

representative manoeuvres used to generate the tuning simulations.
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Figure 9.14: Evolution of the cost function of the position controller tuning

To further show the results of the tuning process, the closed-loop responses of the helicopter for the

different simulated maneuvers are shown in Figures 9.15 to 9.17. The tuning process showed positive

results, with the controlled system capable of following the commanded position signals over the three

simulations. When performing the tuning process, the terms included on the velocity and attitude error

penalizations proved especially useful, as they ensured that the position controller produced coherent

signals that would not excessively load the two inner loops, ensuring a coherent response in all the

channels.

Analysing the individual simulations, the cross-coupling behaviours noticed in the velocity controller tuning

remain apparent, with position commands along the X and Y directions also exciting a noticeable response

in the Z direction. The negative effects of the cross couplings are also identifiable in the control actuations,

with all manoeuvres requiring some use of the collective command δ0 to maintain the appropriate altitude.

Additionally, off-axis controls of more moderate magnitude are noticed on the lateral cyclic δy and in the

pedal δp when exciting the X control axis and, similarly, on the longitudinal cyclic δx when exciting the

Y control axis. As was also discussed in the velocity controller, these behaviours are reflective of the

cross-couplings identified during the study of the system’s eigenmodes in Section 6.2.1 and are further

exacerbated by delays in the velocity controller response.

The smallest cross-coupling between the position channels is noticed when altitude inputs are provided to

the system, leaving the other axes untouched: this condition is shown in Figure 9.17. This is consistent

with the results shown in Figure 9.11, where inputs along the Vz direction are tracked accurately with

limited coupling along the Vx and Vy axes.

As expected from the analysis of the cost function terms, the actuator deflections never reach complete

saturation, instead remaining within the allowed control margins: in all the simulations good tracking

performances were obtained with limited control usage, suggesting the viability of this tuning strategy

when handling complex and highly coupled systems.

Overall, the position controller tuning procedure successfully allowed for the definition of a control

strategy capable of tracking user-defined velocity commands by leveraging the good performance of the

innermost velocity and attitude loops while always maintaining moderate control usage. By analysing the

system and its response, the cross-couplings between the various control axes can be led back to the

identified system modes discussed in Section 6.2.1 and to the delays in the velocity command response.

The most immediate way of addressing this is via the introduction of an additional derivative control action

in the inner loops, which would however make the controls more heavily susceptible to perturbations and

noise and would likely cause a dynamic destabilization effect due to rapidly changing commands and

control saturation.
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Figure 9.15: First simulation: longitudinal acceleration and deceleration
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Figure 9.16: Second simulation: lateral acceleration and deceleration
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(d) Third simulation - control signals

Figure 9.17: Third simulation: vertical acceleration and deceleration



9.5. Final considerations on the controller tuning
Within this chapter the tuning of the controller was discussed in its entirety, providing a comprehensive

understanding of the procedure used and of its implementation. Here, a brief summary and outline of the

contents of the chapter is provided.

In an effort to provide a systematic and repeatable approach to controller tuning that could also be

generalized to other control-system architectures, the tuning process followed in the context of this thesis

made use of the Particle Swarm Optimization (PSO) algorithm, which was introduced in Section 9.1. The

PSO algorithm had already been proven adequate for controller tuning, often obtaining better results than

more complex optimization algorithms while also having a sizeable computational cost advantage [93].

Further, the multimodal capabilities of the algorithm and the ability to define an arbitrarily complex cost

function allowed for the simultaneous optimization of contrasting objectives, an essential characteristic

when tuning controllers that need to balance a fast response with a moderate control usage.

Leveraging the flexibility and the simplicity of the PSO algorithm, the tuning of the controllers was

discussed afterwards, starting from the innermost attitude loop and then moving outwards to tune the

velocity and position loops.

The attitude controller tuning was discussed first in Section 9.2, discussing the implementation of the PSO

algorithm and the definition of the cost function. As this control loop is in direct contact with the helicopter

model and given that the model is a coupled MIMO system, the attitude controller was developed using the

LQI framework to simultaneously achieve good tracking performance while also allowing for a measure of

decoupling between the attitude channels. The flexibility of the PSO algorithm enabled the optimization

of the controller performance, producing a controller capable of following rapid and substantial attitude

changes without incurring in control saturation.

The velocity controller tuning was analysed in Section 9.3. Building upon the results of the attitude loop

tuning, the velocity controller was developed using the simpler and more widely adopted PI architecture.

Even in this case, the flexibility of the PSO tuning algorithm was instrumental as it allowed for the definition

of the most appropriate gains for the velocity controller that could allow for tracking of velocity commands

while ensuring the functioning of the attitude inner loop and limiting control usage. The tuned system

was successful in tracking velocity reference commands with moderate actuator deflection, but showed

noticeable couplings, especially considering the large cross-activation of the vertical velocity channel when

inputs are provided on the horizontal velocity components.

Lastly, the tuning of the position controller was discussed in Section 9.4, where the PSO algorithm

was applied to the selection of the appropriate proportional gains for the outer loop position controller.

Once again, the tuning procedure established for the two inner loops was successful in obtaining

controller gains that could provide stable tracking of position commands, without interfering with the

functioning of the inner loops and limiting control usage. Even in this case, some cross-activation was

noticed, caused by the delays in the velocity response and by the inherent dynamic modes of the helicopter.

In all three test cases, the results of the tuning verify the proposed methodology for helicopter controller

development: the PSO algorithm consistently achieved a balanced trade-off between tracking perfor-

mance and control effort, while remaining an understandable and versatile tuning approach. Overall, the

optimization-based tuning strategy developed in this thesis has proven both effective and flexible, allowing

the user to define desired closed-loop characteristics and multiple counteracting objectives.

The full flight control system developed using this approach will serve as a basis for the remaining parts

of the the thesis. In particular, the closed loop system defined in such manner will be augmented with a

simple autopilot subsystem and manoeuvres will be identified and calculated offline in order to create more

complex tasks for the evaluation of closed-loop performance.
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10
Helicopter manoeuvres synthesis

In the previous chapters the control system for the Bo105 helicopter has been developed and its tuning

discussed, applying a structured optimization methodology to determine the most appropriate tunable

parameters to obtain a desired system behaviour. With an appropriate closed-loop system designed and

tuned, its capabilities are to be evaluated by having the helicopter follow a set of reference manoeuvres

aimed at determining its performances.

The issue of trajectory generation and path planning has been considered and confronted a number

of times in literature, with a number of different approaches and optimization techniques developed to

take into account various mission parameters. Many such strategies make use of complex dynamical

systems [100] to identify suitable references and command sets that remain within the operating limits of

the system, while other use data-driven probabilistic approaches [101] to produce optimal trajectories that

can drive air vehicles in challenging environments. While these approaches are certainly of interest and

capable of producing accurate trajectories in complex flight situations, they have the fundamental limitation

of requiring a very precise knowledge of the system’s behaviour in all relevant regions of the flight envelope

(which would require a large modelling effort to have an accurate mathematical description of the system

in various flight conditions) and to have access to a large number of flight data (which would require large

and expensive simulations campaigns or special access to obtain appropriate information on the systems).

To avoid relying on such complex models and equations and streamline the simulation process, for the pur-

pose of this thesis the trajectory references are generated using simple kinematic and dynamic equations

to define a path and a set of corresponding velocities and accelerations in 3D space to drive the motion of

the system [102, 57]. With an acceleration profile defined throughout the manoeuvre, appropriate attitude

references are then generated to allow the helicopter to follow the desired trajectory with a specified heading.

This chapter will be centred around the definition of a methodology to properly define manoeuvres in 3D

space for the helicopter to follow. To start, in Section 10.1 the baseline procedure followed in the generation

of the manoeuvres is outlined, clearly detailing the steps taken in defining the required reference values for

position, velocity and attitude. Afterwards, in Section 10.2, reference manoeuvres will be selected for the

purpose of controller performance evaluation: the slalom and the pop-up manoeuvres. These manoeuvres

were identified to determine the control system’s capacity to fly while tracking offline-created reference

signals.

10.1. Baseline trajectory synthesis procedure
The issue of generating appropriate manoeuvre references is a critical task in motion planning as the

generated reference values have to be correct and coherent with the general capabilities of the system.

Within this work, in an effort to provide an effective and replicable methodology to trajectory generation,

a systematic approach to produce appropriate references is discussed and provided, leveraging the

properties of quaternions and of simple dynamic systems to generate reference trajectory, velocity and

attitude signals to drive the motion of the helicopter.
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As discussed in Chapter 8, the closed loop system comprised of the helicopter and the control system is

equipped to make use of references in the position channels X?, the velocity channels V?, and the attitude

channels q?E2B : the problem of trajectory generation therefore is defined by outlining a methodology that

can allow for the definition of these variables.

The first step in the trajectory generation approach is the identification of an appropriate position and

velocity profile to drive the motion of the system: as these variables are strictly related to each other,

their identification is a simple matter of defining a trajectory over time in 3D space and differentiating

to extrapolate the required velocity signals. This differential relationship between velocity and position

encourages the formulation of the problem in terms of differential equations (as will be further exemplified

in Section 10.2), which also facilitates the seamless introduction of additional constraints to the manoeuvre

(e.g.: constant total velocity, following of a pre-defined velocity profile, tracking of a specified load factor

profile). Note that, while only position X? and velocity V? references are required to drive the closed loop

system in Chapter 8, in this step the acceleration profile A? is also calculated for the purpose of attitude

feed-forward calculation.

With the position and velocity signals identified to drive the motion of the system in space, the generation

of appropriate attitude references to enable this motion is required. In helicopter flight, attitude changes

are primarily used to change the direction of the helicopter’s main rotor thrust, enabling accelerations in

the horizontal plane: to reflect this, the reference attitude is calculated to align the helicopter’s main rotor

thrust to the acceleration profile defined previously.

For helicopter flight, the direction and magnitude of the main rotor thrust vector is determined by the inter-

action of a vertical and a horizontal component: the vertical component is the thrust force T , perpendicular
to the tip path plane (TPP), which represents the vertical force component generated by the motion of each

blade element over the rotation of the main rotor; the horizontal force component is determined by the

H-forces Hi and H0 - parallel to the TPP - which represent the difference in inclination of the lift and of the

profile drag on the left and right side of the main rotor hub respectively [103].

To simplify trajectory determination, here the assumption that the main rotor thrust is aligned to the body z

axis [80, 103, 104] is considered. This hypothesis is primarily motivated by two fundamental assumptions:

that the magnitude of the H-forces is much smaller than the magnitude of the main rotor thrust, and that

the inclination of the TPP can be identified by a small relative angle. While these simplifications may not

hold in general cases when studying helicopter motion, for the purpose of trajectory generation they are

only used to produce feed-forward attitude signals coherent with the commanded manoeuvre: the attitude

signals generated in this manner therefore are only used to speed up the closed-loop system, and any

discrepancy with the desired model behaviour will be compensated for by the velocity controller’s corrective

attitude signal.

It is worth noting that, since the objective of this procedure is to generate coherent reference trajectories

rather than compute realistic system responses or control inputs, the use of a point-mass model is not

required, as this approach relies only on desired velocity profiles and their derivatives to infer compatible

attitude references. The simulation of the trajectory’s execution is performed separately using the complete

linearized model, as detailed in Chapter 12, thereby ensuring that the system response accounts for the

full set of dynamic effects.

To identify the feed-forward attitude q?E2B, first the total acceleration AT required to maintain course

is calculated. This is calculated by subtracting the gravitational acceleration term g = −9.81m/s2 to the

acceleration A? calculated in the previous trajectory generation step. As both A? and the gravitational

acceleration are both measured in the global reference frame G, the total acceleration is calculated

according to Equation 10.1.

{AT }G = {A?}G −


00
g



G

(10.1)

As the quaternion attitude is always expressed relative to the NED frame E - the total acceleration is then

expressed in the E reference frame by means of a passive rotation, obtaining {AT }E .
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Figure 10.1: Representation of α and n for the determination of the helicopter’s desired attitude around a

manoeuvre, the horizontal plane defined by vectors xE and yE has been highlighted in gray

With the acceleration identified as a vector in 3D space, an appropriate rotation has to be identified to align

the helicopter’s body z axis to the total acceleration vector: this is equivalent to determining the rotation

that aligns the z axis of the E reference frame to the opposite of the required acceleration (as in a general

flight condition the helicopter’s thrust is directed upwards while the body z axis is positive downwards).

The problem of identifying the rotation required to align two vectors is easily determined and solved by

using quaternions and leveraging the linearity of their operations [105]. First, let {z}E be the z axis of the

NED reference frame, such that:

zE =


00
1



E

(10.2)

and, to simplify calculations, consider the normalized acceleration vector:

{aT }E =
{AT }E
‖AT ‖

(10.3)

To align {z}E to {−aT }E two parameters need to be identified: the enclosed angle α between the two

vectors and the orthogonal direction n. A graphical representation of these two values is provided in

Figure 10.1. By then leveraging the definition of quaternions provided in Equation 5.5, the desired attitude

is immediately identified by computing the quaternion q̂?E2B presented in Equation 10.4.

q̂?E2B =

[
cos(α/2)

sin(α/2)n

]
(10.4)

The dot product of the NED z axis and of the normalized total acceleration vector is defined as:

zE · (−aT ) = ‖zE‖‖ − aT ‖ cos(α) = cos(α) (10.5)

By then leveraging the trigonometric properties of half angles, the sine and cosine required to compute

q̂?E2B are immediately determined by means of the equations:

cos(α/2) =

√
1 + cos(α)

2
(10.6)

sin(α/2) =

√
1− cos(α)

2
(10.7)

The last remaining component of the quaternion, n, is trivially identified by computing the cross product of

zE and −aT :
n = zE ×−aT (10.8)
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Notice that the attitude quaternion identified in this manner q̂?E2B is still not the complete desired attitude

quaternion, as it has only constrained the helicopter’s body z axis to be aligned to the required acceleration

of the manoeuvre but encodes no information about the desired orientation of the helicopter’s body around

its z axis. While this step may not be required in a general case as the control system presented in Chapter 8

could easily be augmented with a sideslip angle controller, to fully leverage the added manoeuvrability of

the helicopter around its vertical axis here the desired reference yaw angle is computed offline to drive the

motion of the system.

To complete the calculation of the desired attitude, the quaternion q?ξ describing a rotation around the new

body z axis is calculated. As the quaternion only describes a rotation around the z axis of the system, it

will have the following equation:

q?ξ =


cos(ξ/2)

0

0

sin(ξ/2)

 (10.9)

Different approaches may be used for the calculation of this angle and these will enable very different

behaviours from the helicopter itself. For example, q?ξ may be defined to ensure the vehicle maintains

the same yaw angle throughout the manoeuvre or it may be defined to minimize a certain sideslip angle

(calculated offline from the desired velocity). Once the appropriate quaternion has been determined, the

complete desired attitude is immediately calculated using the rotation concatenation property:

q?E2B = q̂?E2Bq
?
ξ (10.10)

With this, the procedure used to determine the desired position, velocity and attitude signals to drive

the motion of the system has been outlined, discussing the approach used for the generation of all values

and the assumptions adopted in generating the desired attitude signal. Expanding upon these results,

Section 10.2 will apply this methodology for the generation of appropriate reference manoeuvres which will

later be used to test the capabilities of the closed-loop system.

10.2. Definition of the evaluation manoeuvres
To properly evaluate the performance of the controller and the helicopter’s capacity for autonomous flight,

a set of well-defined flight control tasks must be established: the set of tasks identified for the purpose of

evaluating the performance and capabilities of a system compose the Mission Task Elements (MTEs), a

systematic framework for delineating the specific operational scenarios that the helicopter is expected to

encounter during its operations. MTEs comprise distinct tasks that encapsulate critical flight objectives

and challenges, ranging from precision manoeuvreing to transitions between various flight regimes, and

as such defining appropriate control tasks for a system is of crucial importance.

The selection of appropriate MTEs is governed by an analysis of mission requirements and safety consid-

erations, to provide a metric of the capabilities of a vehicle to perform aggressive tasks and manoeuvres.

Typically, MTEs are categorized in specific manuals and regulations, such as the Aeronautical Design

Standard – 33 (ADS-33) [106] and the Utility Tactical Transport Aircraft System (UTTAS) manoeuvre

Criteria [107], that are used in industry as standards of vehicle performance.

In this section, the derivation of the reference trajectories for two key manoeuvres is discussed: the

slalom and the pop-up. These manoeuvres were selected to evaluate both the lateral agility and vertical

dynamic performance of the helicopter’s quaternion-based control system, requiring simultaneous changes

in velocity and attitude while precisely tracking reference signals. In particular, the slalom manoeuvre

challenges the control system’s ability to handle rapid, oscillatory lateral deviations, thereby testing its agility

and responsiveness. Conversely, the pop-up manoeuvre targets the vertical dynamics of the helicopter,

assessing its capacity to execute altitude transitions. These manoeuvres not only represent realistic flight

scenarios but also provide a structured framework for examining the performance of the controller under

aggressive and dynamic conditions: by using them, the controller can be tested in realistic flight challenges

that emphasize the controller’s ability to track complex reference trajectories in both the horizontal and

vertical planes while ensuring smooth transitions in position, velocity, and attitude.
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When identifying the manoeuvre references, two valid approaches will be presented. For the slalom

manoeuvre, the trajectory and velocity will be obtained by connecting three separate trajectory segments

without imposing any additional continuity constraints: this will generate discontinuous references for

the velocity and attitude variables when changing between the manoeuvre’s segments. Conversely, the

pop-up manoeuvre will be generated using a continuous fitting polynomial approach, which will guarantee

a smoother trajectory and references. While the latter approach focuses on reference quality and flexibility,

the former approach focuses on ease of implementation, as no system needs to be solved to identify the

reference variables. Both these approaches are valid and will not cause great losses in the helicopter’s

performance, as any discontinuity in the references will be mitigated by the integrated autopilot module,

which will perform real-time interpolation between segment boundaries (as will be better explained in

Section 11.1.2). This online interpolation smooths abrupt transitions and also dynamically adjusts reference

signals to maintain continuity in the control loops, ensuring the autonomous system is robust to errors in

the trajectory definition segment.

10.2.1. Slalom manoeuvre
The slalom manoeuvre entails a series of oscillatory lateral movements superimposed on a constant

forward velocity. This dynamic task requires continuous adjustments in roll, pitch, and yaw, as the

helicopter negotiates alternating lateral deviations: because of these characteristics, such a manoeuvre is

particularly effective in evaluating the controller’s capability to track rapidly changing reference trajectories

and to maintain stability during aggressive lateral manoeuvres. Here the references to command the

slalom manoeuvre are derived from a kinematic and dynamic approach.

Figure 10.2: Suggested course for slalom manoeuvre [106]

A formal definition of the slalommanoeuvre for the purpose of handling qualities identification is provided

in the ADS-33 specifications [106]. The manoeuvre there is defined as follows: ”initiate the manoeuvre in

level unaccelerated flight and lined up with the centerline of the test course. Perform a series of smooth

turns at 500-ft intervals (at least twice to each side of the course). The turns shall be at least 50 ft from the

centerline, with a maximum lateral error of 50 ft. The manoeuvre is to be accomplished below the reference

altitude. Complete the manoeuvre on the centerline, in coordinated straight flight”. The suggested path

for this manoeuvre is shown in Figure 10.2. Following the methodology presented in Section 10.1, the

reference values for the slalom manoeuvre are identified.

For the purpose of simulation, the manoeuvre path can be defined as a simple sinusoidal trajectory

connecting an initial and a final straight sections lasting 10s. The addition of an initial and final forward

flight segments has the primary purpose of allowing for the evaluation of the aircraft’s ability to maintain its

trim condition and as such serves as a demonstration of the closed-loop stability of the system.

To orderly exemplify the reference generation procedure, the manoeuvre will be divided in three

segments and the trajectory equations will be derived individually. Segment 1 will represent the initial

straight section, segment 2 will indicate the central slalom section, and segment 3 will indicate the final

straight section.

Segment 1: manoeuvre entrance

The entrance to the manoeuvre is indicated as a forward flight segment at constant speed. As the model

is trimmed at ‖V‖ = 33m/s, the manoeuvre is executed at the trim speed.
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With this consideration in mind, the reference set of inputs is immediately identified via a set of differential

equations. Assuming the helicopter to be facing north in the simulations (such that the body x axis is

aligned to the global x axis), the position and velocity references are identified according to the following

set of equations: 
Ẋ? = ‖V‖
Ẏ ? = 0

Ż? = 0

ṡ? = ‖V‖

(10.11)

where X, Y , and Z indicate the positions in the global reference frame, and s indicates the trajectory arc

length.

The system of equations is solved setting initial conditions. For the purpose of simulation, the initial values

set for this system of equations are:

Table 10.1: Initial values of the initial slalom segment

Xr,0 0m

Yr,0 0m

Zr,0 70m

sr,0 0m

The initial segment is defined for X = [0, L], where L = 330m to allow the helicopter to maintain forward

fight for the desired 10s interval.

As the entrance segment is a forward flight segment, there will be no variations in the velocity’s

direction or magnitude: as such, the only a vertical acceleration to counter the gravitational acceleration

g = −9.81m/s is required. Because of this, the acceleration required in the global reference frame is the

following:

{A?T }G =

 0

0

−g

 (10.12)

Segment 2: slalom

The central segment is the oscillatory segment, where the manoeuvreability of the system will be tested.

The equations defining the oscillatory trajectory segment in the global reference frame can therefore be

modeled as a sinusoidal path: 
X?(t) = f(t)

Y ?(t) = A sin (B(X? − L))
Z?(t) = h

(10.13)

where h indicates the manoeuvre’s constant altitude, A represents the amplitude of the trajectory oscillation,

B modulated the frequency of the oscillations. In accordance with the manoeuvre proposed in the ADS-33

documentation, the amplitude of the oscillations is set to A = 25m, to cover the required 50ft = 15m
deviation from the center line of the manoeuvre. To allow for the turns to happen at 500ft intervals, the
frequency parameter is modulated to be B = π/500ft−1 = π/152.4m−1. As the slalom segment only starts

after L = 155m, the argument of the sine function contains the X? − L term.

To introduce a velocity dependence, the equations in Equation 10.13 are differentiated with respect to time:
Ẋ? = ḟ(t)

Ẏ ? = AB cos (B(X? − L)) Ẋ?

Ż? = 0

(10.14)
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Further, as the available linearized model is trimmed at a speed of 33m/s, to ensure the simulated

manoeuvre are representative of realistic manoeuvres, it is beneficial to maintain an approximately constant

total speed throughout the path. To obtain this, the differential equations presented above are augmented

with an additional condition to maintain a constant total velocity ‖V‖.
The total velocity of the vehicle, as there are no components along the global z axis, is easily identified

with the following equation:

‖V‖ =
√
Ẋ2 + Ẏ 2 =

√
Ẋ2 + (AB cos(B(X − L))Ẋ)2 (10.15)

Rearranging the equation an expression for Ẋ is identified:

Ẋ =
‖V‖√

1 + (AB cos(B(X − L)))2
(10.16)

Substituting Equation 10.16 in Equation 10.14, the complete system of equations defining the position and

velocity values for the central segment of the slalom manoeuvre is identified, as shown in Equation 10.17.

Note that the system was also augmented with the additional differential equation ds/dt = ‖V‖, where s is
the trajectory arc length.

Ẋ? =
‖V‖√

1 + (AB cos(B(X? − L)))2

Ẏ ? = AB cos (B(X? − L)) ‖V‖√
1 + (AB cos(B(X? − L)))2

Ż? = 0

ṡ? = ‖V‖

(10.17)

The set of equations is solved using the initial conditions provided in Table 10.2, ensuring continuity

with the entrance trajectory obtained by solving Equation 10.11. The differential equations are solved

X = [330, 930]m: as the curves are to be placed 500ft apart, this range for the X coordinate value allows

for two turns to be performed on each side of the centerline.

Table 10.2: Initial values of the central slalom segment

Xr,0 330m

Yr,0 0m

Zr,0 70m

sr,0 330m

The last element to consider is the acceleration required throughout the course, which will be used

to determine the desired attitude. The acceleration required at each instant of the manoeuvre can be

identified by differentiating with respect to time Equation 10.17 and by adding the gravitational acceleration

g (required by the helicopter to maintain level altitude in the Earth’s gravitational field). The resulting

equations are provided in Equation 10.18.
Ẍ? =

‖V‖2A2B3 cos(B(X? − L)) sin(B(X? − L))
(1 + (AB cos(B(X? − L)))2)5/2

Ÿ ? = −AB2 sin (B(X? − L)) Ẋ? +AB cos(B(X? − L))Ẍ?

Z̈? = −g

(10.18)

where Ẋ is defined in Equation 10.16.

Segment 3: manoeuvre exit

The final part of the manoeuvre is another 330m unaccelerated forward flight segment at the trim speed

‖V‖ = 33m/s. The equations used to identify the coordinates in this segment are identical to the ones

provided in Equation 10.11, but they are now solved with the initial values in Table 10.3
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Table 10.3: Initial values of the final slalom segment

Xr,0 930m

Yr,0 0m

Zr,0 70m

sr,0 ŝ

where ŝ is the total trajectory arc length of the first and second segments of the manoeuvre.

Similarly to the velocity and position values, the total acceleration required is identical to the first

segment. As this is an unaccelerated part of the manoeuvre, the helicopter will only have to compensate

for the Earth’s gravitational acceleration to maintain altitude; as such, the acceleration required in the final

part of the manoeuvre is:

{A?T }G =

 0

0

−g

 (10.19)

Attitude throughout the manoeuvre

The attitude around the manoeuvre is identified following the procedure described in Section 10.1. Here,

the procedure followed will be exemplified using the slalom manoeuvre as an example.

As discussed previously, the attitude is determined starting from the acceleration signals identified

above. By assuming that the main rotor thrust of the helicopter is aligned to the aircraft’s body z axis,

the desired attitude is identified as the orientation that allows the thrust of the main rotor (i.e. the body

z axis) to be aligned with the desired acceleration throughout the manoeuvre. In particular, as the main

rotor thrust is directed upwards while the body z-axis is directed downwards, the body z axis will have to

be aligned to the negative of the acceleration. Moreover, as attitude measures the relative orientation of

the body reference frame to the NED reference frame, here all quantities will be expressed in the NED

reference frame.

Let zE be the NED frame z-axis and let {A?}E be the required acceleration measured in the NED frame,

as obtained from Equations 10.12, 10.18 and 10.19 - depending on the manoeuvre section the helicopter

is found in. The initial attitude correction can be immediately identified by computing the quaternion:

q̂?E2B =

[
cos(α/2)

sin(α/2)n

]
(10.20)

where cos(α/2) and sin(α/2) are found by implementing Equations 10.6 and 10.7, and n is found with

Equation 10.8. The attitude quaternion identified in this manner allows for the alignment of the required

acceleration and the body z axis, allowing the helicopter to manoeuvre through the desired path.

With the thrust aligned, the heading of the helicopter is to be controlled by rotating the identified

intermediate quaternion q̂?E2B around its z axis. This is obtained by imposing a rotation of angle ξ, as
shown in Equation 10.10. The heading correction for the slalom manoeuvre was performed to have

the nose of the helicopter follow the instantaneous velocity reference around the manoeuvre: here, the

procedure followed to achieve this is explained.

To start, the orientation of the desired velocity is to be expressed in the identified intermediate reference

frame (represented by the attitude quaternion q̂?E2B) by means of a passive rotation:[
0

{V?}B

]
= (qG2Eq̂

?
E2B)

−1

[
0

{V?}G

]
(qG2Eq̂

?
E2B) (10.21)

where qG2E indicates the quaternion describing the relative orientation of the NED frame with respect to the

Global reference frame. Having identified the velocity vector expressed in the intermediate reference frame,
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the projection on its xy-plane is isolated by only considering the first two elements of {V}B = {[Vx, Vy, Vz]}B .
A graphical representation of this is given in Figure 10.3.

xB

yB

zB

V⋆

ξ

Figure 10.3: Representation of the sideslip correction, the horizontal plane defined by vectors xB and yB
has been highlighted in gray

The identified velocity projection then allows for the identification of the orientation of the desired velocity

with respect to the intermediate orientation of the helicopter. Let βi be the intermediate sideslip angle, the

angle can be identified by using the following equation:

βi = arctan

(
Vy
Vx

)
(10.22)

where Vx and Vy are the x and y velocity components of {V}B. By then letting ξ = βi, the correction

quaternion qξ is identified using Equation 10.10.

Note that by calculating the desired heading offline additional flexibility is provided to the entire tracking

algorithm, as this methodology allows to align the helicopter’s body axis to any arbitrary reference during

flight.

Complete manoeuvre

With the methodology described above, the slalom trajectory is fully defined, with appropriate position,

velocity and attitude signals to be used in guiding the system. The results of these procedures are shown

in Figures 10.4 to Figure 10.8 and will hereafter be briefly discussed to asses the validity of the calculations

followed.

The position references are shown in Figure 10.5 and Figure 10.6. It is noticed that the manoeuvre

lasts a total of 40.5s and covers a total horizontal displacement of 1260m. Variations in the lateral position

coordinate are clearly divided in three segments: an initial and a final segment with no desired lateral

displacement (i.e.: the initial and final forward flight segments) and a sinusoidal segment in the central

part of the manoeuvre. The initial and final segments, as desired, both last 10s; the central manoeuvre

segment lasts 20.5s. Figure 10.4 shows a 3D render of the trajectory path, with slalom gates placed 50ft
from each side of the path’s centerline to show the minimum required path deviation.

The velocity references around the manoeuvre are shown in Figure 10.7. As expected, the total velocity

around the manoeuvre is kept constant at the trim speed of 33m/s, while the forward VX and lateral VY
velocity components in the global reference frame show moderate variations around their baseline values

in the central manoeuvre section. In particular, the lateral velocity component shows large variations

around zero, with peaks of ±14.5m/s. These values are as expected and follow co-sinusoidal trends,

complementary to the sinusoidal patterns of the trajectory: this suggests that the calculations were

implemented correctly in the MATLAB coding environment and that the results are representative of the

manoeuvre implemented.

The attitude to be followed around the trajectory is shown in Figure 10.8 and was found through the

procedure described above to ensure the heading of the helicopter follows the trajectory. As expected, the
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yaw ψ and roll φ angles are commanded to vary with sinusoidal patterns that match the trajectory and

have amplitudes of respectively ±25° and ±27°, while the pitch angle θ exhibits only minimal variations.

These results match the expectations, as the primary axis that will be excited during this manoeuvre are

the lateral control axis, while the longitudinal effort required during this motion is minimal. These variations

are also shown in the quaternion elements: the largest variations are found in the qi and qk elements

(which roughly correspond to the φ and ψ Euler attitude angles), while qj only displays minor shifts around

0. Variations in the q0 term are only a consequence of the unity norm constraint on attitude quaternions,

which was explained in Section 5.1.1.

Notice that the velocity and attitude values show discontinuities at the edges of the central section

of the manoeuvre: this is to be expected from the procedure followed to generate the reference values,

as they are obtained by connecting three independently-generated trajectory segments only considering

continuities in the position channel and not accounting for continuity along the first and second derivatives

of the position signals. When controlling a system, it is more desirable to have smooth references to

drive the system, as smooth signals inevitably lead to smoother responses with less control effort placed

on the actuators. This incongruence will be addressed in Section 11.1.2, where an online interpolation

procedure for the reference signals is discussed to allow for online smoothening of the interpolation signals

during simulated flight: the addition of this interpolation step allows for added flexibility in the trajectory

generation phase and for a smoother and more robust integration with the autopilot system, as will be

further expanded upon in Chapter 11.

Figure 10.4: 3D view of the slalom trajectory with gates placed 50ft from the path’s centerline
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Figure 10.5: Vertical view of the slalom trajectory
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Figure 10.6: Slalom trajectory components
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Figure 10.7: Slalom velocity
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Figure 10.8: Slalom attitude

10.2.2. Pop-Up manoeuvre
The second manoeuvre implemented for the purpose of helicopter performance evaluation is the pop-up

manoeuvre, which is also discussed in a number of resources, including the ADS-33 [106] and the UTTAS

[107]. Here, a definition of the pop-up manoeuvre and the methodology used to define an offline reference

generation methodology for this specific manoeuvre case are provided.

The pop-up manoeuvre is a longitudinal manoeuvre consisting in a height change performed at a constant

forward velocity, and it is used for obstacle clearance. This manoeuvre aims at qualifying the ability of the

helicopter to obtain an altitude change sufficient to allow the vehicle to avoid possible obstacles that would

otherwise impede its horizontal movement, while covering a limited horizontal distance to ensure a quick

response.

It is worth stating that the pop-up manoeuvre is often considered as a variation of the more common

hurdle-hop manoeuvre [108]: the essential difference between the two manoeuvres is the fact that, while the

hurdle-hop manoeuvre requires the helicopter to then return to its original altitude, the pop-up manoeuvre

requires the helicopter to maintain the altitude obtained. In an effort to test the ability of the control system

to perform altitude changes and to maintain the obtained altitudes, for the purpose of this thesis the pop-up

manoeuvre was considered. A graphical comparison between the pop-up and the hurdle hop manoeuvre

is provided in Figure 10.9.

Another commonly-used alternative to the pop-up manoeuvre when testing the longitudinal and vertical

maneuverability of a helicopter is the pull-up/push-over manoeuvre, which aims at qualifying a vehicle’s

agility by having it track a specified load-factor profile consisting of a rapid climb to 2g and a quick

descent to 0g flight [107]. While this manoeuvre was also considered as a possible candidate to test the

controlled system discussed in this thesis, in the end the pop-up manoeuvre was deemed more adequate.

This is because the control system architecture proposed in Part V mainly focuses on tracking position

reference commands instead of load-factor profiles, thus making the pull-up/push-over manoeuvre (which

is effectively defined as a load factor profile tracking MTE) less adequate for the system in question.

Similarly to the slalom manoeuvre, the pop-up manoeuvre is divided into three segments. To start, the

helicopter will maintain forward flight for a duration of 10s holding the trim speed 33m/s at the set trim
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(a) Pop-up example trajectory [108]

(b) Hurdle-hop example trajectory [108]

Figure 10.9: Comparison between the pop-up and hurdle-hop manoeuvre profiles

altitude h. Afterwards, the helicopter will perform the pop-up manoeuvre, gaining an elevation of h1 over a
horizontal distance s1 while maintaining constant speed. Concluding the manoeuvre, the helicopter will

settle at the altitude h+ h1, maintaining trim velocity.

In this manoeuvre, the trajectory requirements presented by Thomson in [108] will be used, as it provides

a comprehensive overview of the desired manoeuvre characteristics. In [108], the pop-up manoeuvre is

defined as a manoeuvre that should guarantee a 25m altitude gain over a horizontal distance comprised

between 250m ≤ s1 ≤ 350m. In this work, to emphasise the vertical manoeuvrability of the helicopter, the

helicopter will be required to gain h1 = 25m in altitude over a horizontal distance of s1 = 250m.

Manoeuvre entrance and exit

As the initial and final segments of the manoeuvre are fundamentally identical to the ones of the slalom

manoeuvre presented in Section 10.2.1, the set of differential equations used to identify the coordinates

profiles is the same as the one presented in Equation 10.11, which are solved with the initial conditions

presented in Table 10.4 for the manoeuvre entrance and Table 10.5 for the manoeuvre’s exit. In the tables,

the trim altitude for the helicopter was set to h = 70m (consistent with the slalom manoeuvre), the initial X
coordinate for the final segment was obtained by solving the equation:

Xr,0 = ‖V?‖∆T0 + s1 (10.23)

where ‖V?‖ = 33m/s is the trim velocity, ∆T = 10s is the duration of the entrance manoeuvre segment,

and s1 = 250m is the horizontal distance to be covered in the pop-up manoeuvre segment. The trajectory

arc length initial condition ŝ is found by solving the pop-up manoeuvre segment.

Table 10.4: Initial values of the initial pop-up segment

Xr,0 0m

Yr,0 0m

Zr,0 70m

sr,0 0m
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Table 10.5: Initial values of the final pop-up segment

Xr,0 580m

Yr,0 0m

Zr,0 95m

sr,0 ŝ

Pop-up manoeuvre segment

The central part of the manoeuvre requires the identification of an appropriate smooth trajectory connecting

the initial and final manoeuvre segments while maintaining the trim velocity.

To provide an alternative approach to the one used in Section 10.2.1, here the trajectory will be generated

using a smooth polynomial function. While with the approach used for the slalom manoeuvre the trajectory

is generated by simply splicing together two separate and easy-to-model trajectory segments (obtaining a

trajectory with local discontinuities that will be naturally smoothened by the autopilot interpolation, as will

be discussed in Section 11.1), for the pop-up manoeuvre the trajectory reference will be generated using a

more general trajectory definition approach which will naturally produce a smooth function by generating a

connecting polynomial.

LettingX0 be the initial condition for theX coordinate in the pop-up manoeuvre segment, the conditions

the polynomial function needs to satisfy to produce a smooth transition from the initial altitude to the final

altitude are the following:

Z?(X0) = h
dZ?(X0)

dX?
= 0

d2Z?(X0)

dX?2
= 0

Z?(X0 + s1) = h+ h1
dZ?(X0 + s1)

dX?
= 0

d2Z?(X0 + s1)

dX?2
= 0

(10.24)

As the polynomial trajectory needs to satisfy six conditions, the altitude can be defined as a function of the

covered horizontal distance as a fifth-order polynomial Z?(X) defined over the range X? ∈ (X0, X0 + s1].
The polynomial can then be defined as a function of six unknown parameters {a, b, c, d, e, f}: equations
10.25 to 10.27 show the shape of the polynomial equations for Z?(X) and its relevant derivatives.

Z?(X) = a(X? −X0)
5 + b(X? −X0)

4 + c(X? −X0)
3 + d(X? −X0)

2 + e(X? −X0) + f (10.25)

dZ?(X)

dX?
= 5a(X? −X0)

4 + 4b(X? −X0)
3 + 3c(X? −X0)

2 + 2d(X? −X0) + e (10.26)

d2Z?(X?)

dX?2
= 20a(X? −X0)

3 + 12b(X? −X0)
2 + 6c(X? −X0) + 2d (10.27)

By using the equations and conditions defined above, the six unknown polynomial parameters can be

identified by solving a linear system of equations, completely determining the evolution of the altitude as a

function of the horizontal position.

With the polynomial parameters determined, a system of differential equations is defined to completely

identify the manoeuvre. To start, the total velocity at any point of the equation is determined by the following

equation:

‖V‖ =
√(

Ẋ?
)2

+
(
Ż?
)2

(10.28)

where the velocity component along the Y direction was omitted since the manoeuvre is entirely longitudinal.

The vertical velocity component Ż can be determined by using the chain rule for derivative functions,

meaning that:

Ż? =
dZ?

dX?
Ẋ? (10.29)
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With these considerations and recalling that the manoeuvre is carried out with a constant total velocity

‖V?‖, Equation 10.28 can be rewritten in Equation 10.30.

‖V?‖ =

√
Ẋ?

2
(
1 +

dZ?

dX?

2)
(10.30)

Which can further be rearranged to provide an equation for the horizontal velocity Ẋ.

Ẋ? =
‖V?‖√(
1 + dZ?

dX?

2
) (10.31)

This also allows for an immediate identification of the vertical velocity by including Equation 10.31 in

Equation 10.29.

The equations identified above allow for the definition of the following set of differential equations:

Ẋ? =
‖V?‖√(
1 + dZ?

dX?

2
)

Ẏ ? = 0

Ż? =
dZ?

dX?
Ẋ?

ṡ? = ‖V?‖

(10.32)

which can then be solved using the initial conditions shown in Table 10.6. In the table, the initial conditions

for the desired horizontal coordinate X? and arc length s? indicate the distance covered in forward flight by

the helicopter when travelling at the trim speed 33m/s for 10s.

Table 10.6: Initial values of the central pop-up segment

Xr,0 330m

Yr,0 0m

Zr,0 70m

sr,0 330

Attitude throughout the manoeuvre

With the position and velocity signals identified, the only remaining references to be determined are the

attitude signals to allow for the manoeuvre to be followed. The methodology and assumptions made

have already been presented in Section 10.1 and a first applied example of them has also already been

discussed in Section 10.2.1: here, to avoid any further repetition, only the most crucial point of the attitude

reference determination process will be discussed.

As already discussed, the fundamental idea behind the attitude determination procedure is the identification

of a required acceleration profile (compensating also for gravity) that allows to follow the identified trajectory

path and then the correction of the helicopter’s orientation to align the main rotor thrust to the desired

acceleration vector. To allow for an effective solution of the equations with reduced computational cost

and limited model knowledge, the fundamental assumption made in this case is that the helicopter’s main

rotor thrust is exactly aligned with the body z-axis of the vehicle, which was justified in Section 10.1.

The first fundamental step in the attitude identification procedure is the determination of the required

attitude around the trajectory. As discussed, this will need to account for two components: an acceleration

component required to follow the path itself A?, and an additional acceleration component compensating
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for gravity’s influence, according to equation Equation 10.33 where g = −9.81m/s2.

{A?T }G = {A?}G −


00
g



G

(10.33)

The desired acceleration components used to allow for path following can be identified by differentiating

the desired velocity components along the global reference frame’s axes [X,Y, Z]. For the initial and

final segments of the manoeuvre, the acceleration profile is trivially identified: since the manoeuvres are

unaccelerated and in forward flight, the accelerations for the initial and final manoeuvre segments are

shown in Equation 10.34.

{A?T }G =

 0

0

−g

 (10.34)

For the central part of the manoeuvre, the velocity equations have already been identified in Equation 10.32.

With this, the resulting equations, already correcting for the gravitational acceleration component, are

shown in Equation 10.35.

{A?T }G :



Ẍ? = −
‖V?‖√√√√(1 + dZ?

dX?

2
)3

dZ?

dX?

d2Z?

dX?2

Ÿ ? = 0

Z̈? =
dZ?

dX?
Ẍ? +

d2Z?

dX?2
Ẋ2 − g

(10.35)

By solving the equations above, the acceleration profile required during the manoeuvre is identified

and used for the purpose of attitude determination. In this case, as the pop-up manoeuvre is defined as an

entirely longitudinal manoeuvre, attitude is determined to allow the helicopter to perform the manoeuvre

while keeping the helicopter’s longitudinal axis aligned with the trajectory itself. This condition is equivalent

to once again imposing a desired sideslip angle of β = 0. As the procedure followed to determine the

attitude around the manoeuvre is formally identical to the one used for the slalom manoeuvre, for brevity

and readability of the document, it will not be presented again.

Complete manoeuvre

With the reference position, velocity and attitude profiles determined throughout the manoeuvre, the pop-up

MTE has been completely determined. In its entirety, the manoeuvre lasts 27.6s and covers a horizontal

distance of 910m with an elevation change of 25m: these parameters are exactly aligned with the expected

manoeuvre characteristics and suggest the correct nature of the obtained results. The total velocity is

maintained constant throughout the entire manoeuvre: as expected, the gain in altitude is accompanied by

a reduction of the horizontal velocity component VX and a proportional increase in the vertical velocity

element VZ , with the former decreasing to approximately 32m/s while the latter increases to 6m/s.

The attitude throughout the maneuver is shown in Figure 10.13, which is divided into two to show both

the desired attitude in quaternion elements and in Euler angles (for ease of interpretability). Since the

manoeuvre is entirely in the longitudinal plane, the references are expected to show variations only in the

pitch angle θ (which is roughly represented by the qj quaternion element): by analysing the figure, it is

noticed that the results obtained following the presented procedure match the expectations, with variations

only on the pitch angle θ and with no variations on the roll and yaw angles φ and ψ. Predictably, variations
in the quaternion element references also follow the expected behaviour, with the largest variations being

expressed in the qj quaternion component; the small variations found in q0 are a simple response to the

variations in qj , as the attitude is represented via unit quaternions which is to maintain unitary norm.

The trend of the variation also matched the expected values, with an initial rise in the value of θ at the
entrance of the manoeuvre followed by a symmetric reduction in the pitch angle magnitude to allow for



10.2. Definition of the evaluation manoeuvres 129

settling at the achieved altitude: this also matches the trend in the changes of the horizontal velocity

VX , which will first decrease in magnitude before increasing again to maintain a constant total velocity.

The magnitude of the attitude change is also consistent with the predicted trajectory: as the manoeuvre

primarily excites changes in the vertical velocity, only minor variations in attitude are expected, since

changes in vertical velocity will not provoke large changes in the direction of the acceleration vector, but

will primarily change its magnitude.
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Figure 10.10: Pop-up trajectory
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Figure 10.11: Pop-up trajectory components
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Figure 10.12: Pop-up velocity
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Figure 10.13: Pop-up attitude
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Helicopter autopilot module

To properly evaluate the performance of the controller developed in Part V in the manoeuvres defined in

Chapter 10, an additional structure has to be introduced to the system to appropriately feed the reference

values to the system.

The fundamental motivation behind the implementation of such a system lies in the fact that controlling

the motion of the helicopter through a previously computed trajectory would not account for possible

mismatches between the system’s assumed behaviour and the system’s real response. By commanding

motion with continuous-time signals, errors caused by the inability of the system to maintain the pace

dictated by the reference signals (whichmay be due to non-minimum phase behaviours, response transients,

or even external disturbances) would cause the instantaneous reference values to be inaccurate, causing

large error build-ups and making the trajectory followed by the helicopter inaccurate.

To create a flexible structure that is robust to external disturbances, the system ought to be capable of

generating reference signals on-line to appropriately follow defined reference trajectories: to achieve this

reliably, the control system previously presented and tuned has been augmented with an autopilot module,

which has the primary purpose of calculating the instantaneous desired signals the helicopter should follow

to track a desired trajectory based on the current measured position of the helicopter.

The fundamental advantage of this approach is the decoupling of the trajectory planning and the controller

design. By allowing the autopilot to provide references to the vehicle based on the helicopter’s current

position, the offline definition of trajectories and paths will not require to account for transient behaviours of

the helicopter, significantly simplifying the design process. Further, by having the controller references

be generated online, the system is now equipped to account for external disturbances that could cause

unwanted deviations in the system’s behaviour, improving tracking of precise paths.

Within this chapter, the development of such an autopilot module will be discussed. To provide an

orderly discussion of the reference generation module, Section 11.1 will explain the procedure followed to

encode the manoeuvres generated in Chapter 10 in the autopilot module to initialize the simulation and the

interpolation method used to streamline the generation of reference signals. Afterwards, in Section 11.2

the baseline rationale behind the functioning of the autopilot will be presented, providing a global under-

standing of the functioning of the autopilot and expanding on its implementation in the Simulink environment.

11.1. Waypoint navigation and reference interpolation logic
To start the discussion of the autopilot, first the necessary manipulation of the reference data identified in

Chapter 10 is discussed.

Initiating the discussion of the available data, in Section 11.1.1 the continuous-time signals describing the

manoeuvres will be sampled in waypoints to increase tracking efficiency while limiting the data required by

the system to perform manoeuvres in 3D space. Afterwards, in Section 11.1.2 the interpolation strategy

used to reconstruct the reference signals online will be discussed, with particular attention placed on the

reconstruction of the position and velocity desired values.

131
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11.1.1. Identification of waypoints
In Chapter 10, a procedure for defining testing manoeuvres has been defined to generate a set of reference

positions, velocities and attitudes starting from basic kinematics equations: by using this approach the

reference values throughout the trajectory are defined as a continuum as functions of time. However,

studies suggest that waypoint-based navigation provides for much better dynamic performances and

flexibility [109, 110], as they reduce both computational burden and required data while also providing a

more general structure that can be augmented with a number of very efficient algorithms for optimization.

Another advantage of waypoint navigation lies in the implied generation of smoother trajectories, as

interpolation enforces continuous transitions and derivatives between waypoints limiting abrupt transitions

between trajectory segments, a limiting factor of the approach presented in Chapter 10.

To allow for smoother navigation and a more flexible controller structure, the autopilot module was not

built to store continuum trajectories, but rather to store waypoints that could then be used to reconstruct

the trajectory via interpolation of the signals.

For simplicity of implementation, waypoints were chosen to be equally spaced in time. With this, the

definition of a correct time spacing ∆T between waypoints is crucial for the functioning of the control

system: in fact, selecting a large ∆T leads to waypoints too distant from one another, causing losses in

trajectory accuracy and making the controller ineffective for tracking precise manoeuvres; on the other

hand, selecting a small ∆T produces waypoints that are very close to one another, making interpolation

ineffective and forcing the helicopter to follow a tighter trajectory. To allow for some flexibility in the

manoeuvre and avoid having strict references, the time between waypoints was set to be ∆T = 1s.

The waypoints sampled in this manner are then stored in appropriate data structures. The data required

by the autopilot to allow for navigation are: position X?wp, velocity V?wp, trajectory arc length swp, and

attitude q?E2B,wp. A graphical representation of this interpolation is provided in Figure 11.1, where the refer-

ence values are represented by the continuous line and the sampled waypoints are indicated by the red dots.

With the manoeuvres sampled following the procedure described above, the remaining step is defining

how the reconstruction of the trajectory and velocity references will be performed based on the available

waypoint data. This procedure will be further explained in Section 11.1.2.
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Figure 11.1: Example of waypoint selection over a trajectory

11.1.2. Definition of the interpolation strategy
With the waypoint identification methodology defined, the last remaining point of note is the identification of

an appropriate interpolation logic to allow for on-line trajectory reconstruction.

As discussed, the data that need to be interpolated for the correct functioning of the autopilot are three:

the helicopter’s position coordinates [X,Y, Z], the helicopter’s velocity signals [U, V,W ], and lastly the

helicopter’s attitude qE2B .

By leveraging the properties of quaternions, a very efficient and effective algorithm for their interpolation is

easily found in the SLERP algorithm, which has already been presented in Equation 5.25 and allows to

map the shortest rotation in 3D space to drive the system from a defined initial attitude to a defined final

attitude.

With an adequate strategy already identified for the interpolation of the attitude, the identification of an

interpolation methodology for the position and velocity signals is discussed hereafter.
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Regarding the choice of an interpolation strategy, there are three primary issues to account for:

• To start, the interpolation strategy chose needs to be adequate for the type of data that need to be

interpolated, respecting any kind of internal constraint within the variables themselves. While this may

not be an issue for the interpolation of the position and velocity variables, quaternion attitude functions

differently as the quaternion representation requires the quaternion elements remain normalized

throughout the flight.

• Moreover, the selected interpolation strategy should be capable of adapting to a generic trajectory,

where in principle local variations of the reference values should not impact other regions of the

signal. For this purpose, local interpolation methods are preferable over global interpolation methods:

while the latter are more adept at generating smoother surfaces over large regions, they are also

more susceptible to numerical instability [111]. While other methodologies have been proposed to

impose local constraints on global interpolations for the specific purpose of trajectory generation

(such as the ”Global-to-Local” approach presented in [112]), local interpolation methods are generally

preferred as they provide a simple and reliable approach to generate reference signals without losing

accuracy [113].

• Lastly, the waypoint interpolation strategy selected should allow for a correct reconstruction of the

waypoint with minimal computational cost: as this algorithm would need to function in real time as part

of a larger system, it is crucial for the interpolation approach chosen to be reliable and responsive.

Considering the points of interest discussed above, the generation of the references between waypoints is

handled with the use of a windowed cubic spline interpolation algorithm [114] expanding on the approach

presented in [9]: this approach is described hereafter.

Consider the trajectory sampled at waypoints k = 1 . . . N , and in particular consider the helicopter to be

found in the segment delimited by waypoints k and k + 1. Typically, the interpolation polynomial segments

are expressed using the formulation shown in Equation 11.1, where xk indicates the independent variable’s
value at waypoint k (in this case, the arc length sk) and ŷk indicates the dependent variable’s value at the

same waypoint (in this case, this may indicate the desired position or the velocity).

ȳk(x) = dk(x− xk)3 + ck(x− xk)2 + bk(x− xk) + ak with xk ≤ x < xk+1 (11.1)

In this specific case, to allow for the implementation of the interpolation system within the autopilot, the

polynomial segments are all expressed as function of the functional l, a monotonously increasing running

variable in the interval [0, 1] such that when l = 0 the helicopter is at waypoint k and when l = 1 the

helicopter is at waypoint k + 1. By letting hk = (xk+1 − xk), the relation between the functional l and the

independent variable x is clearly identified by the equation:

(x− xk) = l(xk+1 − xk) = lhk (11.2)

By incorporating Equation 11.2 in Equation 11.1, the individual spline polynomial equations can be

expressed as function of l, according to Equation 11.3, note that the notation ȳk is used to express the

polynomial coefficient as a function of the independent variable x, while yk is used to express the same

polynomial as a function of the functional l.

yk(l) = dkh
3
kl

3 + ckh
2
kl

2 + bkhkl + ak with 0 ≤ l ≤ 1 (11.3)

The polynomial coefficients of Equation 11.3 are calculated online for each trajectory segment using

waypoints k − 2 to k + 3. Note that at the extremities of the trajectory no sufficient waypoints would be

available: as such, for k ≤ 2 the waypoints used for the calculation of the coefficients are the waypoints

k = 1 . . . 6; conversely, for k ≥ N − 2, the waypoints used for the calculation of the coefficients are

waypoints k = N − 5 . . . N .

The process described above produces five polynomial segments connecting each waypoint to the next. Of

these, only one polynomial segment is selected at a time, corresponding to the current waypoint segment the

helicopter is positioned in. To determine the coefficients of the polynomials, a system of equations can be

set up to impose the required continuity on the various polynomial segments. As a total of five polynomials
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have to be defined to properly generate the trajectory and since each is fully determined by four co-

efficients, a total of 20 coefficients need to be identified to consider the trajectory generation problem solved.

The first set of equations is obtained by ensuring each polynomial segment passes through its limiting

waypoints. Let ŷk be the value assumed at waypoint k by the variable being interpolated: as the running

variable l is defined in the interval [0, 1], this condition is expressed as:{
yi(0) = ŷi ∀i = k − 2 : k + 2

yi(1) = ŷi+1 ∀i = k − 2 : k + 2
(11.4)

This set of constraints, as it is defined over all five polynomial segments, yields a total of 10 constraining

equations.

The second set of constraint is found by imposing a first and second order continuity to the polynomial

segments. Considering the polynomial segment yk(l) connecting waypoints k and k + 1 defined according

to Equation 11.3, its first and second derivatives are identified by Equations 11.5 and 11.6 respectively.

ȳ′k(x) =
dȳk(x)

dx
= 3dk(x− xk)2 + 2ck(x− xk) + bk (11.5)

ȳ′′k (x) =
d2ȳk(x)

dx2
= 6dk(x− xk) + 2ck (11.6)

These equations can also be expressed as functions of the functional l to allow for implementation in the

autopilot, leading to equations:

y′k(l) = 3dkh
2
kl

2 + 2ckhkl + bk (11.7)

y′′k (l) = 6dkhkl + 2ck (11.8)

Once again considering the waypoints k − 2 to k + 3, this second set of constraints is expressed by the

following equations: {
y′i(1) = y′i+1(0) ∀i = k − 2 : k + 1

y′′i (1) = y′′i+1(0) ∀i = k − 2 : k + 1
(11.9)

As these equations apply two constraints at each of the four internal nodes, Equation 11.9 yields a total of

eight constraining equations.

Lastly, the third set of constraint is determined by imposing the Not-A-Knot condition on the second and

second-to-last nodes k− 1 and k+2 : this condition imposes a third-order continuity at the identified nodes.

By following the same procedure presented above, the third order derivative of the generic interpolating

polynomial is determined as a function of l, obtaining the two equalities in Equation 11.10.{
dk−2hk−2 = dk−1hk−1

dk+1hk+1 = dk+2hk+2

(11.10)

By solving the system of equations determined by Equation 11.4, Equation 11.9 and Equation 11.10, a

total of 20 equations are identified, allowing for the proper identification of the 20 required parameters.

Note that as the equations are all linear in the parameters, the system of equations can be expressed in

matrix form to find the unknown parameters {ai, bi, ci, di} with k = {k − 2, . . . , k + 3}.

A graphical representation of the interpolation process is given in Figures 11.2, 11.3, where the

interpolation algorithm described above has been applied respectively to the trajectory and to the velocity

reference signals of the slalom manoeuvre presented in Section 10.2.1. It is immediately noticed that

the interpolation is effective in generating an accurate representation of the original reference signal with

minimal available information, as the reconstructed curve reference only deviates slightly from the original

data: in particular, the trajectory interpolation is especially effective, showing only minimal variations at the

points where the discontinuities produced by the simple trajectory generation procedure are located. The

velocity interpolation is similarly effective in the trajectory segments where the reference is continuous

and only shows noticeable variations from the desired signal at the points of discontinuity. As already
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anticipated, the waypoint interpolation process allows for a natural smoothening of the feed-forward

reference signals, with contained incongruences localized where discontinuities are present: while these

incongruences will likely negatively impact the navigation accuracy, they will only have limited impact

as they remain representative of the overall trends of the reference signals and any small discrepancy

between the reference and feed-forward values will be compensated for by the nested-loop control system,

significantly simplifying the trajectory generation process.

As an added advantage, the proposed interpolation algorithm relies entirely on linear operations, allowing

the interpolation to be performed with only limited computational effort: this is especially important as

the reduced number of operations will naturally limit the energy requirements of the autopilot module

if implemented in a real system while also allowing for faster computation of reference data, enabling

integration with faster sensors for more frequent measurements.
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Figure 11.2: Example of the interpolation process applied to the slalom trajectory
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Figure 11.3: Example of the interpolation process applied to the slalom velocity references

11.2. Implementation of the autopilot module
With the references sampled via waypoints and an interpolation strategy defined to reconstruct the complete

trajectory online, here the definition of the autopilot module will be discussed.

The purpose of the autopilot is the online generation of an appropriate reference signal based on the

system’s current position, allowing the system to navigate along a previously-defined trajectory: by
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allocating this task to a separate block in the system navigation is greatly simplified, as users would only

need to define waypoints in 3D space and the autopilot block would then autonomously generate a path

connecting them and have the helicopter fly following the identified trajectory.

In an effort to produce a simple and reliable autopilot architecture that could also be modified by including

more sophisticated trajectory generation techniques [115, 116], the module developed for the purpose of

this thesis serves as an understandable and effective architecture that can produce accurate references in

real time for the purpose of generating appropriate helicopter motions.

The structure used for the autopilot is that of the Finite State Machine (FSM) [9]. An FSM (also called a

”Finite Automata”) is an abstract computational model defined by a finite set of states, a finite set of input

symbols, a state transition function that maps state–input pairs to subsequent states, an initial state, and

(in some cases) a set of terminal or accepting states [49]. In the context of autonomous vehicle control,

the FSM provides a formal framework to represent discrete modes of operation and the conditions under

which the system transitions from one mode to another: this abstraction is particularly valuable in complex

control applications, as it enforces a clear, modular separation between various high-level behavioural

modes and simplifies both design and verification processes.

The modular nature of the FSM architecture makes this autopilot formulation particularly desirable for the

formulation of a simple autopilot, as it provides a basic framework for the functioning of the system that

can easily be augmented with additional modes or behavioural sets: this type of complex finite automata is

referred to as a Hierarchical Finite State Machine (HFSM). Note that while this structure finds wider usage

in self-driving vehicles because of its ability to handle more different behavioural conditions, it is often

criticized for its limited reusability and often complex architecture [49]. For the purpose of this thesis a

simple FSM has been developed, providing a functional baseline structure that can further be augmented

to incorporate more complex high-level behaviours.

A graphical representation of the autopilot’s FSM architecture is provided in Figure 11.4, where the

black lines indicate the actual autopilot module and the grey lines indicate the behaviour of the controlled

system. The autopilot is initiated at the starting waypoint k = 1 and has available all the waypoint positions

and the respective desired velocities and attitudes, as discussed in Section 11.1.1. At each navigation step,

the autopilot receives from the helicopter model the current position of the vehicle and uses it to identify

the waypoint segment {k, k + 1} it is currently located in by calculating the running variable l ∈ [0, 1).

(l≥1)∧(k<N)

k:=k+1

k:=1

Calculate
l

(l<1)∧(k<N)

Interpolate
references

Simulate
system

Pass current

position

k=N End

Figure 11.4: Autopilot represented as a Finite State Machine

To explain the functioning of the autopilot, consider the generic case represented in Figure 11.5, which

represents the motion of the helicopter through a sample curved trajectory. In the figure, the helicopter’s

body B (represented by the red dot) is moving along a trajectory where the waypoints k, k + 1, and k + 2
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have been highlighted, and in particular it is currently located in the trajectory segment {k, k + 1}. The
vectors rE,k and rE,k+1 represent the positions of waypoints k and k + 1 in 3D space with respect to the

NED reference system (represented in the bottom-left of the figure). The position of the helicopter is

provided by vector rE,B .

xE

yE

zE

rE,B

k

rE,k

k + 1

rE
,k
+
1

k + 2

B

Figure 11.5: Representation of the helicopter’s motion through a sample trajectory,

as interpreted by the autopilot

To calculate the running variable l, the autopilot first assumes the helicopter is located in the waypoint

segment {k, k + 1} (identified by the previous step of the simulation) and then uses this information to

approximate the completion of the trajectory segment between the waypoints k and k + 1 by calculating l
according to Equation 11.11.

l =
rk,k+1 · rk,B
‖rk,k+1‖2

+ 0.05 (11.11)

where rk,k+1 indicates the relative position vector of waypoint k + 1 with respect to waypoint k and rk,B
indicates the relative position of the helicopter’s body B with respect to waypoint k. The value of l is also
increased by a value corresponding to 5%: this enables the autopilot to place the reference slightly in front

of the instantaneous position of the vehicle, allowing for the system to move forward at a more regular pace

in the trajectory. As shown in Figures 11.5 and 11.6, the relative position of the vectors can be immediately

identified using the equations:

rk,k+1 = rE,k+1 − rE,k (11.12)

rk,B = rE,B − rE,k (11.13)

Defined in this manner, l provides an estimate of the helicopter’s position within the trajectory segment: as

l approaches unity, the helicopter’s body B will move away from waypoint k and towards k + 1. With an

initial calculation of l, the FSM checks if the running variable is still within the desired range:

• if 0 ≤ l < 1, the running variable is considered valid and the helicopter’s position is still found within

waypoints k and k + 1.

• if l ≥ 1, the helicopter’s position is found within the trajectory segment limited by {k + 1, k + 2}: the
FSM then increases the waypoint counter k = k + 1 and re-calculates l in the new waypoint range.
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Figure 11.6: Top view of the helicopter’s motion through a sample trajectory

The running variable defined here is then used by the autopilot to calculate the instantaneous reference

values according to the interpolation strategy discussed in Section 11.1.2: for the position and velocity

data, the windowed cubic spline approach is used; for the attitude references, the SLERP algorithm is

used.

As during the identification of l the FSM architecture also determines the trajectory segment {k, k + 1} the
helicopter is currently traversing, before performing the interpolation, the necessary waypoints required by

the algorithm are isolated. As the SLERP interpolation only requires two values, the FSM only needs to

isolate the previous and next waypoint, k and k + 1 respectively. On the other hand, the interpolation of

the velocity and the position data for the purpose of reference generation requires a total of six waypoints.

Consider the helicopter to be in the segment limited by waypoints k and k + 1 along a trajectory with N
total waypoints:

• if k ≤ 2, the waypoints used to generate the trajectory are the ones in the range {1, . . . , 6}.
• if 2 < k < N − 2, the algorithm has sufficient waypoints both before and after the current trajectory

segment, and as such the waypoints used are contained in the range {k − 2, . . . , k + 3}.
• if k ≥ N − 2, the waypoints used for the interpolation are delimited by {N − 5, . . . , N}.

The operations described above are carried out for all steps of the manoeuvre simulation, which is

considered completed when the helicopter’s position has reached the final waypoint k + 1 = N ∧ l = 1.

With this, the helicopter’s autonomous guidance has been thoroughly described, proposing a simple

and reliable structure that is capable of performing the task of generating the instantaneous references

required by the helicopter to function. To achieve this, the FSM framework has been first introduced

and motivated, highlighting its use in modelling the behaviour of self driving vehicles, and its advantages

and limitations have been discussed. Afterwards, the specific implementation of the autopilot has been

discussed, first providing an overview of the behaviour of the model and then highlighting the algorithms

applied in each step of the simulation.



12
Manoeuvre simulation

To conclude the evaluation of the helicopter’s autonomous flight capabilities and to discuss the complete

system’s ability to follow offline-calculated reference signals, relevant tracking tasks need to be simulated

to test the system’s behaviour during flight. To this end, this chapter investigates the dynamic performance

of the flight control system and onboard autopilot by simulating two representative manoeuvers: a lateral

slalom and a longitudinal pop-up. The reference signals that will be used for the simulation of these two

manoeuvres, alongside the methodology used to obtain them, have been detailed in Chapter 10.

The chapter is divided in three sections. Section 12.1 discusses the simulation of the slalom manoeuvre:

this MTE will then be discussed by analysing the system’s response and the controls used, evaluating how

closely the references are tracked and quantifying the control effort used in the MTE. Section 12.2 covers

the pop-up manoeuvre, offering similar analyses to the one performed in the previous section for the

slalom MTE. To conclude the chapter, in Section 12.3 final considerations regarding the system’s tracking

performance are presented, synthesising the findings, highlighting strengths and identifying potential faults

of the system.

To evaluate the system’s performance, the simulations for each manoeuvres were carried out using

MATLAB’s Simulink tool, a block-diagram environment adequate for desktop simulation testing of dynamic

systems. All tests were performed using a fixed integration time step of 1ms with a Fourth-Oder Runge-

Kutta (RK4) solver. The selected time step allows for an appropriate simulation of system’s dynamics,

granting a good resolution and being within the update rates for aircraft controllers [117, 118] even in

the context of novel autonomous flight applications. The selection of the RK4 solver also serves as an

adequate balance of computational efficiency and model accuracy, enabling the system to function with

contained computational effort.

By discussing these simulations, the capability of the quaternion-based architecture and the three-loop

controller to achieve precise reference tracking in both the horizontal and vertical axes is critically assessed.

The results illustrate the interplay between the attitude, velocity, and position loops and quantify the

improvements in tracking accuracy as well as the trajectory smoothness enabled by the autopilot’s real-

time interpolation capabilities.

12.1. Slalom MTE simulation
Here the simulation of the slalom MTE is discussed. A complete description of the manoeuvre has already

been provided in Section 10.2.1, where the reference signals have also been identified.

As was explained in Section 10.2.1, the slalom MTE is a manoeuvre with constant total velocity that entails

a quick succession of left and right turns at constant altitude, requiring simultaneous changes in both the

roll angle φ and the yaw angle ψ to execute the trajectory tracking task correctly. The manoeuvre was

implemented following the [106] specifications, which states that the turns have to be 500ft apart and have

a deviation from the track’s centerline of at least 50ft. With the required attitude and velocity changes along

two of the body axes, the slalom is an effective lateral manoeuvre that can test the manoeuvrability of the

helicopter.

139
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The results of the simulations are shown in Figures 12.1 to 12.5, where all the most relevant simulation

states are shown. Here a discussion of the results will be provided, highlighting their most relevant

characteristics.

In Figure 12.1 the evolution of the position coordinates over the trajectory is shown. Within the figure,

the evolution of the lateral position Y and the vertical position Z are shown over the horizontal coordinateX,

allowing for an immediate interpretation of the evolution of the trajectory. Overall, the tracking performance

of the system show promising results, with a generally good matching of the reference signals in both the

longitudinal and lateral planes.

The figure shows that the controller is effective in following the desired altitude, with variations of at most

±7m in the central segments of the manoeuvre. Slightly worse tracking performance are identified in the

lateral direction, with the helicopter’s trajectory lagging behind the desired response during the first two

turns: this behaviour is consistent with the intermediate controller tuning results for the velocity and the

position loops, discussed in Section 9.3 and Section 9.4 respectively, where it was shown that the controller

had non-minimum phase behaviours in the lateral response especially, causing lagging. Even with these

delays in the response, the helicopter is still capable of effectively tracking the position reference, always

remaining within ±5m of the reference path.

Noticeably, the position tracking is also much closer to the reference signal in the section between the

third and the fourth slalom gates: this improvement in performance can be attributed to the introduction of

the simple autopilot discussed in Chapter 11, as it allows for a dynamic generation of the reference signal

based not on the amount of time passed (as would happen when performing simulations with continuous

reference signals) but on the instantaneous position of the aircraft.

Continuing the discussion of the simulation results, Figure 12.2 shows the evolution of the velocity

reference tracking during the manoeuvre. In the figure, the velocity references are shown in the instanta-

neous body reference frame of the vehicle and are generated via the interaction of the feed-forward term

calculated in the offline definition of the manoeuvre with the velocity correction term computed online by

the controller, as was explained in Section 8.3.

The velocity controller performance shows evident delays in the system’s response, with the sway v and
heave w components being especially slower than their respective references, leading to poor matching of

the response. This behaviour also matches the criticalities discussed when analysing the system’s tuning

results, as similar delays were also noticeable even when using simple step reference signals. A possible

way of addressing this would be the introduction of a derivative term in the velocity control loop, as it would

make the system more responsive to variations in the reference: this, however, was avoided, as derivative

controller actions are heavily susceptible to noise and signal errors, and as such would not be advisable

when developing controllers for real systems.

The attitude around the manoeuvre is discussed in Figures 12.3 and 12.4, which respectively show

the attitude evolution around the manoeuvre using the quaternion parametrization and the Euler angles

parametrization. As expected, the highest variations in attitude are identified to be in the roll angle φ and in

the yaw angle ψ, with the pitch angle θ having variations of only up to 10°, matching the surge velocity

reference.

The system’s response appears satisfactory in both figures, with good simultaneous tracking on all axes

and a smooth evolution of the references. This suggests the correct implementation of the LQI controller

and the effective conversion to the quaternion formulation, as the attitude of the vehicle is responsive and

is coherent with the trajectory and velocity signals.

Concluding the discussion of the slalom manoeuvre simulation results, Figure 12.5 shows the control

actuation of the helicopter around the manoeuvre. It is immediately noticed from the figure that all control

signals always remain within the allowed margins, never reaching complete saturation; this suggests that

the optimization-based tuning approach used in Chapter 9 was effective in producing controllers capable

of limiting control usage while maintaining good tracking performance. The control actuation also matches

the expected behaviour of the controller, with simultaneous pedal and lateral cyclic actuations to regulate

the yaw angle of the controller while navigating the curved section of the MTE, and longitudinal cyclic to



12.1. Slalom MTE simulation 141

modulate the total velocity around the track. Noticeably, the collective has very large actuations, which

make it almost reach saturation: these actuations match the variations in altitude measured in Figure 12.1

and are consistent with the cross-couplings identified when tuning the controller loops.

As an additional point of note, observing the evolution over the trajectory of the attitude and velocity

references, it may be noticed that the reference signals at times show spiking and irregular behaviours,

which appear inconsistent with the relatively smooth evolution of the position references. These small

spikes in reference values, from a closer inspection, appear to match trends in the autopilot’s running

variable l and waypoint counter k, which are shown in Figure 12.6. As was explained in Section 11.2, these
two running variables are used by the autopilot module to identify the position of the helicopter around the

trajectory and calculate a reference via online waypoint interpolation.

As it may be noticed in the figure, the running variable l does not have a smooth evolution: this may be

caused by the method used to calculate the value l, which, in curved trajectory segments, may cause

the system to rapidly switch between adjacent waypoints. This is also consistent with the fact that these

spikes are only present in the central section of the manoeuvre and are not present in the initial and final

forward flight segments of the MTE. From the figure, the waypoint counter k shows consistent and regular

increases, corroborating the correct implementation of the autopilot and its effectiveness in navigating the

MTE selected.

Overall, from the results of the simulation, the controller and autopilot developed within this thesis are

effective in following the slalom trajectory synthesized using the methodology provided in Chapter 10. The

tracking performance of the autonomous system appear satisfactory, with the position reference being

tracked with a maximum error of 7m along the vertical axis and of 5m in the longitudinal direction. The

attitude of the system is also matched effectively, with attitude changes being effectively replicated along

all three Euler angles with no control saturation. The results of the interpolation procedure also suggest

that the trajectory interpolation is effective in producing a smooth reference for the system, allowing the

aircraft to seamlessly navigate a trajectory that may have been identified offline with discontinuities in the

velocity or attitude references.

In summary, the simulation demonstrates that the controller and autopilot achieve accurate tracking of

the synthesized slalom path, verifying the tuning methodology, the autopilot implementation, and the

interpolation strategy. The tight adherence to the reference trajectory and smooth attitude transitions

highlight the system’s readiness for agile flight tasks. A visual representation of the system’s tracking

performance in the slalom path is provided in Figure 12.7, which shows a 3D visualization of the slalom

course, providing an immediate understanding of the system’s performance during simulated flight.
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Figure 12.1: Autonomous flight tracking of slalom trajectory reference
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Figure 12.2: Velocity references during the slalom MTE
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Figure 12.3: Quaternion attitude references during the slalom MTE
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Figure 12.4: Euler angles attitude references during the slalom MTE
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Figure 12.5: Control actuation during the slalom MTE
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Figure 12.6: Autopilot running variable l and waypoint number k
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Figure 12.7: 3D representation of the helicopter’s autonomous flight in the slalom MTE
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12.2. Pop-up MTE simulation
Within this section, an analysis of the system’s simulated response to the pop-up MTE is carried out. The

reference signals used for the purpose of the MTE simulation have been identified using the procedure

shown in Section 10.2.2 and the overall system’s performance will be discussed by analysing how closely

the reference trajectory is being matched and the control effort required by the system to perform this

tracking task.

As explained in Section 10.2.2, the pop-up manoeuvre is a completely longitudinal manoeuvre consisting of

an altitude change and hold at constant heading. Similarly to the slalom manoeuvre, the MTE is divided in

three segments: an initial forward flight segment, the central pop-up segment where the helicopter is tasked

with changing its altitude, and a final forward flight segment while holding the commanded altitude. Given

the nature of the manoeuvre, the primary channel that will be excited is the heave velocity w, with only

minor expected changes in the helicopter’s pitch θ to enter and exit the altitude change segment of the MTE.

Hereafter, the results of the simulations are presented and discussed. The results of the simulation for

the pop-up manoeuvre are shown in Figures 12.8 to 12.12: these values will be analysed and discussed

individually, highlighting the most relevant characteristics.

To start, in Figure 12.8 the evolution of the position signals is presented. As the manoeuvre is entirely

longitudinal, the highest excitation of the system is found alongside the Z axis, with only minimal variations

on the lateral direction corresponding to the beginning and the end of the central manoeuvre portion:

this is consistent with the much smaller coupling, which was identified during the position loop tuning in

Section 9.4. The response of the system is slightly delayed compared to the reference position signals: this

is consistent with the results of the tuning and was also noticed in the lateral response during the slalom

MTE. This lagging behaviour in the position is caused by the delayed response in the velocity control on the

vertical axis, which causes the system to begin gaining altitude later than what would have been expected.

This delay in the response is also noticed when the helicopter transitions from the pop-up manoeuvre to

the final altitude hold segment, where it is noticed that the aircraft first overshoots the desired altitude by

about 3m before slowly descending and settling at the desired 95m altitude.

The velocity response of the system is shown in Figure 12.9, where the measured simulated helicopter

velocity is compared to its reference. As expected, the most noticeable velocity activation is found in the

heave, which is commanded to reach a velocity of −9m/s before ascending again to have no vertical

velocity component. This figure clearly shows the lagging vertical velocity response that was discussed

above and highlights how the limits and delays in the system’s velocity response are reflected in the

position tracking performance.

Lastly, Figures 12.10 and 12.11 respectively show the helicopter’s attitude response expressed using the

quaternion parametrization and the Euler angles parametrization. As expected, variations in the attitude

of the system are minimal, with the largest variations being found in the pitch angle θ. Once again, this

behaviour is expected of the system: since the heave controller is separate from the attitude controller

(as explained in Section 8.3), the vertical velocity component is almost entirely controlled by varying the

helicopter’s collective command, and variations in the pitch axis are entirely due to the required variations

in the surge velocity commanded during climb.

Concluding the analysis of the system’s response to the pop-up manoeuvre reference, Figure 12.12

shows the command deflections during the manoeuvre. Once again, the results match the expected

behaviour of the system, with the primary control input used being the collective command to determine

changes in the heave velocity w; only minor variations are found in the longitudinal cyclic control to match

the commanded changes in velocity. The lateral controls (pedal and lateral cyclic) remain almost unvaried

from their trim positions, as would be expected in a lateral manoeuvre. In all cases, the control inputs

never saturate the available command limits, suggesting that the tuning procedure proposed in this thesis

shows effectiveness also in the longitudinal direction.

Overall, the simulation results suggest that the approach used when identifying and tuning the controller

and the methodology developed to generate appropriate reference values for the execution of the pop-up
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manoeuvre are effective in enabling the system to navigate altitude changes. The response of the system,

although slightly delayed from the reference, shows good accuracy, with a maximum deviation of 3m from

the desired vertical position due to an overshoot at the peak of the manoeuvre. Additionally, thanks to the

integral action of the velocity controller and the addition of a position control loop, the helicopter is capable

of reducing errors in the position when remaining in a steady-state flight configuration, as is shown by

the evolution of the altitude in the final segment of Figure 12.8, where the helicopter recovers from the

overshoot before settling at the desired altitude.

Furthermore, the attitude tracking during the pop-up manoeuvre remains robust, with the pitch angle

commands being tracked effectively by the system to regulate the surge velocity, while roll and yaw

angles are maintained near zero throughout the climb and descent phases. Control inputs, displayed in

Figure 12.12, exhibit smooth collective variations that mirror the altitude profile without exceeding actuator

limits. Additionally, as the reference position matches the offline-calculated pop-up trajectory, it also follows

that the autopilot’s real-time interpolation ensures is effective in smoothly reconstructing the complete

trajectory, allowing the entire manoeuvre to not be stored as a set of continuous reference signals, but

instead as a set of relevant waypoints. Collectively, these results demonstrate that the integrated control

and autopilot architecture delivers both precision and stability across rapid vertical flight profiles.

Trajectory Coordinates

0 100 200 300 400 500 600 700 800
-40

-20

0

20

40

Y
 -

 [m
]

Y(X) trajectory

Reference
Trajectory

0 100 200 300 400 500 600 700 800

X - [m]

40

60

80

100

120

Z
 -

 [m
]

Z(X) altitude

Reference
Trajectory

Figure 12.8: Autonomous flight tracking of pop-up trajectory reference
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Figure 12.9: Velocity references during the pop-up MTE
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Figure 12.10: Quaternion attitude references during the pop-up MTE
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Figure 12.11: Euler angles attitude references during the pop-up MTE
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12.3. Concluding remarks on helicopter tracking performance
Within this chapter, the controller and the autonomous flight systems developed within the thesis were

verified in their implementation by simulating the execution of two complementary manoeuvres: the slalom

and the pop-up. The simulations were carried out making use of the Simulink environment, which enables

the simulation of dynamical systems, and the simulation parameters were set up to have a simulation

update timestep of 1ms using a Fourth-Order Runge-Kutta (RK4) solver, enabling the system to function

at a rate that is consistent with the achieved rates of sensors and computers that may be used in flight

control scenarios while using a solver algorithm that strikes a balance between computational effort and

simulation accuracy.

The manoeuvres simulated were a slalom and a pop-up. These two manoeuvres were selected as

they are commonly used in the context of piloted flight to test the agility of an air vehicle and because they

allow testing of both the lateral and the longitudinal manoeuverability of the system.

The slalom manoeuvre was simulated first, commanding continuous variations in both the roll angle φ and

the yaw angle ψ while navigating a continuously curving trajectory that aimed at achieving a sinusoidal flight

path with curves spaced by 150m achieving a 25m variation from the centerline of the track. The manoeuvre

references were identified offline using the methodology discussed in Section 10.2.1 and leveraging the

online-smoothing capabilities of the autopilot module discussed in Section 11.1.2. Results of the simulation

show that the aircraft was successful in achieving good trajectory tracking, always remaining within 5m of the

desired lateral position and with similar maximum displacements along the vertical axis. While the velocity

reference tracking performance suggest that improvements in the tuning of the intermediate controller loop

would benefit the system, the attitude tracking performance show remarkable accuracy, with only minimal

variations and deviations from the reference signals, showing the effectiveness of quaternions in encoding

simultaneous changes along all attitude axes with a robust methodology and minimal computational effort.

The inputs measured around the manoeuvre are consistent with the vehicle’s response and never reach

saturation, validating the multi-objective tuning methodology introduced in this work: the large activations

of the helicopter’s collective command are a consequence of the high cross-activation between lateral and

vertical velocity variations.

The pop-up manoeuvre was simulated next, commanding the helicopter to perform an altitude variation

while maintaining constant heading. In particular, the manoeuvre was implemented to command a

smooth 25m altitude gain and hold, requiring contained variations in the aircraft’s pitch angle θ and

commanding a collective activation to increase the vertical velocity component of the system. The

manoeuvre reference was generated using the approach presented in Section 10.2.2, where the pop-up

manoeuvre was introduced and identified. The response was overall satisfactory, with the helicopter

being able to perform the altitude variation calculated offline. Similarly to the slalom manoeuvre, the

velocity response of the system showed non-negligible delays in the heave response, which also impact

the position tracking performance of the helicopter, causing a momentary overshoot of the desired

altitude. Even with this, the helicopter was able to later settle at the desired 95m altitude, showing the

effectiveness of the integrated autopilot and position controller. The attitude response is again able to

follow the desired references, and the manoeuvre is executed without saturating the available controls,

with the collective control showing a smooth rise and descent during the pop-up section of the manoeuvre

before settling at a value that is very close to its original trim during the final altitude hold phase, as expected.
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13
Conclusion and Recommendations

Within this chapter, concluding remarks regarding the work performed and the results obtained in the

context of the thesis will be presented, synthesising the findings of this work and providing explicit answers

to the research questions previously identified.

To provide an orderly and effective conclusion to the work performed, this chapter will be divided in two

sections. Section 13.1 will provide a contextualized overview of the work performed, recalling the research

questions identified in Section 1.2 and synthesising the methodology followed and the results obtained.

Afterwards, Section 13.2 will highlight potential future development of the work performed and present

useful recommendations to guide the possibility of improving the methodologies and approaches developed

within this work. To provide an immediate reference of the relevance of this work, a concise overview of

the main contributions of this work has already been provided in Chapter 4, where the main contributions

of the work have been listed, referencing the sections of the work where these results have been discussed.

13.1. Overview of the work and research questions
With a growing interest in the application of quaternions to full-scale flight controllers, but with little works

performed in the study of quaternion models and quaternion control system for atmospheric flight, this

thesis sets out to contribute to the current research landscape by exploring, with a practical implementation

case study, the inclusion of quaternion modelling techniques, and the development and implementation of

a quaternion-based full flight control system for autonomous flight.

Here the methodology developed and the results obtained are summarized, providing a complete overview

of the work done. Additionally, the research questions driving this work, which had been identified

in Section 1.2, are also included in the overview of the work, allowing the reader to gain immediate

understanding of how they were developed and the answers identified in this work.

As the primary interest of the thesis is the investigation and the implementation of the quaternion attitude

parametrization to highly-manoeuverable air vehicles (such as helicopters), in Chapter 5 an introduction to

the quaternion formulation was given, providing a concise overview of the applications of quaternions in

the context of aerospace engineering. In this chapter, the first research question was also addressed:

How are quaternions beneficial to the modelling of helicopter dynamics and to the development

of control systems?

Research Question 1

To answer this question, quaternions were compared with two of the most commonly-used attitude

parametrization parametrizations, Euler angles and Direction Cosine Matrices, showing that quaternions

provide a computationally-efficient and highly-robust approach to attitude parametrization, removing the

risk of gimbal lock and enabling faster computations: the two primary limitations of traditional attitude

parametrization approaches.
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With the advantages of quaternions established, in Chapter 6 and Chapter 7 their implementation to

existing systems was investigated to provide a reliable approach to investigate quaternion models and to

develop quaternion-based control systems. To this end, Research Question 2 was investigated:

How can an existing state-space flight dynamics model be augmented to include quaternions for

its attitude representation?

Research Question 2

To answer this question, in Section 7.1 a methodology to convert existing linearized models from the Euler

angles to the quaternion attitude parametrization based on mathematical considerations was provided,

and the conversion of the model was verified by comparing the system’s poles, eigenvectors, control-

lability/observability characteristics, and dynamic response before and after the quaternion conversion.

The results are positive, suggesting that the attitude parametrization conversion procedure is effective in

maintaining the fundamental system’s characteristics, enabling the study of quaternion-based linearized

models without the need to perform complex identification procedures if an existing Euler angles-based

model is available.

Building upon the results of Chapter 7, which allowed for the construction of a linearized system model

with an integrated quaternion attitude parametrization, the task of controlling the existing helicopter model

is then investigated. To this end, Research Question 3 further guides the development of the thesis by

investigating the inclusion of quaternions in flight control systems.

How can a quaternion-based autonomous full flight control system be optimally developed for an

agile helicopter?

Research Question 3

To answer this question, in Chapter 8 an architecture for a full flight control system for helicopter control is

presented. The proposed control system is based on a modular architecture composed of three nested

loops: the innermost loop controls the quaternion attitude of the system, the middle loop controls the

system’s velocity, and the outer loop controls the position of the vehicle. While the middle and outer loops

are generated using a P/PI formulation, the inner attitude loop leverages a novel implementation of LQI

control to the quaternion attitude parametrization, which enables good decoupling of the attitude channels

while ensuring responsiveness and moderate control usage.

Expanding upon the controller architecture discussed, Chapter 9 delves into the tuning process. In an

effort to reduce the need for manual tuning, the tuning was performed for the three loops using the

Particle Swarm Optimization (PSO) algorithm, which allows for the identification of multiple performance

objectives that can be optimized simultaneously to find a set of controller parameters to achieve the desired

performance. The tuning was performed minimizing tracking error with appropriate reference signals while

limiting control usage to avoid saturations, resulting in an effective and repeatable tuning procedure that

can be applied to multiple different systems. The tuning was performed and discussed for all three loops,

every time discussing how the PSO algorithm was implemented, allowing for a solid understanding of the

system’s performance and of the methodology used.

With the control system identified and tuned, to investigate the system’s performance, appropriate

tracking tasks had to be identified to evaluate controller performance, and as such adequate reference

signals had to be investigated to allow for the execution of selected Mission Task Elements. To this end,

Research Question 4 was identified:

How can maneuver reference trajectories be systematically designed to evaluate the tracking

performance of a helicopter control system?

Research Question 4
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To this end, in Chapter 10 a deterministic approach to manoeuvre reference identification for the helicopter is

developed and presented, building a simple framework that, from simple kinematic and dynamic equations,

allows to determine the required position, velocity, and attitude references that the helicopter should follow

to track a desired manoeuvre in 3D space. The proposed algorithm does not rely on any model knowledge

and integrates well with the nested-loop control system to allow for online compensation of the simplifying

hypotheses utilized when defining the manoeuvres.

The methodology proposed was then utilized to generate reference values for two complementary tracking

tasks: a slalom manoeuvre and a pop-up manoeuvre. These manoeuvre were identified as they allow for

an exploration of both the lateral and the longitudinal responses of the vehicle, testing the autopilot’s and

the controller’s ability to adequately perform under various flight conditions.

With adequate manoeuvres identified to test the controlled helicopter’s performance, the ability of the

system to follow the offline-defined reference signals is tested via desktop simulations. In the context of

autonomous navigation based on identified trajectories, however, continuous control signals are inadequate

as they do not allow for the consideration of possible delays in the system’s response, and will lead to

inaccurate trajectories that will not perform well in tracking tasks where precise position tracking is desired.

To this end, Research Question 5 was defined:

How can an autonomous flight system be designed to optimize reference tracking for agile

maneuvers in helicopters?

Research Question 5

Answering this question, in Chapter 11 an autopilot system is introduced and clearly detailed in its

functioning and implementation. The autopilot is build as a Finite State Machine (FSM) that is capable of

tracking the system’s current position and, collaborating with the controller, dynamically produce adequate

position, velocity, and attitude references to control the motion of the vehicle. The choice of the FSM is

instrumental in enabling a simple but effective architecture, that operated reliably and that could be easily

expanded upon in future research to allow for more complex behaviour like real-time trajectory-planning to

allow for obstacle avoidance.

Concluding the description of the system, the twomanoeuvres identified with themethodology introduced

in Chapter 10 are simulated in MATLAB’s Simulink environment. The simulations are both performed

with a time resolution that matches the performance of aircraft on-board computer and using a solver

algorithm that balances good accuracy with limited computational load, and the results of the simulations

are discussed in Chapter 12.

In both cases, the helicopter is able to adequately track the desired trajectories, showing only limited

deviations from the offline-defined trajectory at the most aggressive points of the manoeuvres. Analysing

the results, it was identified that the primary limiting factors were the velocity response, which in the tuning

process showed non-negligible delays across all control axes, and the high cross-activation of the vertical

velocity when inputs were provided in the horizontal and lateral velocity directions. Conversely, the inner-

loop attitude tracking appeared to be effective in its implementation, showing remarkable responsiveness,

suggesting the validity of the model conversion technique to have the attitude be internally represented

with quaternions discussed in Chapter 7, and of the novel LQI implementation to quaternion attitude control

introduced in Chapter 8.

Further, in both simulations, the helicopter was capable of effectively limiting control usage, never saturating

the system’s input commands. This, paired with the good tracking performance discussed above, supports

the applicability of the objective-based tuning procedure utilized in Chapter 9, showing that the PSO

algorithm is capable of tuning multi-loop system and providing clear cost function definitions that allow for

the effective tuning of multi-loop controllers for dynamic systems.

In closing, this thesis has delivered an effective framework for quaternion-based full flight control in

agile helicopters, eliminating Euler angle limitations and ensuring singularity-free attitude representation.
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A procedure to convert existing linearized models from the internal Euler angles parametrization to

the quaternion attitude parametrization has been presented, eliminating the need to perform complex

identification procedures, thus enabling a more immediate study of a system’s performance using a

quaternion approach. The hierarchical three-loop architecture, tuned via Particle Swarm Optimization

and supported by a modular FSM autopilot, has demonstrated exceptional tracking performance in both

lateral slalom and longitudinal pop-up manoeuvres, achieving sub-5m lateral and sub-3m vertical errors

without control saturation for two selected manoeuvres: the slalom and the pop-up. By bridging quaternion

methodologies from UAV and spacecraft research to full-scale rotorcraft, this work contributes to the

academic discussion in autonomous VTOL flight of agile air mobility systems.

13.2. Future developments and recommendations
As discussed above, this thesis work covers a wide variety of topics, providing a comprehensive discussion

of the entire procedure followed to analyse and discuss a helicopter model, implement and tune a full

flight control system, and build a simple but effective algorithm to allow for autonomous navigation through

offline-defined paths. Here, a brief overview of the primary recommendations for the continuation of this

research is provided.

Rec 1: Evaluation of linearization effectiveness at multiple operating points and comparison with

full nonlinear quaternion models

While the present work focuses on the discussion of the model conversion at two operating points (hover

and 65kn linearizations), future developments could investigate how the accuracy and usefulness of

the linearized quaternion-based model vary across a broader range of operating points. In particular,

linearizing the system around different flight regimes—such as low-speed forward flight, aggressive climb,

or descent—would allow for a better understanding of how well the linearized dynamics capture the

true system behavior in varying conditions. This analysis could guide the design of gain-scheduled or

regionally-tuned controllers that adapt their parameters based on flight state, thereby improving robustness

and tracking performance throughout the entire flight envelope.

Building upon this, from a modelling standpoint, another useful development of this work would be a

comparison between the linearization of a complete non-linear quaternion-based helicopter model and a

linearized Euler angles model converted to the quaternion parametrization using the proposed methodology.

This would serve to further validate the procedure presented in this work, and would also provide useful

insight between the accuracy of the two linearization procedures, comparing computational effort, assessing

eventual linearization incongruences, and evaluating how well the dynamics of the non-linear quaternion

model are captured by the converted linearized Euler angles model.

Rec 2: integration of velocity cross-feedforward gains

One crucial limitation of the control system developed is the high coupling between lateral and vertical

response, where sway velocity commands or lateral position changes are also reflected in significant

vertical displacements. One possible area of future expansion of this work would be the application of

the proposed tuning methodology to a different control architecture that may introduce cross-feedforward

gains to limit the influence of the helicopter’s natural coupling.

Rec 3: integration of robustness goals in the tuning

The flexibility of the PSO control system may also be used to include design considerations regarding

the robustness of the closed-loop system, thus adapting the control strategy developed to also account

for stability margins and disturbance-rejection criteria. This would significantly improve the performance

of the tuning strategy, as it would allow extend the tuning approach to consider both time-domain and

frequency-domain characteristics of any system this approach is applied to.

Rec 4: integration of q0 element in the attitude controller

As an additional point of note in controller architecture design, while the inner-loop LQI was highly effective

at tracking attitude variations around the trim point of the vehicle, it is worth remembering that the attitude is

now being tracked using only three of the four quaternion elements, neglecting the q0 term. As explained in

Chapter 7 and Chapter 8, this was done to maintain the system’s controllability condition, thus allowing for

the investigation of the application of LQI. In an effort to enable more accurate and robust attitude tracking
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policies, an attitude controller capable of accounting for references across all four quaternion elements is

therefore desirable and worth investigating. While to this end a change in the controller paradigm may

be useful, the tuning procedure presented here may still be used and applied tot he tuning of another,

different control system.

Rec 5: expansion of autopilot FSM capabilities

The autopilot controller presented in Chapter 11 is a simple but functional autonomous flight system, with a

highly versatile and modular structure. Because of this simplicity and modularity, the FSM presented is well-

suited to being expanded upon by including additional subsystems to enable more complex behaviour. As

possible examples, the FSM could be augmented with an appropriate online trajectory planning algorithm to

enable obstacle avoidance, or by expanding its capabilities to travel through trajectories that can seamlessly

merge different manoeuvres.

Further, as the autopilot FSM is model-agnostic (meaning that it does not rely on any existing model

knowledge and it was presented using a general formulation) it could be applied to a number of different-

scale and different-purpose vehicles, such as small drones, conventional aircraft, or even automotive. This

allows for a wide range of possible applications of this seemingly basic autopilot, enabling its investigation

in more complex systems.
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A
Description of the Bo105 helicopter

The appendix serves as an addition to the analysis presented in Chapter 6, providing a modal and structural

analysis to contextualize the choice of the Bo105 helicopter for agile flight. In particular, this appendix will

be divided in two major sections.

To start, in Section A.1 a complete description of the Bo105 helicopter is provided, overviewing its structure

and its most relevant peculiarities. In particular, the aircraft will be presented in terms of its rotor system,

its fuselage and engines. This discussion serves to justify the interest in using the Bo105 helicopter in the

context of agile flight, while presenting its most relevant mechanical characteristics and highlighting their

contribution to the overall performance of the helicopter.

Further expanding upon the modal analysis carried out in Chapter 6, in Section A.2, a comparison between

the system-identified model and a theoretical model obtained by Padfield via the Helisimmodelling approach

[80] is provided. This analysis is instrumental in highlighting the complexity of the Bo105 helicopter in its

available linearizations and emphasises the intricacy of the existing couplings.

A.1. The Bo105 helicopter
The Messerschmitt-Bölkow-Blohm (MBB) Bo105 is a lightweight, twin-engine, multi-role helicopter that

has seen extensive use in both civilian and military applications. Developed in Germany and first flown in

1967, the Bo105 was on of the first helicopters to feature a hingeless rotor system, which allowed for highly

agile manoeuvrability and precise control. The Bo105 was considered revolutionary for its time and it was

a result of an extensive research process that aimed at obtaining a versatile and highly manoeuvrable

helicopter with low maintenance costs and high power reserves [119].

To provide an overall understanding of the fundamental mechanical properties of the Bo105, the most

relevant characteristics of the vehicle will be briefly described hereafter.

A.1.1. General characteristics
The main characteristics of the Bo105 are summarised in Table A.1, while a three-ways diagram of the

helicopter is given in Figure A.1.

From the data in Table A.1, it can be noticed that the Bo105 fall comfortably in the light-weight helicopter

class, given its weight and its 9.8 m rotor radius. Even so, the twin-engine design allows for a significant

degree of available power and safety, as in case of engine loss the helicopter can still be controlled even

with only one of the two engines, albeit in a reduced speed range [121]. Moreover, while the twin engine

design allows for a remarkable available power and top speed for its weight class, the relative high ef-

ficiency of the two Allison 250 C20 engines helicopter allows the Bo105 to maintain a good maximum range.

A.1.2. Rotor system
The Bo105’s rotor system is one of its most defining features. The main rotor consists of four composite

blades, arranged on a rigid rotor head without traditional hinges and dampers: this rigid configuration (also

referred to as ”hingeless”) was especially revolutionary at the time and its introduction was allowed by

164
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Table A.1: Bo105 configuration data

Description Symbol Value Unit

Gross weight mg 2200 kg

Helicopter moments of inertia

(reference point: CGH )

Ixx 1433 [kgm2]

Iyy 4973 [kgm2]

Izz 4099 [kgm2]

Ixz 660 [kgm2]

Main Rotor (MR)

Radius RMR 4.912 [m]

Angular velocity ΩMR 44.4 [rad/s]

Blade number NMR 4 [-]

Blade chord cMR 0.27 [m]

Blade mass mBl,MR 24.2 [kg]

Tail Rotor (TR)

Radius RTR 0.95 [m]

Angular velocity ΩTR 233 [rad/s]

Blade number NTR 2 [-]

Blade chord cTR 0.179 [m]

Blade mass mBl,TR 0.47 [kg]

Engine data

Engine Allison 250 C20

Number of engines Nen 2 [-]

Horsepower Pen 420 [shp]

Normal range Ren 300 [nm]

Max range Rmaxen 550 [nm]

advancements in the field of material studies. The design of a rigid rotor is shown in Figure A.2: as shown,

the rigid rotor design has no flapping hinges and no lead-lag hinges, with the only degree of freedom of the

blades being provided by their pitch horn to allow for feathering.

Compared to articulated and semi-rigid rotor systems, the hingeless configuration treats the blades

and the main rotor mast as a single structural element, which allows for an increase in responsiveness

and a reduction in control inputs [99]. In addition to this, another significant characteristic of the hingeless

rotor configuration is the reduction in maintenance costs, which is a direct consequence of the simplified

design of the rotor. While the hingeless rotor structure boasts many advantages in responsiveness over

the articulated design, it is worth noting that rigid rotors typically transfer more vibrations to the cabin (as

the rotor blades are directly connected to the main rotor mast) and the removal of the lead-lag and flapping

hinges may reduce the manoeuvrability in heavily gusty environments, as external forces caused by wind

are transferred rigidly to the body of the vehicle.

Because of these characteristics - while there may be degradation in flight quality in especially turbulent

air - the hingeless rotor allows the Bo105 to achieve high manoeuvrability and a crisp response in tactical

and emergency operations, while also having an improved reliability due to the reduce maintenance effort,

thus justifying its choice over other rotor types for the development of the Bo105 helicopter.

A.1.3. Fuselage and engine
One of the critical design objectives of the Bo105 helicopter was its flexibility, as it was intended to be used

for both military and civil purposes. For this reason, in addition to the considerations made for the design

of the rigid rotor system, the design also involved serious considerations about the fuselage geometry and

the engine. In an effort to provide a proper description of the Bo105 helicopter, these considerations will
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Figure A.1: Bo105 three-view drawing [120]

be briefly discussed hereafter.

While the rigid rotor design allowed for high manoeuvrability and a reduction in control effort, the

generation of sufficient power and its efficient transmission to the main and tail rotors was a critical matter.

To this end, a twin-engine design was chosen, with two turbines providing power to the main rotor.

The twin-engine configuration is characterised by both advantages and disadvantages. On one hand, the

twin engine design allows for an increase in available power and an additional degree of redundancy:

allowing for a direct increase in maximum take-off weight (MTOW) and increasing safety (as in case of

engine failure, the other engine will still provide the required power to control the flight and allow for a

controlled emergency landing [121]). On the other hand, the twin engine design causes an increase in

weight and complexity, while also causing both engines to function at partial load, which reduces the

engine efficiency and increases fuel consumption. Even with these considerations, the increased power

and safety of the twin-engine configuration outweighed its limitation.

Regarding its structural components, the Bo105 helicopter is optimized for durability, weight efficiency,

and adaptability across various operational contexts, making it a remarkably usable aircraft and meeting

its multiple-use-scenario requirements.

The fuselage is constructed primarily from riveted aluminium panels and sandwich panels, providing robust

structural support while minimizing weight and allowing for the capacity of transporting up to 3 passengers

(in addition to the two pilots) [119]. For landing gear, the Bo105 uses a durable twin-skid configuration.

This simple design enhances the helicopter’s resilience in rough or uneven terrain, making it suitable for

operations in remote areas. The skids provide stable support for landing on both hard and soft surfaces,

while the compact configuration minimizes weight, contributing to the helicopter’s overall manoeuvrability.

The introduction of a twin-engine design and the choice of lightweight materials for the main structure

of the helicopter contribute greatly to the overall manoeuvrability of the helicopter itself, allowing for the

responsiveness of the hingeless rotor design to be fully leveraged.
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Figure A.2: Four-bladed hingeless main rotor system [122]

A.1.4. Concluding remarks
Here the characteristics of the Bo105 helicopter have been discussed, with particular attention given to the

design of the hingeless rotor. The analysis performed highlighted the advantages of this rigid configuration

over the articulated and semi-rigid designs and justified other significant choices, such as the twin-engine

design and the lightweight structure to allow for a complete expression of the high control power and

manoeuvrability of the helicopter.

The high available power and the responsiveness of the hingeless rotor configuration allow the safe

execution of quick and agile manoeuvres which would not be practicable by other similar helicopters.

Thanks to its characteristics, the Bo105 can execute rapid ”nap-of-the-earth” manoeuvres (very low altitude

flight, commonly used in military applications to make use of cover and avoid detection) which would be

dangerous or impossible for teetering and articulated rotors due to potential loss of controllability [123],

and the helicopter was even capable of ”full aerobatic routines, complete with loops, hammerheads, bunts

and rolls” [123, p. 101].

With the characteristics described above, the choice of the Bo105 helicopter for the purpose of this thesis

is justified from a mechanical standpoint, as its design characteristics make it a lightweight helicopter

capable of high manoeuvrability and even aerobatics manoeuvres. Because of this, the introduction of a

quaternion-based control system is of interest, as it would allow to overcome the limitations of the Euler

angles parametrization, allowing for the execution of autonomous aerobatic manoeuvres and making rapid

changes in attitude possible, thus fully expressing the high-manoeuvrability potential of the Bo105.

A.2. Comparison between system-identified and theoretical modes
The mode analysis of the linearized systems produced in Section 6.2 highlighted the peculiarity of the

available identified models, with eigenvector elements showing high cross-activations and unconventional

dynamics. To emphasise the unconventional nature of the identified dynamics of the available systems, a

comparison between the identified model and a theoretical model is appropriate.

One of the most prominent helicopter model structures used in research is Helisim, a generic model

proposed in [124] by Padfield: this model serves as an evolution of early helicopter models and was

developed to allow for simulation of both ”gentle” and ”agile flight” [125]. In particular, the Helisim model

has also been applied to the Bo105 helicopter in [80], obtaining a theoretical pole map of the rigid-body

system with theoretical parameters: a graphical representation of the theoretically identified pole loci for

the Bo105 helicopter is given in Figure A.3, where the approximate pole locations are shown over the

speed range from hover to 160kn.



A.2. Comparison between system-identified and theoretical modes 168

Figure A.3: Theoretical pole map of the Bo105 helicopter [80]

The modes identified are aligned with the typical behaviours expected from a helicopter. Two oscillatory

modes are found, a phugoid and a Dutch roll: the phugoid mode is an unstable longitudinal mode

describing an exchange in airspeed and altitude; the Dutch roll is a more highly damped lateral mode

which involves oscillations in the yaw and roll angles. Two non-oscillatory modes are also present, the

roll and pitch subsidence, which relate respectively to the lateral and to the longitudinal dynamics of the

system. An additional mode emerges in the coupled heave and spiral subsidence modes, which are

coupled at lowed speeds and become decoupled as velocity increases: this behaviour is also to be ex-

pected from helicopters, as hover is a muchmore complex flying condition and couplings are more prevalent.

Figure A.4: Pole map of the Bo105 model
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Comparing the theoretical pole loci identified in Figure A.3 with the pole loci of the available linearized

model in Figure A.4, it is apparent that the two images show noticeable differences.

The first noticeable discrepancy between the modes is the presence of two additional high-frequency

complex pole pairs, both in the hover and in the 65kn knots linearizations: from the mode analysis in

Section 6.2.1 it is apparent that the eigenvectors associated with these poles have large contributions from

the ṗ and q̇ states, which have very fast dynamics and are not modelled as states in the theoretical Helisim

model.

As a further point of difference, the identified model shows more noticeable couplings between the modes.

This is expected, as theoretical model are based on fundamental simplifying assumptions and are unable

to account for uncertainties in the parameters used when computing the models. These limitations prevent

the theoretical Helisim model from capturing the complete dynamics of the helicopter and highlight the

added precision granted by system identification techniques.

To provide a more immediate comparison between the identified poles and the theoretical ones,

Figure A.5 shows the pole loci for both systems in hover, with a more detailed view of the map provided

in Figure A.6. By comparing the two systems, it is noticed that phugoid and Dutch roll modes appear to

have been correctly identified, with the pole location being highly similar to the expected modes. Even so,

the eigenvector analysis carried out in Section 6.2.1 suggests that the poles associated with the phugoid

and the Dutch roll show a high cross-activation between the longitudinal and lateral states, which appear

to not have been taken into account in the theoretical Helisim model. Conversely, the Helisim model in

hover suggests a coupling between the heave and spiral subsidence modes, which is not detected in the

identified hover linearization.

These discrepancies highlight the limitations of the Helisim theoretical model, which were also noted

by Padfield in [125], where notable modelling deficiencies were noted with validation data in agile flight

cases, although the general parametric trends appeared to be correct. Additionally, these discrepancies

become even more relevant in the context of agile flight for the specific Bo105 helicopter, as the Bo105

was developed with the fundamental objective of creating a fast and highly maneuverable vehicle and, as

such, is more prone to quick cross-coupled responses.

Overall, the study of the model highlighted the complicated nature of the system’s dynamic responses,

with noticeable unusual couplings in the longitudinal and lateral channels. While these cross-couplings are

expected in helicopters due to the large values assumed by the aerodynamic derivatives [80], theoretical

models are often unable to provide a complete modelling of these conditions due to their fundamental

underlying simplifications and due to the physical complexity of helicopter flight.
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Figure A.5: Comparison between theoretical and system-identified pole loci in hover

Figure A.6: Comparison between theoretical and system-identified pole loci in hover (detail)



B
Results of the quaternion conversion

Here the results of the time simulations discussed in Section 7.2.2 will be shown in their entirety. The

figures presented aim at showing the overlap between the time responses of the Euler angles system

SSeul and the quaternion system SSquat. The figures will be grouped by input, showing both the results for

the hover linearization and those for the 65 knots linearization.

As discussed, the responses of the two systems exactly overlap, suggesting that the conversion has

been successful in introducing quaternions as an internal parametrization for attitude. This, in addition

to the comparisons performed about the system’s eigenvalues and eigenvectors characteristics, sug-

gests that the conversion logic used in this report is valid and maintains the system’s fundamental dynamics.

For each simulation, the selected input is defined as a square pulse starting at T = 2s and lasting for

6s. The amplitude of the pulse is 10% for all inputs, meaning that the inputs are commanded to provide a

deflection of a positive 10% from their trim position at either the hover trim point or at the 65kn trim point.

In order to properly test the responses of the system in all the most representative cases, here the results

of four simulations will be presented, where the square pulse reference signal defined above is applied

once on each of the available inputs. As such, the pulse input will be applied: in Section B.1 on the

longitudinal cyclic δx, in Section B.2 on the lateral cyclic δy, in Section B.3 on the collective δ0, and in

Section B.4 on the pedal δp. In all the presented scenarios, all other inputs are left inactive.

B.1. Longitudinal cyclic δx input
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Figure B.1: Example input activating the δx channel
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Response to first input: x
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Figure B.2: Time response of the hover state-space: input applied on δx

Response to first input: x
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Figure B.3: Time response of the 65 kn state-space: input applied on δx

B.2. Lateral cyclic δy input
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Figure B.4: Input activating the δy channel
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Response to second input: y
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Figure B.5: Time response of the hover state-space: input applied on δy

Response to second input: y
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Figure B.6: Time response of the 65 kn state-space: input applied on δy

B.3. Collective δ0 input
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Response to third input: 0
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Figure B.8: Time response of the hover state-space: input applied on δ0

Response to third input: 0
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Figure B.9: Time response of the 65 kn state-space: input applied on δ0

B.4. Pedal δp input
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Figure B.10: Input activating the δp channel
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Response to fourth input: 4
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Figure B.11: Time response of the hover state-space: input applied on δp

Response to fourth input: 4
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Figure B.12: Time response of the 65 kn state-space: input applied on δp
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