

Delft University of Technology

Tile Architecture and Hardware Implementation for Computation-in-Memory

Zahedi, Mahdi; van Duijnen, Remon; Wong, Stephan; Hamdioui, Said

DOI
10.1109/ISVLSI51109.2021.00030
Publication date
2021
Document Version
Final published version
Published in
Proceedings - 2021 IEEE Computer Society Annual Symposium on VLSI, ISVLSI 2021

Citation (APA)
Zahedi, M., van Duijnen, R., Wong, S., & Hamdioui, S. (2021). Tile Architecture and Hardware
Implementation for Computation-in-Memory. In C. Ceballos (Ed.), Proceedings - 2021 IEEE Computer
Society Annual Symposium on VLSI, ISVLSI 2021: Proceedings (pp. 108-113). Article 9516737
(Proceedings of IEEE Computer Society Annual Symposium on VLSI, ISVLSI; Vol. 2021-July). IEEE.
https://doi.org/10.1109/ISVLSI51109.2021.00030
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/ISVLSI51109.2021.00030
https://doi.org/10.1109/ISVLSI51109.2021.00030

Tile Architecture and Hardware Implementation for
Computation-in-Memory

Mahdi Zahedi, Remon van Duijnen, Stephan Wong, Said Hamdioui
Department of Quantum and Computer Engineering, Delft University of Technology, Delft, The Netherlands

Email: {m.z.zahedi, R.F.J.vanDuijnen, j.s.s.m.wong, s.hamdioui}@tudelft.nl

Abstract—Computation-in-memory (CIM) shows great promise
for specific applications by employing emerging (non-volatile)
memory technologies such as memristors for both storage and
compute, greatly reducing energy consumption, and improving
performance. Based on our own observations, we can clearly
perceive the contours of a generic approach encompassing the
use of a memristor array – using technologies such as PCM
and ReRAM. In this paper, we present a new instruction-set
architecture (ISA) to control a single CIM-tile that comprises the
analog memory array itself and all necessary analog and digital
periphery. The newly introduced ISA provides the following ad-
vantages: (1) flexibility in programming new CIM functionalities
by simply rescheduling the instructions from the ISA, (2) definition
of a simulation framework, (3) a hardware implementation of the
digital periphery, and (4) a design-space exploration of specific
CIM-tile operations targeting the aforementioned technologies.
For (1), we defined our own compiler that can translate CIM-
tile operations to a sequence of instructions from our ISA. The
implementation of the digital periphery is synthesized with the
15 nm Nangate library and results regarding power/energy and
area are presented. Finally, the design-space exploration is made
possible by using the technology-specific parameters with values
that have been verified by accurate technology models. All codes
of the compiler and simulator as well as the HDL code of the
digital periphery are publicly available.

I. INTRODUCTION

Conventional Von Neumann machines inherently separate the

processing units from the memory units. The implication of this

separation is the need to transfer data back and forth between

these units whenever a computation should be performed. The

processing speed improvements (due to technological advances)

outpaced memory speeds leading to the well-known memory

bottleneck [1]. To overcome this, modern computer architec-

tures utilize different approaches such as hierarchical memory

architectures, pre-fetching schemes, and parallel computing.

However, the speed gap remains and is especially true for big

data applications. Furthermore, the energy required to retrieve

data from the memory is several orders of magnitude higher

than the energy required for a single operation within the

processor [2]. Hence, there is a clear need for a new computing

paradigm to further advance modern computer architectures

considering the aforementioned overheads.
One such paradigm is computation-in-memory (CIM) that

combats the drawbacks of the Von Neumann architecture by

integrating the processing and memory units. Research has

shown that certain operations such as Boolean operations

and the dot-product are especially susceptible to acceleration

using specialized memory arrays, achieving great levels of

parallelism and significantly reducing data-traffic and conse-

quently energy consumption [3]. The memory arrays exploit

the characteristics of memristive technology to enable the in-

memory computations. As Boolean operations and the dot-

product can be efficiently supported, specific applications such

as database, signal processing, and machine learning can be

accelerated using in-memory computing. Recent research in the

field of CIM mostly focusses on device characteristics, crossbar

structure, and analog periphery circuits to drive and read the

crossbar output while a few works are targeting to design a

CIM architecture employing memristor devices [4]–[6].

In this paper, we present our detailed CIM-tile architecture

which is a generalization of existing designs found in literature

and our own work. The accompanying instruction-set architec-

ture (ISA) efficiently controls the data movements to and from

the crossbar as well as the digital periphery that is capable of

executing additional operations needed for matrix-matrix multi-

plications. Furthermore, we divided the tile operations into two

stages, thereby enabling parallel execution. The introduced ISA

bridges the gap between high-level programming languages

and the CIM-tile architecture and allows for the definition of

a compiler (written in C++) to efficiently schedule the CIM

operations instead of the need to devise a complex hardware

controller (complex state machine). Summarizing, our main

contributions are the following:

• an ISA that is capable to accurately reflect and flexibly

control all functional aspects of a generalized CIM-tile

organization - targeting different memristor technologies -

and, in addition, allow for parallel execution of CIM-tile

operations in 2 stages.

• a (SystemC) simulator that is parameterized by incorpo-

rating power and timing characteristics for the memristor

array taken from detailed technology models. Moreover,

different memristors technologies are supported via these

parameters. Furthermore, the necessary digital control

logic (defined by the ISA) are also incorporated.

• a performance and energy evaluation of two memristor

technologies, i.e. PCM and ReRAM, in conjunction with

the necessary digital controller and other digital periph-

eries using our simulator.

II. BACKGROUND AND RELATED WORK

This section provides knowledge on memristive devices

and their deployment in computational circuits. Furthermore,

prominent CIM architectures and simulators are discussed.

A. Memristive devices and circuits

Memristive devices maintain a relationship between charge

and flux elements of a two-terminal passive component. The

current-voltage characteristic of a memristive device is a

pinched hysteresis loop, as can be seen in Fig 1(a). This means

the memristive device can alternate between two stable states

by applying a sufficiently high voltage; the high resistance

108

2021 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)

978­1­6654­3946­6/21/$31.00 ©2021 IEEE
DOI 10.1109/ISVLSI51109.2021.00030

20
21

 IE
EE

 C
om

pu
te

r S
oc

ie
ty

 A
nn

ua
l S

ym
po

si
um

 o
n

V
LS

I (
IS

V
LS

I)
 |

97
8-

1-
66

54
-3

94
6-

6/
21

/$
31

.0
0

©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
IS

V
LS

I5
11

09
.2

02
1.

00
03

0

Authorized licensed use limited to: TU Delft Library. Downloaded on August 24,2021 at 07:10:46 UTC from IEEE Xplore. Restrictions apply.

...

...

BL1 BL2

GL1

GL2

SL1

SL2

I

V

SET

RESET

V(SET)

GND GND

V(RESET)

HRS LRS LRS HRS

(a) (b)

A/D converter A/D converter

.
.

.
.

.
.

.
.

.
.

.

Fig. 1: memristor behavior (a) and 1T1R crossbar structure (b).

state (HRS) or the low-resistance state (LRS), which represent

a logic ‘0’ or ‘1’, respectively. In addition to non-volatility,

some large benefits of memristor technologies are their overall

great scalability, high memory-density, and low leakage power

consumption [7]. Examples of such technologies are resis-

tive random access memory (ReRAM) [4] and phase-change-

memories (PCMs) [2].

The main focus on memristor-based circuits lies within

the use of memristive crossbar array structures, allowing for

effective computation of dot product operations [8]. Figure 1(b)

portrays the use of memristors in a crossbar array structure.

By changing the resistance of each memristive cell within the

crossbar array, these memristive memory arrays can exploit

Kirchoff and Ohms laws to allow for in-memory computation.

The memristor-based computation circuits can be classified into

two categories based on the location where the computation

result is generated: 1) CIM-Array (CIM-A) in which the result

is generated within the array [9] 2) CIM-Periphery (CIM-P)
where the result is obtained in the peripheral circuits [5].

There are some advantages and disadvantages to both classes.

Considering CIM-A, while it exploits the entire computation-

storage bandwidth, this class suffers from high computation

energy and latency as well as reduced device lifetime due to

programming the devices for every computation. In the CIM-P

class, where the memory-array is only used for data storage, not

only the controller can be simplified but also the computation

energy, latency, and device lifetime can be improved [8].

B. In-memory architectures and simulators

Considering CIM-A and CIM-P, several architectures

have been proposed. ReVAMP [10] (CIM-A) is the first

ReRAM-crossbar based general-purpose computing architec-

ture. PRIME [11] and ISAAC [12] (both CIM-P) are ReRAM-

based abstract architectures designed to carry out neural net-

work computations in the memory array and produce their

results in the read-out circuitry. Similarly, PUMA [13] pro-

posed an accelerator tailored for vector-matrix-multiplication.

New high-level in-memory instructions are defined, which are

responsible for communicating data between memory units or

performing scalar operations in digital peripheries. As CIM

architectures consist of many factors influencing the system

behavior, simulators are used to be able to explore different

configurations and their implications on design metrics such as

performance and energy. Accordingly, some memory-oriented

simulators for non-volatile cells have been developed such as

NVSim [14] and NVmain [15]. Like SPICE, the low-level

NVSim simulator provides a circuit-level performance, energy,

and area model targeting emerging non-volatile memories.

On the other hand, NVMain provides a behavioral memory

simulator for architectural level exploration.

With respect to the aforementioned abstract architectures,

the proposed tile architecture generalized the existing designs,

targeting many operations in the crossbar comprising of normal

memory read and write, vector-matrix-multiplication (VMM),

and logical operations. This allows independent CIM-tile opera-

tion without the need for an external controller knowledgeable

of the CIM-tile internals. By the rescheduling of the newly

defined in-memory ISA, maximum control over tile can be

obtained and flexibly, different patterns of rows and columns

can be selected. These patterns are determined according to the

(1) memristor resistance levels, (2) datatype size provided
by each application (‘1’ and ‘2’ determine how many cells

should be allocated to represent a single number), (3) number
of available ADCs, (4) maximum ADC resolution, (5)
computation accuracy, and (6) mapping of information
to the crossbar. In addition, considering the aforementioned

parameters, different digital processes (controlled by ISA)

are performed on the crossbar’s output (as an intermediate

result) to get a meaningful result [16]. Moreover, Contrary

to existing aforementioned simulators, our detailed execution

model allows us to build a tile-level simulator to bridge the gap

between low-level and behavioral-level simulation platforms

by actually executing in-memory instructions- after translating

high-level kernels to our ISA. Furthermore, the simulator allows

the user to track all the control signals and the content of

crossbar/registers and produces data dependent energy num-

bers. Finally, due to the modular programming of the simulator,

the user can easily investigate different memristor technologies,

circuit designs, and more advanced crossbar modeling (e.g.,

considering read/write variability).

III. OVERALL CIM-TILE ARCHITECTURE

In this section, first, we discuss in detail a single CIM-tile

architecture and its main components. Secondly, by presenting

our in-memory instructions, we explain the decoding structure

and how the tile is broken into two stages to achieve better

resource utilization and performance improvement.

A. Tile architecture

The overall CIM-tile architecture presented throughout this

section is depicted in Figure 2. The CIM-tile is expected to

interact with external devices and, therefore, a clear interface

need to be defined. The interface comprises two input buffers

(Write-Data (WD) and Row-Data (RD)) and an output buffer.

These are explained in the following:

• WD buffer: This buffer serves as an intermediate storage

to alleviate the timing constraints of sending data to the

CIM-tile when the (bus) bandwidth is insufficient to transfer

all required data in one shot - i.e, to the WD reg(ister).

Therefore, each WD buffer row corresponds to a chunk of

data received from the outside controller. The WD buffer

has been sized such that an entire (array) row of data can

109

Authorized licensed use limited to: TU Delft Library. Downloaded on August 24,2021 at 07:10:46 UTC from IEEE Xplore. Restrictions apply.

R
D
S

Read
Shift

S+H/ADC

Tile
controller

DoS/CSR

WD reg

fill WD buffer

Row data

WD data

Logic/read register Addition scheme (VMM)

Done

Instructions related
to the addition unit

... ...

WDS reg Write Drivers

... ...

Index

IndexIndexdata

fill RD buffer

RD Mask Unit

System Bus/ Output buffer

read output buffer

Outside
Controller

data

0

1

y

D
ecoder

0

0

1

x

A
ddress

... ...

G
at

e/
S

ou
rc

e
D

riv
er

s

... ...
... ...

RD buffer

WD buffer

Fig. 2: CIM-tile architecture with 2 stages

be stored inside it. Consequently, after transfer to the WD

reg(ister) during a write operation, the WD buffer is ready

to receive the next set of data.

• RD buffer: As this buffer feeds data into the crossbar bit-

by-bit starting from LSB to MSB during a Matrix-Matrix

Multiplication (MMM) operation, this buffer is implemented

using a parallel-in-serial-out (PISO) register per crossbar row.

By having each of the registers sized to fit the maximum

supported datatype size (e.g., 32-bit), the buffer only has to

be filled once for each of the element dot-product operations.

Consequently, after shifting the MSB out of the buffer, the

next set of data can be loaded to the buffer to reduce the

overhead of data transfer.

• Output buffer: This buffer is employed only for temporarily

storing the result data until the data has been transferred to

other tiles or processors. As the output of the crossbar should

be stored in this buffer, its size determines the amount of

parallel computation that can be performed.

In addition to the buffers, other digital components (depicted

in Figure 2) are:

• Tile registers: (i) The Write Data (WD) register contains the

data that has to be written into the crossbar. The data loads

from the WD buffer in several steps depending on the WD

buffer row size. The register length depends on the width of

the crossbar as well as the number of levels supported by the

memristor cells. However, due to the flexibility attained by

our instructions, we can opt to only partially fill the register

if the kernel does not intend to write into all of the columns.

(ii) The Write Data Select (WDS) register indicates to the

write drivers which columns should be written to. The data

for this register is embedded in its instruction (see Section

Stage 1
instructions

decoder

Stage 2
instructions

decoder

Stall detectionBuffer
management

Stage 1
instructions

Stage 2
instructions

Tile
Hardware

Outside
controller

CiM-Tile

Tile-Controller

Fig. 3: high-level CIM-tile controller to support 2 stages

III-B) to provide more flexibility for kernels. Finally, (iii) the

Row Data Select (RDS) register is employed for the activation

of crossbar rows and used for all operations including write,

read, logic, and VMM. In addition, in the case of VMM,

if the ADC resolution does not support the activation of all

the rows, this register is used to activate batches of rows in

several steps. Similar to the WDS register, the data for this

register is embedded into its instruction.

• Tile controller: Our initial design exploration has shown that,

for current technology numbers, breaking the tile into two

stages running in parallel, can lead to an improvement in

performance and resource utilization. Due to the presence

of analog components and unequal number of instructions

for each stage, the latency of the stages is not balanced.

Therefore, our tile controller has to (i) synchronize these

two stages, (ii) decode the instructions to control all the tile

components, and (iii) communicate with external devices.

The top-level design for the controller is depicted in Fig-

ure 3. It comprises two decoders to execute two instructions

simultaneously. Each decoder is dedicated to its own stage

- i.e., they only decode the instructions of their respective

stage. To ensure correct program execution, synchronization

between the two decoders is required. This is achieved

by monitoring the instructions executed in each stage and

stalling the stages when necessary. For example, the state of

the analog components is monitored and execution is stalled

when the crossbar has not yet finished its current operation.

Finally, the controller monitors the states of each of the

buffers, setting up flags to the ‘outside’ when either the input

buffers should be filled or the output buffer should be read.

• Addition unit: In order to avoid sending intermediate results

of MMM to external devices, a new adder structure in the

periphery is employed which utilizes minimum-sized adders

and is flexible to support different datatype sizes and ADC

resolutions. Section III-B explains the related instructions

defined to control this unit. More information about the

structure of this unit can be found in [16].

B. In-memory instructions

To execute a kernel on the tile, a complex sequence of

steps have to be carried out considering different operations,

the patterns of column and row selections, datatype sizes, and

read-out circuitry specifications. A new set of fine-grained in-

memory instructions are defined with the objective of keep-

110

Authorized licensed use limited to: TU Delft Library. Downloaded on August 24,2021 at 07:10:46 UTC from IEEE Xplore. Restrictions apply.

ing the hardware simple and generic while maintaining high

flexibility by re-scheduling/programming the instructions and

moving the complexity to the compiler. The list of instructions

is presented in Table I where the instructions in ‘Blue’ are

executed in the first stage and the rest in the second stage. The

instructions are explained shortly in the following.

• Row Data (RDxx): The first group of instructions is related

to the crossbar rows. RDSb instruction provides data for

RDS register and places its (‘Mask data’) into the specified

index of this register. Due to the bandwidth and instruction

size limitation, the register cannot be loaded in one go. In

addition, once the RDS register has been fully loaded, this

instruction only has to be executed when the mask changes

again. RDSc and RDSs instructions reset and set the entire

register for extreme patterns of row selections. Finally, RDsh
will shift the RD buffer to the right to present the next bit

for a new VMM operation.

• Write Data (WDxx): the WDb instruction indicates that

the data present in the last register of WD buffer has to

be moved to a section of WD register determined in the

instruction by ‘index’. Like row selection, WDSb instructions

load the data to the WDS register. Similarly, WDSc and WDSs
instructions reset and set the register respectively, which

again is beneficial for some patterns of columns selection.

• Crossbar (FS, DoA): To operate on the crossbar, first we

need to configure the drivers to provide proper voltage levels.

This is done by using the FS instruction. This instruction

is also used to configure the read-out circuitry as well as

bypassing the RD buffer data in the case of read/write/logical

operations. By decoding the DoA instruction, drivers are

activated and the operation is started on the crossbar.

• Read Out (DoS, CS, DoR): Due to the overhead of Analog-

to-Digital Converters (ADCs), they need to be shared be-

tween several columns, which translates to the necessity for a

Sample-and-Hold unit to save the crossbar’s output. The DoS
instruction activates this unit at the right time. The data can

be sampled when the second stage is already done with the

prior sampled data. The CS instruction, which is performed in

the second stage, not only indicates which of the ADCs input

columns should be selected, but also an activation bit per

ADC is used to allow for de-activating an ADC for certain

columns which should not be read. The CS instruction can

be executed only when new data is sampled, otherwise the

second stage is stalled.

• Jump instructions (jal, jr, BNE): As the read stage often

performs identical sets of instructions (e.g., when performing

a MMM, the same set of columns has to be read for every

dot-product operation), a jump instruction is introduced to

save a large portion of the instruction file size. Similarly to

MIPS, jump-and-link (jal) and jump-register (jr) instructions

are introduced, allowing for re-using the same block of

instructions for every read.

• Addition unit (LS, IADD, CP, AS, CB): According to the

structure of the addition unit proposed in [16], in the case

of low ADC resolution, the LS instruction indicates the last

section of rows (multiplier) that are activated. The IADD

TABLE I: overview of the newly proposed ISA

Opcode Op 1 Op 2 Function description
RDSb Index Mask Place ‘Mask’ into RDS reg at ‘Index’
RDSc Clear the entire RDS register
RDSs Set the entire RDS register
RDsh Shift RD buffer contents
WDb Index Copy data to for WD buffer to WD reg. at ‘Index’
WDSb Index Mask Place ‘Mask’ into WDS reg at ‘Index’
WDSc Clear the entire WDS register
WDSs Set the entire WDS register
FS Function Select crossbar functionality
DoA Activate the crossbar function
DoS Sample the crossbar output
CS Index Activation Select column to be read by ADC
DoR Activate the ADC
jal Address Jump to ‘Address’ and store PC.
jr Jump to the PC stored in return reg.
BNE Branch to PC stored in branch reg.
LS Indicate the last section of rows to reads
IADD Activate third stage of the addition unit
CP Copy result per ADC to output buffer
AS Selection Select adders for addition between ADCs
CB Copy the result of addition between ADC to output buffer

instruction performs an addition between different bits of

the multiplier. If a number is distributed over more than

one ADC, AS instructions carry out the addition between the

results taken per ADC. Finally, CP and CB load the result to

the output buffer obtained either per ADC or between ADCs,

respectively.

IV. CIM SIMULATOR AND COMPILER

The compiler is composed of two abstraction levels. First, the

high-level compiler presented in [17] extracts the kernels that

can be executed on CIM-tile. Second, the low-level compiler

translates these kernels into the sequences of aforementioned

in-memory instructions. The compiler is aware of the tile con-

figuration and constraints meaning different sequences of in-

structions are generated for each. To be able to explore different

concepts of the CIM-tile architecture, a CIM-tile simulator has

been developed. This simulator is written in SystemC including

TLM interfaces to be able to accurately simulate hardware as

it is close to the HDL implementation. The simulator provides

a basis which can be altered and expanded upon to allow for

initial testing and exploring of solutions proposed throughout

this paper. The simulator provides numbers for performance

and energy consumption. Furthermore, the waveform to track

of the CIM-tile control signals, the content of crossbar cells, and

the output data are reported, which are essential for functional

testing. Moreover, since it was written in a modular manner,

additional functionality such as noise and variation for analog

components of the tile can be integrated easily.
The ability of the simulator to actually execute the appli-

cations’ kernels thanks to the detailed execution model and

in-memory instructions, resulted in precise execution time as

well as a data-dependent energy number for the crossbar.

Equations 1 to 4 are used to calculate the energy and power

consumption of the crossbar for reading/computing and writing.

Rrc represents the resistance value of the cell located at row ‘r’

and column ‘c’ in the crossbar. PDIMread/write
correspond to

the power consumed by the drivers (Digital Input Modular) for

reading and writing, respectively. The parameter activationr/c

is a binary value indicating whether a row or column has been

activated or not. V(read/write) is the crossbar read or write

voltage and I(write) is the crossbar write current. Finally, TXbar

is the latency of the crossbar concerning different operations.

111

Authorized licensed use limited to: TU Delft Library. Downloaded on August 24,2021 at 07:10:46 UTC from IEEE Xplore. Restrictions apply.

TABLE II: value of parameters used for the analog components

Component Parameters Spec

Memristive
devices

ReRAM PCM
cell levels 2 2

LRS 5k 20k
HRS 1M 10M

read voltage 0.2V 0.2V
write voltage 2V 1V
write current 100 μA 300 μA

read time 10 ns 10 ns
write time 100 ns 100 ns

Crossbar
structure

num. columns
num. rows

1T1R
256
256

S&H

number
hold time

latching energy
latency

256
9.2 ms
0.25 pJ
0.6 ns

DIM
read DIM write DIM

number
power

256
3.9 μW

256
3.9 μW

ADC
power

precision
latency

2.6 mW
8 bits

1.2 GSps

P(read,compute) =
#rows∑

r=1

([

#columns∑

c=1

(
V 2
(read)

Rrc
) + PDIMread

] ∗ activationr) (1)

P(write) =
#columns∑

c=1

[V(write) ∗ I(write) + PDIMwrite] ∗ activationc (2)

E(read,compute) = P(read,compute) ∗ TXbar(read,compute) (3)

E(write) = P(write) ∗ TXbar(write) (4)

V. EVALUATION AND DISCUSSION

In this section, the proposed architecture is evaluated in terms

of power, energy, and area, and is compared with analog com-

ponents. As a benchmark, the linear-algebra kernel “GEMM”

from the Polybench benchmark suite was chosen. In this kernel,

first, the multiplicands are written into the crossbar (write

operation) and then the actual multiplication is performed.

A. Simulation setup

The values regarding the CIM-tile analog components are

summarized in Table II. The parameters for ReRAM and PCM

technologies are taken from [4] and [18] validated for actual

devices. The same ADC values used in [12] are considered

for our setups. To obtain the power consumption and area for

the CIM-tile digital circuits, they were synthesized in Cadence

Genus targeting standard cell 15 nm Nangate library. Since

all the information and control signals can be tracked by

employing our simulator, a typical activity factor and perfor-

mance number are extracted. These numbers are incorporated

to obtain accurate energy consumption for the digital as well

as analog components of the tile. Finally, functional testing

of the architecture is performed on Xilinx Zynq ZC702 board

where analog components are modeled with digital circuits.

In this side experiment, correct execution of the instructions

and the generated final output were evaluated to validate the

functionality of the architecture.

B. Simulation results

Despite the abstract architectures mentioned in Section II,

in this section, detail information regarding a single tile and

its main components are presented. Considering our CIM-tile

architecture demonstrated in Figure 2, digital circuits have

different contributions to the power consumption. Figure 4(a),

depicted for 8-bit maximum supported datatype size in the tile,

gives an insight into how much power each of these circuits

consumes (8-bit datatype size means that in the case of MMM,

each element of multiplicand is distributed over 8 cells and

each element of multiplier is fed to the crossbar over 8 time

steps). As we expected, the RD buffer due to its size (feeding

8-bit data to 256 crossbar rows) and addition unit due to its

high number of instances consume more power than others.

However, since the buffer is not always switching (dynamic

power), the average power is much less. The imposed power

consumption on the system is the cost of the flexibility of row

selection brought by RD buffer and its associate instructions.

The overhead of digital circuits in terms of energy is depicted

in Figure 4 (b) and (c) to quantify the expense of high flexibility

for programming the tile. In this figure, the overhead of the

digital parts of our tile is compared with the analog parts.

The comparison was performed for both ReRAM and PCM

technologies with 256*256 crossbar size considering different

datatype sizes. First, it is observed that as the datatype size

increases, due to more computations, the overall energy is

increasing as well. Second, by increasing the number of com-

putations, the overhead of crossbar programming reduces (see

striped blue bar) since more computations are performed before

reprogramming the crossbar. Third, digital circuits impose

more overhead while moving from 16-bit to 32-bit datatype

size (see orange bars as well as energy per VMM). As the

datatype size increases, fewer adders and registers need to be

instantiated (fewer numbers produced per crossbar activation).

These units are essential to accomplish digital post-processing

on the crossbar’s output to deliver the final result. However, as

the data type size increased, each of these adders and registers

individually is of a larger size (see [16]). Accordingly, although

this customized unit utilizes minimum-size adders and registers,

supporting larger datatype size resulted in more overhead for

this unit. Fourth, the overhead of the digital circuit for the PCM

case is higher compared to ReRAM since the PCM crossbar

consumes less energy due to its higher value of low resistance

state. While the device level researchers are working on devices

with a higher value of low resistance, this graph gives a good

insight into how much this value contributes to the energy

consumption of the system.

Finally, the area comparison of digital and analog circuits

is depicted in Figure 5. For this experiment, the area of each

cell in 1T1R crossbar structure is taken from [19], where it was

fabricated with 22 nm technology. Although our digital circuits

were synthesized with 15 nm technology, the result shows

their area is around 6 times less than the analog counterpart

regardless of the crossbar dimension.

112

Authorized licensed use limited to: TU Delft Library. Downloaded on August 24,2021 at 07:10:46 UTC from IEEE Xplore. Restrictions apply.

(a) (b) (c)

0

2

4

6

8

10

0

3

6

9

12

15

18

8 16 32

en
er

gy
 p

er
 V

M
M

 (n
J)

en
er

gy
 (u

J)

data type size (bit)

Analog energy Analog energy (no pr)

Digital energy Energy per VMM

0

2

4

6

8

10

0

2

4

6

8

10

12

8 16 32

en
er

gy
 p

er
 V

M
M

 (n
J)

en
er

gy
 (u

J)

data type size (bit)

Analog energy Analog energy (no pr)

Digital energy Energy per VMM

0

2

4

6

8

10

po
w

er
 (m

W
)

peak power average power

Fig. 4: (a) power break down of digital circuits (b) energy number for different datatype sizes considering ReRAM and (c) PCM

0

0,05

0,1

0,15

0,2

64*64 128*128 256*256 512*512

ar
ea

 (m
m

2)

Crossbar size

Analog Digital

Fig. 5: Area comparison of digital/analog circuits for ReRAM

VI. CONCLUSION

In this paper, we proposed our programmable CIM-tile ar-

chitecture for which, by exploiting our ISA, high flexibility are

achieved. In addition, the architecture provides a clear interface

and independence from external devices. Considering different

CIM-tile configurations, we developed our compiler and sim-

ulator to facilitate design space exploration. By synthesizing

the digital part of the CIM-tile, its overhead compared to the

analog counterpart was demonstrated in terms of power, energy,

and area. The result will give a remarkable insight into future

researches to realize which customizations have to be applied

for different configurations and application requirements.

REFERENCES

[1] S. Srikanth, L. Subramanian, S. Subramoney, T. M. Conte, and H. Wang,
“Tackling Memory Access Latency through DRAM Row Management,”
in Proceedings of the International Symposium on Memory Systems, ser.
MEMSYS ’18. New York, NY, USA: ACM, 2018, pp. 137–147.

[2] M. L. Gallo and A. Sebastian, “An Overview of Phase-change Memory
Device Physics,” Journal of Physics D: Applied Physics, vol. 53, no. 21,
p. 213002, mar 2020.

[3] J. Yu, M. A. Lebdeh, H. A. Du Nguyen, M. Taouil, and S. Hamdioui,
“The Power of Computation-in-Memory Based on Memristive Devices,”
in 2020 25th Asia and South Pacific Design Automation Conference (ASP-
DAC). IEEE, 2020, pp. 385–392.

[4] A. Hardtdegen, C. La Torre, F. Cüppers, S. Menzel, R. Waser, and
S. Hoffmann-Eifert, “Improved Switching Stability and The Effect of
an Internal Series Resistor in HfO 2/TiO x Bilayer ReRAM Cells,” IEEE
Transactions on Electron Devices, vol. 65, no. 8, pp. 3229–3236, 2018.

[5] L. Xie, H. A. Du Nguyen, J. Yu, A. Kaichouhi, M. Taouil, M. Al-
Failakawi, and S. Hamdioui, “Scouting Logic: A Novel Memristor-based
Logic Design for Resistive Computing,” in 2017 IEEE Computer Society
Annual Symposium on VLSI (ISVLSI). IEEE, 2017, pp. 176–181.

[6] S. Hamdioui, H. A. Du Nguyen, M. Taouil, A. Sebastian, M. Le Gallo,
S. Pande, S. Schaafsma, F. Catthoor, S. Das, F. G. Redondo et al., “Ap-
plications of Computation-In-Memory Architectures based on Memristive
Devices,” DATE, pp. 486–491, November 2019.

[7] B. Govoreanu, G. Kar, Y. Chen, V. Paraschiv et al., “10×10nm2 Hf/HfOx
Crossbar Resistive RAM with Excellent Performance, Reliability and
Low-Energy Operation,” in 2011 International Electron Devices Meeting,
Dec 2011, pp. 31.6.1–31.6.4.

[8] M. Lebdeh, U. Reinsalu, H. Nguyen, S. Wong, and S. Hamdioui, “Mem-
ristive Device Based Circuits for Computation-in-Memory Architectures,”
ISCAS, 2019.

[9] J. Borghetti, G. S. Snider, P. J. Kuekes, J. J. Yang, D. R. Stewart, and
R. S. Williams, “Memristive Switches Enable Stateful Logic Operations
via Material Implication,” Nature, vol. 464, no. 7290, p. 873, 2010.

[10] D. Bhattacharjee, R. Devadoss, and A. Chattopadhyay, “ReVAMP:
ReRAM Based VLIW Architecture for In-Memory Computing,” Design,
Automation & Test in Europe Conference & Exhibition (DATE). IEEE,
pp. 782–787, 2017.

[11] C. Ping, L. Shuangchen, X. Cong, T. Zhang, Z. Jishen, L. Yongpan,
W. Yu, and X. Yuan, “PRIME: A Novel Processing-in-memory Architec-
ture for Neural Network Computation in ReRAM-based Main Memory,”
ACM/IEEE, pp. 27–39, 2016.

[12] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. Strachan,
M. Hu, R. Williams, and V. Srikumar, “ISAAC: A Convolutional Neu-
ral Network Accelerator with In-Situ Analo Arithmetic in Crossbars,”
ACM/IEEE ISCA, June 2016.

[13] A. Ankit, I. E. Hajj, S. R. Chalamalasetti, G. Ndu, M. Foltin, R. S.
Williams, P. Faraboschi, W.-m. W. Hwu, J. P. Strachan, K. Roy et al.,
“PUMA: A Programmable Ultra-efficient Memristor-based Accelerator
for Machine Learning Inference,” in Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2019, pp. 715–731.

[14] X. Dong, C. Xu, Y. Xie, and N. P. Jouppi, “NVSim: A Circuit-
Level Performance, Energy, and Area Model for Emerging Nonvolatile
Memory,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 31, no. 7, pp. 994–1007, July 2012.

[15] M. Poremba and Y. Xie, “NVMain: An Architectural-Level Main Memory
Simulator for Emerging Non-volatile Memories,” in 2012 IEEE Computer
Society Annual Symposium on VLSI, Aug 2012, pp. 392–397.

[16] M. Zahedi, M. Mayahinia, M. A. Lebdeh, S. Wong, and S. Hamdioui,
“Efficient Organization of Digital Periphery to Support Integer Datatype
for Memristor-Based CIM,” in 2020 IEEE Computer Society Annual
Symposium on VLSI (ISVLSI). IEEE, 2020, pp. 216–221.

[17] A. Drebes, L. Chelini, O. Zinenko, A. Cohen, H. Corporaal, T. Grosser,
K. Vadivel, and N. Vasilache, “TC-CIM: Empowering Tensor Comprehen-
sions for Computing-In-Memory,” in IMPACT 2020-10th International
Workshop on Polyhedral Compilation Techniques, 2020.

[18] M. Le Gallo, A. Sebastian, G. Cherubini, H. Giefers, and E. Eleftheriou,
“Compressed Sensing with Approximate Message Passing Using In-
Memory Computing,” IEEE Transactions on Electron Devices, vol. 65,
no. 10, pp. 4304–4312, 2018.

[19] O. Golonzka, U. Arslan, P. Bai, M. Bohr, O. Baykan, Y. Chang,
A. Chaudhari, A. Chen, J. Clarke, C. Connor et al., “Non-volatile RRAM
Embedded into 22FFL FinFET Technology,” in 2019 Symposium on VLSI
Technology. IEEE, 2019, pp. T230–T231.

113

Authorized licensed use limited to: TU Delft Library. Downloaded on August 24,2021 at 07:10:46 UTC from IEEE Xplore. Restrictions apply.

		2021-08-19T14:50:32-0400
	Preflight Ticket Signature

