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ABSTRACT

A marked characteristic of rubber-like materials is the nearly incompressible behaviour. This type of
behaviour is best modelled by mixed [inite elements with separate interpolation functions for the
displacements and the pressure. In this contribution the performance of three-dimensional elements is
investigated using a two-tiered strategy. First, the ability of some linear and quadratic three-dimensional
elements to deform correctly under nearly isochoric conditions is estimated using the well-known
constraint-counting method, in which the ratio of the number of degrees-of-freedom over the number of
kinematic constraints present in the finite element mesh is determined. Next, the performance of the elements
is assessed by numerical simulations for three cuboidal rubber blocks with different shape factors. The
results turn out to be quite sensitive with respect to the ratio of the number of degrees-of-freedom over
the number of kinematic constraints, since too many pressure degrees-of-freedom make the element overstifT,
while too few pressure degrees-of-freedom may cause the occurrence of spurious kinematic modes. This
observation appears to be not only valid for the global structural behaviour, but also with respect to the
specific parts in the structure, where the above-mentioned ratio is different from the global number, e.g.,
in corners of the structure.

KEY WORDS Rubber-like materials  Constraint counting  Robust finite elements  Three-dimensional analysis

INTRODUCTION
Rubbers are frequently used in engineering practice, ¢.g., for tyres, shock absorbers, seals and
laminated bearing packages. Many of these structures are truly three-dimensional and
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plane-stress or plane-strain idealizations cannot sufficiently accurately capturé the mechanical
behaviour. Accordingly, three-dimensional analyses are called for. .

Here, the difficulty comes in. Not only are three-dimensional finite element analyses still
relatively expensive, but rubber and rubber-like materials have the nasty property that they are
almost incompressible. Typically, the ratio of the bulk modulus x over the shear modulus 4 in
the ground state (the undeformed state) is around 1000. For conventional, diSp!acement-based
finite elements this inevitably implies that the amount of energy stored in volumetric @eformations
is severely overestimated, which gives an overstiff behaviour. This phenomenon is commonly
known as locking. A possible remedy is to use separate interpolations for the displacements
and the pressures, e.g., Sussman and Bathe!”. Such a formulation results in a ‘softer’ element
behaviour, giving a major improvement with respect to the computed displacements. When the
pressure degrees-of-freedom are condensed out statically at an element level, only displacement
degrees-of-freedom enter the global system of equations. Effectively, a penalty-type approach then
results.

While studies in which the performance of such elements for rubber-like material behaviour
have been reported for two-dimensional finite elements (plane-strain conditions)'”, the literature
does not seem to be overflowing of investigations of the behaviour of three-dimensional finite
elements for rubber-like behaviour, albeit some interesting studies have been reported for fluid
flow3. Here, the additional complication arises that a formal assessment by the LBB condition'!,
which can be used to rigorously determine the ability of finite elements to deform properly under
isochoric conditions, is quite difficult already for two-dimensional elements, let alone for
three-dimensional elements. In this contribution a more heuristic approach is therefore followed.
First, the ability of some three-dimensional finite elements with separate interpolations for the
pressures and the displacements is estimated using the constraint-counting method®!°. Then,
the performance of the elements is further assessed in numerical simulations of bearing blocks
for different ratios of the height over the width of the block, These numerical simulations suggest
that the balance of the number of degrees-of-freedom for the displacements vs. the pressure
degrees-of-freedom is quite delicate, since too many pressure degrees-of-freedom makes the
element overstiff, but too few pressure degrees-of-freedom tend to cause a premature break-down
of the calculations because of the occurrence of spurious kinematic modes, a phenomenon that
has also been observed in non-linear calculations of concrete cracking*.

RUBBER-LIKE MATERIAL BEHAVIOUR

It is assumed that rubber can be characterized as an isotropic, non-linear clastic material. In
this approach the mechanical behaviour is assumed to be time and temperature-independent
and is described fully by a strain—energy function:

W=W(,,1,,1,) (la)

with I; the invariants of the right Cauchy-Green stretch tensor C. The Mooney-Riviin model
is an example of a strain-energy function which is formulated in this manner. Especially for
compressive-shear loadings the Mooney-Rivlin approach does not capture the mechanical
behaviour of rubbers very accurately?, and approaches that set out to describe the mechanical
behaviour of rubbers via principal stretches are more successful. Then,

W=W(,4,,13) (1b)

with A; the principal stretches of C. The models proposed by Ogden!? and Peng and Landel'*
fall within this class. For the purpose of this study, i.e. the assessment of the behaviour of
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three-dimensional finite elements in nearly incompressible finite elasticity, the precise form of
the strain~energy function is not so important, Since invariant-based models are somewhat easier
to implement, such a model, namely the above-mentioned Mooney-Rivlin model,

W=K,(I,-3)+K,(I,—3) (2)

with K, and K, material parameters, has been used in the example calculations. To emphasize
the irrelevance of the choice of either invariants or principal stretches to formulate the
strain—energy function for our purpose, we will write (1) in the compact manner:

W=Wi) 3)

where g contains the basic parameters that define the state of deformation in a material point.
Classically, rubbers have been assumed to be strictly incompressible, i.e. the [ollowing
constraint is imposed in terms of the relative volume change,

V ———
=—=./det(C)=1 (4a)
Vo
or in terms of principal stretches,
/11).2/13 = 1 (4b)

so that W purely describes deviatoric deformations. The quantity J is defined as the quotient
of the actual volume V of a body and its corresponding volume in the reference configuration .
The assumption of a strictly incompressible material can be relaxed by introducing additional
terms in the strain-energy function W. Such a strain—energy function has first been introduced
by Penn'® and is formulated by a modified set of basic parameters ¥, which is used to formulate
the distortional part of the strain-energy function W,, and by the relative volume change J,
which is employed for the definition of the hydrostatic part of the strain-energy function W,:

W=W,x)+W,(J) (5)

Typically, W, is of the order u and W, is of the order x, x4 and r being the ground-state shear
modulus and the bulk modulus, respectively. Although it has been demonstrated!?!5:!¢ that
even this approach does not predict the volume change with sufficient accuracy, especially in
combined shear-compressive loadings?, additional terms are not introduced in (5), since this
issue is of no importance for the aim of the present study.

The second Piola-Kirchhoff stress ¢ can be calculated by differentiation of W with respect
to the right Cauchy-Green stretch tensor:

aw

= 6
a'ZaC (6)

or, using the decomposition of the strain-energy function into a deviatoric part W, and a
hydrostatic part W,:

6=0,t0, (7)
with
_, W

= 8a
gy @C ( )
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and

o
6,=2p — 8b
n=Lp ac (8b)
p being the hydrostatic pressure.
As for the deviatoric part of the strain—energy function several formulations also exist for the
hydrostatic part. Generally,

p=xf,(J) (9a)

where the bulk modulus « is supposed to be a constant within the considered range of volume
changes. In the present study, a linear relationship has been adopted for f,,,

fr=J—1 (9b)

which is valid for pressures up to hundreds of atmospheres'®. Note that p is negative in
compression for this definition.
The incremental stress—strain relation is obtained by differentiating (6)—(8) once more, yielding

Ao =DAy+Apd (10)
with y=4(C —1) the Green-Lagrange strain tensor,
D=422CVZ +4p§CJZ (11a)
and
a=2% (11b)
oC

FINITE ELEMENT FORMULATION

When the ratio of bulk modulus over ground-state shear modulus «/u tends to infinity, unbounded
stiffness terms are created. To avoid locking phenomena a finite element formulation is then
necessary in which the displacements u as well as the hydrostatic pressurc p are treated as a
fundamental unknown in the boundary-value problem. As a point of departure for the derivation
of the governing finite element equations, the virtual work expression'3:

f dyle'tA dV0=j poﬁu"'ngO+J ou't,dS, (12)
Vo N ;

1) S 1]

and the weak form of the hydrostatic pressure~volume change relation (9}):
J Lfy & =™ 1p! 400pd Iy =0 (13)
Y

are taken. In (12) and (13), the subscript 0 refers to the undeformed configuration or ground
state, while the superscript ¢+ At indicates that the value of a quantity is considered at ‘time’
t+At. The superscript T denotes a transpose, the d-symbol denotes the first variation of a
quantity, p is the mass density and g the gravity acceleration vector, t represents the normal
tractions on the surface of the body and u is the displacement vector. The strain y =g+ n consists
of a part ¢ that is linear in the displacements u and part y that is quadratic in u. Decomposing
the stress ¢'** in an additive fashion as the sum of the stress o' at ‘time’ ¢, the beginning of
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the loading step, and a stress increment Aeg, substituting the incremental stress-strain relation
(10) and linearizing in the sense that second-order terms in the incremental displacements Au
are neglecled, (12) can be recast as:

J de"DAedV, + j on"o' dV, + J
Yy Vo

Ve

8eTdAp dV, = J

Vo

podu'gdV, + J ou't,dS, — J‘ de'at dV,
' "

Sy
(14)

By a similar decomposition with respect to the pressure, p’ "' =p’+Ap, and invoking identity
(11b) we can rewrite (13) as:

J 5pdTAde0—1c"’J (_f,j)“ApépdV(,:—J‘ Sy L e—x""pbpdV, (15)
Va Vo

Vo

where the prime denotes differentiation with respect to J. For the simple choice (9b) obviously
fi=1.

For the spatial discretization it is assumed that the contivum is divided in an arbitrary number
of finite elements and that the part of the strain increment Ae that is linear in the incremental
displacements Au can be written as:

Ae=LAu=LHAa=B;Aa (16)

with Aa the incremental nodal displacement vector and H the matrix collecting the interpolation
polynomials for the displacements. L contains differential operators which represent the kinematic
relation between the displacements and the linear part of the strain tensor y. Since p has been
assumed to be an independent variable a separate interpolation is necessary for the pressure.
Because of its origin as an additional constraint no explicit boundary conditions are required
for the pressure field and a widet range of interpolations is permissible than for the displacement
field. Furthermore, the pressure degrees-of-freedom can be introduced either as system or element
degrees-of-freedom'*®7, The latter approach, which has been followed in this study, implies a
discontinuous pressure field across the element boundaries. Assembling the interpolation
polynomials for the pressure degrees-of-freedom in the matrix N, we have:

Ap=NAp (17)

where Ap contains the values of the incremental pressures in the nodes.
Substitution of the relations (16) and (17) in (14) and (15) the relation between the incremental
displacements and pressure and the external forces becomes

K, K, Aa F,
T = (18)
KT« 'M|Lapl”LF,

In (18) the following definitions have been utilized:

K,,-‘:J- BIDBLdV()‘*‘J B;I,EBNLdVo (19)
Yy Vo
Y

M,= ~J (/)" 'N™NdV, 210
Vo
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F, =f o HTgdV, + f H't, dS,— j A (22)
Vo So Vo
F,Ff () "N fy—x"1p]dV, (23)
Y

where the additional symbols X and By, have been introduced for the matrix representation of
the 2nd Piola—Kirchhoff stress tensor and the relation between the non-linear part of the strain
tensor and the displacements, respectively®.

CONSTRAINT COUNTING

For the calculation of the element stiffness matrix in (18) independent interpolation polynomials
can be chosen for the displacement and pressure field. An arbitrary combination of interpolation
functions, however, may lead to a poor numerical performance. Therefore, it is desirable to
determine the ratio between the number of displacement degrees-of-freedom and pressure
degrees-of-freedom which ensures an optimal numerical performance. For mixed finite elements
a sound mathematical theory is available through the Ladyzenskaya-Babuska-Brezzi (LBB)
condition'!. Unfortunately, proofs that an element passes the LBB condition are notoriously
difficult. The method is therefore not a handy tool to judge the performance of finite elements.
Instead, a simple and heuristic method, based on the constraint-counting method®!°, will be
applied to mixed elements with a discontinuous pressure field. This prediction will be followed
by an assessment of the performance of the various alternatives that seem reasonable on the
basis of the above-mentioned quick-look procedure,

To provide a proper setting, the fundamental difficulty in (nearly) incompressible elasticity is
recalled by means of Figure I, in which a four-noded quadrilateral two-dimensional element is
plotted with eight displacement degrees-of-freedom. At the left and bottom edges prescribed
zero displacements have been imposed, so that the model possesses just two degrees-of-freedom.
We may now envisage a model composed of an arbitrary number of these basic elements. Each
element that is added in either direction increases the total number of displacement

~ux

OOONUNONNNNANANNNNNN
F
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Figure I Restricted movement of ‘free’ node in an incompressible medium
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Figure 2 Displacement nodes and pressure nodes for 8/1 and 20/4 elements

degrees-of-freedom by two. The assumption of incompressibility implies a constant surface of
the clement, and, as a consequence, a restricted movement of the free node along the dashed
line. The restricted freedom of the node is established by an additional constraint equation by
means of one pressure degree-of-freedom. When two or more pressure points are specified no
displacement degrees-of-freedom are left, which phenomenon is referred to as mesh locking.
When, on the other hand, no pressure points are introduced spurious kinematic modes may
arisc during the numerical simulation. In sum, it can be concluded that for two-dimensional
elements the optimal ratio r=n,/n, of the number of displacement degrees-of-freedom n, over
the number of pressure points n, equals two, while for three-dimensional elements the optimal
ratio r=3. The problems of mesh locking and spurious kinematic modes are only marginally
ameliorated for nearly incompressible material behaviour and, therefore, a mixed finite element
formulation consisting of displacement degrees-of-freedom and pressure degrees-of-freedom is
also needed in this case.

The utilized method suggests an influence of the boundary conditions on the number of
constraint conditions. In fact, the ratio r of the whole finite element model should be considered
to determine the optimal number of pressure degrees-of-freedom. Also, the number of constraint
conditions should be distributed inhomogencously over the element mesh in order to arrive at
a locally optimal ratio: fewer pressure degrees-of-freedom near edges with a prescribed
displacement and more pressure degrees-of-freedom near edges with a prescribed boundary
traction. This proposition will be taken up again in a later section, It is emphasized that the
idea is not rooted in a firm mathematical theory, but is a practical approach to obtain an
estimate of the robustness of finite elements in nearly incompressible rubber elasticity.

The method outlined above has been applied to determine the optimal number of pressure
points in three-dimensional elements. In Figure 2 two isoparametric serendipity hexahedrons
are plotted with a trilincar and a triquadratic displacement field. respectively. The trilincar
element is referred to as the 871 element, because of its eight displacement nodes and one pressure
node. Similarly, the trigquadratic element with four pressure degrees-of-freedom is denoted by
20/4, while the triquadratic element with one pressure node is labelled as 20/1. The [atter element
has primarily been included in the discussion to gain some insight in the influence of the number
of pressure points on the numerical performance ol twenty-noded elements. Since the ratio r of
the 20/1 element is significantly higher than three we may expect a rather unstable displacement
field at higher deformation levels.

INTERPOLATION SCHEME 20/4 ELEMENT

The 8/1 and 20/1 clement possess a trivial constant interpolation polynomial for the pressure
field. The 20/4 element needs a lincar four-point interpolation polynomial in a three-dimensional
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space, which can be derived by degeneration of the trilinear shape functions, which are also
used to describe the displacement degrees-of-freedom of the 8/1 element.. Now, let &= ('5,17,C)
be the isoparametric place vector and x=(x, y,z) be the place yector in model coordinates,
Then, the mapping of a point [rom model to isoparametric coordinates is defined by the shape
functions N; according to:

x(&)= . N(&x{ (24)
i=1
where x¢ are the model coordinates of node {and element e and nis the num.ber.of element nodes.
The degeneration process implies the mapping of more than one point in the &-space on a
point in the x-space. A proper linear shape function is obtained when fogr 1ndependenAt points
span a three-dimensional space. To meet this requirement and to obtain a symmetric set of
polynomials the following degeneration has been employed:

N¥=N+N,=i(1-n)(1-0)
Ni=N3+ N =;(1+n)(1-0) (25)
N¥=Ng+N;=5;(1+&)(1+{)
N§=Ng+N;=5(1-8(1+0)

It is noted that this interpolation scheme satisfies the basic convergence requirements with respect
to the smoothness on the element domain V¢ and completeness’®, but that continuity across
the element boundaries S is lost due to the degeneration process. Because of the assumed
element-wise condensation of the pressure degrees-of-freedom this is of no further consequence
here,

PERFORMANCE

The performance of the three mixed elements will be demonstrated by numerical simulations
on three cuboidal rubber blocks loaded in compression. Each rubber block has a different shape
factor which is defined as®:
loaded surface BL (26)
* unloaded surface H(B+L)
with B the width, H the height and L the length of the block. The blocks are compressed by
prescribing uniform displacements on the top face, while the sides are free to bulge out. Additional
calculations in which the performance of the elements is studied by imposing a rotation to the
top face have also been carried out. Block II, which is shown in Figure 3, will henceforth be
taken as the reference block®, The other two blocks have a higher shape factor (Block I) and a
lower shape factor (Block III) respectively. As can be observed from the definition in (26) a
higher shape factor means a more stubby specimen, while a lower shape lactor implies a more
slender specimen. The finite element discretization for the linear 8/1 element has been chosen
such that the total number of displacement degrees-of-lreedom is approximately cqual to that
of the mesh for the quadratic elements. All calculations have been carried out with the [ollowing
(representative) material parameters: K, =049 N/mm?, K,=0.16 N/mm? and x= 1000 N/mm?,
Since the ground-state shear modulus g is now equal to 1.3 N/mm?, these data result in a r/u
ratio of approximately 770.
Block II, the reference block, has the dimensions 200 x 100 x 33 mm?, which results in a shape
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Figure 3 Undeformed and deformed finite element models for block II after 30% compression. (a) 20/1 element; (b)
20/4 element; (c) 8/1 element

factor f;=2.02 according to definition (26). Because of symmetry considerations only one-eighth
of the layer had to be modelled. This has been done with 30 quadratic elements (Figures 3a and
3b) and with 140 linear elements (Figure 3c¢) respectively. Figure 3 shows the deformed models
at 30% compression, i.e., at a level where the deformed block has 70% of its original height.
For the 20/1 element (Figure 3a) we observe a slightly irregular displacement field along the
long side of the block, which is not observed for the mesh with 20/4 element (Figure 3b). The
8/1 element, on the other hand, gives rise to severe local spurious mechanisms.

A notable observation is also that spurious kinematic modes are already observed after 16%
compression for the 20/1 element, but that a smooth displacement field is retrieved at a higher
load level. This phenomenon, which is quite characteristic, has also been visualized in Figure
4, in which the relation between the horizontal displacement of the midside node of the long
side and the compression level has been plotted. Up to 16% compression buiging of the side
grows linearly with the compression level, but decreases between approximately 18% and 22%,
while the curves obtained from the calculations for the meshes with the 8/1 and 20/4 elements are
monotonically increasing. Figure 5, in which the vertical force-vertical displacement relation



12 P. A. J. VAN DEN BOGERT ET AL.

Whorizonsat [Mm]

25

8/1 elemenﬁ

20/1 elemenﬁ — -

0 10 20 30
Compression level [%]

Figure 4 Horizontal displacement of different nodes along the long side as a function of the vertical compression
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Figure 5 Compressive force vs. vertical displacement of the top face

has been plotted for the three elements types, clearly shows the stiffening influence of an increase
of the number of pressure nodes, since the 8/1 and 20/4 elements react definitely stiffer than the
20/1 element.

For the geometry of block I1 the behaviour of the elements has also been studied in case of
a rotation of the top face. For this loading condition the prescribed displacements are kept zero
on one of the short sides and are pushed downwards on the opposing side, while the prescribed
displacements between the two sides were prescribed according to a linear interpolation. Figure
6 shows one-quarter of a rubber layer and its state of deformation at 30% compression (at one
side). The 20/1 element obviously possesses too few pressure nodes to avoid spurious kinematic
modes, while the 20/4 element is largely free from this phenomenon. Yet, near the corner of the
block also the displacement fields that were computed using the 8/1 and 20/4 elements show
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Figure 6  Undeformed and deformed finite element models for block II after 30% compression ol one of the short
sides. (a) 20/1 element; (b} 20/4 element; (c) 8/1 element

some mild forms of spurious mechanisms. This observation confirms the prediction of the
constraint-counting approach, namely that the 20/1 element would satisfy the incompressibility
constraint, but would easily give rise to the occurrence of spurious mechanisms, whereas the
8/1 and 20/4 elements would behave better. Nevertheless, near the corners of the meshes the
number of pressure points is not sufficient also for the 8/1 and 20/4 elements.

The second block, labelled as 1, has the dimensions 940 x 940 x 99 mm? and a shape factor
fy=4.75. The finite element models, shown in Figure 7, consist of 98 twenty-noded elements and
363 eight-noded elements respectively. From the deformed element meshes it can be seen that
even the model with the 20/1 elements is (almost) free from spurious kinematic modes.

Finally, a block with a height of 150 mm, a length of 200mm and a width of 150 mm has
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Figure 7 Undeformed and deformed finite element models for block I loaded in purc compression. (a) 20/1 element;
(b) 20/4 element; (c) 8/1 element

been studied (block III). The shape factor of this rather slender block is f,=0.51. From Figure
8 it can be seen that a block with this shape factor is rather sensitive to spurious mechanisms.

For each type of element the results show irregularities in the displacement field, although the
exlent varies with the type of element,
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Figure 8 Undeformed and deformed finite element models for block 111 loaded in pure compression. (a) 20/1 clement;
{b) 20/4 clement; {c) 8/1 element

DISCUSSION

In Table I the main aspects of this study have been summarized. For each geometry a row is
included giving the ratio r of the number of displacement degrees-ol-freedom over the number
of pressure degrees-of-freedom. In the rows ‘spurious modes’ the percentage (in terms of the
vertical displacement over the height ol the specimen) is given at which smoothness of the
displacement field along the sides is lost. The rows called ‘convergence’ refer to the displacement
level at which no converged solution could be found using a modified Newton—Raphson iterative
procedure for a step size of 1% compression. This criterion implies that convergence could still
be achieved for smaller step sizes, or when using a full Newton-Raphson procedure.

From Tuable 1 is can be concluded that, when the optimal ratio r=3.0 is satisfied for a
three-dimensional finite element mesh, the point where the analysis has to be abandoned is not
governed by spurious mechanisms. Then, convergence problems arise at approximately the same
load level. Indeed, the tendency can be observed that the convergence behaviour becomes more
critical at higher shape factors comparced with the occurrence of spurious mechanisms. Put
differently, the point where an analysis has to be terminated is governed by [ailure of the iterative
process for stubby specimens (a high shape factor), while for more slender specimens (a lower
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Table | Performance of the elements

Element type 20/1 20/4 8/1
Block I (f,=4.75)
r=n,/n, 12.0 3.00 297
spurious modes 20% 25% 25(‘:/1:
convergence 18% 23% 25%
Block 1T (f,=2.02)
= Hain, 11.3 2.83 3.40
spurious modes 16% >48% 30%
convergence 18% 43% 32%
Block II1 {f,=0.51)
r=n,/n, 144 3.60 3.40
spurious modes 20% 30% 50%
convergence 30% 52% 53%

shape [actor) the emergence of spurious mechanisms marks the point where meaningful solutions
can no longer be obtained. Some subtle differences exist between the different types of elements,
since the 8/1 and especially the 20/1 element are more sensitive to spurious mechanisms than
the 20/4 element.

Although Table I clearly reveals some tendencies a direct relation between the sensitivity to
spurious kinematic modes and the shape factor cannot be extracted on the basis of the available
information. The simulations with the 8/1 element (block I) show local irregularities, although
the element has the same ratio r as the 20/4 element. When more elements are used over the
height of the specimen the problem becomes even worse?, since a larger number of displacement
degrees-of-freedom is added to the system of equations than constraint equations. This
observation suggests that the number of pressure nodes should be increased with a diminishing
number of prescribed displacements, so that the ratio r remains optimal.

Near the corners of the specimens the number of displacement degrees-of-freedom is relatively
larger than the number of pressure degrees-of-freedom. Apparently, this can lead to local
irregularities. Just as the global ratio r indicates the sensitivity to global spurious kinematic
modes, the ‘local’ value of r seems to determine whether local spurious mechanisms can arise.
It is therefore suggested that the number of pressure degrees-of-freedom in the elements near
these corners should be raised. For this purpose only elements with a discontinuous pressure
field can be used.

CONCLUSIONS

The heuristic method of constraint counting for determining the capabilities of mixed elements
under (nearly) isochoric deformations gives a reasonable prediction for applications in finite
elasticity, When supplemented by extensive numerical testing a good assessment can be made of
the element behaviour. The optimal ratio r between displacement degrees-of-freedom and pressure
degrees-of-freedom should locally and globally be satisfied to suppress spurious kinematic modes.
Since this ratio also is affected by the boundary conditions of the finite element model a variable
number of pressure degrees-of-freedom is suggested. This can only be achieved by using elements
with a discontinuous pressure field across the element boundaries. The use of an element mesh
with a homogeneous distribution of incompressibility constraints and a global optimal ratio
may still lead to the occurrence of local spurious mechanisms.
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It has been found that the shape factor of a cuboidal block influences the load level until

which a converged solution can be obtained. Apparently, an optimal ratio between displacement
degrees-of-freedom and pressure degrees-of-freedom assures that neither the convergence of the

iterative procedure, nor the occurrence of spurious mechanisms cause a premature termination
of the analysis,
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