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Abstract

Problem statement
Orthotropic bridges can be modelled using a grillage model and an orthotropic plate model. The grillage
model has some benefits (i.e.: shorter calculation time and easier to apply prestressing) compared to
the orthotropic plate model. However, during the Blankenburgverbinding project Ballast Nedam expe
rienced that the transverse loadspread of the grillage model can be lower compared to the orthotropic
plate model. This potentially results into a less economical reinforcement design. The aim of this study
is to investigate the differences in transverse loadspread of the grillage and orthotropic plate model
and to make a judgement on the practical usability of the grillage model based upon the differences in
reinforcement design.

Methodology
To test the hypothesis that the grillage model has less transverse loadspread compared to the or
thotropic plate model and to quantify the impact on the reinforcement design, a case study on the
bridge decks of the Blankenburgverbinding is carried out. The results of a grillage model are compared
to an orthotropic plate model. In order to be able to judge whether to orthotropic plate model describes
the correct behaviour of the bridge, this model is verified using a 3D plate model. In total, 3 different
singlespan, simply supported bridge deck layouts were modelled (straight, curved and curved with a
skew angle).

Key results
The results of the 3D plate model are almost equal to the results of the orthotropic plate model. Both
these models show the same transverse loadspread. The grillage model shows less transverse load
spread compared to the orthotropic plate model and the 3D plate model. This difference in loadspread
increases with increasing eccentricity of the applied load. The torsional and transverse shear stiffness
has the biggest impact on the transverseload spread. When these stiffnesses are higher, the trans
verse loadspread increases. Lowering the stiffnesses results into less loadspread. In case of the
curved bridge deck, the grillage model results in about 7.3% more reinforcement compared to the or
thotropic plate model. For the curved and skewed deck the grillage model results into up to 4.7% more
reinforcement compared to the orthotropic plate model.

Conclusion
The differences in design bending moments (WoodArmer moments) are relatively small. Although the
theoretical difference in amount of reinforcement is significant, the practical difference in reinforcement
design between both models can be small. For example, the structural engineer is limited by the
available space, detailing requirements and the available bar diameters. These limitations and rounding
differences make that for some bridges it is possible to reduce for example 5% reinforcement and for
some bridges such a reduction can be very hard to realise. In that case, the theoretical difference
between the amount of reinforcement becomes very small or completely vanishes in practice.

Eventually, it depends on the situation whether the benefits of the grillage model outweigh the the
oretically less economical reinforcement design. When there are a lot of repetitive bridge decks, it can
be beneficial to use an orthotropic plate model. In that case, the orthotropic plate model has to be
created only once and only a small reduction in the amount of reinforcement of one deck can addup
to a significant reduction for the whole project. When there is only one bridge deck to model, or all
spans are unique, the benefits of the grillage model most likely outweigh the practical difference in the
amount of reinforcement.
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1
Introduction

An orthotropic voided bridge deck can be modelled using different kind of models. The most advanced
and exact model is a full 3D model in which the full crosssection of the bridge deck is modelled.
The finite elements of such a model are volume elements. Although this model gives the most exact
description of the behaviour of the bridge deck, a full 3D model will need a lot of calculation time. Also,
postprocessing is needed to obtain the desired crosssectional forces (such as normal forces, bending
moments and torsional moments). These forces cannot be extracted from the 3D model directly. The
3D model can be simplified by modelling the crosssection using isotropic plates. For this 3D plate (or
2.5D model), the calculation time is already shorter compared to the 3D plate model, as there are less
nodes compared to the 3D model. However, also for the 3D plate model it is needed to postprocess
the crosssectional forces.

Another model that can be used to model an orthotropic bridge deck, is an orthotropic plate model.
In this model, the orthotropic bridge deck is modelled as a flat plate, to which orthotropic stiffness
properties are assigned. The calculation time of the orthotropic plate model will be shorter compared
to the 3D and 2.5D models. The biggest benefit of the orthotropic plate model is that crosssectional
forces can be extracted from the results directly.

A third option is a grillage model. This model consists of a grid of longitudinal and transverse beams.
These beams are rigidly connected in the nodes. The longitudinal beams represent the longitudinal
and the transverse beams the transverse stiffness of the bridge deck. The biggest benefit of the grillage
model is the short calculation time. A shorter calculation time means that it easier to adjust the design
and see the effects of the adjustment faster. In the grillage model, it is also easier to apply prestressing.

The structural engineer always has to choose between the simplicity of the model and the desired
accuracy. In general, a simpler model means less accuracy. This also holds for the grillage model.
This model is the simplest model of the models discussed above. At the same time, this model is also
the least accurate one.

1.1. Motivation of research
At the end of the summer of 2019, the BAAKconsortium (Ballast Nedam, DEME Group and Mac
quarie) started with the construction of the Blankenburgverbinding. In this project, a new highway in
the Rotterdam portarea is build. This new highway (A24) connects the already existing highways A15
(near Rozenburg) and A20 (near Vlaardingen), see figure 1.1. As part of the new highway, several big
structures needs to be build: a big tunnel passing the ”Nieuwe Waterweg” river (Maasdeltatunnel), a
land tunnel (Hollandtunnel) and bridges for the connection roads of the intersections Vlaardingen and
Rozenburg, see figure 1.1.

The bridges for the connection roads at the intersection with the A15 (intersection Rozenburg) are
(partly) insitu casted concrete bridge decks. The final situation of intersection Rozenburg can be seen
in figure 1.1. It can be seen that the bridge decks are curved and the angle between the bridge deck and
the support is not always 90∘. This means that the bridge decks can be curved and have a skew agle as
well. The insitu casted bridge decks have voids in it to reduce selfweight and they are prestressed.
The crosssection of these bridge decks can be seen in figure 1.2.
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Figure 1.1: Blankenburgverbinding (left), intersection Rozenburg (right) (source: Rijkswaterstaat / ZJA)
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Figure 1.2: Crosssection bridge decks intersection Rozenburg

Figure 1.3 shows a top view of the bridge decks under construction. This photo was taken in March
2021. The 2 bridges on the top of the photo are completely casted insitu. For the bridge at the top of
the photo, the left span is already casted and the right span is under construction. In the span under
construction, the reinforcement of the stiffeners and the top plate of the bridge deck can be seen. In the
span, the color tone is a little bit more brown compared to the part above the support. This brown color
comes from the wood of the moulds for the voids. Above and next to the support there are no voids.
In this zone, the bridge deck is solid. The two bridges on the bottom consist of precasted beams with
an insitu casted top layer and solid insitu casted integrated transverse beam. This is done to make a
rigid connection above the supports.

During the preliminary design phase, Ballast Nedam modelled the bridge decks as an orthotropic plate
model. In a later phase of the design, more detailed calculations were needed, such as the effect of
the construction stages. These calculations were outsourced to the Turkish consultant firm SUYAPI.
They decided to model the bridge decks using a grillage model.

Eventually, the results of the grillage model (SUYAPI) were compared to the orthotropic plate model
(Ballast Nedam). It turned out that there was quite some agreement between both models. However,
it seemed that the grillage model results into less transverse loadspread, especially for eccentric ap
plied loads. Less transverse loadspread for example means that the maximum longitudinal bending
moment is larger, as the applied loading spreads out over a smaller width of the bridge deck. When
the differences in transverse loadspread are big, the grillage model could result into much more rein
forcement. In that case, a reinforcement design based upon a grillage model would be less economical
compared to for example and orthotropic plate model. This could potentially mean that the benefits of
the grillage model (shorter calculation time, easier to see effects of adjustments and easier to apply
prestressing) do not outweigh the the practical disadvantages of a model that is too conservative (i.e.
more costs on reinforcement).
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Figure 1.3: Top view bridge decks under construction (March 2021)

1.2. Research questions
The main research question is:

To which extend does the transverse loadspread of a voided orthotropic bridge deck modelled
as a grillage model differ from an orthotropic plate model. And what does this mean for the
practical usability of the grillage model in engineering practice?

This main research question can be answered by investigating the following subquestions:

Validation of the models

• Do all models have the same transverse and longitudinal stiffness? How much do transverse
and longitudinal strips, taken out of the complete models, deflect when they are all loaded in an
similar way?

• How do the reaction forces and the deflections of the grillage model, orthotropic plate model and
3D plate model differ?

• Does the orthotropic plate model describe the behaviour of the voided bridge deck correctly? How
does the transverse loadspread of the orthotropic plate model compare to a 3D plate model?

Differences in loadspread

• How do the longitudinal, transverse and torsional bending moment of the grillage and the or
thotropic plate model differ? What does this means for the transverse loadspread.

• How does the eccentricity of the applied load influence the difference in transverse loadspread?
• Which stiffness parameter(s) has the biggest influence on the transverse loadspread of an or
thotropic bridge deck?

• What is the difference in loadspread for a realistic loadcombination for a bridge deck, taking
into account selfweight, prestressing and traffic load? And which type of loading results into the
biggest difference in loadspread?
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Design bending moments

• To which extend are the design bending moments  used to design the reinforcement  different
for the grillage and orthotropic plate model? What is the difference per direction and location
(top and bottom) of the reinforcement and what is the difference of the sum of design bending
moments?

• Does the difference of the design bending moment between both models depend on the layout
of the bridge deck?

• What do the differences between the design bending moments mean for the reinforcement design
and what does this mean for the usability of the grillage model in engineering practice?

Reinforcement design in practice

• How big are the stepsizes of the total amount of reinforcement per unit width of the bridge deck
for realistic spacing and bar diameter?

1.3. Outline of research
In order to investigate the transverse loadspread of the grillage model and to compare it with the
orthotropic plate model, the bridge decks of the Blankenburgverbinding were used as a case study.
The correctness of the orthotropic plate model was verified using a 3D plate model. All 3 models
(grillage, orthotropic plate and 3D plate model) were created in SCIAengineer. The crosssection of
the Blankenburgverbinding was applied to 3 different bridge deck layouts: a straight deck, a deck with
a curvature (𝑅=300 m) and a deck with the same curvature and a skew angle of 45∘. The bridge decks
of the case study were simply supported and had a span of 40 m.

The straight bridge deck was loaded with dummy loads in the middle of the span of the deck. These
dummy loads were located at different positions in the transverse direction of the deck. Using these
dummy loads, the transverse loadspread can be compared for different loads. Also, the effect of the
eccentricity of the applied load can be investigated.

The curved and curved and skewed deck were loaded with selfweight, traffic load and prestressing.
The prestressing was taken into account by reducing the selfweight of the bridge deck. Using the re
sults of these bridge decks, the difference in transverse loadspread can be investigated for realistic
loading. Using the design bending moments (WoodArmer, 1968), the difference in amount of rein
forcement between the grillage and orthotropic plate model can be determined.

1.4. Hypothesis
The engineers of Ballast Nedam compared their orthotropic plate model to the grillage model made
by the engineering firm from Turkey. Based upon their observations, it is expected that the grillage
model shows less transverse loadspread. It also stood out that the difference in loadspread between
both models depends on the eccentricity of the applied load. The traffic load is an example of an
eccentric load, as the more heavy loaded lanes are on the outside of the bridge deck. This means
that the resultant of the traffic load lies outside the centre of gravity. The selfweight of the bridge is by
definition a centric load as the resultant of the selfweight lies in the centre of gravity.

Longitudinal bending moment
When there is less transverse loadspread, the magnitude of the longitudinal bending moment over the
transverse crosssection will have a larger range compared to a bridge deck that shows more load
spread. At the location where the load is applied, the longitudinal bending moment is larger compared
to the remaining width of the deck.

When the transverse loadspread increases, a larger part of the load is taken by a wider part of the
bridge deck. This lowers the longitudinal bending moment at the location where the load is applied and
increases the longitudinal bending moment away from the point of application of the load. When the
loadspreads out in the transverse direction, the magnitude of the longitudinal bending moments tend
to get closer to each other.
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Transverse bending moment
The transverse bending moment of a platelike structure can be splitup into 2 parts. In transverse
direction, the effect of lateral contraction (Poisson) contributes to the bending moment. The other part
is a contribution of transverse loadspread: the load travelling in transverse direction results into a
bending moment in transverse direction.

Lateral contraction
A positive bending moment is defined as a bending moment that causes tension on the bottom and
compression on the top. Using a positive longitudinal bending moment applied to longitudinal plate
strips, the effect of lateral contraction on the transverse bending moment can be explained. Figure 1.4
shows the crosssection of these longitudinal plate strips.

longitudinal bending transverse bending
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Figure 1.4: Transverse bending moment, effect of lateral contraction

In the left picture, the effect of a positive longitudinal bending moment (𝑚𝑦𝑦) can be seen. On the
bottom of the plate strip there is tension and on the top there as compression. As a result of lateral
contraction, the bottom part of the plate strip contracts in transverse direction, while the top part extends
in transverse direction. This means that the plate strips deform as shown in the right picture of figure
1.4.

In reality, all longitudinal plate strips are connected and cannot deform as shown in the right picture
of figure 1.4. To overcome this compatibility problem, theremust be a bendingmoment in the transverse
direction of the deck (𝑚𝑥𝑥). For isotropic plates this bending moment is equal to:

𝑚𝑥𝑥 = 𝜈 ⋅ 𝑚𝑦𝑦 (1.1)

For a voided isotropic bridge deck, the effect of lateral contraction can only happen in the top and
bottom plate, the webparts can expand and contract freely in transverse direction. This means that
the effect of lateral contraction is smaller than shown in equation 1.1.

In the orhtotropic plate model, the effect of lateral contraction of the top and bottom plate is incorporated.
For the grillage model, the effect of lateral contraction is not taken into account. The grillage model
consists of a grid of 1D beams. These beams do not contract in lateral direction. This means that
the transverse bending moment caused by lateral contraction will be 0 for the grillage model. In the
orthotropic plate model, the transverse bending moment will have the same sign as the moment in
longitudinal direction.

Transverse loadspread
As the transverse load spread of the grillage model is expected to be smaller compared to the or
thotropic plate model, the transverse bending moment is also expected to to be smaller for the grillage
model. In the grillage model, less load needs to be distributed in the transverse direction of the deck.
From this, it can be expected that the transverse bending moment is lower.

Eccentricity and type of loading
The more eccentric applied load is expected to show a larger difference in transverse loadspread as
this was also observed by the engineers of Ballast Nedam.

The selfweight of the bridge deck has no eccentricity, so it is expected that for this load case the
difference in transverse loadspread will be small. The traffic load is applied according Load Model 1
(LM1) from the Eurocode. This load model consists of a uniform distributed load (UDL) and a tandem
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axle system (TS). The magnitude of the tandem system has a larger variety over the different traffic
lanes and thus a more eccentricity. It is expected that the tandem system contributes shows the biggest
difference in loadspread.

Eventually, the loadspread of all loads together is compared. This is done without taking into
account the prestressing and with taking account the prestressing. The prestressing is accounted for
by lowering the selfweight. As it is expected that the selfweight shows a small difference between the
loadspread of both models, it is expected that reducing the selfweight increases the overall difference
in loadspread as the eccentric applied traffic loads have a larger relative contribution. So, when pre
stressing is taken into account, it is expected that the difference in loadspread increases.

1.5. Structure of the report
This report begins with the introduction of the Blankenburgverbinding case study. The crosssection
and the layout of the bridge deck as well as the boundary and loading conditions can be found in
chapter 2. Chapter 3, 4 and 5 are about the different models used to model the bridge deck of the
Blankenburgverbinding case study. Chapter 3 is about the orthotropic plate model, chapter 4 the gril
lage model and chapter 5 introduces the 3D plate model. Each of these 3 chapters are split into 2 parts.
The first part introduces the general theory of the model and in part 2, it is shown how the models of
the Blankenburgverbinding case study are created.

The second part of this report is about the results of the models. In chapter 6, the longitudinal and
transverse stiffnesses of the models are checked and compared to an analytical solution. To do this,
strips in longitudinal and transverse direction are taken out of the models of the bridge deck. After vali
dation of the models, the actual results of the complete bridge deck models are shown. This is done in
chapter 7, 8 and 9. The results are shown per type of bridge deck layout. Chapter 7 shows the results
of a straight bridge deck, chapter 8 of a curved and chapter 9 of a curved and skewed bridge deck.
Also these chapters are supported by appendices showing a lot of graphs and other plots.

The final conclusions of the research as well as the discussion and recommendations for further re
search can be found in chapter 10.



2
The Blankenburg case study

This chapter introduces the case study of the Blankenburgverbinding. For this project, Ballast Nedam
designed and constructed a number of bridges that connect the new A24 highway to the the existing
A15. First, the crosssection of the bridge decks an the material properties are introduced. In the
next section, the building process of the insitu casted bridge decks of the Blankenburgverbinding is
explained. In the last 2 sections the layout, boundary conditions and the applied loading applied to the
decks is discussed.

2.1. Crosssection and material properties
The viaducts that are being build in the Blankenburgverbinding project more or less have the cross
section as shown a figure 2.1. At some locations, the deck is a little bit wider, which follows from traffic
regulations such as a minimum required line of sight for curved roads. Beside, above and near the
support, the deck is solid and the depth is a little bit higher. However, for this research, it is assumed
that the bridge deck has a uniform crosssection in longitudinal direction.
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Figure 2.1: Crosssection of the bridge decks used for the Blankenburgverbinding (mm)

As shown in figure 2.1, the crosssection is not fully repetitive in transverse direction. On the edges
of the deck, there is some extra material and there is a chamfer (1000 x 700 mm). For the grillage
model it is possible to model 2 different longitudinal beams on the edge of the bridge deck. However,
for the orthotropic plate model, it is not possible to model the extra stiffness and chamfer on the edge of
the deck. This follows from the fact that for an orthotropic plate repetition is needed. A random located,
or nonrepetitive change in crosssection cannot easily be included in the orthotropic plate model. In
order to be able to make a fair comparison between the grillage and the orthotropic plate model, it is
decided to modify the crosssection such that there is a repetition of Hsections. For all models that
will be compared in this thesis, the crosssectional properties of the bridge deck will be based upon the
modified crosssection, which is shown in figure 2.2.

The strength class of the concrete used for the bridge deck is C45/55. Table 2.1 shows all relevant
material properties for this concrete strength class.

9
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Figure 2.2: Modified crosssection used for all models (mm)

Table 2.1: Material properties concrete strength class C45/55

Concrete strength class C45/55
Young’s modulus 𝐸 36300 MPa
Shear modulus 𝐺 15125 MPa
Poisson’s ratio 𝜈 0.2 
Specific weight 𝜌 2500 kg/m3

The crosssectional area of the bridge deck shown in figure 2.2 is equal to

𝐴 = 𝑏 ⋅ ℎ − 𝑛 ⋅ 𝐴𝑣𝑜𝑖𝑑
= 16.96 ⋅ 1.6− 8 ⋅ 1.52 ⋅ 1.2 = 12.544m2

2.2. Building process
The bridge decks of the intersection Rozenburg are casted insitu. This means that it is needed to build
a temporarily supporting frame. This frame has two functions: the formwork can be build on it, and
the frame carries the selfweight of the freshly casted concrete. In case of the Blankenburgverbinding,
there is a landstrip which may not be loaded as there is crucial infrastructure (such as cables and
pipes) in the ground. Also, 2 spans of the viaduct need to be build above the highway A15 while the
road is still in use. For these 2 locations (the landstrip and the A15), the temporally frame supporting
the formwork and the selfweight of the concrete is called a table structure. The table structure above
the A15 can be seen in figure 2.3. Left from the table structure, a completed span of one of the viaducts
can be seen.

Figure 2.3: Table structure above highway A15, top view (left) and side view (right)
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On top of the table structure, a scaffolding is placed. With this scaffolding, the desired vertical alignment
and shape of the bridge deck can be created. The formwork of the bridge decks is placed on top of the
scaffolding. The formwork can be seen in figure 2.4.

The locations that are indicated in figure 2.4, are the following ones: The gaps for the bearings are
sawn out of the formwork and the bearings are positioned at their correct position. A very tiny part of
the cutout needed for the bearing, can be seen at (1). During the first cast, the concrete is casted
till the level of the wooden slats, indicated with (2). The wooden slats are located at the top level of
the bottom plate of the bridge deck. After the first cast, the remaining part of the deck is casted. With
the help of the wooden slats, the pouring seam is more aesthetic. The anchors indicated with (3) are
casted in the concrete of the bottom plate. When the bottom plate is cured, these anchors can be used
to fit the formwork when the remaining part of the deck is casted. There is also a row of anchors at a
higher level (4), these anchors are used to connect a temporarily fence to the bridge deck. In the back
of the picture (5), an already casted deck can be seen. On the face of this already casted deck, the
connectors of the prestressing strands are protected with a foil.

Figure 2.4: formwork, including: 1. cutout for the bearing, 2. wooden slats, 3/4. anchors and 5. already casted deck

The transverse reinforcement is placed on top of the formwork. To ensure enough concrete cover,
the reinforcement lays on concrete spacers. After the installation of the transverse reinforcement, the
shear reinforcement of the stiffeners is added. The horizontal part of the Ushaped shear reinforce
ment is connected to the transverse reinforcement bars. To make the shear reinforcement stable, the
separate shear bars are connect with reinforcement bars in the longitudinal direction of the deck. After
the installation of the shear reinforcement, the longitudinal reinforcement bars are placed in between
the shear reinforcement. The width between the shear reinforcement is about 1.5 m. The longitudinal
reinforcement bars lay on top of the transverse bars. The reinforcement in the bottom plate as well as
the shear reinforcement can be seen in figure 2.5.

After the installation of the reinforcement of the bottom plate, the concrete of the bottom plate can
be casted. In this first cast, the concrete is casted till the level of the wooden slats that are placed on
the formwork (figure 2.4). A few days after the casting of the bottom plate, the formwork of the voids
is installed. In between this formwork, the 600 mm wide stiffeners will be casted. After the second
cast, the formwork for the voids is enclosed with concrete. As this formwork cannot be removed, it is
also called lost formwork. The casing pipes that are used for the prestressing strands, are installed in
between the shear reinforcement of the stiffeners. The formwork for the voids as well as the installation
of the casing pipes can be seen in figure 2.6. In this picture, the workers walk on top of the already
casted bottom plate of the bridge deck.
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Figure 2.5: Transverse, longitudinal and shear reinforcement

Figure 2.6: Formwork for the voids and installation of casing pipes for prestressing
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Eventually, the reinforcement of the top deck is put in place. This reinforcement consists of several
layers. In the transverse direction of the deck, there is a combination of global and local behaviour.
The local behaviour is the result from traffic that is located in between the stiffeners. This traffic causes
hogging and sagging bending moments in the transverse direction of the top plate. The hairpins of the
shear reinforcement are enclosed by longitudinal reinforcement bars. This ensures that the node, in
which the tensile force of the shear reinforcement is transferred into a compressive stress diagonal, is
strong enough (truss analogy). The reinforcement of the top plate, as well as the lost formwork and the
bars enclosing the hairpins of the shear reinforcement can be seen in figure 2.7.

Figure 2.7: Reinforcement top plate, hairpins and formwork of the voids

After the the installation of all reinforcement, the reaming part of the deck is casted. This is done by
pouring every stiffener until the bottom level of the top plate. When this level is reached, the top plate is
casted. During the casting of the concrete, the table structure deflects as it has to carry the selfweight
of the fresh concrete. This deflection is already accounted for by adding this deflection to the shape
of the formwork. The deflected formwork has the desired shape of the bridge deck. However, the
deflection of the formwork may not be too big, as the already casted and cured bottom plate must be
able to follow the same deflection.

Before the formwork and the table structure can be removed, the bridge deck is prestressed. For
every new deck that is connected to an already casted deck, the prestressing strands are connected
using connectors. Eventually, the casing pipes of the prestressing strands are filled with grout. During
this process, the air inside the casing pipes must be able to flow out. This can be done by installing
ventilation tubes. These tubes are located at the highest levels of the casing pipes. When the grout
starts to flow out of the ventilation tubes, the grouting is stopped.
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2.3. Layout of the deck and boundary conditions
Figure 2.8 shows a top view of the viaducts of the Blankenburgverbinding under construction. This
photo was taken in March 2021. From above, it becomes clear that the bridge decks are curved. The
direction of the curvature changes for some bridge decks, this can be seen in figure 2.9. In the front,
the left edge of the bridge deck is convex and in the back the left edge is concave. Also the supports
of the bridge decks are not always perpendicular to the longitudinal direction of the deck. This means
that the bridge decks also have a skew angle.

Figure 2.8: Top view of Blankenburg viaducts under construction (March 2021)
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Figure 2.9: Change of direction of curvature

For the case study, 3 different layouts of the bridge deck were modelled: a straight deck, a curved
deck with a radius of curvature of 300 m, and a deck with the same radius of curvature plus a skew
angle of 45∘. For all decks, one single span of 40 m has been modelled. The bridge deck with a radius
of curvature of 300 m and a skew angle of 45∘ is one of the most extremelyshaped bridge decks that
will be build in the Blankenburgverbinding project. The three different bridge deck layouts used for the
case study can be seen in figure 2.10.
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Figure 2.10: Layout of the bridge decks analysed (top view) (mm)

On both ends, the decks are simply supported with point supports. For all models, the position of
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the point supports is based upon the grid of the grillage model. For the grillage model, it is not possible
to support the bridge decks along the complete edges. Instead, the supports are located on the ends
of the longitudinal beams. To make the models comparable, the supports of the orthotropic plate and
3D plate model are located at the same position.

For the grillage and orthotropic plate model, the supports are located at the level of the neutral axis.
In the 3D plate model, the supports are located at the level of the bottom plate. This means that one
edge of the bridge deck must be supported with a roller. The roller support ensures that there are no
support reactions in the inplane direction of the bridge deck. For the 3D plate model, inplane support
reactions would generate an undesired bending moment, as the supports of the 3D plate model are
not at the level of the neutral axis. The supports and the support conditions can be seen in figure 2.11.
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Figure 2.11: Supports bridge decks case study, top view and side view (mm)
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2.4. Loading
The models of the bridge deck will be loaded with 3 different loads. The type of load that is applied
depends on the goal of the analysis. For the straight bridge deck, the goal is to verify the models and
to investigate the differences in transverse loadspread depending on the eccentricity of the applied
load. The models of the straight deck layout are loaded with the selfweight of the bridge, as well as
a variety of dummy loads. These dummy loads consist of a distributed load in the middle of the span,
as well as several point loads above the stiffeners. The pointloads are applied onebyone, so the
relationship between the eccentricity of the applied load and the differences in transverse load spread
can be investigated.

The bridge deck with the curved and curved + skew layout is loaded with the self weight as well as
the traffic load. This loading is a realistic loading, which is also used in engineering practice. The self
weight is relatively big and is more or less centric applied. For the traffic load, the opposite holds: the
magnitude of the force is relatively small and the eccentricity is relatively big. This follows from the fact
that the more heavy traffic is positioned close to the edge of the bridge.

According to the hypothesis, more eccentricity, leads to a bigger difference in transverse load spread
for the grillage model. The balance between the selfweight and the traffic load determines the overall
eccentricity of the applied load. From this realistic loading, it can be concluded whether the difference
in load spread is significant or not in engineering practice.

All bridge deck layouts are loaded by the selfweight. In order to be sure that the selfweight is identical
for every model, the self weight is applied manually instead of automatically by SCIAengineer. In case
the selfweight is applied automatically, the selfweight of the grillage and 3D plate model is too high
as a result of overlapping beams or plate parts.

For the grillage and 3D plate model, the selfweight can be applied as a qload acting on the longitu
dinal beams, for the orthotropic plate model, the selfweight can be applied as a surface load. For every
model, the numerical calculation of the selfweight is a little bit different and for the grillage model, it
depends on the grid, that is why the selfweight will be calculated in the chapters concerning themodels.

Table 2.2 gives an overview of which bridge deck layout is loaded with which load. The dummy loads
and the traffic load will be discussed in the following sections. The selfweight of the deck will be
calculated in the chapters in which the creation of the models will be discussed.

Table 2.2: Overview of loads and bridge layouts

deck layout
straight curved curved and skewed

Selfweight x x x
Prestressing (indirect) x x
Traffic load x x

Dummy loads x

2.4.1. Prestressing
In the longitudinal direction of the bridge deck, the deck of the Blankenburgverbinding is prestressed.
As a result of the stress in the prestressing cable and the shape of the prestressing cable, part of
the selfweight of the bridge deck is compensated by a distributed load acting in the opposite direction
of the the gravitational force. This means that the longitudinal prestressing reduces the longitudinal
bending moments. Of course, the prestressing doesn’t lower the reaction forces of the bridge deck.

To account for prestressing, it was chosen to make an assumption on which part of the selfweight
of the deck is compensated by prestressing. It is assumed that in the final situation, after prestressing
losses, 75% of the selfweight is compensated by prestressing. This means that only 25% of the
selfweight of the bridge contributes to the longitudinal bending moments.

In the final situation, the bridge deck is also loaded by asphalt and other loads (i.e. fences and
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barriers). It is assumed that these loads have a magnitude of about 10% of the self weight. This
means that, in the final stage, the prestressing compensates about 75  10 = 65% of the selfweight.
This comes down to a selfweight of 35% when accounting for prestressing.

2.4.2. Dummy loads
The straight bridge deck is loaded with dummy loads. These dummy loading consists of several load
cases of point loads and one load case with a distributed load in over the transverse direction of the
deck. All the load cases of the dummy loads are applied in the middle of the span.

Each point load has a different eccentricity with respect to the centre of gravity of the bridge deck.
Which means that every point load gives a different torque to the bridge deck. In order to avoid local
bending of the top plate of the deck, the point loads are applied above the stiffeners. As the transverse
crosssection of the bridge deck is fully symmetrical, only the left part of the bridge is loaded with the
point loads. Point loads applied to the right part of the bridge deck will give the same results, but then
mirrored. Load case 6 (LC6) is a load that does not have an eccentricity. As there is no stiffener in
the middle of the deck, it was needed to split up the point load into two separate point loads positioned
above the stiffeners next to the middle of the deck. Figure 2.12, shows all the load cases of the dummy
loads, positioned along the transverse crosssection, in the middle of the span.
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Figure 2.12: Load cases of the dummy loads, positioned along the transverse crosssection, in the middle of the span (mm)

By analysing the results each load case separately, it can be determined whether there is a rela
tionship between the difference in transverse load spread and the eccentricity of the applied loading.
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2.4.3. Traffic load
The traffic load is based upon Load Model 1 (LM1) from Eurocode EN 19912 (Eurocode 1 ”Actions
on structures”, part 2: ”Traffic loads on bridges”) [6]. LM1 consists of a uniform distributed load (UDL)
and a tandemaxle system (TS). According to the EN 19912, the carriageway of the bridge needs to
be divided into notional lanes each having a width of 3 m. The maximum number of notional lanes is 3.
For each of these notional lanes, the magnitude of the uniform distributed load (UDL) and the tandem
axle load is different.

Table 2.3 shows the magnitude of UDL and TS for each of the three lanes and the remaining area of
the bridge. The values in table 2.3 are based upon EN 19912. According to the EN 19912, the UDL
from the needs to be multiplied with a factor 𝛼𝑞𝑖 and the tandem load with a factor 𝛼𝑄𝑖. These factors
follow from the national annex, for which in this case the Dutch national annex was used. In case it is
assumed that there are 2 million trucks/lane/year, the 𝛼factors are equal to: 𝛼𝑞1 = 1.15 (lane 1) and
𝛼𝑞𝑖 = 1.4 (all other lanes). And for the tandem loads, 𝛼𝑄𝑖 = 1. These 𝛼factors are already included in
table 2.3, which means that table 2.3 gives the characteristic values for UDL and TS.

Table 2.3: Traffic loading LM1 (Eurocode EN 19912)

𝑞𝑖𝑘 / UDL (kN/m2) 𝑄𝑖𝑘 / TS, per axle (kN)
Lane 1 10.35 300
Lane 2 3.50 200
Lane 3 3.50 100
Remaining area 3.50 

Figure 2.13 shows the top view of the tandem axle system, for each lane. The tandem axle system
consists of 2 axles with a width of 2 m and distance of 1.2 m in the longitudinal direction of the bridge.
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Figure 2.13: Top view of the tandem axle system (mm)

The number and the layout of the notional lanes is based upon the with and the position of the
carriageway. The width of the carriageway is equal to the width of the bridge deck over which the traffic
could drive. Areas that are separated from the traffic by a hard barrier may be excluded from the with
of the carriageway.

For the viaducts of the Blankenburgverbinding, there is a concrete curb edge with a height of 200
mm and a width of 1100 mm on both edges of the deck, see figure 2.14. This concrete curbs avoid
traffic from driving on the outer 1100 mm of the bridge deck. The total width of the bridge is 16.96 m,
this means that the width of the carriageway is equal to 16.96  2 ⋅ 1.1 = 14.76 m.

According to the Eurocode 2, a carriageway with a width of ≥ 9 m, has 3 notional lanes. This means
that 9 m of the carriageway is occupied with 3 lanes and that there is a remaining area of 14.76  9 =
5.76 m. Figure 2.15 shows the crosssection of the bridge deck, the layout of the notional traffic lanes
and a side view of the uniform distributed traffic loading (UDL) and the point loads from the axles of the
tandem system (TS).
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Figure 2.14: Crosssection of the edge of the viaduct, Blankenburgverbinding

2.4.4. Load combinations
The curved and curved and skewed bridge deck layouts are loaded with selfweight (SW), prestressing
(indirectly, 0.35*SW) and the traffic loads (UDL and TS). In order to obtain the bending moments as a
result of the sum of all loads and the sum of all loads in which also the effect of prestressing is taken
into account, 2 different load combinations were created. The first loadcombination is the sum of all
loadcases. The second loadcombination includes the prestressing. Of course, this loadcombination
cannot be used to look at the support reactions of the bridge deck, as the prestressing only changes
the internal system of the bridge decks. The piers still need to carry the whole system.

Sum of all loads, excluding prestressing

1. SW + UDL + TS

Sum of all loads, including prestressing

2. 0.35 * SW + UDL + TS
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Figure 2.15: Crosssection of the bridge deck, lane layout and side view of traffic load (UDL and TS) (mm)





3
Orthotropic plate model

The first model that will be used in this thesis is the orthotropic plate model. This model can be derived
from the plate theory of an isotropic plate. For an orthotropic concrete bridge deck, the orthotropy is
introduced by the irregular shape of the crosssection. This kind of orthotropy is also called shape or
thotropy. Another source of orthotropy can be thematerial properties (the strength of timber depends on
the direction). In the case of an orthotropic concrete bridge deck, nonhomogeneousmaterial behaviour
doesn’t play a role. That is why the orthotropic plate model is purely based upon shape orthotropy. In
the first section of this chapter, the theory of an shape orthotropic plate will be introduced.

The second part of this chapter discusses the setup of the orthotropic plate model. For both di
rections, the in and outofplane stiffness properties are calculated. These stiffness properties consist
of: normal, bending, shear and torsional stiffness. Next, it is shown how the model is setup in SCIA
engineer. It is shown how the direction of the local coordinate system is adjusted for the curved deck,
so the orthotropic material properties follow the correct direction. In the last section, it is shown how
the loads are applied to the orthotropic plate model.

3.1. Theory of shape orthotropic plates
For the orthotropic plate model, the stiffness properties are derived from the ordinary plate theory.
For shape orthotropic plates, there are stiffeners under or in between the plate in 1 or 2 directions.
The added stiffness of these stiffeners is evenly distributed over a unit width. In practice, this means
that the stiffness properties of the repeated crosssection is calculated and divided by the width of
these repeated crosssection. The theory of shape orthotropic plates, as well as the elaboration of the
stiffness properties for the crosssection considered in this thesis, is presented in the remaining part of
this section. The theory of shape orthotropic plates is mainly based upon ”Plates and FEM: Surprises
and Pitfalls”, written by Johan Blaauwendraad [2].

3.1.1. Axial stiffness
For inplane action, there are two external forces that can act on the plate (𝑝𝑥 and 𝑝𝑦). These external
forces cause internal stresses (𝜎𝑥𝑥, 𝜎𝑦𝑦 and 𝜎𝑥𝑦), multiplying these stresses with the thickness of the
plate, gives the normal force components per unit width: 𝑛𝑥𝑥, 𝑛𝑦𝑦 and 𝑛𝑥𝑦. The inplane constitutive
relations of a plate read

𝜀𝑥𝑥 =
1
𝐸 (𝜎𝑥𝑥 − 𝜈𝜎𝑦𝑦)

𝜀𝑦𝑦 =
1
𝐸 (𝜎𝑦𝑦 − 𝜈𝜎𝑥𝑥)

𝛾𝑥𝑦 =
2(1 + 𝜈)

𝐸 𝜎𝑥𝑦

(3.1)

In formula 3.1, the stresses 𝜎 can be replaced by forces 𝑛 = 𝜎𝑡, written in stiffness formulation, this
results in the following formulation of the axial stiffness per unit width

23
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{
𝑛𝑥𝑥
𝑛𝑦𝑦
𝑛𝑥𝑦

} = 𝐸𝑡
1 − 𝜈2 [

1 𝜈 0
𝜈 1 0
0 0 (1 − 𝜈)/2

] {
𝜀𝑥𝑥
𝜀𝑦𝑦
𝛾𝑥𝑦
} (3.2)

For the orthotropic plate, the axial stiffness of the ’extra’ material in 𝑥 and 𝑦direction must be added
to the axial stiffness formulation for the general plate (3.2). To do this, the ’extra’ material is spread out
over the spacing. Assume a stiffener spacing of 𝑎 and an axial stiffness of 𝐸𝐴, then the axial stiffness
distributed over a unit width becomes 𝐸𝐴/𝑎. In matrix notation, the axial stiffness formulation becomes

𝐷 = 𝐸𝑡
1 − 𝜈2 [

1 𝜈 0
𝜈 1 0
0 0 (1 − 𝜈)/2

] + [
𝐸𝐴𝑥/𝑎 0 0
0 𝐸𝐴𝑦/𝑏 0
0 0 0

] (3.3)

written in one matrix

𝐷 = [

𝐸𝑡
1−𝜈2 +

𝐸𝐴𝑥
𝑎 𝜈 𝐸𝑡

1−𝜈2 0
𝜈 𝐸𝑡
1−𝜈2

𝐸𝑡
1−𝜈2 +

𝐸𝐴𝑦
𝑏 0

0 0 𝐺𝑡
] (3.4)

In finite element software, the entries of the Dmatrix for axial stiffness, are often denoted as

𝑑11 =
𝐸𝑡

1 − 𝜈2 +
𝐸𝐴𝑥
𝑎

𝑑22 =
𝐸𝑡

1 − 𝜈2 +
𝐸𝐴𝑦
𝑏

𝑑12 = 𝜈
𝐸𝑡

1 − 𝜈2

(3.5)

3.1.2. Bending stiffness
When a plate is loaded in the outofplane direction, bending and shear deformation can will be ob
served. The shear deformation is only observed for thick plates, or when there is a voided deck in
which the top plate can translate with respect to the bottom plate, which is also called shear deforma
tion. Taking into account shear deformation means that the MindlinReissner plate theory is adopted.
The constitutive equations for plate bending read

𝑚𝑥𝑥 = 𝐷(𝜅𝑥𝑥 + 𝜈𝜅𝑦𝑦)
𝑚𝑦𝑦 = 𝐷(𝜅𝑦𝑦 + 𝜈𝜅𝑥𝑥)

𝑚𝑥𝑦 =
1
2𝐷(1 − 𝜈)𝜌𝑥𝑦

(3.6)

with

𝐷 = 𝐸𝑡3
12(1 − 𝜈2) (3.7)

In matrix notation, the relation between bending moments and bending deformation (curvature),
becomes

{
𝑚𝑥𝑥
𝑚𝑦𝑦
𝑚𝑥𝑦

} = 𝐷 [
1 𝜈 0
𝜈 1 0
0 0 (1 − 𝜈)/2

] {
𝜅𝑥𝑥
𝜅𝑦𝑦
𝜌𝑥𝑦

} (3.8)

Again, it is assumed that the stiffness of stiffer parts is spread out over a unit width of the orthotropic.
The general stiffness relation for plate bending can be rewritten as

{
𝑚𝑥𝑥
𝑚𝑦𝑦
𝑚𝑎𝑣

} = [
𝐷𝑥𝑥 𝐷𝜈 0
𝐷𝜈 𝐷𝑦𝑦 0
0 0 𝐷𝑎𝑣

] {
𝜅𝑥𝑥
𝜅𝑦𝑦
𝜌𝑥𝑦

} (3.9)
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In this matrix, 𝐷𝑥𝑥 and 𝐷𝑦𝑦 are the bending stiffness in 𝑥 and 𝑦direction, per unit width. 𝐷𝜈 is
the offdiagonal rigidity, which follows from lateral contraction. Instead of using 𝑚𝑥𝑦 for the torsional
moment and 𝐷𝑥𝑦 for the torsional stiffness, 𝑚𝑎𝑣 and 𝐷𝑎𝑣 are used. This follows from the fact that there
is only one unique twisting deformation 𝜌𝑥𝑦 (𝜌𝑥𝑦 = 𝜌𝑦𝑥, by definition). However, the torsional stiffness
can be different in both directions (𝐷𝑥𝑦 ≠ 𝐷𝑦𝑥), which means that 𝑚𝑥𝑦 ≠ 𝑚𝑦𝑥. This results in the
following relations for the torsional moments.

𝑚𝑥𝑦 = 𝐷𝑥𝑦𝜌𝑥𝑦
𝑚𝑦𝑥 = 𝐷𝑦𝑥𝜌𝑥𝑦

𝑚𝑥𝑦 +𝑚𝑦𝑥 = (𝐷𝑥𝑦 + 𝐷𝑦𝑥)2𝜌𝑥𝑦
𝑚𝑎𝑣 = 𝐷𝑎𝑣𝜌𝑥𝑦

(3.10)

with

𝑚𝑎𝑣 =
1
2(𝑚𝑥𝑦 +𝑚𝑦𝑥)

𝐷𝑎𝑣 =
1
2(𝐷𝑥𝑦 + 𝐷𝑦𝑥)

(3.11)

In a FEManalysis of an orthotropic plate, the torsional moment 𝑚𝑎𝑣 will be shown in the results.
This means that result needs to be postprocessed in order to get the torsional moment components
𝑚𝑥𝑦 and 𝑚𝑦𝑥. This postprocessing can be done using formula 3.12. With these formulas, the mean
torsional moment 𝑚𝑎𝑣 will be divided according to the ratio of the stiffness in 𝑥 and 𝑦direction.

𝑚𝑥𝑦 =
2𝑖𝑥𝑦

𝑖𝑥𝑦 + 𝑖𝑦𝑥
𝑚𝑎𝑣

𝑚𝑦𝑥 =
2𝑖𝑦𝑥

𝑖𝑥𝑦 + 𝑖𝑦𝑥
𝑚𝑎𝑣

(3.12)

3.1.3. Shear stiffness
According to the MinlinReissner plate theory, the constitutive relations for shear read

𝑣𝑥 = 𝐷𝛾𝛾𝑥
𝑣𝑦 = 𝐷𝛾𝛾𝑦

(3.13)

The shear stiffness of the orthotropic plate can be obtained by creating a shearframe of the cross
section. In this frame, there are horizontal and vertical beam members that represent a unit width of
the crosssection. The shear stiffness then follows from the shear deformation and the vertical applied
load.
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3.2. Blankenburg case
For the orthotropic plate model, the crosssectional stiffness properties are calculated based upon the
theory of chapter 3. The contribution of the stiffener parts are evenly distributed over a unit width of the
crosssection. This results in stiffness properties per unit plate width, like for ordinary isotropic plates.

The crosssection used for the Blankenburgverbinding is shown in figure 2.1. In transverse direc
tion, there is no repetition as the edges of the bridge deck are chambered. For the orthotropic plate
model, there must be a repetition of identical crosssections. When modelling the crosssection of
the Blankenburgverbinding, the edges of the bridge deck must be approximated, while for the grillage
model this approximation is not necessary.

In order to get a fair comparison between both models, the crosssection of the deck used for the
Blankenburgverbinding is simplified. For both the orthotropic plate model and the grillage model, a
repetition of Hshaped crosssections is assumed. This modified crosssection is shown in figure 3.1.
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Figure 3.1: Modified crosssection of the bridge deck (mm)

In the following calculations, the coordinate system presented in figure 2.2 is adopted. The 𝑥axis
runs in the transverse direction of the orthotropic deck, the 𝑦axis runs in the longitudinal direction of the
deck, into the displayed plane. The vertical direction coincides with the 𝑧axis, with its positive direction
downward.

Table 3.1 gives an overview of all the stiffness parameters of the orthotropic plate. These stiffness
parameters are being calculated in the following sections.

Table 3.1: Overview of stiffness parameters for the orthotropic plate model

stiffness component description value
inplane
𝑑11 axial stiffness in 𝑥direction 1.5125 104MN/m
𝑑22 axial stiffness in 𝑦direction 2.7453 104MN/m
𝑑12 inplane Poisson effect 3.0250 103MN/m
𝑑33 inplane shear stiffness 6.0500 103MN/m
outofplane
𝐷11 bending stiffness in 𝑥direction (about 𝑦axis) 7.0079 103MNm
𝐷22 bending stiffness in 𝑦direction (about 𝑥axis) 8.7590 103MNm
𝐷12 lateral contraction (bending) of plate parts 1.4016 103MNm
𝐷33 average of torsional stiffness in 𝑥 and 𝑦direction 2.6420 103MNm
𝐷44 shear stiffness in 𝑥direction 2.6205 102MN/m
𝐷55 shear stiffness in 𝑦direction 4.2807 103MN/m
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3.2.1. Axial stiffness
The axial stiffness of the orthotropic deck follows from the thickness of the sum of the top and bottom
plate. Next to the plates, the stiffeners add axial stiffness to the crosssection. The effect of the stiffeners
is spread out over to width over which the stiffeners are spaced. To calculate the axial stiffness, equation
3.5 is used.

xdirection
In the transverse direction, the flow of normal stresses runs trough the top and bottom plate of the deck.
At the location of the stiffener, the flow of normal stresses also runs trough a part of the height of the
stiffener. This means that the axial stiffness in 𝑥direction, is bigger than the axial stiffness of the top
and bottom plate only.

In order to determine which height of the stiffener contributes to the axial stiffness, a 2Dplate model
is created in SCIAengineer. Both the top and bottom plate are loaded with an axial force. In figure 3.2,
the trajectories of the principal normal force are shown. It can be seen that the height over which the
normal force spreads out is very limited compared to the thickness of the top and bottom plate. For this
reason, it is assumed that the axial stiffness in 𝑥direction comes from the top and bottom plate only.
The stiffness component 𝑑11 can be calculated as follows:

𝑑11 =
36300 ⋅ (0.25+ 0.15)

1− 0.22
= 15.125 × 103MN/m

Figure 3.2: Principal normalstress trajectories (𝑛2) for axial loading.

ydirection
For the 𝑦direction, the axial stiffness comes from the top and bottom plate and the presence of stiffeners
with crosssectional area 𝐴𝑦 and spacing 𝑏. A part of the crosssection in 𝑦direction is shown in figure
3.3.

Again, the thickness of both plates can summed up to determine the stiffness of the plate parts.
The stiffness of the stiffeners with dimensions 600 ×1200 mm each and a spacing of 𝑏 = 2120mm, is
added to every 2120 mm deck width. To determine the stiffness per unit deck width, the stiffness of the
stiffeners is divided by the spacing 𝑏. This results into the following axial stiffness component 𝑑22:

𝑑22 =
36300 ⋅ (0.25+ 0.15)

1− 0.22
+ 36300 ⋅ 1.2 ⋅ 0.6

2.12 = 27.453 × 103MN/m

Lateral contraction
For the top and bottom plate of the deck, lateral contraction can be observed as an effect of Poisson.
This lateral contraction can only be observed in the plateparts of the crosssection, as the stiffeners do
not touch each other. When a stiffener is compressed in longitudinal direction, it can freely expand in
transverse direction. This means that when the crosssection is compressed in longitudinal direction,
the stiffeners cannot give rise to any stresses in transverse direction. The lateral contraction component



28 3. Orthotropic plate model

2
5

0
1

5
0

760 600

1
2

0
0

Ay

1520 600 760

Ay

2120

spacing b

Axial longitudinal / y-direction

Bending longitudinal / y-direction

P
R

O
D

U
C

E
D

 
B

Y
 
A

N
 
A

U
T

O
D

E
S

K
 
S

T
U

D
E

N
T

 
V

E
R

S
I
O

N

PRODUCED BY AN AUTODESK STUDENT VERSION

P
R

O
D

U
C

E
D

 
B

Y
 
A

N
 
A

U
T

O
D

E
S

K
 
S

T
U

D
E

N
T

 
V

E
R

S
I
O

N

PRODUCED BY AN AUTODESK STUDENT VERSION

Figure 3.3: Part of the crosssection in 𝑦direction (mm)

of the axial stiffness (𝑑12) can be based upon the transverse axial stiffness (𝑑11), as this component
consists of the plateparts only.

𝑑12 = 𝜈 ⋅ 𝑑11 = 0.2 ⋅ 15.125 × 103 = 3.025 × 103MN/m

Inplane shear
For the inplane shear stiffness, it is assumed that the stiffeners do not play a role. Of course the
stiffeners partly prevent the top and bottom plate from inplane shear deformation. It is assumed that
the inplane shear stiffness of the plate follows from the shear modulus 𝐺 and the sum of the thickness
of the top and bottom plate.

𝑑33 = 𝐺𝑡 = 15125 ⋅ (0.25+ 0.15) = 6.050 × 103MN/m

3.2.2. Bending stiffness
The bending stiffness follows from the moment of inertia per unit width in longitudinal and transverse
direction.

xdirection
In 𝑥direction, the bending stiffness is determined by the top and bottom plate of the deck. It is assumed
that the bottom and top plate act as one crosssection, which means that the Steinerrule is applied.
The bending stiffness must be calculated per unit width, which is equal to 1 m. The crosssection for
bending in 𝑥direction is shown in figure 3.4.
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Figure 3.4: Crosssection for bending in 𝑥direction (mm)
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The neutral axis for this crosssection is at 650 mm from the top. This can be calculated using:

𝑧𝑁𝐶 =
250 ⋅ 125+ 150 ⋅ 1525

250+ 150 = 600mm

The second moment of inertia for bending around the 𝑦axis is equal to:

𝐼𝑦 =
1
12 ⋅ 0.25

3 + 0.25 ⋅ 0.5252 + 1
12 ⋅ 0.15

3 + 0.15 ⋅ 0.8752 = 0.185m4/m

The bending stiffness 𝐷11 can be found by multiplying the second moment of inertia per unit width
with the Young’s modulus and the factor 1

1−𝜈2 , because the crosssection is in fact a plate:

𝐷11 = 𝐸𝐼𝑦 =
1

1− 0.22
⋅ 36300 ⋅ 0.185 = 7.0079 × 103MNm

ydirection
In 𝑦direction, the bending stiffness is determined by repeating crosssection with a width of 2120 mm,
consisting of the top and bottom deck and one stiffener. Due to the factor 1

1−𝜈2 , the plateparts (or
flangelike parts) have a higher effective stiffness than the stiffener (the weblike part). The stiffness of
these plate parts is equal to 𝐸𝑒𝑓𝑓−𝑝𝑙𝑎𝑡𝑒 =

1
1−0.22 ⋅ 36300 = 37813MPa.

First, the bending stiffness 𝐸𝐼𝑦 is calculated per 2120 mm width, this result will be divided by 2.12
m, in order to arrive at the bending stiffness per unit width. The crosssection for bending in 𝑦direction
is shown in figure 3.5.
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Figure 3.5: Crosssection for bending in 𝑦direction (mm)

The neutral axis for this crosssection is at 740 mm from the top. In order to calculate the position
of the neutral axis, the difference in effective stiffness of the plate parts needs to be taken into account,
see the table 3.2.

Table 3.2: Calculation of 𝐸𝑆𝑦 and 𝐸𝐴 to determine 𝑧𝑁𝐶

𝑏 𝑡 𝐴 𝑧𝑁𝐶 𝐸𝑒𝑓𝑓 𝐸𝑆𝑦 𝐸𝐴
part of crosssection (mm) (mm) (m2) (mm) (MPa) (MPa) (m4)

top plate 2120 250 0.530 125 37813 2505 20 041
stiffener 600 1200 0.720 850 36300 22 216 26 136
bottom plate 2120 150 0.318 1525 37813 18 337 12 024

∑      43058 58201

The position of the neutral axis can be calculated as follows:

𝑧𝑁𝐶 =
𝐸𝑆𝑦
𝐸𝐴 = 43058

58201 = 740mm
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Table 3.3 shows the calculation of the bending stiffness in the longitudinal direction of the bridge
deck, per 2.12 m width.

Table 3.3: Bending stiffness orhtotropic plate in longitudinal direction, per 2.12 m

𝑏 𝑡 𝑑 𝐸𝑒𝑓𝑓 𝐼𝑦 𝐸𝐼𝑦
part of crosssection (mm) (mm) (mm) (MPa) (m4) (MNm2)

top plate 2120 250 615 37813 0.2032 7684
stiffener 600 1200 110 36 300 0.0951 3453
bottom plate 2120 150 785 37813 0.1966 7432

∑      18569

The bending stiffness in longitudinal direction can be found by dividing the bending stiffness per
2.12 m by 2.12, this results into the following longitudinal bending stiffness per unit plate width:

𝐷22 =
18569
2.12 = 8.7590 × 103MNm

Torsion
The torsional of a voided deck can be based upon the torsional moment of inertia of a crosssection in
transverse direction. Compared to the torsional moment of inertia of a crosssection in transverse di
rection, the torsional moment of inertia of a crosssection in the longitudinal direction can be neglected.
So, for the transverse direction 𝐼𝑦𝑥 is equal to 𝐼𝑡 divided by the width of the deck (𝑏). As 𝑖𝑥𝑦 ≈ 0, the
average torsional stiffness per unit length (𝑖𝑎𝑣) is equal to 𝐼𝑡 divided by two times the the width of the
deck:

𝑖𝑥𝑦 ≈ 0

𝑖𝑦𝑥 =
𝐼𝑡
𝑏

𝑖𝑎𝑣 =
1
2 (𝑖𝑥𝑦 + 𝑖𝑦𝑥) ≈

𝐼𝑡
2𝑏

(3.14)

The torsional moment of inertia (𝐼𝑡) of the transverse crosssection can be calculated using the Bredt
formula:

𝐼𝑡 =
4𝐴2

∑ 𝑏𝑖
𝑡𝑖

(3.15)

In this equation 𝐴 is the enclosed area by the elements of the crosssection and 𝑏𝑖/𝑡𝑖 is the width
over thickness ratio for each element in the crosssection. For a voided deck, the biggest part of the
torsional stiffness comes from the top and bottom plate and the outer stiffeners. The inner stiffeners
can be neglected as their contribution is very small compared to the rest of the crosssection. The
shaded area of the crosssection shown in figure 3.6 shows which part of the crosssection is taken
into account in the calculation of the torsional stiffness.
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Figure 3.6: Area taken into account to calculate the torsional stiffness

Table 3.4 gives an overview of 𝑏 and 𝑡 for each element. The enclosed area is based upon the area
within the centre lines of the considered elements of the crosssection: 𝐴 = 14.84 ⋅ 1.4 = 20.776m2.
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Table 3.4: Torsional stiffness: 𝑏𝑖/𝑡𝑖

part of crosssection 𝑏𝑖 𝑡𝑖 𝑏𝑖/𝑡𝑖
(mm) (mm) ()

top plate 14 840 250 59.36
bottom plate 14 840 150 98.93
2x outer stiffener 1200 600 2x 2.00
∑   162.29

Using 𝐴 = 20.776m2 and ∑ 𝑏𝑖/𝑡𝑖 = 162.29, 𝐼𝑡 can be calculated as:

𝐼𝑡 =
4 ⋅ 20.7762

162.29 = 10.64m4

The torsional stiffness of the transverse crosssection was also determined using ShapeBuilder,
which is a finite element program that is able to determine crosssectional properties. In ShapeBuilder
the complete crosssection, including all stiffeners, has been analysed. From this analysis it follows
that 𝐼𝑡 = 11.85m4. This is about 11% more than the handcalculation. As part of the crosssection is
neglected, the handcalculation provides a slightly lower torsional moment of inertia. However, 11% is
still a significant error, so it was decided to use the solution from ShapeBuilder instead of the hand
calculation.

𝑖𝑎𝑣 =
11.85

2 ⋅ 16.96 = 0.349m3

𝐷33 = 15125 ⋅ 0.3492 = 2.6420 × 103MNm

Basically, the calculation of the torsional stiffness of a voided deck comes down to the torsional
moment of inertia of the transverse crosssection, divided by 4 times the width of the deck. In ”Aan
tekeningen over wringing”, (2008) [5], written by dr. ir. P.C.J. Hoogenboom, the torsional stiffness is
also defined in this way.

In order to find out whether SCIAengineer uses the same definition for the torsional stiffness, two
Nadai’s plates 1 with identical geometry has been modelled. One of the plates was modelled as an
isotropic plate, the other plate was modelled as an orthotropic plate. The torsional stiffness component
(𝐷33) assigned to the orthotropic plate was calculated as if it was the isotropic plate. It turned out
that both plates show the same torsional deformation, meaning that the definition used in this report is
identical to the definition of the torsional stiffness of SCIAengineer. The plate models used to verify
whether the torsional stiffness parameter was defined correctly, as well as the results of these models
can be found in appendix A.

1Nadai’s plate: square plate subjected to pure twist, using two couples of point loads in opposite direction [2]
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3.2.3. Shear stiffness
xdirection
The shearstiffness in the 𝑥direction (transverse direction) can be determined using a shear frame.
In this shear frame, one boxlike crosssection is modelled as a frame. As a result of the interaction
between the webs (the stiffeners) and the bottom and top plate, a more extensive derivation and ver
ification of the shear frame was needed. This derivation and verification is presented in appendix C.
This appendix presents the shear frame model that has been used to determine the shear stiffness.
In this shear frame model, the thickness of the top and bottom plate is higher in the zone of the web.
This extra thickness is equal to the effective height of the top and bottom plate determined in chapter
6. The result of the shear frame is verified with the analytical solution of a semirigid supported beam
with support settlement and a 2D plate model, in which the voids are modelled using plate openings.

The shear deformation of the shear frame model of appendix C can be used to calculate the shear
stiffness of the deck in the 𝑥direction. This results into the following calculation of 𝐷44:

𝛿 = 80.9mm

𝛾𝑥 =
𝛿
𝑏 =

80.9
2120 = 3.816 × 10−2 rad

𝐷44 =
𝑣𝑥
𝛾𝑥
= 10
3.816 × 10−2

= 2.6205 × 102MN/m

ydirection
The shear stiffness in the 𝑦direction is equal to the shear area 𝐴𝑠𝑦 times the shear modulus 𝐺, see
equation 3.16. The shear area is based upon the area of the stiffeners (𝐴𝑤𝑒𝑏). The stiffeners can be
compared to the web of a Hsection. For these sections, the shear force is transferred by the webs only.
For the case of the orthotropic bridge deck, the areas contributing the the shear stiffness are marked
in figure 3.7.
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Figure 3.7: Areas contributing to shear stiffness in 𝑦direction

𝐷55 = 𝐺𝐴𝑠𝑦

𝐴𝑠𝑦 =
𝐴𝑤𝑒𝑏
𝜂

(3.16)

For the rectangular shape of the stiffeners, the shape factor 𝜂 is equal to 6/5. Each of the 8 stiffeners
have a dimension of 0.6 x 1.2 m. The shear modulus is equal to 𝐺 = 15125MPa, this means that the
shear stiffness in 𝑦direction is equal to:

𝐷55 = 15125 ⋅ 8 ⋅ 0.6 ⋅ 1.26/5 = 7.2600 × 104MN/m2

This is the shear stiffness for the whole width of the deck. So, the shear stiffness per unit width is
equal to:

𝐷55 =
7.2600 × 104

16.96 = 4.2807 × 103MN/m
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3.2.4. Mesh and local coordinate system
In the orthotropic plate model, the stiffness parameters depend on the direction. This means that it is
important that for each finite element, the local coordinate system is aligned correctly.

Straight deck
Figure 3.8 shows the mesh of the orthotropic plate model of the straight bridge deck. In the right figure
the orientation of the local coordinate system can be seen on finite element level. It can be observed
that for each finite element, the local coordinate system points in the exact same direction. The red
arrows (𝑥axis) points in the transverse direction of the deck and the green arrows (𝑦axis) point in the
longitudinal direction of the deck. This means that all orthotropic stiffness parameters are taken into
account correctly.

Figure 3.8: Finite element mesh of the straight deck (left) and zoomedin (right)

Curved decks
For the curved and curved and skewed bridge deck, it is important that the local longitudinal axis follows
direction of the longitudinal stiffeners. Otherwise, the orthotropic stiffness parameters do not match with
the model and the orientation of the local coordinate system.

The curvature of the bridge deck follows the shape of a perfect circle segment. This circle has one
unique radius in the longitudinal direction of the bridge. In the transverse direction, an infinite amount
of circle segments can be drawn. These segments have a radius between 300 m ± 8.48 m (half the
width of the bridge deck). All these circle segments have the same centre, which can also be called
the centre of curvature.

At any location, the transverse direction of the bridge deck can be found by drawing a line towards
the centre of curvature. This means that every local 𝑥axis must point in the direction of the centre of
curvature. As the coordinate system is orthogonal, the local 𝑦axis automatically follows the tangent
of every local circle segment describing the curvature, which is the longitudinal direction of the bridge
deck.

Figure 3.9 shows the elements and the local coordinate system for the top right and bottom right
corner of orthotropic plate model of the curved bridge deck. In these pictures, it can be observed that
the local transverse direction (red 𝑥axis) is parallel to the transverse edges of the deck. The local
longitudinal direction (green 𝑦axis) is always parallel to the longitudinal edges of the bridge deck. This
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means that the orientation of the local coordinate system is correct and that that orthotropic stiffness
parameters are coupled to the right directions in every single finite element.

Figure 3.9: Local coordinate system of the curved deck, top right corner (left) and bottom right corner (right)

3.2.5. Loading
This section shows the different types of loading applied to the bridge decks modelled as an orthotropic
plate.

Selfweight
The selfweight of the bridge deck is applied as a uniform distributed load over the surface of the deck.
This uniform distributed self weight can be calculated using an equivalent thickness of the bridge deck.
In this way, the selfweight is equally spread out over the width of the deck, which also applies to the
stiffness parameters of the orthotropic plate model. The crosssectional area of the deck is equal to
𝐴 = 12.544m2. The width of the deck is equal to 𝑤 = 16.96m. From this, it follows that the equivalent
thickness is equal to

𝑡𝑒𝑞 =
𝐴
𝑤 = 12.544

16.96 = 0.74m

The specific weight of concrete the deck is assumed to be equal to 𝜌 = 2500 kg/m3. This means
that the uniform distributed load is equal to

𝑄𝑠𝑤 = 𝑡𝑒𝑞 ⋅ 𝜌 ⋅ 𝑔 = 0.74 ⋅ 2500 ⋅ 10 = 18.49 kN/m2

Figure 3.10 shows the uniform distributed selfweight applied to the orthotropic plate model.
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Figure 3.10: Selfweight applied to the orthotropic plate model

Dummy and traffic loads
The dummy loads of the straight bridge deck and the traffic loads (UDL and TS) of the curved and
curved and skewed deck are directly applied to the orthotropic plate model. These loads are applied
in the middle of span of the bridge deck. Figure 3.11 shows the orthotropic plate model loaded with the
dummy load of LC3. The orthotropic plate loaded with the traffic load (UDL and TS) is shown in figure
3.12.

Figure 3.11: Dummy load (LC3) applied to the orthotropic plate model

Figure 3.12: Traffic load (left: UDL and right: TS) applied to the orthotropic plate model (curved bridge deck)





4
Grillage model

In this chapter, the theory of the grillage model is introduced. A grillage model consists of a grid in which
longitudinal beams represent the longitudinal stiffness of the deck and transverse beams represent the
transverse stiffness of the deck. The software Midas civil provides a spacial wizard to create the grid
of the grillage model automatically. However, for this study, it was decided to create all models in the
same software. This means that also the grillage model is created in SCIAengineer.

The second part of this chapter shows the setup of the grillage model for the Blankenburg case
study. The crosssection of the longitudinal and transverse beams is shown, as well as the calculation
of their crosssectional properties. For the grillage model, the loading needs spacial attention, as the
position of the load could be in between the beams of the grillage model. This means that the load
needs to be transferred towards the adjacent beams. The calculation of these equivalent loads is
shown at the end of the chapter.

4.1. Theory of grillage modelling
The grillage model consists of a grid of longitudinal and transverse beams. The longitudinal beams of
this grid represent the stiffness of the deck in the longitudinal direction and the transverse beams the
stiffness of the deck in transverse direction.

Figure 4.1 shows an example of a grillage model applied to a hybrid bridge deck. This bridge
deck consists of steel beams in the longitudinal direction and on top there is a concrete slab. In the
longitudinal direction, the stiffness comes from the steel beam and the concrete slab, while in the
transverse direction, the stiffness is equal to the stiffness of the concrete slab only.

Figure 4.1: Example of a grillage model (Structville)

At each intersection of longitudinal and transverse beams, there is a node. At these nodes, the
beams are rigidly connected. This means that the bending moment of the longitudinal beam interacts
with the torsional bending moment of the transverse beam and vice versa.

37



38 4. Grillage model

4.1.1. Layout of the grid
For the layout of the grid of the grillage model, there are some recommendations. These recommen
dations were found at [7] and [3]. In general, it is recommended to use an odd number of gridlines,
especially for the transverse beams. By doing this, there are is always a beam in the middle of the
span of the bridge, which makes it easier to apply a load at midspan.

In case the bridge deck already exists of beamlike sections, the grid lines are placed along the
centre lines of these beams. If the spacing between these beams is too big, there can be an extra
gridline along the centre line of the left over slab in between the beams. This can for example be
applied to a Tgirder bridge deck.

If the grillage model is applied to a slab bridge, the distance between the edge and the outer lon
gitudinal grid lines needs to be equal to 0.3d, where d is the depth of the slab. Figure 4.2 shows a
transverse crosssection of the edge of a slab. In this crosssection, the flow of shear stresses follow
ing from torsion can be seen. At 0.3d, the flow of stresses makes a turn which causes a concentrated
shear force (𝑆𝑥) at 0.3d. In order to be able to capture this concentrated shear force in the most accu
rate way, it is preferred that the longitudinal member is at the same location as the concentrated shear
force, which is at 0.3d for a slab.

Figure 4.2: Torsion at the edge of the grillage model (Hambly) [3]

According to Shreedhar [7] and Hambly [3] the grillage model gives the best results when the ratio
between the spacing of the longitudinal and transverse grid lines is somewhere between 1.0 and 2.0.
In case the spacing of the longitudinal grid lines is already defined by the existing beamlike members,
the spacing of the transverse members can easily be calculated.

The following list gives and overview of the recommendations discussed above, among some other
recommendations that apply to the grid of the grillage model.

• In case of already existing beams, the grid lines are placed along the centre lines and, if needed,
along the centre lines of parts in between the beams.

• For slabs, the longitudinal grid lines needs to be placed at a distance of 0.3d from both edges,
where d is the depth of the slab.

• Grid lines should be placed along the lines connecting bearings.
• In each direction, it is preferred to have a minimum of 5 grid lines.
• It is preferred that grid lines are placed orthogonal.
• Grid lines in general should coincide with the centre of gravity of the section. Some shift can be
made by using eccentricities.

• In case of a continuous support, the spacing between the transverse grid lines needs to be re
duced in order to be able to capture strong peaks around the support.

• The ratio between the spacing in longitudinal and transverse direction should preferably lie be
tween 1.0 and 2.0.
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4.1.2. Crosssectional properties
This part shows the theory related to the calculation of the crosssectional properties of the grillage
model.

Bending
The bending stiffness 𝐸𝐼 of both the longitudinal and transverse beams can easily be assigned to the
model by calculating the moment of inertia 𝐼, both for the strong and weak axis of the beam. The
bending stiffness of the beams can be found be multiplying the moment of inertia with the Young’s
modulus 𝐸.

The moment of inertia for bending around the 𝑦 and 𝑧axis can be calculated using the general
formula for a rectangular section:

𝐼 = 1
12𝑏ℎ

3 + 𝐴𝑑2 (4.1)

This formula already includes the rule of Steiner as 𝑑 is the distance between the local centre of
gravity and the centre of gravity of the whole crosssection. And 𝐴 the crosssectional area of the
rectangle considered.

Shear
In order to account for the shear stiffness, one can assign a certain shear area to the the longitudinal
and transverse beams. This shear area can be derived from the shape of the grillage member (i.e. the
area of the web for a Hsection) or the shear deformation derived from other models.

If the shear deformation (𝛾) is known, the shear area can be calculated using

𝐴𝑠 =
𝑉
𝐺𝛾 (4.2)

Torsion
According to Bridge Deck Behaviour, written by E.C. Hambly [3], the torsional stiffness of the longitu
dinal beams of a voided bridge deck, can be calculated using equation 4.3.

𝐼𝑡 =
2ℎ3𝑑′𝑑″
𝑑′ + 𝑑″ 𝑤 (4.3)

In this equation, ℎ is the centre to centre distance of the top and bottom plate, 𝑑′ and 𝑑″ the thick
ness of the top and bottom plate and 𝑤 the width of the longitudinal beams in the grillage model. The
torsional stiffness calculated with equation 4.3 approximately comes down to the torsional stiffness of
the transverse crosssection per unit width multiplied with the width of one longitudinal beam, divided
by 2. The division by 2 follows from the fact that in a plate there is torsion in 2 directions, while in a
beam there is only torsion in 1 direction.

For the transverse beams, the torsional stiffness can be calculated based upon the crosssection of
the individual beams, using the formula of Bredt.

4.1.3. Output of results
For the grillage model, the bending moment 𝑀𝑦 of the transverse beam, interacts with the bending
moment 𝑀𝑥 of the longitudinal beams. As this interaction is concentrated in the nodes of the grillage
model, the bending moment output of the grillage model is discontinuous. In each of the nodes, there
are jumps in the bending moment diagrams.

Figure 4.3 shows an example of the output of the grillage model, in this case the transverse bend
ing moment. According the E. C. Hambly [3], the discontinuous output of the grillage model can be
converted into a continuous line without jumps. This can be done by taking the average value in every
node. Or, int other words, the average of he value just before and just after the node. This, results into
the true transverse bending moment diagram, plotted with the blue in figure 4.3.

According to E. C. Hambly [3], the torsional moment of the bridge deck can be found by taking the
average of the torsional moment of the longitudinal and transverse beam, at each node of the grillage
model. In case the width of the longitudinal and transverse beams is not equal, the torsional moment
first must be divided by the width of the beam, before the average value can be calculated.
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Figure 4.3: Transverse bending moment: grillage output vs. true bending moment diagram

4.2. Blankenburg case
The grillage model of the Blankenburg case is created in SCIAengineer. It was chosen to create
all models in the same software, in order to be sure that the material parameters, loading and the
possibilities for postprocessing were identical for all models. However, Midas civil provides a special
wizard to create a grillage model. This means that in practice it would be more convenient to use Midas
instead of SCIAengineer to create the grillage model.

In this section, first the grid layout of the Blankenburg case study is introduced. Then, the stiffness
parameters of the longitudinal and transverse beams are calculated. The last section shows how the
different loads are applied to the grillage model.

4.2.1. Layout of the grid
In longitudinal direction, the bridge deck of the Blankburgverbinding has 8 repeating shapes that can be
handled as 8 longitudinal beams. Each of the stiffener parts and half of the plate part in between them,
will be modelled as one longitudinal beam in the grillage model. The spacing between the stiffeners
is equal to 2.12 m, which means that the spacing of the longitudinal grid lines is also equal to 2.12 m.
The crosssection of the longitudinal beams of the grillage model can be seen in figure 4.4.
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Figure 4.4: Crosssection longitudinal and transverse beams grillage model (mm)

On the edges of the deck, the longitudinal grid lines are positioned at 1.06 m, which is not equal to
0.3d. However, the commendation of 0.3d is based upon a slab. In case of the Blankenburgverbinding,
the flow of shear stresses caused by torsion is more or less equal to a flow of stresses through the top
and bottom plate and the 2 outer beams, which is shown in figure 4.5. This means that the concentrated
shear force of the bridge deck is in the 2 outer webparts. Which is at the location of the centre of gravity
of the 2 outer longitudinal beams. This is in line with the recommendations of the gridlayout.
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Figure 4.5: Shearflow due to torsion

The spacing of the transverse beams is determined using 2 requirements: (1) the ratio between
the spacing of the longitudinal and transverse beams is somewhere between 1.0 and 2.0 and (2) the
number of transverse members is required to be odd, in order to have a transverse member in the
middle of the span.

Table 4.1 shows an overview of possible numbers of transverse beams, which are all odd numbers.
The total length of the bridge is equal to 40 m. This means that in case of 11 transverse beams, the
spacing is equal to 40 / 11 = 3.636 m. The ratio between the spacing’s is then equal to 3.636 / 2.12 =
1.72. This calculation can be repeated for all other rows of table 4.1.

Table 4.1: Overview parameters grillage model

# transverse beams spacing (m) ratio ()

11 3.636 1.72
13 3.077 1.45
15 2.667 1.26
17 2.353 1.11

Eventually, it was chosen to use 17 transverse beams. This means that the spacing between the
transverse grid lines is equal to 2.353 m and that the ratio between the spacing is equal to 1.11, which
is between 1.0 and 2.0. Also the crosssection of the transverse beams can be seen in figure 4.4.

For the curved and curved and skewed bridge deck layout, the longitudinal and transverse beams are
identical to the ones used for the straight bridge deck. However, the longitudinal beams are curved and
the transverse beams are pointing in the direction of the centre of curvature. In this way, the longitudinal
and transverse beams are pointing in the same direction as the longitudinal and transverse direction
of the orthotropic plate model.

For the skewed bridge deck, the spacing of some of the transverse beams is different. This is
needed to make the gridlayout fit. In the zone of the skew, the transverse beams end at a support.
The transverse beams with a different spacing also have different stiffness properties compared to the
other transverse beams, as they also represent a different width in the longitudinal direction of the
bridge deck. Figure 4.6 shows the grid layout of the grillage model, for the straight, curved and curved
and skewed deck.
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Figure 4.6: Gridlayout of the grillage model

4.2.2. Crosssectional properties
In the sections below, the crosssectional properties of the longitudinal and transverse beams of the
grillage model are calculated. For both beams, the moment of inertia for bending and torsion has been
determined. In transverse direction, there is also a relatively big contribution of shear deformation.

The shear stiffness of a beam can be accounted for by assigning a certain shear area to it. For the
transverse beams, the shear area is determined based upon the result of the shear frame used for the
orthotropic plate. For the sake of completeness the longitudinal beams will also be given a shear area,
which will be equivalent to the one assigned to the orthotropic plate model.

Table 4.2 shows an overview of the most important dimensional and crosssectional parameters of the
grillage model.

Table 4.2: Overview parameters grillage model

description longitudinal beams transverse beams unit
number of beams 𝑁 8 17 
length per beam 𝑙 40.000 16.960 m
beam width 𝑏 2.120 2.358 m
crosssectional area 𝐴 1.568 0.941 m2

moment of inertia 𝐼𝑦 4.9488 4.3609 10−1m4

𝐼𝑧 3.3920 4.3425 10−1m4

torsional moment of inertia 𝐼𝑡 1.0907 0.0398 m4

shear area 𝐴𝑠 60.00 4.0767 10−2m2

eccentricity 𝑒𝑠  92 mm



4.2. Blankenburg case 43

Longitudinal beams
The crosssection of the longitudinal beams can be found in figure 4.4. The bending and torsional
moment as well as the shear stiffness of the longitudinal beams are calculated below.

The origin of the local coordinate system coincides with the centre of gravity of the crosssection.
The zaxis coincides with the middle of the crosssection, as the crosssection is symmetrical with
respect to the vertical axis. The 𝑦axis lies 742 mm from the top of the crosssection. The location of
the yaxis can be calculated as follows:

𝑧𝑁𝐶 =
2120 ⋅ 250 ⋅ 125+ 600 ⋅ 1200 ⋅ 850+ 2120 ⋅ 150 ⋅ 1525

2120 ⋅ 250+ 600 ⋅ 1200+ 2120 ⋅ 150 = 742mm

Bending
The calculation of 𝐼𝑦 and 𝐼𝑧 is presented in table 4.3. In this table, only 𝑑𝑧 is presented, as all centres
of gravity of the separate elements lie at 𝑦 = 0.

Table 4.3: moment of inertia longitudinal beams

part 𝑏 ℎ 𝐴 𝑑𝑧 𝐼𝑦 𝐼𝑧
(mm) (mm) (m2) (mm) (10−1m4) (10−1m4)

top flange 2120 250 0.530 617 2.0453 1.9850
web 600 1200 0.720 108 0.9480 0.2160
bottom flange 2120 150 0.318 783 1.9556 1.1910

∑   1.568  4.9488 3.3920

Shear
For the grillage model, the shear area in the longitudinal direction is kept the same as for the orthotropic
plate model. For the orthotropic plate it was assumed that the shear area in longitudinal direction is
equal to the area of the stiffeners divided by 𝜂. Each longitudinal beam has one stiffener, so the shear
area per longitudinal beam is equal to the area of a stiffener (which is the webpart of the crosssection)
divided by 𝜂:

𝐴𝑠 =
𝐴𝑤𝑒𝑏
𝜂 = 1.2 ⋅ 0.6

1.2 = 6.000 × 10−1m2

Torsion
The torsional stiffness of the longitudinal beams can be calculated using equation 4.3. From this equa
tion, it follows that the torsional stiffness if the longitudinal beams must be equal to

𝐼𝑡 =
2 ⋅ 1.43 ⋅ 0.25 ⋅ 0.15

0.25+ 0.15 ⋅ 2.12 = 1.0907m4

Transverse beams
The crosssection of the longitudinal beams can be found in figure 4.4. The bending and torsional
moment as well as the shear stiffness of the transverse beams are calculated below.

The origin of the local coordinate system coincides with the centre of gravity of the crosssection.
The 𝑧axis coincides with the middle of the crosssection, as the crosssection is symmetrical in the
vertical axis. The 𝑦axis lies 650 mm from the top of the crosssection. This follows from the fact that
the top plate (the top flange) is thicker than the bottom plate (bottom flange). The location of the yaxis
can be calculated as follows:

𝑧𝑁𝐶 =
2353 ⋅ 250 ⋅ 125+ 2353 ⋅ 150 ⋅ 1525

2353 ⋅ 250+ 2353 ⋅ 150 = 650mm

Bending
The calculation of the moment of inertia of the transverse beams can be found in table 4.4. The vertical
distance between the centre of gravity and the centre of gravity of the whole crosssection is denoted
as 𝑑𝑧. In horizontal direction, this distance is equal to 0 (𝑑𝑦 = 0).
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Table 4.4: moment of inertia transverse beams

part b h 𝐴 𝑑𝑧 𝐼𝑦 𝐼𝑧
(mm) (mm) (m2) (mm) (10−1m4) (10−1m4)

top flange 2353 250 0.588 525 1.6520 2.7141
bottom flange 2353 150 0.353 875 2.7089 1.6285

∑   0.941  4.3609 4.3425

Shear
The shear stiffness of the transverse beams can be controlled with the shear area 𝐴𝑦. According to
Hambly, the shear area can be found using equation 4.4. In this equation 𝑉 and 𝛾 are the applied shear
force and the shear deformation. The shear stiffness of the bridge deck of the Blankenburgverbinding
can be found in appendix C (page 143).

𝐴𝑠 =
𝑉
𝐺𝛾 (4.4)

Filling in the values from the shear frame model:

𝛾 = 𝛿
𝑙 =

80.9
2120 = 3.816 × 10−2 rad

𝐴𝑠 =
10

15125 ⋅ 3.816 × 10−2
= 1.732 × 10−2m2/m

As the shear force 𝑉 = 10MN/m, the shear area 𝐴𝑠 needs to be multiplied with the width of the
transverse beams. This results into a shear area of 𝐴𝑠 = 1.732 × 10−2 ⋅ 2.353 = 4.0767 × 10−2m2.

Torsion
The calculation of the torsional moment of inertia of the transverse beams can be found in table 4.5.
Parameter 𝑘1 is calculated using equation 4.6, for the calculation of 𝐼𝑡 equation 4.5 is used.

𝐼𝑡 = 𝑘1𝑡3𝑏 (4.5)

the value 𝑘1 depends on the ratio 𝑏/𝑡 ≥ 1, where 𝑏 is the width and 𝑡 is the thickness of a rectangular
part of the crosssection. For 𝑏/𝑡 → ∞, 𝑘1 =

1
3 .

𝑘1 =
1
3 (1 − 0.63

𝑡
𝑏 (1 −

𝑡4
12𝑏4)) (4.6)

Table 4.5: Torsional moment of inertia transverse beams

part b t 𝑘1 𝐼𝑡
(mm) (mm) () (10−2m4)

top flange 2353 250 0.3110 1.1434
bottom 2353 150 0.3199 0.2540

∑    1.3975

Eccentricity
The system lines of the grillage model are all drawn in one plane. For both the longitudinal as well as
the transverse beams, the location of the system lines is indicated with the black dot in figure 4.6.

In the same figure, the centre of gravity of both crosssections is indicated with a red dot. For the
longitudinal beam, the centre of gravity coincides with the system line. However, for the the transverse



4.2. Blankenburg case 45

beams, the centre of gravity lies above the plane of the system lines. This means that the transverse
beams must have an eccentricity assigned to it.

The distance between the centre of gravity and the system line is equal to 92 mm. So, the eccen
tricity of the transverse beams, in the 𝑧direction is equal to 𝑒𝑧 = 92 mm.

4.2.3. Loading
The dummy loadcases involving point loads (LC2  LC7), can be applied at the nodes where the
longitudinal beams intersect with the midspan transverse beam. LC1 concerns a distributed load,
which is applied over the full length of the transverse beam. This means that for this load case, the
load is also applied in between the nodes. Figure 4.7 shows how LC1 and LC3 are applied to the
grillage model.

Figure 4.7: Grillage model loaded with LC1 (left) and LC3 (right)

The curved and skewed deck will be loaded with the selfweight of the deck and a traffic load, instead
of the dummy loads. For the selfweight of the bridge deck, an equivalent distributed load has been
calculated. This distributed load is applied at the 8 longitudinal beams of the grillage model.

Also for the traffic load, an equivalent loading must be calculated, as this loading must be applied
on the longitudinal beams. The traffic load consists of 2 parts, a uniform distributed load (UDL) and
point loads coming from tandem systems (TS). The UDL can be turned into equivalent distributed loads
acting on the longitudinal beams. The tandem loads must be shifted in transverse direction. Based on
force and moment equilibrium, part of the point load goes to the longitudinal beam on the left and part
goes to the beam on the right of the point load.

Selfweight
The longitudinal beams of the grillage model already contain all the material of the bridge deck. In other
words, the crosssectional area of the longitudinal beams sumsup to the total crosssectional area of
the deck. This means that the deck can be loaded with it’s selfweight by assigning the selfweight of
the longitudinal beams. The transverse beams only add transverse and torsional stiffness of the deck,
but doesn’t add any extra material.

The crosssectional area of the longitudinal beams of the grillage model is equal to

𝐴 = 1.568m2

The specific weight of the concrete is assumed to be equal to (see table 2.1, page 10)

𝜌 = 2500 kg/m3

This means that the selfweight of each longitudinal beam is equal to

𝑞𝑆𝑊 = 𝐴 ⋅ 𝜌 ⋅ 𝑔 = 1.568 ⋅ 2500 ⋅ 10 = 39.2 kN/m
So, each longitudinal beam must be loaded with 𝑞𝑆𝑊 = 39.2 kN/m to load the bridge deck with its

selfweight. Figure 4.8 shows the grillage model of the curved bridge deck loaded with its selfweight.
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Figure 4.8: Grillage model curved deck subjected to selfweight

Traffic load
For the grillage model, all the loads are applied to the longitudinal beams. However, the point loads of
the tandem system are not necessarily located at the same position as the longitudinal beams. Also,
the uniform distributed load runs in the transverse direction of the bridge, which means that the UDL
also acts in between the longitudinal beams. This problem can be solved by distributing the point loads
from the tandem system towards the longitudinal beams and transferring UDL into concentrated loads
and distribute them towards the longitudinal beams.

Tandem system (TS)
First, the point loads from the tandem system will be distributed. The position of the point loads from
the tandem system, as well as the position of the longitudinal beams of the grillage model, can be seen
in figure 4.9. The longitudinal beams are marked with the black dots.

The point loads can be distributed by thinking of a fictitious, simply supported beam in between the
longitudinal beams of the grillage model. Figure 4.9 shows the fictitious beam for the right tandem load
in lane 1 (𝐹1). For force 𝐹1, part of the force goes to longitudinal beam I and part of the force goes to
beam J. The part that goes to beam I is equal to support reaction at the left end of the fictitious beam
and the part that goes to beam J is equal to the support reaction of the at the right end of the fictitious
beam.

The length of the fictitious beam is equal to the distance between the longitudinal beams in the
grillage model, which is equal to 2120 mm. The distance between 𝐹1 and longitudinal beam I is equal
to 1580 mm and the distance between 𝐹1 and J is equal to 540 mm. By using moment equilibrium, the
reaction force at the left and right end of the fictitious beam can be calculated. From this, it follows that

2.12− 1.58
2.12 ⋅ 150 = 38.21 kN

goes to longitudinal beam I and

2.12− 0.54
2.12 ⋅ 150 = 111.79 kN

goes to beam J.
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Figure 4.9: Transverse crosssection: position of the tandem loads and the longitudinal beams of the grillage model (mm)

The calculation above, can be applied to each of the the point loads 𝐹1 till 𝐹6 (see figure 4.9). Table
4.6 shows the distance between the point load and the 2 adjacent beams (one on the left and one on
the right). The remaining columns of the table show which part of the load goes to which longitudinal
beam. The unloaded longitudinal beams (A, B and C) are left out of the table. For every lane, the
subtotal force of the longitudinal beams is shown, eventually this is needed to apply the loads of the
curved and skewed bridge deck. The last row of table 4.6 shows the sum of the forces for all traffic
lanes together, these values can be used for the curved deck.

Table 4.6: Distribution of forces tandem system (grillage model)

𝐹𝑖 (kN) distance (m) force per longitudinal beam (kN)

left right D E G H I J

Lane 1
𝐹1 = 150 1.58 0.54     38.21 111.79
𝐹2 = 150 1.70 0.42    29.72 120.28 

0 0 0 29.72 158.49 111.79
Lane 2
𝐹3 = 100 0.70 1.42    66.98 33.02 
𝐹4 = 100 0.82 1.30   61.32 38.68  

0 0 61.32 105.66 33.02 0
Lane 3
𝐹5 = 50 1.94 0.18  4.25 45.75   
𝐹6 = 50 2.06 0.06 1.42 48.58    

1.42 52.83 45.75 0 0 0

∑ 1.42 52.83 107.08 135.38 191.51 111.79

The curved deck and the curved and skewed deck are both loaded with the tandem system. For
both bridge deck layouts, the tandem system is positioned in the middle of the span. In case of the
curved deck, all the tandem systems are aligned, which means that the each beam is loaded with the
sum of the equivalent forces, shown in the last row of table 4.6.
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For the skewed deck, the tandem systems are not aligned. This means that the longitudinal position
of the tandem system depends on the lane. For example, beam G is loaded with 61.32 kN coming
from lane 2 and 45.75 kN coming from lane 3. As both tandem systems have a different position in the
longitudinal direction of the deck, they must be applied separately. This means that for the skewed deck
one has to look for the subtotal per traffic lane, which can be found in table 4.6. Figure 4.10 shows the
point loads of the tandem system applied to the grillage model of the curved and curved and skewed
bridge deck.

Figure 4.10: Grillage model curved deck (left) and curved and skewed deck (right), loaded with TS
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Uniform distributed load (UDL)
Also for the uniform distributed load (UDL), the force can only be applied at the longitudinal beams
of the grillage model. Figure 4.11 shows the transverse crosssection of the deck, the position of the
uniform distributed load and the position of the longitudinal beams. The UDL can be splitup into a part
of 3.50 kN/m2 and a part of 10.35  3.50 = 6.85 kN/m2, which can be seen in figure 4.12.
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Figure 4.11: Transverse crosssection: position of the uniform distributed load (UDL) and the longitudinal beams of the grillage
model (mm)
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Figure 4.12: Equivalent concentrated loads and splitup of UDL (mm)

In order to distribute the UDL over the longitudinal beams, the UDL is transferred into equivalent,
concentrated loads between each longitudinal beam. These equivalent point loads are indicated with
the red arrows, called 𝐹1 till 𝐹7 for UDL = 3.50 kN/m2 and 𝐹8 and 𝐹9 for UDL = 6.85 kN/m2. The equiv
alent point loads can be distributed in the same way as was done for the point loads of the tandem
system.
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Table 4.7 shows the values of the equivalent loads 𝐹1 till 𝐹9. This equivalent load can be calculated
by multiplying the uniform distributed load (kN/m2) with the width over which UDL acts (m). This results
into an equivalent load with unit (kN/m), which can be read from the first column of table 4.7. For most
fields, the width over which UDL acts is equal to 2.12 m. This results into an equivalent load of

3.50 ⋅ 2.12 = 7.42 kN/m2

For 𝐹1, 𝐹7, 𝐹8, 𝐹9 the values are different, as the width over which UDL acts is smaller and/or the
value of UDL is equal to 6.85 kN/m2 instead of 3.50 kN/m2. For 𝐹1 and 𝐹7 the width over which UDL
acts is equal to 2.08 m, which means that 𝐹1,7 = 7.28 kN/m. In the case of 𝐹8 and 𝐹9, the width is equal
to 0.92 m and 2.08 m respectively. As UDL = 6.85 kN/m2, this results into

𝐹8 = 6.85 ⋅ 0.92 = 6.30 kN/m
𝐹9 = 6.85 ⋅ 2.08 = 14.25 kN/m

The next 2 columns of table 4.7 show the distance between the equivalent load and the 2 adjacent
longitudinal beams. The remaining columns of the same table showwhich part of the load goes to which
longitudinal beam. The last row of table 4.7 shows the sum of the qloads for each of the longitudinal
beams.

Table 4.7: Distribution of forces uniform distributed load (UDL) grillage model

𝐹𝑖 (kN/m) distance (m) qload per longitudinal beam (kN/m)

left right B C D E G H I J

UDL = 3.50 kN/m2

𝐹1 = 7.28 1.08 1.04 3.57 3.71      
𝐹2 = 7.42 1.06 1.06  3.71 3.71     
𝐹3 = 7.42 1.06 1.06   3.71 3.71    
𝐹4 = 7.42 1.06 1.06    3.71 3.71   
𝐹5 = 7.42 1.06 1.06     3.71 3.71  
𝐹6 = 7.42 1.06 1.06      3.71 3.71 
𝐹7 = 7.28 1.04 1.08       3.71 3.57

UDL = 6.85 kN/m2

𝐹8 = 6.30 1.66 0.46      1.37 4.93 
𝐹9 = 14.25 1.04 1.08       7.26 6.99

∑ 3.57 7.42 7.42 7.42 7.42 8.79 19.61 10.56
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The equivalent uniform distributed load of the grillage model is shown in figure 4.13. In this figure,
the loading is applied to the curved deck.

Figure 4.13: Uniform distributed load applied to the grillage model





5
3D plate model

In order to verify the orthotropic plate model, the bridge deck of the Blankenburg case study is compared
to and 3D plate model. This model consists of an 3D assembly of 2D isotropic plates. As this model
is slightly less advanced as and full 3D model, the 3D plate model can also be called an 2.5D model.
The theory of the 3D plate model is introduced in the first part of this chapter. Also the 3D plate model
is created in SCIAengineer. The downside of the 3D plate model is the fact that the crosssectional
forces (i.e.: bending moments) cannot be extracted from the model directly. These crosssectional
forces need to be calculated by hand, based upon the forces or stresses for each individual plate part.
Alternatively, the bending moments can be calculated indirectly. This indirect method is used for this
study.

In the second part of this chapter, it is shown how the 3D plate model of the Blankenburg case study
is created. Due to the overlap of plates and the interaction of the web and top and bottom plate, the
top and bottom plate in the zone of the web are created using an orthotropic plate. The calculation of
the orthotropic stiffness properties is shown in this chapter. Eventually, it is shown how the loading is
applied to the 3D plate model.

5.1. Theory of 3D plate model
The 3D plate model consists of a spatial assembly (3D) of 2D plate or shell elements. The system lines
of these plate parts are located at the the centre lines of the part of the crosssection they represent.
These separate plate part are rigidly connected in the nodes. Figure 5.1 shows an example of 3D plate
model of a bridge deck stiffened by box beams.

Figure 5.1: 3D plate model of a bridge deck stiffened by box beams [2]

The elements used are plane isotropic elements. These elements can both take membrane as well
as bending action. In finite element codes, these elements are often called shell elements. However,
generally the elements are not curved and the interaction between membrane and bending action is
not at stake, which are typical properties for shell elements. As the elements of the 3D plate model
misses these properties, it is better to use the name membranebending element [2].

5.1.1. Overlapping and missing material
When creating a 3D plate model, the system lines of the 2D plates are drawn. Generally, the system
line is equal to the (local) neutral axis of the plate part. On both sides of the system lines, half of the
thickness of the plate is added.

This means that there is an overlap of material at locations were a vertical plate (web) intersects
with a horizontal plate (flange). Figure 5.2 shows how this overlap of plates looks like. In this figure,

53
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the flange part is grey and the webs are white. The system lines of both the flange and plate intersect
in a node. The locations at witch material is overlapping are marked with red.

When the web intersects in the middle of a flange there is overlapping of plate parts only. However,
in case the web intersects on the edge of the flange, in the outer corner material is missing. The area
of missing material is equal to the extra material situated in the overlapping part, which can also be
seen in figure 5.2.
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Figure 5.2: Overlapping and missing material where flange and web parts meet

In practice, the overlap of material means that in the longitudinal direction the normal and bending
stiffness of the total crosssection is a too high. In case the web part intersects at the end of the flange,
the plate part that is missing is equal to the overlapping plate part. This means that the net cross
sectional area of the 3D plate model is equal to the crosssectional area of the real crosssection. If
the stiffness 𝐸 of both plate parts is equal, the normal stiffness 𝐸𝐴 is equal.

However, material of the 3D plate model still has a different orientation with respect to the neutral
axis of the total crosssection. This means that for a web connected to the end of a flange, the moment
of inertia of the model is still different compared to the real crosssection.

The overlapping and missing of material at intersections of plate parts can be solved by creating
separate plate parts over the width of the web. This means that for each point at which a flange is
connected to a web, 2 extra nodes must be created. Along the flange, this results into one node where
the web starts, one node where the system line of the web is connected to the flange and one node
where the web ends, see figure 5.3.

Over the thickness of the web, the thickness of the flange is reduced and the plate parts have an
eccentricity, equal to 𝑡/4. The eccentricity is equal to the distance between the system line and the
neutral axis of the plate part, which is indicated with a red line in figure 5.3.
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Figure 5.3: Overlapping and missing material where flange and web parts meet

When adopting themodifications shown in figure 5.3, thematerial of the 3D plate model is positioned
at the exact same location as the real crosssection. This means that the axial and bending stiffness
in longitudinal direction is equal to the real crosssection.
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5.1.2. Stiffness of the webzone
In the zone of the stiffener, there is a rigid connection between the horizontal plate (flangepart) and
vertical orientated stiffener (webpart). This part of the crosssection can be seen in figure 5.4. Figure
5.4a shows the real crosssection of this zone. In the 3D plate model, the webzone connects three
elements: a flange coming from the left, a flange coming from the right and the web. All of these three
elements share the same red node, see figure 5.4b. In figure 5.4b and 5.4c the webpart is shifted
downward.
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Figure 5.4: Webzone 3D plate model (transverse crosssection). (a): real crosssection, (b): 3D plate model, (c): 3D plate
model with higher stiffness in webzone

In the shared node, there is a transfer of forces and bending moments between the top plate and
the stiffener. However, this transfer of forces and moments occurs in this node only. This means that
over the width of the web there is no transfer of stresses between the top plate and the web. Which
results into a constant bending stiffness 𝐸𝐼 over the length of the top plate. For figure 5.4b, this means
that the bending moment acting on the top plate causes a constant curvature over the length of the top
plate. This follows from equation 5.1. For the real crosssection (figure 5.4a), the bending stiffness in
the zone of the web is higher than the remaining part of the top plate. From equation 5.1 it follows that
for the real crosssection the curvature 𝜅 varies over the length of the top plate.

𝜅 = 𝑀
𝐸𝐼 (5.1)

Figure 5.4c shows a solution of how the top plate can be made stiffer in the zone of the web. In this
figure it can be seen that in the zone of the web, the top plate is made thicker. Now, the top plate is
stiffer in the zone of the web, which also means that the curvature isn’t constant over the length of the
top plate. The extra thickness added to the top and bottom plate in the webzone can be based upon
the area over which the webpart is activated.

The area in which the web is activated can determined by creating a separate 2D plate model of the
webzone. The flanges of webzone can be loaded with a normal force, this normal force partly flows
through the web, which can be made visible with the stress trajectories of the major principle stress.
The height over which the web is activated must be added to thickness of the top and bottom plate
in the transverse direction of the bridge deck. As the extra height is on the side of the web only and
the system line of the webzone must be at the same level of the remaining plate parts of the top and
bottom plate of the bridge deck, the plates in the webzone must have an eccentricity.

Orthotropic plate webzone
Both in transverse and longitudinal direction, the webzone of the top and bottom plate needs to have
a modified thickness in order to have an accurate transverse and longitudinal stiffness. For both direc
tions, the thickness of the webzone plate can be different. This means that the webzone plate of the
3D plate model must be orthotropic.

Orthotropy caused by 2 different plate heights in 2 different directions is a standard source of or
thotropy that can be chosen in SCIAengineer. This kind of orthotropy can for example be found in a
wide slab floor system, in which continuous seams lower the plate thickness in one direction. In the
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other the direction, the full thickness of the plate contributes to the stiffness of the plate. This kind of
orthotropy can be used to assign different plate thicknesses of the webzone plate for the longitudinal
and transverse direction.

5.1.3. Extraction of results
The results that can be directly extracted from the 3D plate model are the support reactions and the
deflections. The total bending moment over a particular section is less easy to extract, as the bending
moment of the total crosssection is equal to the sum ofmembrane and bending action of each individual
plate part.

Longitudinal bending moment (indirect method)
The longitudinal bending moment can also be extracted from the 3D plate model. The easiest way to
do this is using an indirect method. For this method, one needs to determine the slope of the normal
force diagram of each of the web parts. The normal force diagram of the webs can be plotted by making
a section over the transverse direction of the bridge deck.

Figure 5.5 shows an example of the normal force diagrams of the webs of a 3D plate model. The
distribution of longitudinal bending moment over a transverse crosssection can be determined using
the slope of the normal force diagrams. For the Blankenburg case, there is a repetition of 8 Hlike
crosssection in the longitudinal direction of the bridge deck. These 8 crosssections have identical
moment of inertia (𝐼) and Young’s modulus 𝐸.

Figure 5.5: Normal force diagrams web parts

The slope of the normal force diagram is proportional to the bending moment. This follows from
the fact that the slope of the normal force diagram is proportional to the curvature 𝜅 (slope of strain
diagram). To find the curvature, the normal force diagram of the webs needs to be divided through the
width of the web 𝑏 and the Young’s modulus 𝐸. For each web, these values are the same, which means
that the ratio’s between the slopes of the normal force diagram are identical to the ratio’s between 𝜅.

The relationship between the bending moment 𝑀 and the curvature 𝜅 is equal to

𝑀 = 𝐸𝐼𝜅 (5.2)
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As 𝐸𝐼 is identical for every Hsection, the ratio between 𝜅 is equal to the ratio between the bending
moment. This also means that the ratio between the bending moments is equal to the ratio between
the slopes of the normal force diagrams of the webs. The total bending moment acting on the midspan
crosssection can be distributed over the different longitudinal strips proportionally.

When a point load 𝐹 or a distributed load 𝑞 (with 𝐹 = 𝑞𝑤) is applied in the middle of the span of the
deck, the total longitudinal bending moment is equal to

𝑀 = 1
4𝐹𝑙 (5.3)

5.2. Blankenburg case
The 3D plate model of the Blankenburg bridge deck is created in SCIAengineer. The crosssection is
buildup using 5 different types of plates. Figure 5.6 shows the transverse crosssection of the 3D plate
model of the Blankenburg case. In this figure, the system lines of the different plate parts are indicated
with different colors.
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Figure 5.6: Transverse crosssection 3D plate model Blankenburg case

In the zone where the web and flange part intersect, there are 3 nodes. Each node in the middle
is shared by a flange and a web. In these points, there is a rigid connection between the flange and
the web. The other 2 nodes are there to connect the different top or bottom plate to the top or bottom
plate of the webzone. This makes it possible to assign different properties to the top and bottom plate
in the webzone.

The spacing between the system lines of the top and bottom plates is equal to 1400 mm, which is
equal to the centre to centre distance of the top and bottom plate. The first web begins at 760 mm from
the edge of the deck. The thickness of the webs is equal to 600 mm and the spacing of the stiffeners is
equal to 1520 mm. From this, it follows that the centre to centre distance of the webs is equal to 1520
+ 600 = 2120 mm.

Table 5.1 shows an overview of the properties of the 5 different plates used to create the 3D plate
model of the bridge deck of the Blankenburgverbinding. All plates have a length of 40 m (in case of the
straight deck layout). There are 9 isotropic top plates (blue lines figure 5.6), 7 of them have a width of
1520 mm and the ones on the edges have a width of 760 mm. The thickness of the top plate is equal
to 250 mm and there is no eccentricity (system line coincides with the centre line). For the other plate
parts, the same kind of characteristics can be read from table 5.1.

Table 5.1: Plate parts of 3D plate model, colors according to figure 5.6

part of crosssection number width 𝑤 thickness 𝑡 eccentricity 𝑒 type
(mm) (mm) (mm)

top plate 9 7 x 1520 250 0 isotropic
2 x 760

bottom plate 9 7 x 1520 150 0 isotropic
2 x 760

web 8 1400 600 0 isotropic

webzone top plate 16 300 L: 167, T: 357 53.5 orthotropic

webzone bottom plate 16 300 L: 101, T: 240 45.0 orthotropic
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The plate parts in the web zone of the top and bottom plate have a width of 300 mm, this means
that there are 2 of these plates at the end of every 600 mm wide web. The plates in the web zone are
orthotropic. The orthotropy of these plates is assigned by assigning 2 different plate thicknesses in 2
directions. In table 5.1, Lmeans longitudinal direction and T means transverse direction. In transverse
direction, the extra thickness needs to be added to the top plate, at the side of the web. This means
that the webzone top and bottom plate needs to have an eccentricity. For the top plate, the centre line
needs to shift 53.5 mm downwards with respect to the system line and for the bottom plate, the centre
line needs to shift 45.0 mm upwards.

The properties of the orthotropic plates of the webzone are determined in the following section 5.2.1,
page 59. Figure 5.7 and figure 5.8 give a 3D view of the 3D plate model of the straight, curved and
curved and skewed deck layout.

Figure 5.7: 3D plate model straight bridge deck

Figure 5.8: 3D plate model curved (left) and curved and skewed (right) bridge deck
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5.2.1. Orthotropic plates webzone
In this section, the thickness of the orthotropic plate of the webzone in longitudinal and transverse
direction is determined. The eccentricity of the plates is determined by the thickness needed in the
transverse direction of the deck. This transverse thickness of the webzone is the sum of the thickness
of the top or bottom plate and the part of the web that is activated while putting a normal stress on the
top and bottom plate (flange parts).

The thickness of the webzone of the top and bottom plate is determined using the condition that
the crosssection of the 3D plate model has the same location of the neutral axis and the same moment
of inertia as the real crosssection. The position of the neutral axis of the webzone plates is already
determined by the eccentricities needed for the transverse direction. These eccentricities need to be
taken into in the calculation of the location of the neutral axis and the moment of inertia.

Transverse direction
The activated zone of the web has been determined using a 2D plate model. In this model, a part of
the transverse crosssection is modelled. The crosssection is modelled as a rectangular plate with
a thickness of 10 mm and openings in it. In the transverse direction, the flanges are loaded with a
distributed load. This means that the top and bottom flange are loaded with the same stress. This
plate was also used to determine the transverse axial stiffness of the orthotropic plate, see figure 3.2,
page 27.

Figure 5.9 shows the trajectories of the major principle stress. From this figure, it becomes clear
that part of the stresses from the flanges also flow through a limited part of the web.

Figure 5.9: Trajectories major principle stress

The area over which the web is influenced is assumed to be a segment of a circle. The radius of
this circle segment can be calculated by using the sagitta (equation 5.4). Based upon the sagitta and
the radius of the circle, the area of the circle segment can be calculated. This area will be divided by
the width of the web, this results into an equivalent effective height of the webzone. This equivalent
effective height is added to the thickness of the top or bottom plate. Figure 5.10 shows the definition
of the parameters used in equation 5.4.

𝑅 = 𝑠
2 +

𝑙2
8𝑠 (5.4)

𝐴 = 𝑅2
2 (𝛼 − sin (𝛼)) (5.5)

with

𝛼 = 2arcsin( 𝑙
2𝑅) (5.6)
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Figure 5.10: Variables related to the sagitta, radius, and area of a circle segment

Top plate
For the top plate, the circle segment running through the activated part of the web is shown in figure
5.11. In this figure, the color scale of the stress trajectories has been changed, in order to get a more
clear border between the circle segment and the rest of the web. On the figure, the 250 mm thick top
flange measured 75 mm. The sagitta of the circle segment measured 46 mm. This means that the
sagitta is equal to 𝑠 = 250/75 ⋅ 46 = 153mm.

Figure 5.11: Circle segment activated webzone (topplate)

Now, the radius 𝑅 and the area 𝐴 of the circle segment of the top plate can be calculated:

𝑅 = 153
2 + 6002

8 ⋅ 153 = 370mm

𝐴 = 3702

2
(1.89− sin (1.89)) = 64428mm2

Over the width of the web, a rectangular plate with an equivalent height is assumed. The equivalent
height is chosen such that the area of the rectangular plate has the same area as the circular segment.
This means that the area of the circular segment must be divided by the width of the web, in order
to determine the equivalent effective height. The equivalent effective height for the top plate is equal
to 64 428/600 = 107mm. Together with the thickness of the top plate of 250 mm, this results into a
thickness of ℎ = 250+ 107 = 357mm.
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Bottom plate
In figure 5.12 the circle segment of the activated webzone next to the bottom plate can be seen.
The 150 mm thick bottom plate measured 44 mm on the figure and the sagitta of the circle segment
measured 38mm. This means that for the bottom plate the sagitta is equal to 𝑠 = 150/44⋅38 = 130mm.

Figure 5.12: Circle segment activated webzone (bottomplate)

Now, the radius 𝑅 and the area 𝐴 of the circle segment for the bottom plate can be calculated:

𝑅 = 130
2 + 6002

8 ⋅ 130 = 412mm

𝐴 = 4122

2
(1.63− sin (1.63)) = 53702mm2

The equivalent effective height for the bottom plate is equal to 53 702/600 = 90mm. Together with
the thickness of the bottom plate of 150 mm, this results into a thickness of ℎ = 150+ 90 = 240mm.

Implementation
From the analysis above, it followed that a thickness of 107 mm must be added to the top plate and a
thickness of 90 mm must be added to the bottom plate in the webzone. These extra thicknesses must
be added on the side of the web only, which means that the plate parts in the zone of the web must
have an eccentricity with respect to the plane in which they are drawn (the system lines). Figure 5.13
shows the top and bottom plate in the zone of the web. In this figure, the thick lines are the system
lines, these lines coincide with the level at which the plates are drawn. The red lines are the neutral
axes of the top and bottom plate in the webzone. The gap between the system line and the red line
is the eccentricity of the plates in the webzone. For the top plate, the eccentricity is equal to 53.5 mm
and for the bottom plate the eccentricity is equal to 45.0 mm.

Longitudinal direction
By applying the plate thicknesses and eccentricities shown in figure 5.13. The 3D plate model is too
stiff for bending in longitudinal direction. In fact, the extra plate thicknesses in the zone of the web must
only be added in transverse direction. This can be solved by applying an orthotropic plate in the zone
of the web. For this situation, an orthotropic plate with different thicknesses in each direction can be
used. In total, 4 different thicknesses can be assigned: for both orthogonal directions a membrane and
a bending thickness.

The plate thickness found for the transverse direction, must be assigned to the bending thickness
of the orthotropic plate. This can be concluded from figure 5.4. For bending in longitudinal direction,
the bending stiffness of the crosssection comes from the membrane thickness of the top and bottom
plate. In steel design, the stresses are often assumed to be constant over the height of the flanges.
This means that the top and bottom flange are assumed to be loaded in full tension or compression.
This assumption is also made for this particular case. The contribution of the top and bottom plate to
the total bending stiffness comes from the normal forces in the plates.
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Figure 5.13: Thicknesses and eccentricity top and bottom plate in the webzone (mm)

For the transverse direction the plates in the zone of the web must have an eccentricity. In SCIA
engineer, this eccentricity determines the position of the plate with respect to the plane in which it is
drawn. This means that one particular plate can only have one eccentricity, which also is the case for
orthotropic plates. This means that the position of the neutral axis of the top and bottom plate in the
zone of the web is already determined. The only unknown are the membrane thicknesses of these
plates in longitudinal direction. These thicknesses can be determined by satisfying two equations: the
webzone of the 3D model must have the same position of the neutral axis and the same moment of
inertia as the real crosssection.
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Figure 5.14: Real webzone (a) and webzone of 3D plate model (b) (mm)

The neutral axis of the webzone of the real cross section (shaded area in figure 5.14a) is at 800
mm from the top. The moment of inertia of the same webzone is equal to:

𝐼 = 1
12 ⋅ 600 ⋅ 1600

3 = 2.048 × 1011mm4 (5.7)

In figure 5.14b the webzone of the 3D plate model is show. In order to make the drawing more
clear, the top and bottom plate are shifted towards the right. For each of the 3 elements, the position
of their neutral axis is predefined. The thicknesses ℎ1 and ℎ3 of the top and bottom plate are the two
unknowns. The position of the neutral axis and the moment of inertia of the crosssection shown in
figure 5.14b can be calculated as follows:
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𝑧𝑁𝐶 =
ℎ1 ⋅ 178.5+ 1400 ⋅ 825+ ℎ3 ⋅ 1480

ℎ1 + 1400+ ℎ3
= 800mm

𝐼 = 1
12 ⋅ 600 ⋅ ℎ

3
1 + 600 ⋅ ℎ1 ⋅ 621.52+

1
12 ⋅ 600 ⋅ 1400

3 + 600 ⋅ 1400 ⋅ 252+
1
12 ⋅ 600 ⋅ ℎ

3
3 + 600 ⋅ ℎ3 ⋅ 6802 = 2.048 × 1011mm4

(5.8)

Solving set of equations 5.8 results into ℎ1 = 167mm and ℎ3 = 101mm. These thicknesses are
assigned to the membrane thickness of the orthotropic plate in longitudinal direction.

Error axial stiffness
The membrane plate thicknesses in longitudinal direction result into a small error of the axial stiffness in
longitudinal direction. This follows from the fact that the total crosssectional area of the 3D plate model
is bigger than the real crosssection (figure 5.14a). In the real crosssection the total crosssectional
area is:

𝐴𝑟𝑒𝑎𝑙 = 600 ⋅ 1600 = 0.96m2

In the 3D plate model this crosssectional area is equal to:

𝐴3𝐷−𝑝𝑙𝑎𝑡𝑒 = 600 ⋅ (167+ 1400+ 101) = 1.00m2

This means that the webzone of the 3D plate has an axial stiffness which is 4.5% too stiff. This is
such a small difference that it will be neglected.

5.2.2. Loading
Also the 3D plate model is loaded with dummy loads, self weight and traffic load. The dummy loads
are applied in the same way as for the other models. Figure 5.15 shows 2 examples of the dummy
loadcases applied to the 3D plate model (LC1 and LC3).

Figure 5.15: 3D plate model loaded with LC1 (left) and LC3 (right)

Selfweight
In order to avoid local bending of the top plate, the selfweight of the deck is applied as distributed loads
at the position of the webs. This means that the selfweight of the deck is applied in the same way as
was done for the grillage model. Above each web, the 3D plate model is loaded with a line load of
𝑞 = 39.20 kN/m. This is the same load as applied to the the longitudinal beams of the grillage model.
Figure 5.16 shows how the selfweight is applied to the 3D plate model.



64 5. 3D plate model

Figure 5.16: 3D plate model loaded with the selfweight

Traffic load
The traffic load of the tandem system (TS) applied to the 3D plate model can be seen in figure 5.17.
The left figure shows the TS applied to the curved deck and in the right figure the TS is applied to the
curved and skewed deck. For the curved deck, the TS is aligned in the transverse direction. For the
skewed deck, the longitudinal position is different for every notional lane.

Figure 5.17: 3D plate model loaded with the tandem system, curved deck (left) and curved and skewed deck (right)
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The uniform distributed load (UDL) is applied to the 3D plate model in the same way as for the grillage
model. The UDL is applied above the stiffeners to avoid local action of the top plate of the bridge deck.
Figure 5.18 shows the uniform distributed load applied to the 3D plate model.

Figure 5.18: 3D plate model loaded with the uniform distributed load (curved deck)
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6
Verification of stiffness

The first verification of the 3 different models of the bridge deck is the comparison between their longi
tudinal and transverse stiffness. In both directions, the stiffnesses of the models are compared to each
other and they are compared to the analytical solution of the Timoshenko beam. In order to be able to
make a fair comparison between the models and the analytical solution of the Timoshenko beam, the
bridge deck is divided into a longitudinal and a transverse strip.

These strips are located in such a way that their crosssection is identical to the longitudinal and
transverse beams of the grillage model. This is the easiest way to make equivalent strips for all models.
The longitudinal strips have a width of 2.12 m and a length of 40 m and the transverse strips have a
width of 2.353 m and a length of 16.96 m. Figure 6.1 shows the longitudinal (green) and transverse
(red) strips, drawn in the 3D plate model.

Figure 6.1: Longitudinal (green) and transverse (red) strip

6.1. Longitudinal direction
All strips in longitudinal direction have a width of 2.12 m. This width is equal to the with of the beams of
the grillage model. The longitudinal strips are simply supported in both ends. The length of the strips
is 40 m. In the middle of the span, the strips are loaded with a distributed load of 𝑞 = 500 kN/m, or
a point load of 𝐹 = 1060 kN in case of the grillage model and the analytical solution. The mechanical
scheme of the longitudinal strips is shown in figure 6.2.

69
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Figure 6.2: Mechanical scheme longitudinal strip (width=2120 mm)

Grillage model
The longitudinal strip of the grillage model consists of 1 longitudinal beam. This beam cannot be loaded
with a distributed load, so the distributed load has been converted into a point load. This point load has
a magnitude of 𝐹 = 500 ⋅ 2.12 = 1060 kN. Figure 6.3 shows the deformed shape of the longitudinal
strip from the grillage model. The maximum deflection is equal to 79.8 mm.

Figure 6.3: Deflection longitudinal strip grillage model (𝑤𝑚𝑎𝑥 = 79.8mm)

Orthotropic plate model
For the orthotropic plate model, the maximum deflection of a longitudinal strip is equal to 79.8 mm. The
deflected shape of this strip is shown in figure 6.4.

Figure 6.4: Deflection longitudinal strip orthotropic plate model (𝑤𝑚𝑎𝑥 = 79.8mm)
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3D plate model
The longitudinal strip of the 3D plate model consists of a spatial assembly of plates that form a H
section. At the ends, the bottom flanges of of the Hsection are supported over the full width. The
load is applied as a distributed load, which means that  at midspan  the full width of the top flange is
loaded. Figure 6.5 shows the deformed shape of the longitudinal strip taken out of the 3D plate model.
The maximum deflection of this strip is equal to 79.4 mm.

Figure 6.5: Deflection longitudinal strip 3D plate model (𝑤𝑚𝑎𝑥 = 79.4mm)

Analytical solution
According to the forgetmenot of a simply supported Timoshenko beam with a point load at midspan,
the midspan deflection is equal to [4]:

𝑤 = 1
48
𝐹𝑙3
𝐸𝐼 +

1
4
𝐹𝑙
𝑘𝑠

(6.1)

The bending stiffness 𝐸𝐼 of the longitudinal strip is equal to the bending stiffness of the longitudinal
beam from the grillage model. This bending stiffness is equal to:

𝐸𝐼 = 36.3 ⋅ 4.9488 × 1011 = 1.7964 × 1013 kNmm2

The shear stiffness 𝑘𝑠 can be calculated using the longitudinal shear stiffness of the orthotropic plate
model (𝐷55).

𝐷55 = 7.2600 × 104MN/m2𝑘𝑠 = 𝑏 ⋅ 𝐷55 = 2.12 ⋅ 7.2600 × 104 = 9.075 × 106 kN/m
With 𝐹 = 1060 kN and 𝑙 = 40000mm, according to equation 6.1 is equal to:

𝑤 = 1
48

1060 ⋅ 400003

1.7964 × 1013
+ 1
4
1060 ⋅ 40000
9.075 × 106

= 79.8mm
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6.2. Transverse direction
For the transverse direction, the strips has a width of 2.353 m, which is equal to the width of a transverse
beam of the grillage model. Again, the strips are simple supported in both ends. The transverse strips
have a length of 16.96 mm. The loading consists of 2 distributed loads of 𝑞 = 500 kN/m each, or a
point load of 𝐹 = 1176.5 kN each in case of the grillage model and the analytical solution. The loads
are located above the 2 stiffeners in the middle of the span. This is at 7/16 ⋅ 𝑙 from the supports. The
loading is not applied at midspan, as for the 3D plate model this will result into local bending of the top
plate. The mechanical scheme and the loading conditions of the transverse strip is shown in figure 6.6.
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Figure 6.6: Mechanical scheme transverse strip (width=2353 mm)

Grillage model
The transverse strip of the grillage model is equal to the transverse beam of the grillage model. Figure
6.7 shows the deflected shape of this strip. The deflected shape clearly shows a combination of bending
and shear deformation. At midspan, the maximum deflection is equal to 28.9 mm.

Figure 6.7: Deflection transverse strip grillage model (𝑤𝑚𝑎𝑥 = 28.9mm)

Orthotropic plate model
For the orthotropic plate model, the maximum deflection of a transverse strip is equal to 28.8 mm.
The deflected shape of this strip is shown in figure 6.8. Also this strip clearly shows a combination of
bending and shear deformation.
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Figure 6.8: Deflection transverse strip orthotropic plate model (𝑤𝑚𝑎𝑥 = 28.8mm)

3D plate model
The transverse strip of the 3D plate is supported at the bottom plate. In he field, the stiffeners force
that the top and bottom plate act together. However, this is not the case for the top and bottom plate
on the edges. This means that the total deflection of this strip will be a summation of global bending
and shear deformation, but also local bending of the outer bottom plates.

In order to avoid local bending of the bottom plate the top and bottom plate are forced to act together
by adding a plate that connects the top and bottom plate. The connection between the top and bottom
plate and the dummy plate is a hinged connection. The thickness needed for the dummy plate was
determined by looking at the relation between the thickness of this plate and the maximum deflection.
It is assumed that only local bending of the bottom plate depends on the thickness of the dummy
plate. When the total deflection of the strip doesn’t decrease anymore, it can be assumed that the local
bending of the bottom plate has vanished.

Figure 6.9: Relationship thickness dummy plate and maximum deflection (3D plate model)

Figure 6.9 shows the relation between the thickness of the dummy plate and themaximum deflection
of the transverse strip of the 3D model. Please notice that the yaxis runs from 25 to 37 mm. From
figure 6.9, it becomes clear that there is an asymptote at a deflection of 28.6 mm. Starting from a plate
thickness of about 250 mm, the red line meets the asymptote. This means that for a plate thicknesses
of 250 mm or thicker, the effect of local bending of the bottom plate can be assumed to be zero. The
remaining part of the deflection is due to global bending and shear deformation.

In the transverse strip of the 3D model, the dummy plate has a thickness of 250 mm. From figure
6.9, it becomes clear that for a thicker plate, the maximum deflection does not decrease further. So, it
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can be assumed that the transverse strip shown in figure 6.10 shows a deformed shape due to global
bending and shear deformation. The maximum deflection is equal to 29.1 mm.

Figure 6.10: Deflection transverse strip 3D plate model (𝑤𝑚𝑎𝑥 = 29.1mm)
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Analytical solution
In the transverse direction of the bridge deck, the strips deform due to a combination of bending and
shear deformation. The analytical solution that combines both these deformations is the Timoshenko
beam. Equation 6.2 shows the general differential equation of the Timoshenko beam [8].

𝐸𝐼d
2𝜑

d𝑥2 − 𝑘𝑠 (
d𝑤
d𝑥 + 𝜑) = 0

𝑘𝑠 (
d2𝑤
d𝑥2 +

d𝜑
d𝑥 ) = −𝑞

(6.2)

The Timoshenko beam can be solved for the situation shown in figure 6.11. In this figure, 𝑎 is the
distance between the left support and the point load. Due to the point load the beam must be split into
two fields. Using the relations of equations 6.3, and the boundary and interface conditions of table 6.1,
the deflection of the Timoshenko beam can be solved.
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Figure 6.11: Model Timoshenko beam

𝑞 = 0

𝛾 = d𝑤
d𝑥 + 𝜑

𝑀 = −𝐸𝐼d
2𝑤

d𝑥2
𝑉 = 𝑘𝑠 ⋅ 𝛾

(6.3)

Table 6.1: Overview of boundary and interface conditions Timoshenko beam

boundary conditions interface conditions
𝑥 = 0 𝑥 = 𝐿 𝑥 = 𝑎
𝑤1 = 0 𝑤2 = 0 𝑤1 = 𝑤2
𝑀1 = 0 𝑀2 = 0 𝑀1 = 𝑀2

𝜙1 = 𝜙2
𝑉1 + 𝐹/2 + 𝑉2 = 0

The solution to the Timoshenko beam can be found using Maple. In order to find the solution to
the load case of the transverse strip, the deflection due to 𝐹1 and 𝐹2 must be added (see figure 6.12).
The deflection due to a single field is defined as 𝑤𝑎𝑏, where index 𝑎 is equal to the index of the load
and index 𝑏 is the field. For the total deflection, three different fields are distinguished (𝑤1, 𝑤2 and 𝑤3).
Here, the indices represent the field. The boundaries of these fields, as well as the the total deflection
per field can be found in table 6.2.



76 6. Verification of stiffness

F1

w11
w12

a=7/16 l

F2

w22
w21

a=9/16 l

F2

w3
w1

F1

w2

x

P
R

O
D

U
C

E
D

 
B

Y
 
A

N
 
A

U
T

O
D

E
S

K
 
S

T
U

D
E

N
T

 
V

E
R

S
I
O

N

PRODUCED BY AN AUTODESK STUDENT VERSION

P
R

O
D

U
C

E
D

 
B

Y
 
A

N
 
A

U
T

O
D

E
S

K
 
S

T
U

D
E

N
T

 
V

E
R

S
I
O

N

PRODUCED BY AN AUTODESK STUDENT VERSION

Figure 6.12: Summation of deflections Timoshenko beam

Table 6.2: Sum of deflections, split into 3 fields

field boundaries total deflection

1 0 ≤ 𝑥 ≤ 7
16 𝑙 𝑤1 = 𝑤11 +𝑤12

2 7
16 𝑙 ≤ 𝑥 ≤

9
16 𝑙 𝑤2 = 𝑤12 +𝑤21

3 9
16 𝑙 ≤ 𝑥 ≤ 𝑙 𝑤3 = 𝑤12 +𝑤22

As the loading of the transverse strip is symmetrical, the total maximum deflection can be found in
the middle of the span. So, the analytical solution to the maximum deflection of the Timoshenko beam
with one point load at 𝑎1 =

7
16 𝑙 and the other point load at 𝑎2 =

9
16 𝑙, can be found by taking 𝑤2 and

setting 𝑥 = 1
2 𝑙:

𝑤2 (𝑥 =
1
2𝑙) =

1001
49152

𝐹𝑙3
𝐸𝐼 +

10752
49152

𝐹𝑙
𝑘𝑠

(6.4)

In this formula, 𝐹 is the sum of both forces and both forces must be equal, otherwise the maximum
deflection is not at 𝑥 = 1

2 𝑙. So: 𝐹 = 𝐹1 + 𝐹2, with 𝐹1 = 𝐹2 = 1176.5 kN. So: 𝐹 = 2353 kN. The
factors 1001

49152 and
10752
49152 from equation 6.4 are almost equal to the factors from the analytical solution
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of a Timoshenko beam with only one point load in the middle of the span ( 148 and 1
4 ). In case of the

transverse strip, the point loads are close to midspan. So, it makes sense that the difference between
these factors is very small.
For the transverse strip, the bending stiffness 𝐸𝐼 is equal to the Young’s modulus times the second
moment of inertia of the transverse beam of the grillage model:

𝐸𝐼 = 36.3 ⋅ 4.3609 × 1011 = 1.5830 × 1013 kNmm2

The shear stiffness 𝑘𝑠 is equal to stiffness component 𝐷44 from the orthotropic plate model times the
width of the transverse strip:

𝑘𝑠 = 2.353 ⋅ 2.6205 × 105 = 616603 kN/mm
Filling in the stiffness parameters, load and span of the transverse strip into equation 6.4, results into
a deflection of:

𝑤 = 1001
49152 ⋅

2353 ⋅ 169603

1.5830 × 1013
+ 10752
49152 ⋅

2353 ⋅ 16960
616603 = 28.9mm

2D plate model
For all models, the (shear) stiffness of the transverse strips depends on the effective height of the web
zone of the 3D plate model (section 5.2.1) in any way. In the 3D plate model, the effective height of
the webzone is a direct input parameter for the orthotropic plates in the webzone. For the orthotropic
plate and grillage model, the effective heights of the top and bottom plate in the webzone are used as
an input parameter for the transverse shear stiffness calculation, which is shown in appendix C. The
shear stiffness calculation eventually results into the shear stiffness parameters 𝐷44 (orthotropic plate
model), 𝐴𝑠 (grillage model) and 𝑘𝑠 (Timoshenko beam).

Figure 6.13: 2D plate model transverse strip

A model that does not depend on the transverse shear stiffness calculation shown in appendix
C, is a 2D plate model. In this model, the transverse crosssection of the deck is modelled using a
vertical orientated plate with openings in it, see figure 6.13. In the outofplane direction, this plate has
a thickness of 2.353 m, which is equal to the width of the transverse strips.
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For the 2D plate model it is important to have a finite element mesh that is coarse enough. The size
of the finite elements was determined by assuming at least 6 nodes over the thickness of the smallest
zone. This smallest zone is the bottom plate of the bridge deck. The thickness of the bottom plate is
150 mm, so the size of the finite elements must be equal to ℎ = 150/(6 − 1) = 30mm. Figure 6.14
shows the finite element mesh of part of the 2D plate model.

Figure 6.14: Mesh 2D plate model (ℎ ≈ 30mm)

From figure 6.15, it becomes clear that the maximum deflection of the 2D plate model is equal to
28.8 mm.

Figure 6.15: Deflection transverse strip 2D plate model (𝑤𝑚𝑎𝑥 = 28.8mm)
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6.3. Conclusions
Table 6.3 gives an overview of the deflections (𝑤) of the longitudinal and transverse strips taken out of
the 3 different models of the bridge deck and the analytical solutions. For both the longitudinal as well
as the transverse direction, the relative difference (%) with respect to the analytical solution is shown.

Table 6.3: Overview of maximum deflections strip models (mm)

model longitudinal strip transverse strip
𝑤𝑚𝑎𝑥 % 𝑤𝑚𝑎𝑥 %

Analytical 79.8  28.9 
Grillage 79.8  28.9 0.0
Orthotropic plate 79.8  28.8 0.3
3D plate 79.4 0.5 28.9 0.0
2D plate   28.8 0.3

From the results of the strip models, it can be concluded that:

• In both directions, the relative difference between the models is insignificant. The biggest dif
ference between the deflections of the strips is only 0.5%. This means that all models have the
same stiffness in the longitudinal and transverse direction of the deck;

• The transverse stiffness parameters of the analytical, grillage, orthotropic plate and 3D plate
model are reliable. The independent 2D plate model showed the same maximum deflection /
stiffness as the other transverse strips.





7
Straight deck

In this chapter, the results of the straight bridge deck are shown. This bridge deck was loaded with
dummy loads. The results of the curved and curved and skewed bridge deck layout are presented in
chapter 8 and 9.

In this chapter, the results of the grillage model, orthotropic plate and 3D plate model are compared.
This comparison is done for: reaction forces, bending moments, midspan deflection and shear forces.
For the reaction forces, midspan deflection and longitudinal bending moment, the results of the or
thotropic plate model are compared to the 3D plate model. For all other type of results, the results of
the 3D plate model are not considered.

The conclusions that can be drawn on the results of the straight bridge deck are shown in the last
section of this chapter.

7.1. Reaction forces
For all models, the reaction forces can be extracted directly from SCIAengineer. In the graphs pre
sented, the supports are labeled according to the labelling of the longitudinal gridlines. This labelling
can be seen in figure 7.1. In this figure, the supports are indicated with a blue circles and a blue square
at grid line B.

Figure 7.1: Names of the supports

Figure 7.2 shows the reaction forces for LC1, LC3, LC6 and LC7 of the straight deck. A complete
overview of the reaction forces for loadcase 1 till 7 can be found in appendix E. In the graphs of figure
7.2, the names of the supports are indicated along the 𝑥axis. This naming is derived from the position
of the supports with respect to the gridlines of the models, see figure 7.1

For all loadcases, the sum of the reaction forces is equal to 4240 kN for LC1 and 500 kN for the
other loadcases, per edge of the deck. This is equal to half of the force applied for these loadcases.

81
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Figure 7.2: Reaction forces straight deck: LC1, LC3, LC6 and LC7

This means that for all models the condition of equilibrium is met: the sum of the applied force is equal
to the sum of the reaction forces.

From figure 7.2, it follows that the reaction forces of the orthotropic plate model and the 3D plate
model are almost overlapping. This is the case for all loadcases, also the ones for which the reaction
forces are presented in appendix E only. The reaction forces of the grillage model are clearly different
compared to the other 2 models.

The orthotropic plate and 3D plate model give higher support reactions at the outer supports, for the
loadcase of a distributed load (LC1). The grillage model, results in an almost constant reaction force
over the different support in transverse direction of the deck.

This can be attributed to the concentrated shear force on the edge of a plate. From plate the
ory, it follows that this concentrated shear force is equal to 𝑉 = 𝑚𝑥𝑦 [2]. For the grillage model, this
concentrated shear force is not observed as the grillage model consists of beam elements.

As a result of the peaks at the outer supports, it is difficult to draw conclusions on the transverse
loadspread based upon the reaction forces. loadcase 3 for example, shows for the grillage model
the lowest support reaction at the position of the point load (LC3). In order to make equilibrium with
the applied force, the remaining supports have to take a larger part of the applied force, which is also
observed. This could indicate that the grillage model shows more transverse loadspread compared
to the orthotropic plate and 3D plate model. However, the effect of the concentrated shear force of the
orthotropic plate and 3D plate model and the difference in transverse loadspread could interfere. This
means that it is not possible to distinguish the effects and to judge which effect is stronger.

In order to be able to draw conclusions on the transverse loadspread of the different models, it is
easier to look at the longitudinal bending moments.

7.2. Midspan deflection
In this section, the grillage model, orthotropic plate model and 3D plate model are being compared by
looking at the deflection at the middle of the span. This is done by plotting the deflection line over the
midspan transverse crosssection of the bridge deck. Figure 7.3 shows the midspan deflection lines
for the loadcase with the distributed load (LC1).

For the grillage model and orthotropic plate model, the deflection is independent from the height of
the deck. However, for the 3D plate model the deflection depends on the vertical position one is looking
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at. The deflection of the 3D plate model plotted in the graphs of figure 7.3 is at the top of the deck.
In the left graph of figure 7.3, the vertical axis runs from 0100mm deflection. For the right graph, the

scaling is adjusted to 7585 mm, which gives a clearer picture of the differences between the deflection
lines of the 3 models. For both graphs, the vertical axis runs from 016.96 m, which is equal to the
width of the bridge decks.

Figure 7.3: Midspan deflection LC1

The left graph of figure 7.3 shows that for LC1 the absolute values of the midspan deflections of all
models are almost identical. However, the right graph shows that for the grillage model, the shape of
the deflection line is different compared to the other 2 models. For the grillage model, one can observe
local deflection of the midspan transverse beam in between the longitudinal beams. For all longitudinal
beams, the midspan deflection is more or less identical.

For the orthotropic plate model and the 3D plate model, the shape of the deflection line is almost
identical. The difference between the orthotropic plate model and the 3D plate model is almost constant
over the whole midspan crosssection. The deflection line of the orthotropic plate model is more
smooth compared to the 3D plate model.

For the orthotropic plate model, the stiffness of the stiffeners is distributed over the whole width of
the deck, while for the 3D plate model, the longitudinal stiffness varies over the transverse direction
of the deck. The deflection line of the 3D plate model also shows local deflection in between the
stiffeners, which is also observed for the grillage model. For the grillage model, this local deflection is
larger compared to the 3D plate model, as the local loadspread in longitudinal direction is limited by
the width of the transverse beams.

Figure 7.4 shows the deflections in the middle of the span for LC2 till LC7. For each model, these
lines are shown in a different graph. For all graphs, the scale of the vertical and horizontal axis is
identical. The horizontal axis runs from 016.96 m, which is equal to the width of the bridge deck. In
addition to the graphs of figure 7.4, the for each loadcase the minimum, maximum and mean deflection
are listed in table 7.1.

Table 7.1: Minimum, maximum and average midspan deflection. G = grillage model, OP = orthotropic plate model and 3DP =
3D plate model

min. (mm) max. (mm) average (mm)
loadcase G OP 3DP G OP 3DP G OP 3DP
LC1 79.8 79.0 77.9 80.3 81.7 80.7 80.1 79.8 78.7
LC2 2.5 5.5 5.5 19.5 16.2 15.0 9.5 9.5 9.5
LC3 3.2 5.9 5.9 16.8 14.5 14.2 9.4 9.4 9.4
LC4 4.7 6.7 6.6 14.2 12.7 12.4 9.4 9.3 9.3
LC5 6.4 7.6 7.5 12.0 11.1 10.9 9.4 9.3 9.2
LC6 8.1 8.6 8.5 10.2 10.1 9.7 9.4 9.3 9.2
LC7 9.0 9.2 9.0 9.9 9.7 9.5 9.4 9.3 9.2

From figure 7.4 and table 7.1, it becomes clear that for the orthotropic plate model and the 3D plate
model, the deflections are almost identical. For all loadcases, the difference between the minimum,
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Figure 7.4: Midspan deflection LC2 till LC7, per model

maximum and mean deflection is relatively small.
The deflection of the grillage model is clearly different from the other 2 models. From table 7.1, it

can be read that the mean deflection of the grillage model is close to the mean deflection of the other
models. However, the minimum and maximum deflections of the grillage model deviate from the other
models. This effect becomes larger for more eccentric applied loads.

From these observations, it can be concluded that the deflection line of the grillage model is a
summation of 2 effects. The grillage model deflects in the same way as the other 2 models and on
top of that, the deck rotates a bit around its longitudinal axis. The magnitude of this rotations depends
on the eccentricity of the applied force. Eventually, the rotation lowers the minimum deflection and
increases the maximum deflection, but the total area under the deflection line does not change.

7.2.1. GuyonMassonnet
The transverse loadspread can also be verified using GuyonMasssonnet. The theory of this method
is introduced in appendix D (page 145). Shortly speaking, the bridge deck is divided into 9 nodes in the
transverse direction of the bridge deck. To each nodes belongs a coefficient of lateral distribution (𝑘).
From this coefficient 𝑘, it can be determined which part of the load goes to which node. The coefficient
𝑘 is determined as the local deflection of the deck 𝑤(𝑦) over a transverse crosssection, divided by the
average deflection (𝑤0) in the transverse direction of the bridge deck.

For each of the 3 models, the midspan deflection (as shown in figure 7.4) can be used to determine
the coefficient of lateral distribution 𝑘. This can be done by dividing each local deflection by the mean
deflection over the transverse crosssection. This results into the coefficients of lateral distribution of
the 3 models. These values can be compared to the theoretical values of 𝑘 following from Guyon
Massonnet. For the Blankenburg case, the calculation of the coefficients of lateral distribution from the
GuyonMassonnet method can be found in appendix D.

Figure 7.5 shows the coefficients of lateral distribution for each of the 3 models and the theoretical
result of GuyonMassonnet (𝑘𝛼 for 𝛼 = 0.68 and 𝛼 = 1) for the bridge decks loaded with LC3 and LC7.
The kvalues of GuyonMassonnet are indicated with k0.68 (as 𝛼 = 0.68 for the Blankenburg case) and
k1 which are de kvalues for a torsion stiff case.

In figure 7.5, it can be seen that for LC3 the results of the orthotropic plate and the 3D plate model
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Figure 7.5: Coefficients of lateral distribution 𝑘, LC3 and LC7

are almost identical. The coefficient of lateral distribution for the grillage model does deviate from the
other 2 models. The result of GuyonMassonnet (k0.68, figure 7.5) is closest to the result of the grillage
model. However, for the left part of the bridge deck (≈ 08 m), the red line of k0.68 lies just as far from
the result of the grillage model and the results of the other 2 models. The results of the orthotropic plate
and 3D plate model are closer to k1 (torsion stiff case) compared to the grillage model. From this, it can
be concluded that the grillage model has a lower torsional stiffness compared to the other 2 models.

For LC7, the coefficients of lateral distribution are almost equal to 1 for all models and the results of
GuyonMassonnet (𝑘𝛼 for 𝛼 = 0.68 and 𝛼 = 1). loadcase 7 consists of 2 centric applied point loads.
This loading results in an almost uniform deflection of the midspan transverse crosssection, which
means that 𝑘 ≈ 1. In the middle of the bridge deck, the kvalues of the grillage model are slightly larger
compared to the other models and on both edges, the kvalues are slightly smaller. This shows that
also for LC7, the grillage model shows less transverse loadspread compared to the other models.

The kvalues for the Blankenburg case (k0.68) are closest to the grillage model, however the Guyon
Massonnet is an approximation and the transverse shear stiffness is not incorporated in this method.
That makes it hard to compare the values of k0.68 to the 3 models and draw conclusions based upon
their relative differences. Instead, it can be concluded that the results of GuyonMassonnet showed
that the grillage model has less torsional stiffness compared to the other 2 models as the results of
the orthotropic plate and 3D plate model are closer to k1 (torsion stiff) compared to the grillage model.
Also from the coefficients of lateral distribution, it follows that the grillage model shows less transverse
loadspread.

7.3. Bending moments
In the following section, the longitudinal, transverse and torsional moment of the different models are
compared. The longitudinal and transverse bending moments are given per width of beams of the gril
lage model, which is 2.12 m for the longitudinal and 2.353 m for the transverse beams. The longitudinal
bending moments are shown for all models (grillage, orthotropic plate and 3D plate). The transverse
and torsional bending moments are shown for the grillage and orthotropic plate model only.

7.3.1. Longitudinal bending moments
For the grillage model, the longitudinal bending moments can be directly extracted from the individual
longitudinal beams. For the orthotropic plate model, it is needed to integrate the bending moments
over the same with as the width of the longitudinal beams of the grillage model in order to be able
to compare the results. These integration strips had the same width as the longitudinal beams of the
grillage model. In the integration strips, the bending moment is over the width of the integration strip.
This results into 8 bendingmoment diagrams that can be compared to the 8 bendingmoments diagrams
of the longitudinal beams of the grillage model.

Figure 7.6 shows a 3D top view of the the grillage model. This figure includes the bending moment
diagrams for longitudinal bending for each of the 8 longitudinal beams. The green lines on both ends
of the deck, mark the line at which the deck is supported. The red line marks grid line 10, which is the
grid line in the middle of the span.
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Figure 7.6: Longitudinal bending moments (𝑀𝑦) of the grillage model (LC3)

Figure 7.7 shows the longitudinal bending moments of the grillage model. Again, the middle of the
span (grid line 10) is marked with the red line and the lines along which the point supports are located
are marked with green.

Figure 7.7: Longitudinal bending moments (𝑚𝑦𝑦) of the orthotropic plate model (LC3)

In order to be able to compare the longitudinal bending moments of the orthotropic plate model to
the longitudinal bending moments of the grillage model, 8 sections were created in the middle of the
span (along grid line 10) of the orthotropic plate. Each of the sections has a width of 2120 mm, which is
equal to the width of each of the 8 longitudinal beams from the grillage model. Over each section, the
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average longitudinal bending moment can be plotted, this plot can be seen in figure 7.8. The average
longitudinal bending moment over the section is multiplied with the width of the section, in order to
obtain the to total longitudinal bending moment acting on a plate strip with a width of 2120 mm. These
bending moments are onetoone comparable to the bending moments of longitudinal members of the
grillage model.

Figure 7.8: Average longitudinal bending moment over 8 sections (w=2120 mm) along grid line 10 (LC3)

Figure 7.9 shows the longitudinal bending moments in the middle of the span of the deck, for 4 of
the 7 loadcases. The results for all the loadcases can be found in appendix E (page 151). For all load
cases, it can be observed that the global maximum longitudinal bending moment is always higher for
the grillage model compared to the orthotropic plate model and the 3D plate model. For the loadcase
of the transverse distributed load (LC1), the results of all models are almost identical. The difference in
the global maximum is about 1% with respect to the 3D plate model. For all loadcases, the longitudinal
bending moments of the orthotropic plate model is almost equal to the longitudinal bending moments
of the 3D plate model.

The loadcases with the point loads show a larger difference in longitudinal bending moment. Load
case 3, is a loadcase in which the point load is applied with a big eccentricity with respect to the shear
centre of the bridge deck. The point load of LC3 is applied at gridline B. From figure 7.9, it follows that
the longitudinal bending moment at the position of the point load (gridline B) is larger for the grillage
model compared to the orthotropic plate and 3D plate model.

On the opposite side of the deck, the opposite is observed: here the bending moment of the or
thotropic plate and 3D plate model is larger compared to the grillage model. This means that for the
grillage model, there is less transverse loadspread compared to the orthotropic plate and 3D plate
model. For the orthotropic plate and 3D plate model, the minimum and maximum bending moment are
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Figure 7.9: Longitudinal bending moments for LC1, LC3, LC4 and LC7

closer to each other, which means that the load has spread out more evenly in the transverse direction
of the deck.

In the grillage model, a larger part of the loading stays in the zone at which the load is applied. As the
sum of the bending moments over the whole midspan crosssection must be equal for all 3 models
(the loading is identical, so over each transverse crosssection the total longitudinal bending moment
must also be identical), this means that the plate part away from the point load is loaded less.

For all other loadcases, it is observed that the grillage model shows less transverse loadspread
compared to the orthotropic plate and 3D plate model. Also for the centric loaded deck (LC7), it can be
observed that the longitudinal bending moment in the zone of the load is larger for the grillage model
and in other zones the bending moment of the grillage model is smaller. However, for LC7, the differ
ence in transverse loadspread is smaller compared to for example LC2. The transverse loadspread
of the orthotropic plate model is more or less identical to the loadspread of the 3D plate model.

Figure 7.10 shows the global maximum longitudinal bending moment for the different loadcases. The
different loadcases are plotted along the horizontal axis of the graph, with decreasing eccentricity of
the applied load.

From the graph of figure 7.10, it becomes clear that, with increasing eccentricity of the applied load,
the global maximum bending moment of all 3 models increases. The global maximum bending moment
of the orthotropic plate and 3D plate model are almost identical for all loadcases. However, LC2 shows
a clear difference between the orthotropic plate and 3D plate model. For LC2, the point load is applied
on the outer edge of the deck. In the orthotropic plate model, this edge is too stiff, as the stiffness of the
stiffener is spread out over the spacing of the stiffeners. As stiffer parts take more load, it is expected
that the slightly larger longitudinal bending moment of the orthotropic plate model can be attributed to
this higher stiffness.

The difference between the grillage and orthotropic plate model is about 5% for LC7 and increases
till 15% for LC2. The difference in loadspread between the grillage and the other 2 models increases
with the eccentricity of the applied load.
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Figure 7.10: Global maximum longitudinal bending moment

7.3.2. Transverse bending moments
Next to the moments in the longitudinal direction of the deck, the moments in the transverse direction
can be checked. For both models, the transverse bending moments that are extracted are located in
the middle of the span.

The transverse beams of the grillage model have a width of 2353 mm. The transverse bending
moment of the orthotropic plate model can be compared to the grillage model by taking the bending
moment of a transverse strip with the same width as the transverse beam of the grillage model. Figure
7.11 shows the orthotropic plate model, loaded with LC3. The green boundaries mark a transverse
strip that coincides with the midspan transverse beam of the grillage model.

In figure 7.11, the transverse bending moment of the orthotropic plate model is plotted over 3 differ
ent transverse sections. One section is in the middle of the span, the other 2 sections are located at
a distance equal to half the width of the transverse beams of the grillage model. This means that the
area enclosed by the green lines coincides with the midspan transverse beam of the grillage model.
So, this area can be seen as a transverse plate strip with a width of 2353 mm.

Figure 7.11: Transverse bending moment at 3 sections, in and around the middle of the span

From figure 7.11, it becomes clear that the transverse bending moment at the midspan section is
different from the other 2 sections. This means that the transverse bending moment varies over the
longitudinal direction of the bridge deck. Which also means that the transverse bending moment is not
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constant over the width of the transverse plate strip. As a result of this, it will not be accurate to take
the transverse bending moment over the section in the middle of the span of the deck and multiply this
with the width of the transverse beams of the grillage model. Especially in the zone at which the force
is applied, this method would result in big errors.

A more accurate way to extract the transverse bending moments from the orthotropic plate model is
to create sections in the longitudinal direction of the deck. These sections are located in the middle
of the span and have a length of 2353 mm, see figure 7.12. In transverse direction, the sections are
located at the same position as the longitudinal beams of the grillage model. This means that the
transverse position of the sections is identical to the position of the nodes of the grillage model. Next to
the sections located at the position of the longitudinal beams, there are 2 extra sections, one on each
edge of the deck. Figure 7.12 gives an example for which the orthotropic plate model is loaded with
LC3. The average transverse bending moment over each of the 10 sections (8 above the webs and 2
on the edges of the bridge deck) with a length of 2353 mm, is shown in this figure.

Figure 7.12: Sections in the orthotropic plate model at which the average transverse bending moment is determined, LC3

The next step is to determine the average transverse bending moment over each section and mul
tiply this value with 2353 mm. By plotting these bending moments along the transverse direction of the
bridge deck, one can obtain the transverse bending moment diagram of the orthotropic plate model.
This diagram can be compared to that of the grillage model. Figure 7.13 shows the transverse bending
moment diagrams of the models loaded with LC1. This loadcase concerns a distributed force in the
transverse direction in the middle of the span of the bridge deck.

Figure 7.13: Transverse bending moments for LC1 (uniform distributed load)

In figure 7.14, it can be seen that for LC1 the transverse bending moments diagram of the grillage
model is much different compared to the orthotropic plate model. LC1 consists of a uniformly distributed
load running in transverse direction in the middle of the span. For the grillage model, this means that
the midspan transverse beam, can be compared to a continuous beam with multiple spans, supported
with springs and loaded with a qload. Such a loadcase will result into the same bending moment
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pattern as is obtained from the grillage model.
In the middle of the deck, the hogging bending moment is equal to 200 kNm, the sagging bending

moment is equal to 82 kNm. According to theory, the difference between these 2 bending moments
should be equal to 1

8
𝑞𝑙2, where 𝑞 = 500 kN/m and 𝑙 = 2.12m (the spacing between the longitudinal

beams).
The transverse qload of LC1 can also be applied to the grillage model by using equivalent concen

trated forces. These concentrated forces can be applied at the position of the longitudinal beams. The
magnitude of the qload is equal to 500 kN/m, the spacing between the longitudinal beams is equal to
2.12 m. That means that the equivalent concentrated must be equal to 500 x 2.12 = 1060 kN. When
LC1 is applied with equivalent loads, the transverse bending moment of the grillage model is equal to
0. This means that the applied concentrated forces are directly transferred towards the support, by
means of the longitudinal beams. As can be expected, there is no transverse loadspread for LC1.

For the orthotropic plate model loaded with LC1, the transverse bending moment diagram is much
different compared to the grillage model. For the orthotropic plate model, there is also an effect of the
lateral contraction. The bending moments in longitudinal direction also causes bending moments in
transverse direction. The transverse bending moment for LC1 for the orthotropic plate model can most
likely be fully attributed to the effect of lateral contraction (Poisson’s effect) instead of being an effect
of transverse loadspread.

Figure 7.14: Transverse bending moment diagrams LC2 till LC7
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The transverse bending moment diagrams of the loadcases concerning the point loads (LC2 till LC7)
are shown in figure 7.14. The transverse bending moments are evaluated along a transverse section
along the midspan of the bridge deck (grid line 10). Again, the transverse bending moment diagrams
show the true transverse bending moments for the grillage model instead of the direct grillage output
(see figure 4.3) and the transverse bending moments evaluated at the sections shown in figure 7.12.

From figure 7.14, it becomes clear that LC2 shows the biggest difference between the transverse
bending moment diagrams of both models. LC2, concerns a point load applied at the edge of the
deck. For the grillage model, this means that the point load is applied on a cantilevering part of the
transverse beam in the middle of the span. In between the point at which the load is applied and the
first longitudinal beam (beam B), the transverse beam is not able to transfer any bending moment.
This results into a big hogging bending moment at longitudinal beam B, which also rises the bending
moment in the remaining part of the transverse beam, right from beam B.

For the orthotropic plate, there is no cantilevering part on the outer edges of the bridge deck. As
a result of shear stresses, the applied point load on the edge of the beam is able to spread out in the
longitudinal direction of the deck. This results into a much smaller hogging bending moment at the lo
cation of longitudinal beam B for the orthotropic plate model, which also reduces the bending moment
right from beam B.

The remaining loadcases show that for both models, the transverse bending moment is almost equal
at the point at which the load is applied. In the areas away from the point at which the load is applied,
the difference between both models is clearly larger. In these areas, the transverse bending moment
of the grillage model is smaller compared to the orthotropic plate model.

These observations are in line with the hypothesis. As the Poisson’s effect is not included in the
grillage model, the contribution of lateral contraction to the transverse bending moment will be 0. For
the orthotropic plate model, the Poisson’s effect will contribute to the transverse bending moment, next
to the contribution of transverse loadspread.
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7.3.3. Torsional moments
The torsional moment of the grillage model can be found by taking the average of the torsional moment
of the longitudinal and transverse beams. As the width of the longitudinal and transverse beam is not
equal, the torsional moment must be divided by the width of the beams, before the average value can
be calculated. Figure 7.15 shows the torsional moments for the longitudinal and transverse beams of
the grillage model loaded with LC2.

Figure 7.15: Torsional moments grillage model. Longitudinal beams (top) and transverse beams (bottom, LC2)

For the orthotropic plate model, the torsional moments can be extracted from SCIAengineer by plotting
a contour plot. Figure 7.16 shows the torsional moment for the orthotropic plate model loaded with LC1
till LC7.
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Figure 7.16: Torsional moments orthotropic plate model. LC1 till LC7
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Table 7.2 gives an overview of the maximum torsional moments of the grillagemodel and the orthotropic
plate model for each of the 7 loadcases. The torsional moments are given per unit width. So, the
presented values have the unit kNm/m. In the last column of table 7.2, the relative difference between
the grillage and the orthotropic plate model is given (in %).

Table 7.2: Torsional moments (kNm/m)

loadcase grillage orthotropic plate difference (%)

LC1 0.00 165 100
LC2 132 181 27
LC3 114 159 28
LC4 80.1 113 29
LC5 50.0 71.5 30
LC6 22.5 64.0 65
LC7 11.4 36.1 69

From table 7.2, it becomes clear that for the orthotropic plate model the torsional moments are
much larger compared to the grillage model. The biggest difference can be found for LC1, which is a
uniform distributed load over the middle of the span. In the grillage model, this loadcase results into
longitudinal bending moments only. The transverse bending moments that were observed are a result
of local bending of the transverse beams. As lateral contraction is not included in the grillage model,
the longitudinal bending moment does not interact with the transverse direction. This means that there
is a bending moment in one direction only, which results into zero torsional moment.

In the orthotropic plate model, the longitudinal bending moment interacts with the transverse bend
ing moments as a result of lateral contraction. The interaction between both directions results into
a torsional moment in the orthotropic plate model. Also for the other loadcases, the torsional mo
ment of the grillage model is much lower due to the fact that the transverse bending moment is much
smaller compared to the grillage model. For the loadcases with a small eccentricity (LC6 and LC7),
the difference between the grillage and ortotropic plate model increases.

7.3.4. Parameterstudy
In order to find out how the transverse loadspread depends on the transverse stiffness, a parameter
study on the orthotropic plate model has been carried out. In this parameter study, the focus will be
on the parameters defining the transverse stiffness of the deck. These parameters are: the transverse
bending stiffness (𝐷11), the transverse shear stiffness (𝐷44) and the torsional stiffness (𝐷33). For each
of the stiffness quantities, the base value from the orthotropic plate model was taken, this value was
multiplied with a factor 0.5 and 2.0. These factored stiffness parameters, as well as the base value (used
for the Blankenburg case), can be seen in table 7.3. During the parameter study, only one stiffness
parameter was increased or decreased at a time, the other input parameters were left unchanged. The
effect of the change in the stiffness parameters was quantified by looking at the longitudinal bending
moments at midspan.

Table 7.3: Input values parameter study

symbol base value x 0.5 x 2.0

Transverse bending stiffness 𝐷11 7.0079 3.5040 14.0158 103MNm
Torsional stiffness 𝐷33 2.6420 1.3210 5.2840 103MNm
Transverse shear stiffness 𝐷44 2.6205 1.3103 5.2410 102MN/m

Figure 7.17 and 7.18 show the effect of a lower and higher stiffnesses on the longitudinal bending
moments for loadcase 3 and loadcase 7. On the 𝑥axes, the names of the longitudinal strips are
indicated. The 𝑦axes shows the change in longitudinal bendingmoment with respect to the longitudinal
bending moment of the orthotropic plate model. For loadcase 3, the loading is applied at gridline B.
For loadcase 7, the load is applied at gridline E and G, which means that the load is applied centric.
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Figure 7.17: Difference longitudinal bending moment for lower/higher stiffnesses, LC3

From figure 7.17, it becomes clear that lower transverse stiffness parameters result into a higher
longitudinal bending moment at the location where the load is applied. This means that there is less
transverse loadspread when the transverse stiffness is lower. For higher stiffnesses, the bending
moment under the point load decreases and increases on the opposite side of the deck. This indicates
that a higher transverse stiffness means more transverse loadspread.

For loadcase 3, the torsional stiffness (𝐷33) has the biggest influence on the transverse loadspread.
For a lower stiffness, the longitudinal bending moment increases up to 14% and decreases up to al
most 10%. When the torsional stiffness is a factor 2 higher compared to the orthotropic plate model,
the effect is lower: the longitudinal bending moment decreases about 10% and increases up to 6%.

For loadcase 3, the load is applied on the edge of the deck, this means that there is a quite amount of
torsion. This declares why the torsional stiffness has a big influence on the transverse loadspread for
this loadcase. Another interesting loadcase is loadcase 7. This loadcase involves 2 point loads in
the middle of the deck. This means that the deck is loaded symmetrically.

Figure 7.18 shows how the longitudinal bendingmoments of the deck loadedwith LC7 are influenced
by the stiffness parameters that were taken into account in the parameter study. Again, the most
important observation is that a lower stiffness results into less transverse loadspread and a higher
stiffness leads to more transverse spread of the load.

Figure 7.18: Difference in longitudinal bending moment for lower/higher stiffnesses, LC7

For LC7, the transverse shear stiffness has the biggest influence on the transverse loadspread. The
change in maximum longitudinal bending moment is about 5%. For LC7, the effect on the transverse
loadspread is much smaller compared to LC3.
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7.4. Shear forces
For both the grillage model as well as the ortotropic plate model, the shear force in the plane of the
transverse cross section of the deck can be extracted from the models. For the grillage model, this can
be done by looking at the shear force 𝑉𝑧 in the longitudinal beams. Due to the fact that the interaction
between the longitudinal and transverse direction is concentrated in the nodes of the grillage model,
the shear force diagram of each longitudinal beam shows big jumps in the nodes.

According to E.C. Hambly [3], the discontinuous results from the grillage model can be made contin
uous by averaging the results in the nodes. The values in the nodes can be interpolated by connecting
the values in the nodes with straight lines. Figure 7.19 shows the grillage output of beam B for which
the deck is subjected to LC3. The horizontal axis of this diagram shows the longitudinal position along
the longitudinal beam, the total length of these beams is equal to 40 m. According to beam theory, the
shear force diagram should be equal to the slope of the moment diagram. The grey line of figure 7.19
shows the slope of the moment diagram. It can be observed that the shear force output of the grillage
model is almost equal to the slope of the bending moment diagram.

Figure 7.19: Shear force diagram: grillage output vs. true shear force. LC3, beam B

According to the procedure described above, the true shear force diagram of the grillage model is
constructed by taking the average value in the nodes (where the longitudinal beam is connected to
a transverse beam) and connect all the nodes. By doing this, the true shear force diagram can be
obtained, see the orange line in the graph of figure 7.19.

The shear force diagrams of the orthotropic plate model can be obtained by creating integration
strips in the longitudinal direction of the deck. The width of the integration strips is equal to the width
of the longitudinal beams of the grillage model. This means that the orthotropic plate is divided into
8 integration strips, this integration strips have the same position as the 8 longitudinal beams of the
grillage model. The shear force 𝑉𝑦 of the integration strips can be compared to the shear fore diagram
from the grillage model. Figure 7.20 shows the shear force diagrams of beam / integration strip B, C
G and J for the deck subjected to LC3 (point load above the left stiffener). A complete overview of the
shear force diagrams can be found in appendix E, page 154.

From figure 7.20, it becomes clear that the shear force diagrams deviate the most for the outer
beams. It is expected that this difference is the result of the concentrated shear force. This concentrated
force depends on the torsional moment. In the orthotropic plate model, the torsional moment is larger
compared to the grillage model. For all other beams/strips the shear force diagrams of both models do
not deviate much. Over each transverse crosssection, the sum of the shear force is equal to 500 kN,
which is half the applied load.

The shear force at gridline B shows a sharp jump in the area of the applied force. This jump is
sharper for the orthotropic plate model compared to the grillage model. For the grillage model, the
last node of the true shear force diagram is at 2.353 m before and after the point at which the load is
applied. In between these 2 nodes, the shear force diagram runs trough 0, just like for the orthotropic
plate model. As a result of the spacing of the transverse beams (which determines the spacing between
the nodes of the true shear force diagram), the grillage model is less capable to capture the sharp jump
in the area of the applied force.
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Figure 7.20: Shear forces LC3, longitudinal beam/strip B, C, G and J

In order to be able to make a better comparison between the grillage model and the orthotropic plate
model, the shear force diagram for the loaded beam (beam B) of the grillage model is extrapolated
towards the middle of the span. The extrapolation is done by fitting a 2nd order polynomial through the
last 3 point before the middle of the span. The same is done for the 3 nodes behind midspan.

Figure 7.21: Shear force diagram grillage model extrapolated, LC3

Figure 7.21 shows the shear force diagram of the grillage model and the orthotropic plate model
for beam / integration strip B. The extrapolation of the shear force of diagram of the grillage model is
shown with the black striped line. The red dots mark the longitudinal position at which the shear force is
maximum. At the red dots, the shear force of the grillage model is equal to± 460 kN. For the orthotropic
plate model, the maximum shear force is equal to ± 479 kN, which means that the difference between
both models is about 4%. The direct output of the grillage model (with the jumps in it, see figure 7.19),
gives a maximum shear force of ± 394 kN, this is 18% less compared to the maximum shear force of
the orthotropic plate model.

The shear force diagrams can also be compared for a centric applied loading. Figure 7.22 shows
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the shear forces for LC7. As the deck, loading and positioning of the longitudinal beams/strips is fully
symmetrical, the results of the first 4 longitudinal beams/strips is identical to the other 4, but then
mirrored over the middle of the deck. Again, for the grillage model, the true shear forces are plotted.
The point loads of LC7 are applied on beam/strip E and G. At these beams/strips, the results of the
grillage model are extrapolated near the point of application of the point loads.

Figure 7.22: Shear forces LC7

From figure 7.22, it becomes clear that for LC7 the shear force diagrams are almost identical. The
extrapolated maximum shear force of the grillage model is equal to ± 225 kN. For the orthotropic plate
model, the maximum shear force is equal to ± 219 kN. This means that the maximum shear force of
the grillage model is 2.3% larger compared to the orthotropic plate model.

The shear force diagrams of the 2 outer beams/strips do not deviate as much as they did for LC3.
This means that the difference of the concentrated shear force between both models is relatively small
compared to the shear force itself. Although the relative difference in torsional moment is big for LC7,
the absolute difference is small (see table 7.2). Based upon this, it is assumed that the absolute dif
ference in concentrated shear force between the grillage and orthotropic plate model is too small to be
observed in the shear force diagram of beam/strip B and J.

Based upon the shear forces, it is hard to draw conclusions on the transverse loadspread. For the
middle beams, the shear force diagrams of both models are almost identical. When the absolute
difference between the torsional moment of the grillage and orthotropic plate model are large, the
shear force diagram of the outer beams/strips deviate a lot. It is expected that this is the result of the
concentrated shear force. This concentrated shear force depends on the torsional moment (𝑉 = 𝑚𝑥𝑦).



100 7. Straight deck

7.5. Conclusions
Based upon the results of the straight bridge deck, the following conclusions can be drawn.

Reaction forces

• The reaction forces of the orthotropic plate and the 3D plate model much more agree compared
to the reaction forces of the grillage model. Compared to the other to models, the reaction forces
of the grillage model are more outliers.

• When the deck is loaded with a distributed load in the transverse direction of the deck (LC1), the
reaction forces of the grillage model are almost equal for all supports. For the other two models,
the outer supports take a larger part of the load, which can be contributed to the effect of the
concentrated shear force.

• For LC2 through LC6, the grillage model shows the same peaks in support reaction for the outer
supports as the other 2 models. This indicates that the grillage model can also show the effect of
the concentrated shear force.

Midspan deflections

• For all models and loadcases the mean midspan deflection is almost the same. This means
that the longitudinal stiffness of all bridge deck models is almost identical. This is in line with the
conclusions of the strip models from chapter 6.

• The minimum and maximum deflections of the grillage model are significantly larger compared
to the other 2 models. The mean deflection of the grillage model is almost equal to the mean
deflection of the other 2 models. This means that the deck of the grillage model has an extra
rotation compared to the orthotropic plate and 3D plate model.

Bending moments

• The longitudinal bending moment of the orthotropic plate and 3D plate model are almost identical.
The biggest difference is found for LC2. This is a point load on the edge of the bridge deck. In
the orthotropic plate model, this edge is a little bit too stiff. This most likely causes the difference
in longitudinal bending moment distribution.

• The maximum longitudinal bending moment of the grillage model is larger compared to the or
thotropic plate and the 3D plate model. This maximum can be found under the point load. Away
from the point load, the longitudinal bending moment of the grillage model is smaller compared
to the other 2 models.

• The difference in longitudinal bending moment distribution between the grillage model and the
orthotropic plate and 3D plate model increases with increasing eccentricity.

• The transverse and torsional moment of the grillagemodel are smaller compared to the orthotropic
plate model. The grillage model has no Poisson effect. This results into a lower transverse
bending moment compared to the orthotropic plate model.

Parameter study

• Making the transverse bending, transverse shear and torsional stiffness of the orthotropic plate
model 2 times larger, results into more transverse loadspread. Doing the opposite (2 times
smaller stiffnesses) results into less transverse loadspread.

• The for the eccentric loaded bridge deck (LC3), the torsional stiffness (𝐷33) has the biggest influ
ence on the transverse loadspread of the bridge deck. For a 2 times lower stiffness, themaximum
longitudinal bending moment increases with 14%. When the torsional stiffness is 2 times larger,
the maximum longitudinal bending moment decreases with 10%.

• For an eccentric loaded bridge deck (LC7), the transverse shear stiffness has the biggest influ
ence on the transverse loadspread. Both for lower and higher transverse shear stiffness, the
change in maximum longitudinal bending moment is about 5%.

Shear forces

• At the point at which the load is applied, there is a strong peak. The grillage model is not able to
capture the peak value as the nearest transverse beam is already a several meters away from
the peak value. This can be solved by extrapolating the graphs of the grillage model (figure 7.21)
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• For both models, the sum of shear forces is equal to 500 kN (half the applied load) for each
transverse crosssection.

• For both models, the shear force diagram is equal to the slope of the longitudinal bending moment
diagram.

• For the inner beams/strips, the shear force diagrams of both models are quite identical. In case
there is a big absolute difference between the torsional moment of the grillage and the orthotropic
plate model, there is a big difference between the shear force diagrams for the outer beams/strips.
It is assumed that this difference is caused by the difference in concentrated shear force. This
concentrated shear force depends on the torsional moment.

• The shear force diagrams cannot be used to draw conclusions on the transverse loadspread.
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This chapter shows the results of the curved bridge deck. First, the resultant of the reaction forces are
compared for each of the 3 models. Using this, it can be checked whether all models are loaded with
the same or equivalent load. Next the support reactions of all compared. This is done for the grillage,
orthotropic plate and 3D plate model.

The bending moments (longitudinal, transverse and torsional) are compared for the grillage and
orthotropic plate model only. Finally, the design bending moments for the reinforcement are compared.
For this comparison, the effect of prestressing is included. The design bending moments are based
upon WoodArmer (1968). Based upon the design bending moments, it is determined which model
results into more reinforcement.

The conclusions that can be drawn on the results of the curved bridge deck are shown in the last
section of this chapter.

8.1. Reaction forces
Based upon the resultant of the reaction forces, it can be determined whether all different models are
subjected to an equivalent loading. This can be done by looking at the resultant of the vertical reaction
forces (𝑅𝑧) and the bending moments 𝑀𝑥 and 𝑀𝑦. Table 8.1 shows the resultant of the reaction forces
per load case, and per model for the curved deck as well as for the curved and skewed deck.

Table 8.1: Resultants of the reaction forces

load model 𝐹𝑧 (kN) 𝑀𝑥 (kNm) 𝑀𝑦 (kNm)
SW grillage 12544 0.03 6589

orthotropic plate 12543 0.05 6607
3D plate 12544 0.03 6588

UDL grillage 2905 0.34 6356
orthotropic plate 2904 1.19 6346
3D plate 2905 0.34 6356

TS grillage 1200 0.22 5459
orthotropic plate 1200 0.92 5460
3D plate 1200 0.75 5420

Based upon table 8.1, it can be concluded that for all models the applied loading is equivalent, as
for each of the load cases the difference between the resultant forces is very small. The maximum
difference between the resultant for a specific load case is equal to 0.8%, excluding 𝑀𝑥 of the curved
bridge deck. As a result of symmetry, 𝑀𝑥 is almost equal to zero for this deck. The nonzero bending
moments𝑀𝑥 for the curved deck are most likely a result of rounding errors of the finite element analysis.
The reaction forces for each of the load cases, as well as the sum of all load cases can be seen in figure
8.1. Along the horizontal axis of the graphs, the naming of the 8 supports is indicated. This naming
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can be seen in figure 7.1. The curved deck is symmetrical with respect to the midspan, which means
that it suffices to show the reaction forces of one edge of the bridge deck only.

Figure 8.1: Reactions forces for each load case and the sum of all load cases

From figure 8.1, it becomes clear that the reaction forces of the orthotropic plate model and 3D
plate model are almost identical for all loadcases. The reaction force diagram of the grillage model is
an outlier compared to the other 2 models. For all loadcases, the grillage model shows lower support
reactions on the outer supports. It is assumed that the concentrated shear force of the grillage model
is smaller compared to the orthotropic plate and 3D plate model.

8.2. Bending moments
This section shows the results of the longitudinal, transverse and torsional moments of the curved
bridge deck. The moment diagrams of the longitudinal and transverse bending moment are shown for
the midspan crosssection of the bridge deck.

8.2.1. Longitudinal bending moments
The longitudinal bending moments in the midspan of the curved deck can be found in figure 8.2. This
figure shows the longitudinal bending moments per 2.12 m deck with. For the grillage model, the
longitudinal bending moments can be derived directly from the longitudinal beams. The longitudinal
bending moments of the orthotropic plate model are determined in the same way as for the straight
deck, for which 8 sections were created over the transverse midspan of the deck.
Table 8.2 shows per model and per load case the maximum longitudinal bending moment, per 2.12 m.
The last column of this table gives the relative difference between the grillage model and the orthotropic
plate model. For the selfweight (SW), the difference between both the maximum longitudinal bending
moments is 2.6%, while for the tandem load (TS), the difference is 10.5%.

The last 2 rows of table 8.2 give themaximum longitudinal bendingmoment for the 2 loadcombinations.
In the first loadcombination, prestressing is not included. The second loadcombinations includes pre
stressing. This is done by reducing the selfweight of the bridge with 65%.
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Figure 8.2: Longitudinal bending moment over midspan crosssection

Table 8.2: Maximum longitudinal bending moments (kNm), per 2.12 m

load grillage orthotropic plate difference (%)

SW 8113 7909 2.6
UDL 2112 1943 8.7
TS 2054 1859 10.5

SW + UDL + TS 12275 11663 5.2
0.35*SW + UDL + TS 7002 6540 7.1

Transverse loadspread of selfweight
From figure 8.2, it becomes clear that the difference in longitudinal bending moment is small for the
selfweight. The bending moment diagram of the orthotropic plate model seems to be close to constant
over the transverse crosssection. The grillage model shows a larger bending moment on the outer
edge compared to the inner edge of the curved deck.

As a result of the curvature, the outer edge of the bridge deck is longer compared to the inner edge
of the bridge. This means that the outer edge of the bridge deck contains more material. In case there
will be no transverse loadspread of the selfweight, one expects larger longitudinal bending moments
on the outer edge of the deck, which is observed in the results of the grillage model.

However, transverse loadspread of the selfweight of the curved deck may not be neglected. The
outer edge of the curved deck has a longer span compared to the inner edge of the bridge deck. This
means that the inner edge of the bridge deck is stiffer compared to the outer edge. Stiffer parts take
more load compared to less stiff parts. So, it is expected that part of the self weight of the outer edge
travels in the direction of the inner edge.

The transverse loadspread of the selfweight of the deck can be studied by looking at an equivalent
distributed load for each longitudinal beam/strip. This equivalent distributed load can be calculated
based upon the maximum longitudinal bending moment and the length of the span for each of the
longitudinal beams/strips. The equation
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𝑀𝑚𝑎𝑥 =
1
8𝑞𝑙

2

can be rewritten into:

𝑞𝑒𝑞 = 8
𝑀𝑚𝑎𝑥
𝑙2

Table 8.3 shows the equivalent distributed load for the grillage and orthotropic plate model loaded
with the selfweight. The equivalent distributed load (𝑞𝑒𝑞) is calculated based upon the formula above.
For both models, the mean of 𝑞𝑒𝑞 is about 39.3 kN/m. This is close to the applied selfweight per
beam/strip of 𝑞𝑆𝑊 = 39.20 kN/m.

Table 8.3: Equivalent distributed load, selfweight (kN/m)

beam/strip grillage orthotropic plate
B 39.89 41.61
C 39.67 40.74
D 39.51 40.00
E 39.41 39.39
G 39.30 38.88
H 39.16 38.45
I 38.94 38.07
J 38.64 37.61

mean 39.32 39.34

The values shown in table 8.3 can be divided by the applied selfweight of 𝑞𝑆𝑊 = 39.20 kN/m.
Figure 8.3 shows the ratio between 𝑞𝑒𝑞 and 𝑞𝑆𝑊 over the transverse direction of the bridge deck. From
figure 8.3, it becomes clear that for both models the left edge of the bridge deck takes a larger part of
the selfweight compared to the right part of the bridge. The stiffer inner edge is located on the left and
the less stiff outer edge is located on the right.

Figure 8.3: Transverse spread of selfweight

The effect of transverse loadspread of the selfweight is much stronger for the orthotropic plate
model compared to the grillage model. For the grillage model, the ratio between 𝑞𝑒𝑞 and 𝑞𝑆𝑊 is much
closer to 1.0 over the whole width of the bridge deck. This means that the equivalent distributed load is
close to the distributed load of the applied selfweight. For the orthotropic plate model, there is a much
stronger difference between the inner and the outer edge.
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The gray dotted line of figure 8.3 shows the ratio between 𝑞𝑒𝑞 and 𝑞𝑆𝑊 for an isotropic plate. It can
be seen that the loadspread of the selfweight of the orthotropic plate model is only a little bit smaller
compared to an isotropic plate.

8.2.2. Transverse bending moments
The transverse bending moment diagrams of the curved bridge deck can be found in figure 8.4. The
transverse bending moments are shown along the midspan transverse crosssection of the bridge
deck. Each graph shows the transverse bending moment per width of the midspan transverse beam
/ strip, which has a width of 2.353 m.

Figure 8.4: Transverse bending moment diagrams SW, UDL and TS and loadcombination including prestressing

From figure 8.4 it becomes clear that the transverse bending moment of the grillage model is much
lower compared to the orthotropic plate model. For the selfweight, the orthotropic plate model shows
a parabolic line describing the transverse bending moment. For this load case, the transverse load
spread is relatively small (due to the curvature there is still some loadspread). The grillage model
shows an Slike curve. Compared to the orthotropic plate model, the transverse bending moment
of the grillage model is very small and close to 0. As the grillage model doesn’t show any effect of
lateral contraction, the transverse bending moment comes from transverse loadspread only. For the
orthotropic plate model, the transverse bending moment is a combination of both lateral contraction
(Poisson) as well as transverse loadspread.

8.2.3. Torsional moments
Figure 8.5 shows the contour plots of the torsional moment of the curved bridge deck modelled as a
grillage model (left) and orthotropic plate model (right). The decks are loaded with the sum of all loads
(including prestressing), which is load combination 0.35*SW+UDL+TS.

From figure 8.5, it becomes clear that the torsional moments of the grillage model is smaller com
pared to the orthotropic plate model. The pattern of the torsional moment is also different. For the
orthotropic plate model the biggest values are at the right part of the deck, while for the grillage model,
the biggest values are at the left of the deck. In the middle of the span, the torsional moments are 0
for both models. In the orthotropic plate model, disturbances around the edges are observed. These
disturbances are caused by the concentrated supports.

The maximum torsional moment of the grillage model is equal to ± 167 kNm/m. For the orthotropic
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Figure 8.5: Torsional moment (kNm/m) grillage model (left) and orthotropic plate model (right)

plate model, the maximum torsional moment is equal to ± 237 kNm/m. However, this is a peak value.
Taking the average torsional moment over a width that is equal to the width of the longitudinal beams
of the grillage model results into an averaged torsional moment of ± 233 kNm/m. From this, it follows
that the torsional moment of the grillage model is about 28% smaller compared to the orthotropic plate
model.

8.3. Design bending moments
The reinforcement design of the bridge deck will eventually be based upon the WoodArmer moments
(1968). An overview of the calculation of the WoodArmer moments can be found in appendix B (page
135). The WoodArmer moments can aslo be called the design bending moments, as they are used to
design the reinforcement.

It is assumed that orthogonal reinforcement is applied, in the 𝑥 (transverse) and 𝑦direction (lon
gitudinal) of the bridge deck. According to the WoodArmer moments, the longitudinal reinforcement
takes the longitudinal bending moment and the transverse reinforcement the transverse bending mo
ment. The absolute value of the torsional moment needs to be added to both the longitudinal and the
transverse reinforcement moments. The reinforcement on the top of the bridge deck takes the neg
ative (hogging) bending moments and the bottom reinforcement takes the positive bending moments
(sagging).

In case of the orthotropic plate model, the WoodArmer moments can be extracted from SCIAengineer
directly. This can be done by choosing for design values and the values MxD+, MxD, MyD+ and MyD.
These values are equal to the WoodArmer moments, where +/− stands for top/bottom reinforcement
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and 𝑥 and 𝑦 for the direction of the reinforcement.

For the grillage model, it takes a little bit more effort to determine the design bending moments. For
both the longitudinal as well as the transverse beams the bending moments𝑀𝑦 and torsional moments
𝑀𝑥 were exported to excel for every node. Thereafter, the nodal results needed to be averages as each
node can have to different bending moments per direction. One of these bending moments comes from
the left and one from the right. The grillage model gives it’s results over the whole width of the beam,
so the bending moments needed to be divided by the width of the beams in order to have results per
unit width.

The torsional moments of the longitudinal and transverse beams were averaged to end up with only
one torsional moment per node instead of one torsional moment for each direction. Eventually, for
each node of the grillage model, there are 3 benidng moments: longitudinal, transverse and torsional.
Using the formulas of the WoodArmer moments shown in appendix B (page 135), the design bending
moments of the grillage model can be calculated.

Figure 8.6 shows the contour plots of the design bending moment for the bottom reinforcement in
the longitudinal direction of the bridge deck (MyD). These contour plots are based upon the load
combination including the effect of prestressing The left plot shows the design bending moments of
the grillage model, which is the result of the calculations in Excel. The right plot shows the result of the
orthotropic plate model, which is extracted from SCIAengineer directly. A complete overview of the
design moments of the curved deck can be found in appendix F (page 157).

Table 8.4 shows themaximum values of the design bendingmoments per direction (𝑥/𝑦) and position
of the reinforcement (top / bottom). The results of the grillage model are directly extracted from the
calculations in Excel. For the orthotropic plate model, the peaks in the contour plot are averaged over
the same width as the beams of the grillage model. This makes the comparison more fair as the
results of the grillage model are indirectly also averaged over the width of the beams. The results of
the orthotropic plate model were averaged using sections in longitudinal direction for the transverse
bending moments and in transverse direction for the longitudinal bending moments.

For the transverse bending moments, the nodes of the grillage model start at about 1 m from the
edge. This means that the first 1 m of the orthotropic plate model is not taken into account when
determining the maximum design bending moments for the transverse direction.

Table 8.4: Design moments (kNm/m), including prestressing

design moment grillage orthotropic plate difference (%)

MxD+ 182 120 51.7
MxD 185 207 10.6
MyD+ 0 0 0
MyD 3303 3093 6.8

∑ 3670 3437 7.3

From table 8.4, it becomes clear that the reinforcement of the curved bridge deck mainly needs to
be put at the bottom of the deck, in longitudinal direction. The relative difference between the grillage
model and the orthotropic plate model is quite big for MxD+ (51.7%) and MxD (10.6%). However, the
amount of reinforcement needed in these directions is very small compared to MyD. For MyD, the
amount of reinforcement needed for the grillage model is 6.8% larger compared to the grillage model.
This difference is slightly smaller than for my (7.1% table 8.2). This follows from the fact that for the
grillage model, the torsional moment is smaller compared to the orthotropic plate model. This torsional
moment is incorporated in the design bending moment.

The sum of the design bending moments is a measure for the total amount of reinforcement. For the
grillage model, the sum of design bending moments is equal to 3670 kNm/m, for the orthotropic plate
model this is equal to 3437 kNm/m. This means that the grillage model results in about 7.3% more
reinforcement compared to the orthotropic plate model. From this, it becomes clear that theortically
7.3% reinforcement can be reduced when the curved deck is modelled using the orthotropic plate
model instead of a grillage model.
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Figure 8.6: MyD, grillage model (left) and orthotropic plate model (right) (kNm/m)

Reinforcement design in practice
In practice, the design of the reinforcement is limited by the space in which the reinforcement must be
put, the allowed spacing between the reinforcement bars and the available and applicable reinforce
ment bar diameters. Appendix H shows an example of the longitudinal reinforcement design for the
bottom plate of the deck (MyD). In this appendix, the possible total amounts of reinforcement (mm2/m)
are shown. These amounts of reinforcement are based upon the available space in between the shear
reinforcement, the possible spacing and the available bar diameters.

Eventually, all possible amounts of reinforcement (based upon possible spacing and bar diameters)
are listed and sorted from small to big. See figure H.4, page 169. In the last column of this list, the
stepsize in the total amount of reinforcement is shown as a percentage. From this column, it becomes
clear that for realistic spacing and bar diameters the stepsize in the amount of reinforcement lies be
tween 4% and 26%. The mean stepsize is equal to 10%.

From the example shown in appendix H, it becomes clear that in practice it could be hard to reduce
for example 5% of reinforcement as the possibilities in the reinforcement design are limited due to for
example requirements on spacing and available bar diameters. Following the requirements on crack
width, also not every available bar diameter can be used.
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8.4. Conclusions
Based upon the results of the curved bridge deck, the following conclusions can be drawn.

Loading and reaction forces

• The resultant of the reaction forces is almost equal for all 3 models. This means that all the
models are loaded with and identical or equivalent load.

• The reaction forces of the orthotropic plate and 3D plate model are almost identical for all load
cases. The reaction force diagram of the grillage model deviates from the other 2 models.

Bending moments

• The uniform distributed load and the tandem system show the biggest difference in loadspread.
The difference in maximum moment is equal to 8.7% and 10.5 % respectively.

• The selfweight shows some difference in loadspread. The selfweight spreads out as a result
of the curved layout of the bridge deck. The inner curve is stiffer and will take a relatively larger
portion of the loads.

• When prestressing is taken into account, the difference between the maximum longitudinal bend
ing moment of the grillage and orthotropic plate model increases as the selfweight becomes less
dominant. The difference between the maximum longitudinal bending moment of both models
increases from 5.2% to 7.1%.

• The transverse bending moment of the grillage model is smaller compared to the orthotropic plate
model. Based upon the selfweight, it can be concluded that indeed the effect of lateral contraction
is not taken into account in the grillage model.

Transverse loadspread of selfweight

• Due to the curvature of the bridge deck, the inner edge is stiffer compared to the outer edge of
the deck. This means that also the selfweight of the bridge spreads in transverse direction. This
transverse loadspread is less stronger for the grillage model compared to the orthotropic plate
model.

• For evenly distributed loads (i.e.: selfweight) there can also be transverse loadspread, depend
ing on the shape of the bridge deck. For a curved bridge deck, the inner edge is stiffer compared
to the outer edge. This results into transverse loadspread and into differences in transverse
loadspread between the grillage and orthotropic plate model.

Design bending moments

• For bottom reinforcement in the longitudinal direction of the bridge deck, the difference between
both models is 6.8%. This is slightly less compared to the difference between the longitudinal
bending moment (7.1%). For the grillage model, the torsional moment is lower, which decreases
the difference between the results for MyD.

• In transverse direction, the grillage model requires more top reinforcement compared to the or
thotropic plate model (51.7%) and less bottom reinforcement (10.6%). As the transverse design
bending moments are small compared to the longitudinal design bending moment for bottom
reinforcement, their impact on the total amount of reinforcement is very small.

• For the grillage model, the sum of design bending moments is 7.3% larger compared to the
orthotropic plate model (table 8.4). As the sum of all design bendingmoments is a measure for the
total amount of reinforcement needed, the grillagemodel requires about 7.3%more reinforcement
compared to the orthotropic plate model.

• Compared to the practical possibilities to save reinforcement (appendix H), the theoretical differ
ence (7.3%) between the amount of reinforcement of the grillage an orthotropic plate model is
small.





9
Curved and skewed deck

This chapter shows the results of the curved and skewed bridge deck. Also for this deck, the resultants
of the reaction forces are used to check whether all models were loaded equivalently. For curved and
skewed bridge deck, the same comparisons were made as for the curved bridge deck (chapter 8).

The conclusions that can be drawn on the results of the curved and skewed bridge deck are shown
in the last section of this chapter.

9.1. Reaction forces
First, the reaction forces of the curved and skewed bridge deck are used to check whether all models
were loaded with equivalent loading. Table 9.1 shows the resultant of the reaction forces per load case
and per model. These resultants consist of the sum of vertical reaction forces (𝐹𝑧) and their resultant
bending moment around both axis (𝑀𝑥 and 𝑀𝑦).

Table 9.1: Resultants of the reaction forces

load model 𝐹𝑧 (kN) 𝑀𝑥 (kNm) 𝑀𝑦 (kNm)
SW grillage 12543 1079 6647

orthotropic plate 12543 1088 6659
3D plate 12543 1079 6647

UDL grillage 2906 5081 6370
orthotropic plate 2906 5075 6365
3D plate 2906 5081 6370

TS grillage 1200 4666 5463
orthotropic plate 1200 4665 5464
3D plate 1200 4665 5464

From table 9.1 it becomes clear that for each type of loading (SW, UDL and TS), the resultant of
the reaction forces is almost identical for all models. The biggest relative difference can be found for
𝑀𝑥 of the selfweight. For this load the maximum relative difference is 0.8%. Such a small error can
be attributed to rounding errors in the input and in the finite element calculation itself. So, it can be
concluded that all models are loaded with an equivalent loading.

Figure 9.1 (bottom edge) and figure 9.2 (top edge) show the reaction forces for each of the 2 edges
of the curved and skewed bridge deck. As a result of asymmetry, the reaction forces on each of the
edges are different for this bridge deck layout.

113
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Figure 9.1: Reactions forces bottom edge

Figure 9.2: Reactions forces top edge

For all models, a clear pattern in the reaction forces can be observed. On the bottom edge, the
right support is situated near the obtuse corner. For the edge on the opposite side of the bridge deck
(top edge), the obtuse corner is near the left support. The support near the obtuse angle takes much
more load compared to all the other supports. For a relative big part of the bridge deck, the support
near the obtuse corner is the nearest support. This means that the biggest part of the load travels to
these supports.
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The most deviating support reaction is for the top edge of the grillage model loaded with the tandem
system. For this load, the support reactions of the grillage model are much different compared to the
orthotropic plate and 3D plate model. The difference between the grillage model and the other models
is mainly the much lower support reaction at the support near the obtuse corner. Compared to the other
models, the grillage model seems to have trouble to transfer the load towards support B.

For both edges, the support reactions for the sum of all loads does not deviate much. All 3 models
follow the same pattern. In contrast to the straight and curved bridge decks, for the curved and skewed
bridge deck the sum of support reactions of the grillage model are not an outlier compared to the
orthotropic plate and 3D plate model.

9.2. Bending moments
This section shows the results of the longitudinal, transverse and torsional moments of the curved
bridge deck. The moment diagram of the longitudinal bending moment shows the maximum bending
moment per beam/strip. The transverse bending moment diagram is taken along transverse beam 13.

9.2.1. Longitudinal bending moments
Figure 9.3 shows the maximum longitudinal bending moments per longitudinal beam / strip. As a re
sult of the skew, these maximum longitudinal bending moments are not aligned along one particular
transverse crosssection. For the other 2 bridge deck layouts, the longitudinal bending moments were
plotted along the midspan transverse crosssection, as that is the location where the maximum lon
gitudinal bending moment can be found. In case of the curved and skewed deck, also the maximum
bending longitudinal bending moments are plotted, but the location differs per load case and per model,
also the maximum bending moments do not lay on a perfectly straight line.

Figure 9.3: Maximum longitudinal bending moment

From figure 9.3 it becomes clear that the also for the curved ans skewed bridge deck the maximum
longitudinal bending moment is larger for the grillage model. This can be observed for all types of
loading. In contrast to the longitudinal bending moments of the straight and curved bridge deck, the
sum of longitudinal bending moments is not the same for both models.

For the orthotropic plate model, the total longitudinal bending moment is smaller compared to the
grillage model. As a result of the skew, part of the load is transferred in the transverse direction of the
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deck, instead of the longitudinal direction. The load is transferred towards the nearest support. This
means that not all the loading is transferred in longitudinal direction. As the orthotropic plate model has
more transverse loadspread, it is easier for the orthotropic plate model to transfer part of the load in
transverse direction which means that the bending moment in longitudinal direction becomes lower.

The maximum longitudinal bending moments are shown in table 9.2. This table shows the longitudinal
bending moments per 2.12 m width if the bridge deck. The last column of the table shows the relative
difference between the grillage and orthotropic plate model. The last rows show the maximum longi
tudinal bending moment for all loads combined (SW + UDL + TS) and all loads including prestressing
(0.35*SW + UDL + TS).

Table 9.2: Maximum longitudinal bending moments (kNm), per 2.12 m

load grillage orthotropic plate difference (%)

SW 5322 4759 11.8
UDL 1399 1230 13.7
TS 1518 1376 10.4

SW + UDL + TS 8029 7099 13.1
0.35*SW + UDL + TS 4668 4145 12.6

Table 9.2 shows that the maximum difference in loadspread can be found for the uniform distributed
load (13.7%) and the selfweight of the bridge deck (11.8%). For both loads, the maximum longitudinal
bending moment of the grillage model is larger compared to the orthotropic plate model. The difference
for the total load is equal to 13.1%. Taking into account prestressing lower the difference a bit as the
relatively big difference for the selfweight becomes less dominant. When prestressing is taken into
account, the maximum longitudinal bending moment of the grillage model is 12.6% larger compared to
the orthotropic plate model.

9.2.2. Transverse bending moments
The transverse bending moment diagrams of the curved bridge deck can be found in figure 9.4. The
transverse bending moments are shown along transverse beam 13 of the grillage model of the skewed
deck. In the grillage model of the straight and curved decks, this transverse beam is located at mid
span. Each graph shows the transverse bending moment over a width of 2.353 m.

From figure 9.4 it becomes clear that also for the deck with the skew angle, the transverse bending
moment of the grillage model is smaller compared to the orthotropic plate model. For all load cases, the
transverse bending moment of the grillage model follows the same shape as the transverse bending
moment of the orthotropic plate model. However, for the grillage model the transverse bending moment
is smaller. This is in line with which was expected. Both the absence of lateral contraction as well as
the difference in loadspread will result into less transverse bending moment for the grillage model, see
the hypothesis (page 6).
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Figure 9.4: Transverse bending moment diagrams SW, UDL and TS and loadcombination including prestressing

9.2.3. Torsional moments
Figure 9.5 shows the contour plots of the torsional moment of the skewed deck modelled as a grillage
model (left) and orthotropic plate model (right). The decks are loaded with the sum of all loads (including
prestressing), which is load combination 0.35*SW+UDL+TS.

From figure 9.5, it becomes clear that the torsional moments of the grillage model is much smaller
compared to the orthotropic plate model. The pattern of the torsional moment is similar for both models.
The maximum torsional moment can be found in the lower right corner of the bridge deck. In the
orthotropic plate model, disturbances around the edges are observed. These disturbances are caused
by the concentrated supports.

The maximum torsional moment of the grillage model is equal to 615 kNm/m. For the orthotropic
plate model, the maximum torsional moment is equal to 1089 kNm/m. However, this is a peak value.
Taking the average torsional moment over a width that is equal to the width of the longitudinal beams
of the grillage model results into an averaged torsional moment of 942 kNm/m. From this, it follows
that the torsional moment of the grillage model is about 35% smaller compared to the orthotropic plate
model.
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Figure 9.5: Torsional moment (kNm/m) grillage model (left) and orthotropic plate model (right)

9.3. Design bending moments
Also for the curved and skewed bridge deck, the bending moments for reinforcement design are ex
tracted from the models. In the design bending moments, the effect of prestressing is included. For
the grillage model the WoodArmer moments are determined using excel, while for the orthotropic plate
model, the WoodArmer moments are extracted directly from SCIAengineer.

Figure 9.6 shows the contour plots of the design bending moment for the bottom reinforcement in
the longitudinal direction of the bridge deck (MyD). The left plot is from the grillage model and the
right plot is from the orthotropic plate model. The plots for the remaining reinforcement design bending
moments can be found in appendix G (page 161)

The maximum design bending moments are shown in table 9.3. For the longitudinal bending mo
ment, the difference between both models was equal to 12.6%. When the torsional moment is taken
into account, the bending moment to design the longitudinal bottom reinforcement (MyD) has become
only 4.7%. This follows from the fact that the torsional moments of the grillage model are smaller
compared to the orthotropic plate model.

For all other design bending moments, the results of the orthotropic plate model is smaller compared
to the grillage model. In the skewed bridge deck, there are much larger torsional moments compared
to the straight and curved bridge deck. So, the torsional moment has a relatively big contribution to
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Figure 9.6: MyD, grillage model (left) and orthotropic plate model (right) (kNm/m)

the WoodArmer design bending moments. For the grillage model, the torsional moments are smaller
compared to the orthotropic plate model, which results into lower design bending moments for MxD+,
MxD and MyD+.

The sum of design bending moments shows that the grillage model results into 11.7% less rein
forcement compared to the orthotropic plate model. However, the design bending moments of the
orthotropic plate exceed the maximum design bending moments of the grillage model in a very small
part of the deck. This can be checked by looking at the results of the orthotropic plate model per node.
In only 4% of the deck, MxD+ of the orthotropic plate is larger than the design bending moment of the
grillage model (627 kNm/m). For MxD this is 21% and for MyD+ also 4%. This means that the area
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Table 9.3: Design moments (kNm/m), including prestressing

design moment grillage orthotropic plate difference (%)

MxD+ 627 982 36.2
MxD 793 1025 22.6
MyD+ 526 671 21.6
MyD 2655 2535 4.7

∑ 4601 5213 11.7

in which the orthotropic plate model needs more reinforcement compared to the grillage model is very
small.

9.4. Conclusions
From the results of the curved and skewed bridge deck layout, the conclusions listed below can be
drawn.

Loading and reaction forces
• The resultant of the reaction forces is almost equal for all 3 models. This means that all the
models are loaded with and identical or equivalent load.

• The support near the obtuse corner takes most of the load. This support is the nearest support
for a relative big area of the bridge deck.

• The support reactions for the sum of all loads are almost identical for all 3 models. In contrast to
the straight and curved deck, the sum of support reactions of the grillage model are not an outlier
compared to the other 2 models.

Bending moments
• Also for the selfweight there is a significant difference in maximum longitudinal bending moment
between the grillage and orthotropic plate model (11.8%). For the skewed deck, also the self
weight causes torsional bending moments. The biggest difference in maximum bending moment
can be found for the uniform distributed load (13.7%).

• For the sum of all loads, the maximum longitudinal bending moment of the grillage model is 13.1%
larger compared to the orthotropic plate model. Taking into account prestresssing, lowers the
difference between both models to 12.6%.

• In the orthotropic plate model, the total longitudinal bending moment is smaller compared to the
grillage model. Due to the skew, part of the load is transferred in transverse direction as this is
the shortest path to the support. In the grillage model, a smaller part of the load seems to be
transferred in the transverse direction, resulting into a larger total longitudinal bending moment.

• Both the transverse as well as the torsional bending moment of the grillage model are lower
compared to the orthotropic plate model.

Design bending moments
• The design bending moment for longitudinal bottom reinforcement is 4.7% higher for the grillage
model.

• For the other design bendingmoments, the orthotropic plate model gives higher maximum values.
However, by looking at the design bending moments on node level, it can be concluded that the
design bending moments of the orthotropic plat models exceeds the design bending moments
of the grillage model in a small area of the bridge deck only (4%21%). This means that the
orthotropic plate model needs extra reinforcement in a relatively small area only.

• As the extra reinforcement of the orthotropic plate model is needed in a small area only, it is
neglected. This results into an upperbound of the extra amount of reinforcement needed for the
grillage model. This upperbound is equal to 4.7%.

• Compared to the practical possibilities to save reinforcement (see chapter 7, page 110) or ap
pendix H, page 167), the theoretical difference (up to 4.7%) between the amount of reinforcement
of the grillage an orthotropic plate model is small.
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10
Discussion, conclusions and

recommendations
In this chapter, the discussion, conclusions and recommendations for further research can be found.
The conclusions are splitup into the conclusions to the subquestions presented in chapter 1 (page
5) and the answer to the main research question of this thesis. The main research question shown in
chapter 1, is repeated below. The conclusion to this study can be expanded and supported by followup
research. Suggestions for a followup research can be found in the recommendations.

10.1. Discussion
This section shows the discussion to the study presented in this thesis. The discussion is categorized
per topic.

Case simplification

• The stiffer edges of the bridge deck are left out of the the crosssection of the bridge as these
stiffer parts could not easily be incorporated in the orthotropic plate model. Leaving out the edge
beams made the comparison between the models more fair. However, the real bridge decks are
stiffer on the edges compared to the created models. The stiffer edge of the bridge deck can
have effects on the load distribution, which is not included in this study.

• Leaving out the stiffer edges of the bridge deck was not needed for the grillage model. The benefit
of the grillage model compared to the orthotropic plate model is that in the grillage model every
longitudinal beam can have a different crosssection. This means that the edge beams of the
real crosssection of the bridge deck (figure 2.1, page 9) can be modeled in the grillage model
Using the grillage model, the real crosssection of the bridge can be modeled more accurately
compared to the orthotropic plate model.

• Above the supports the bridge decks have a solid crosssection. This solid crosssection was not
included in the case study. In the real bridge deck, this solid crosssection provides a relative
big torsional stiffness compared to the voided bridge deck in the span. These effects are not
included.

• The bridge decks of the Blankenburgverbinding consists of multiple statically indeterminate spans,
while this study considered a single simple supported span. In further research, the same study
presented in this thesis could be applied to a multiple statically indeterminate bridge decks.

Software

• In this study, it was decided to create all models using SCIAengineer. By doing this, it was
ensured that for all models the material properties were identical. Eventually, these material
properties comes down to the Young’s modulus 𝐸 of the concrete only, as only linear material
behaviour was considered in this study. In retrospect, it can be concluded that (for the material
properties) it may not have been necessary to create all models with SCIAengineer.
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• For this study, the grid of the grillage model was created by hand using SCIAengineer. Instead
of using SCIAengineer, it would have been easier to create the grillage model using Midas civil,
as this software provides a spacial wizard to create the grillage model. The downside of such a
wizard is that it could be a kind of blackbox. If a wizard is not described very well, it can be hard
to determine whether certain effects are included in the model or not and what other assumptions
are made. By using SCIAengineer, this potential blackbox was avoided as the grillage model
was completely created by hand.

Torsional stiffness

• Using the strips taken out of the deck, the longitudinal and transverse stiffness of the 3 models
were compared to each other and the analytical solution of the Timoshenko beam. The longitudi
nal and transverse strip showed that all models have almost identical longitudinal and transverse
stiffness. From the strips, it cannot be concluded whether the torsional stiffness is the same for
all models.

Bending moment 3D plate model

• The longitudinal bending moments of the 3D plate model were determined indirectly. This was
done by looking at the ratio in slopes of normal force diagrams and divide the total longitudinal
bending moment over the whole crosssection accordingly. For the other 2 models, the bending
moments were extracted from the results directly.

Design bending moments

• In the comparison of the design bending moments, it is assumed that the reinforcement design is
identical over the whole length or width of the bridge. In reality, the bridge deck will be divided into
zones. For each of these zones (i.e. near the edge and the rest of the field) the reinforcement
design can be different. For the design bending moments of the orthotropic plate model of the
curved and skewed deck, the area over which the design bending moments of the orthotropic
plate model exceed the design bending moments of the grillage model is taken into account.
This area was equal to 4%  21% of the bridge deck.

• For the straight bridge deck, the design bending moments were not studied. It is expected that
result of the straight bridge deck is similar to the result of the curved deck. For the straight deck,
there is no transverse distribution of selfweight. Based upon this, it is expected that the difference
between the longitudinal bending moment of the grillage and orthotropic plate model becomes
slightly smaller, which is beneficial for the design moments of the grillage model. Due to the shape
of the deck, it is also expected that the torsional moment of the straight deck is slightly smaller
compared to the curved deck, which is not beneficial for the design moments of the grillage model.
The net effect of these 2 contributions (longitudinal and torsional moment) is expected to be small.

10.2. Conclusions
This section gives an overview of the answers to the subquestions and the main research question
stated in section 1.2 on page 5 of the report.

Subquestions
Validation of the models

• All models have the same longitudinal and transverse stiffness, this follows from the strip models
of chapter 6 (page 79).

• The deflections of the orthotropic plate model and the 3D plate model are almost identical. For
all models, the reaction forces are quite close to each other. The ortotropic plate and 3D plate
model show more agreement compared to the reaction forces of the grillage model (page 81).

• The orthotropic plate model describes the behaviour of the bridge deck correctly. The results of
the orthotropic deck were validated using a 3D plate model. This validation showed agreement
on at least the stiffness, reaction forces and transverse loadspread (chapter 7).
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Differences in loadspread

• For the grillage model, the maximum longitudinal bending moment is larger compared to the
orthotropic plate model. Away from the point of application of the force, the longitudinal bending
moments is lower compared to the orthotropic plate model. The transverse bending moment as
well as the torsional moment of the grillage model are lower compared to the orthotropic plate
model. From these observations, it can be concluded that the grillage model has less transverse
loadspread compared to the orthotropic plate model.

• The difference in loadspread increases with increasing eccentricity of the applied load (page 89).
• The transverse loadspread is mainly influenced by stiffness parameters 𝐷33 (torsional stiffness)
and 𝐷44 (transverse shear stiffness). For lower stiffnesses, the loadspread decreases and for
higher stiffnesses, the transverse loadspread decreases (page 95).

• For the curved bridge deck, the tandem system (TS) of the traffic load results into the biggest
difference in loadspread. The smallest difference in load spread is observed for the selfweight .
When prestressing is taken into account, the difference in transverse loadspread between both
models becomes larger as the selfweight becomes smaller (page 105).

• In case of the curved and skewed bridge deck, also the selfweight results into a relative big
difference in transverse loadspread. As a result of the skew, the selfweight causes torsion of
the bridge deck (page 117). Taking into account prestressing has a minor effect on the difference
in loadspread of the curved and skewed deck (page 116).

Design bending moments

• When looking at the design bending moments of the curved deck, the difference in loadspread
between the grillage and orthotropic plate model becomes slightly smaller, as the torsional mo
ments of the grillage model are smaller compared to the orthotropic plate model (page 107 and
page 117). In case of the curved and skewed deck, the difference between the loadspread be
comes a lot smaller when looking at the design bending moments compared to the longitudinal
bending moments. This follows from the fact that the skewed deck has a lot more torsion com
pared to the curved deck.

• The difference in design bending moment depends on the layout of the bridge deck. The skewed
deck has much more torsional moment, which is in favour of the grillage model. This means that
for the grillage model, the result of the skewed bridge deck is less conservative compared to the
curved bridge deck layout.

• The grillage model of the curved deck results in about 7.3% more reinforcement compared to the
orthotropic plate model (page 109), for the curved and skewed deck, this is equal to 4.7%, which
is an upperbound (page 120).

Reinforcement design in practice

• The possibilities in the reinforcement design are limited by detailing requirements (i.e.: spacing,
applicable bar diameters) and available bar diameters. The example of appendix H (page 167)
showed that the stepsize in the amount of reinforcement can be up to 26%. For this example,
the mean stepsize between the different amounts of reinforcement is equal to 10%.
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Final conclusion
to which extend does the transverse loadspread of a voided orthotropic bridge deck modeled
as a grillage model differ from an orthotropic plate model. And what does this mean for the
practical usability of the grillage model in engineering practice?

It can be concluded that the grillage model results in less transverse loadspread. The follows from the
fact that the maximum longitudinal bending moments of the grillage model are larger compared to the
orthotropic plate model and the transverse bending moments of grillage model are smaller compared
to the orthotropic plate model. The difference in transverse loadspread increases for increasing ec
centricity. This means that there is no need to reject the hypothesis presented in chapter 1.

The differences in design bending moment between the grillage and orthotropic plate model are up to
4.7% for the curved and skewed deck and about 7.3% for the curved deck. The difference between
both models is relatively small. In engineering practice it can be hard to save for example 5% of
reinforcement. This has mainly to do with the fact that the solutions space of the reinforcement design is
limited. Examples of limitations are: the available space, possible spacing, requirements from detailing
(crackwidth control) and the available bar diameters. The spacing of the reinforcement bars may not
be to big, otherwise it is not possible to walk on it during the construction. On the other hand, the
spacing may not be too small, otherwise the concrete segregates during casting.

The theoretical difference between the reinforcement design of the grillage and orthotropic plate
model could become very small or even completely vanish as a result of the effects discussed above
and due to rounding differences. This means that the theoretical difference in the amount of reinforce
ment doesn’t have to mean that the design of the reinforcement is also different in practice. For some
cases, the theoretical difference also translates into a practical difference in the amount of reinforce
ment and for some cases the possibilities to reduce reinforcement are limited which could result into
(almost) the same amount of reinforcement for both models. Based upon this, it can be concluded that
the grillage model doesn’t necessarily results into a less economical reinforcement design, as a result
of the discrete nature of the design possibilities the engineer has.

Eventually, it depends on the situation (i.e.: type of project and phase of the design) whether it is
beneficial to use a grillage model or not. When a lot of the same bridges or spans need to be designed,
the model of the bridge has to be created only once. In that case, a possibly (small) reduction on the
amount of reinforcement for only one bridge deck, can have a significant impact on the total amount
of reinforcement for the whole project. For such a project, the extra effort that is needed to create
the orthotropic plate model is probably smaller, than the benefit from saving reinforcement when the
orthotropic plate model is used instead of a grillage model.

For the bridge decks of the Blankenburgverbinding, every single span is different. This means
that it is beneficial to model the bridge decks of the Blankenburgverbinding using a grillage model, as
all spans need to be modeled. The crosssection of the Blankenburgverbinding also has stiffer edge
beams. These edge beams can perfectly be modeled in the grillage model, while for the orthotropic
plate model, the edge beams cannot be modeled. The benefits of the grillage model (i.e.: shorter
calculation time and easier to apply prestressing) outweigh the probability that for some spans, the
design of the reinforcement is less economical compared to the orthotropic plate model.

Also the phase of the design can play a role in the decision making. During a tender phase, the most
important question is ”is the design technically feasible and what are the approximate costs to build it?”.
As there are still a lot of uncertainty’s, the grillage model is accurate enough for this phase of the design.

In order to be able to make a better decision which model to use, it is advised to investigate  and
where possible quantify  the benefits (such as modelling time, calculation time, applying prestressing,
etc.) of the grillage model, compared to the orthotropic plate model. This can be done in a followup
research. Together with the results following from this study, the results of this followup research will
give a more complete overview from which the structural engineer can decide to use a grillage model
or not.
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10.3. Recommendations
The assumptions and choices made in this study make it hard to draw conclusions on the practical
benefits of the grillage model compared to the orthotropic plate model. It is recommended to do a
followup research in which the following aspects of the grillage and orthotropic plate model will be
compared:

• Which software to use
• Effort to setup the models
• Applying prestressing
• Calculation time
• Optimization of crosssection
• Extraction of results

In this study, it was chosen to make all models in SCIAengineer. This was done to be sure that all
material parameters, loadapplication and the presentation of the results were as uniform as possible.
However, the software Midas civil provides a special wizard to create a grillage model automatically.
When the effort to setup the grillage model is compared to the orthotropic plate model, it would be
more fair to make use of such a wizard. It is expected that with the help of this wizard in Midas, the
grillage model can be setup more easily. Based upon the crosssection of the deck, Midas calculates
the stiffness properties of the longitudinal and transverse beams and creates the grid of the model
automatically.

In SCIAengineer, all beams need to be drawn by hand. In a followup research, it is advised to
use the most suitable software for each model. By doing this, the comparison on the effort to setup
the models is fair. However, when a wizard is used, it is also important to investigate the background
of the such a wizard. For example, which types of deformations are taken into account in the stiffness
properties and what other assumptions does the wizard make?

The tandem system of the traffic load was applied for one location only. In practice, the traffic load will
be applied to the bridge deck for a lot more locations, in order to find out the most unfavourable position
of the tandem system. This results into a lot more loadcases and a lot more loadcombinations. When
the number of loadcases increases, the difference in calculation time between bothmodels will become
more clear. For the number of loadcases used in this study, there is no significant difference between
the calculation time of the grillage model and the orthotropic plate model.

In further research, it is needed to apply the tandem system of the traffic load at all possible positions
in the longitudinal direction of the bridge deck. For each loadcase, the tandem system has moved for
example 10 cm. It is expected that for a lot of loadcases and a lot of loadcombinations, the calculation
time of the grillagemodel is much shorter compared to the orthotropic plate model. The orthotropic plate
model has much more nodes compared to the grillage model. This means that the matrix that has to
be solved for every loadcase is much smaller for the grillage model. A smaller matrix means a shorter
calculation time.

A shorter calculation time also means that it is easier to adjust the crosssection a bit and to see
the effects of this adjustment quicker. Expecting a shorter calculation time for the grillage model, also
means that it is expected that it is easier to do optimizations of the crosssection.

For this current study, the prestressing was applied indirectly. This was done by lowering the self
weight of the bridge deck. In practice, the prestressing would be applied as an external load. For the
grillage model, the external load of the prestressing force can be applied to the longitudinal beams
directly. In case of the orthotropic plate model, first some auxiliary bars needs to be created, before
the prestressing can be applied. As a result of this, it is expected that is easier to apply prestressing
to the grillage model, compared to the orthotropic plate model. For a followup research it is advised
to apply the prestressing force as an external load, in order to find out for which model it is easier to
apply the prestressing.
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In a followup research, the grillage and orthotropic plate model can be compared based upon the
criteria discussed above. Where possible, the differences between both models can be quantified (time
to setup the model, calculation time, number of nodes, etc.). The results of the followup research can
be taken into account next to the observed difference in transverse loadspread, to make a better
consideration whether to use a grillage model or not.
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A
Definition torsional stiffness

SCIAengineer
In order to be sure that SCIAengineer uses the same definition for the torsional stiffness as used in
this thesis, two identical plates were loaded in pure torsion. The plates have a dimension of 10 x 10 m
and a uniform thickness of 200 mm. Both plates are made out of concrete, with strength class C45/55.
This means that: 𝐸 = 36300MPa and 𝐺 = 15125MPa. The plates are supported in two diagonal
corners, and is loaded with 2 point loads of 𝐹 = 1000 kN in the other two diagonal corners, see figure
A.1. In literature, this loadcase is also known as the Nadai’s plate.

Figure A.1: Nadai’s plate. left: top view, right: side view

Both the isotropic and the orthotropic plate were modelled in SCIAengineer. One of the plates
was modelled using an ordinary isotropic plate, the other plate was modelled using an orthotrpic plate.
The stiffness parameters of the orthotrpic plate were calculated as if it was an isotropic plate with a
uniform thickness of 200 mm and uniform material parameters. In case the torsional stiffness has been
calculated according to the same definition as SCIAengineer uses, both plates will show identical
torsional deformation.
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Torsional stiffness calculation
In this thesis, the torsional stiffness is calculated using the following equations [2]:

𝑖𝑥𝑦 =
𝐼𝑡
2𝑏

𝑖𝑦𝑥 =
𝐼𝑡
2𝑏

𝑖𝑎𝑣 =
1
2 (𝑖𝑥𝑦 + 𝑖𝑦𝑥)

𝐷33 = 𝐺
𝑖𝑎𝑣
2

(A.1)

The crosssection of the plate is a rectangle, for both directions of the plate the torsional stiffness is
equal to:

𝐼𝑡 =
1
3𝑏𝑡

3 (A.2)

This results in to the following equation to calculate the torsional stiffness 𝐷33:

𝑖𝑥𝑦 = 𝑖𝑦𝑥 =
1
6𝑡
3

𝑖𝑎𝑣 =
1
6𝑡
3

𝐷33 =
1
12𝐺𝑡

3

(A.3)

Filling in 𝑡 = 200mm and 𝐺 = 15125MPa, it follows that the torsional stiffness is equal to:

𝐷33 =
1
12 ⋅ 15125 ⋅ 0.2

3 = 1.0083 × 101MN/m

The other stiffness parameters of the orthotropic plate were calculated automatically by SCIA
engineer. An overview of those parameters can be found in figure A.2. The dcomponents refer to
the inplane stiffnesses and the Dcomponents to the outofplane stiffness properties.

Figure A.2: Stiffness parameters ortotropic Nadai’s plate
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Results and conclusion
Figure A.3 shows the deformed shape of both the isotropic as well as the orthotropic Nadai’s plate.
The maximum deflection of the isotropic plate is 1254.9 mm, for the orthotropic plate the maximum
deflection is equal to 1254.7 mm. This means that both plates result into an identical deformation due
to torsion, under the exact same loading and support conditions. From this, it can be concluded that
the manually calculated torsional stiffness of the orthotropic plate is identical to the torsional stiffness of
the isotropic plate calculated by SCIAengineer. This means that the definition of the torsional stiffness
used in this thesis is equal to the definition that SCIAengineer uses.

Figure A.3: Torsional deformation Nadai’s plates. isotropic plate (left), orthotropic plate (right)





B
WoodArmer moments

This appendix shows the formulas to calculate the WoodArmer moments (WoodArmer, 1968). These
moments can be used to design the reinforcement of a plate in 2 orthogonal directions. The Wood
Armer moments are a combination of the bending moments in the direction of the reinforcement itself
plus the absolute value of the torsional moment. For the reinforcement, there are 4 different design
bending moments, in 2 directions at the bottom and in 2 direction at the top of the plate.

The definition of these 4 design bending moments can be found in figure B.1. This figure shows
2 cuts in 2 directions. For each direction, the top and bottom reinforcement is shown. The positive
direction of the WoodArmer moments is such that there is always tension in the reinforcement bars.
This corresponds to the main purpose of the reinforcement: taking tensile forces. This also means that
the WoodArmer moments must always be ≥ 0.

Figure B.1: Definition WoodArmer moments

If the 𝑧axis of the plate points downwards, the bending moments 𝑚𝑥𝑥 and 𝑚𝑦𝑦 of the plate are
positive for sagging and negative for hogging bending moments. For the bottom reinforcement, the
positive definition of the WoodArmer moments corresponds to the positive definition of 𝑚𝑥𝑥 and 𝑚𝑦𝑦.
For the top reinforcement, the positive definition of the WoodArmer moments is opposite. For the
bottom reinforcement, the negative values of𝑚𝑥𝑥 and𝑚𝑦𝑦 are taken. The formulas of the WoodArmer
moments are shown on the next page.
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Bottom reinforcement

𝑚𝑥𝑏 = 𝑚𝑥𝑥 + |𝑚𝑥𝑦|
𝑚𝑦𝑏 = 𝑚𝑦𝑦 + |𝑚𝑥𝑦|

(B.1)

When 𝑚𝑥𝑏 would be ≤ 0

𝑚𝑥𝑏 = 0

𝑚𝑦𝑏 = 𝑚𝑦𝑦 −
𝑚2𝑥𝑦
𝑚𝑥𝑥

(B.2)

When 𝑚𝑦𝑏 would be ≤ 0

𝑚𝑥𝑏 = 𝑚𝑥𝑥 −
𝑚2𝑥𝑦
𝑚𝑦𝑦

𝑚𝑦𝑏 = 0
(B.3)

When 𝑚𝑥𝑏 and 𝑚𝑦𝑏 would be ≤ 0

𝑚𝑥𝑏 = 0
𝑚𝑦𝑏 = 0

(B.4)

Top reinforcement

𝑚𝑥𝑡 = −𝑚𝑥𝑥 + |𝑚𝑥𝑦|
𝑚𝑦𝑡 = −𝑚𝑦𝑦 + |𝑚𝑥𝑦|

(B.5)

When 𝑚𝑥𝑡 would be ≤ 0

𝑚𝑥𝑡 = 0

𝑚𝑦𝑡 = −𝑚𝑦𝑦 +
𝑚2𝑥𝑦
𝑚𝑥𝑥

(B.6)

When 𝑚𝑦𝑡 would be ≤ 0

𝑚𝑥𝑡 = −𝑚𝑥𝑥 +
𝑚2𝑥𝑦
𝑚𝑦𝑦

𝑚𝑦𝑡 = 0
(B.7)

When 𝑚𝑥𝑡 and 𝑚𝑦𝑡 would be ≤ 0

𝑚𝑥𝑡 = 0
𝑚𝑦𝑡 = 0

(B.8)



C
Transverse shear stiffness

In the transverse direction, the bridge deck of the Blankenburg case is Vierendeeellike crosssection.
This means that next to bending deformation, there can be a lot of shear deformation as well.

The shear stiffness in transverse direction can be determined by modelling a shear frame in a
framework program, such as MatrixFrame. A frame in a framework program is able to deform due
to bending and axial deformation. In order to determine the shear deformation of the frame only, the
axial deformation of the rods in the framework must be eliminated. In MatrixFrame the user is able
to assign the following crosssectional properties: Young’s Modulus (𝐸), crosssectional area (𝐴) and
second moment of inertia (𝐼). The axial deformation of the rods can be eliminated by setting the cross
sectional area 𝐴 to infinity, as this also means that the axial stiffness 𝐸𝐴 becomes infinite. For 𝐸 and 𝐼,
the real values can be assigned.

The shear frame consists of rigidly connected vertical and horizontal rods. The shear frame repre
sents one box of the bridge deck in the transverse direction, see figure C.1. This 2120 mm wide box is
loaded with a shear force of 𝑉 = 10MN per meter in the longitudinal direction of the bridge deck.
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Figure C.1: Shear element

Upper and lowerbound shear frame models
Initially, two shear frames are created, one frame being a lowerbound and one being an upperbound.
The dimensions, loading and boundary conditions of these shear frames are shown in figure C.2. For
the lowerbound shear frame, the system lines of all rods follow the centre lines of the considered box
(see figure C.1). The upperbound shear frame follows the inner edges of the webparts and the centre
lines of the top and bottom plate. In reality, the horizontal top and bottom plate are rigidly connected
to the web. This means that in case of the lowerbound shear frame shown in figure C.2, the bending
stiffness of the top and bottom plate is underestimated in the zone of the web. This is because the
top and bottom plate are not only rigidly connected to the webs, they also experience bending stiffness
over the thickness of the web.

A shear frame that follows the centre lines of the elements is expected to deliver a lowerbound of
the shear stiffness, as the top and bottom plate are able to rotate around the centre line of the web. An
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Figure C.2: Shear frames, lowerbound (left), upperbound (right)

upperbound of the shear stiffness can be found when the system lines of the shear frame are located
at the edges of the web. This shear frame is expected to be too stiff as the top and bottom plate can
rotate around the inner corners of the web. Rotations of the top and bottom plate relatively to the web
are completely neglected in this model. The crosssectional properties of the elements of the shear
frame models can be found in table C.1. All rods have a unit width of 1 m (in the longitudinal direction of
the deck), a Young’s modulus of 𝐸 = 36300MPa. The crosssectional area is set to 𝐴 = 1 × 1010m2,
in order to set the axial stiffness 𝐸𝐴 to infinity.

Table C.1: Crosssectional properties shear frame models

# height ℎ (mm) 𝐼𝑦 (10−2m4)

1 600 18.00
2 250 1.302
3 600 18.00
4 250 0.281

Both shear frames are loaded with a shear force of 𝑉 = 10MN. One of these shear forces is the
reaction force and one is an external applied force 𝐹 = 10MN. It must be kept in mind that both models
are not fully comparable, as the external applied loads do not deliver the same bending moment for
both models. Figure C.3 shows the deflection of the upper and lowerbound shear frame models.

Figure C.3: Deflected shear frames (m). left: lowerbound, right: upperbound

The lowerbound shear frame shows a deflection of 𝛿𝑙𝑜𝑤𝑒𝑟 = 146.9mm, the upperbound shear
frame shows a deflection of 𝛿𝑢𝑝𝑝𝑒𝑟 = 52.1mm. The width of the lowerbound shear frame model is
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equal to the considered width of 2120 mm. The width of the upperbound model is smaller than the
width of the considered shear element of figure C.1. This means that the deflection of the upperbound
model could be extrapolated from the inner edges of the web towards the centre line of the web. How
ever, in figure C.3 it can be seen that the end rotations of the top and bottom plate are very small. This
means that, extrapolating the deflection line of the top and bottom plate according to the analogy of the
”tailwaggingeffect” gives a limited extra deflection. For that reason, it is assumed that the deflection
of the upperbound shear frame model belongs to an element with a width of 2120 mm.

The shear deformation of the upperbound model is almost 3 times bigger than the lowerbound model.
As the gap between both models is significantly large, there is a need for a more elaborate shear frame
model. This more elaborate shear frame is introduced in the following section.

More elaborate shear frame model
A more advanced model of the shear frame can be obtained by adding extra stiffness to the top and
bottom plate in the zone of the web. The dimensions (width and height) of the more elaborate shear
frame model are equal to the dimensions of the lowerbound shear frame. However, in the more elab
orate shear frame model, the top and bottom plate have a higher thickness over the width of the web.
The height over which the web is activated is determined in section 5.2.1, page 59, this extra height is
added to the thickness of the top and bottom plate. The more elaborate shear frame model is shown
in figure C.4. The blue elements (2,4,6 and 8) are the thicker top and bottom plates in the webzone.
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Figure C.4: More elaborate shear frame model

The shear frame presented in figure C.4 consists of 8 rods, an overview of their crosssectional
properties is shown in table C.2. The shear frame is analysed in MatrixFrame, this results into the
deformed shape shown in figure C.5. All rods have a unit width of 1 m (in the longitudinal direction of the
bridge deck), a Young’s modulus of 𝐸 = 36300MPa. The crosssectional area is set to 𝐴 = 1 × 1010m2

in order to set the axial stiffness 𝐸𝐴 to infinity.

Table C.2: Crosssectional properties elaborate shear frame model

# length 𝑙 (mm) height ℎ (mm) 𝑒 (mm) 𝐼𝑦 (10−2m4)

1 1400 600  18.00
2 300 357 53.5 4.821
3 1520 250  1.302
4 300 357 53.5 4.821
5 1400 600  18.00
6 300 240 45.0 1.634
7 1520 150  0.281
8 300 240 45.0 1.634
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Figure C.5: Deflected more elaborate shear frame (m)

From figure C.5 it becomes clear that the more elaborate shear frame model has a deflection of
𝛿 = 78.0mm. This deflection is in between the earlier found lower and upperbound (𝛿 = 52.1 −
146.9mm) The reliability of the elaborate shear frame model can be checked by comparing it to the
analytical solution of a semirigid supported beam with support settlement. This model is introduced in
the following section.

Analytical model
The shear frame model analysed in MatrixFrame can be validated by comparing it to the analytical
solution of a semirigid supported beam with support settlement, which is shown in figure C.6.
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Figure C.6: Semirigid supported beam with support settlement

In this model, the top and bottom plate act together as a parallel system. This means that the
bending stiffness of the beam is equal to sum of the bending stiffnesses of the top and bottom plate
of the bridge deck. Over the width of the web (a), the bending stiffness of the beam depends on the
higher plate thickness. On both ends, the beam is supported with rotational springs with stiffness 𝑘.
The analytical solution of this case can be determined based upon the ordinary differential equation for
a EulerBernoulli beam [4] (equation C.1). Using the relations of equation C.2 and the boundary and
interface conditions (table C.3), the analytical solution for the case shown in figure C.6 can be solved.

𝐸𝐼d
4𝑤

d𝑥4 = 𝑞 (C.1)
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𝑞 = 0

𝜙 = −d𝑤
d𝑥

𝑀 = −𝐸𝐼d
2𝑤

d𝑥2

𝑉 = −𝐸𝐼d
3𝑤

d𝑥3

(C.2)

As the bending stiffness varies over the length of the beam, the beam must be divided into 3 parts.
These 3 beams are rigidly connected using interface conditions. The beams are numbered from left
to right. The boundary and interface conditions of the case shown in figure C.6 are shown in table C.3
below.

Table C.3: Overview of boundary and interface conditions

boundary conditions interface conditions
𝑥 = 0 𝑥 = 𝐿 𝑥 = 𝑎 𝑥 = 𝐿 − 𝑎
𝑤1 = 0 𝑉3 = 𝐹 𝑤1 = 𝑤2 𝑤2 = 𝑤3
𝜙1 =

𝑀1
𝑘 𝜙3 = −

𝑀3
𝑘 𝜙1 = 𝜙2 𝜙2 = 𝜙3

𝑉1 = 𝑉2 𝑉2 = 𝑉3
𝑀1 = 𝑀2 𝑀2 = 𝑀3

Using the boundary and interface conditions shown above, the support settlement (which is equal
to the deflection at the right end of the beam) can be determined. The bending stiffness has been
calculated based upon the bending stiffness of the top and bottom plate. On both ends, the bending
stiffness is higher due to the interaction with the web. The higher stiffness is present over a length
𝑎 = 300 mm, which is half the thickness of the web. For these parts, the equivalent effective height
of the webzone is taken into account, which was introduced in section 5.2.1, page 59. The bending
stiffness of the 3 different zones of the beam can be calculated as follows:

𝐸𝐼1 = 𝐸𝐼3 = 36.3 ⋅ 1000 ⋅ ( 1
12 ⋅ 357

3 + 357 ⋅ 53.52 + 1
12 ⋅ 240

3 + 240 ⋅ 45.02) = 2.34 × 1011 kNmm2

𝐸𝐼2 = 36.3 ⋅ 112 ⋅ 1000 ⋅ (250
3 + 1503) = 5.75 × 1011 kNmm2

The magnitude of the force (𝐹) is equal to 10 MN. The length is equal to 𝐿 = 2120 mm. The only
unknown is the stiffness of the rotational spring (𝑘) on both ends of the beam, this 𝑘 is determined and
validated in the section below.

Rotational stiffness k
The rotational stiffness 𝑘 is determined based upon the relation between the bending moments and
rotations of the more elaborate shear frame analysed in MatrixFrame. The outcome of this calculation
will be validated with an analytical solution. This analytical solution is based upon the approximation
that the webparts contribute to the rotational stiffness only. It is expected that the webparts provide
the biggest part of the rotational stiffness, as these parts have much more bending stiffness (they are
thicker and shorter). The definition of the rotational stiffness 𝑘 is shown in equation C.3.

𝑘 = 𝑀
𝜙 (C.3)

For the elaborate shear frame model, the moments and rotations of the ends of the top and bottom
plate are shown in table C.4. Based upon the bending moments and the rotations of the elaborate
shear frame modelled in MatrixFrame, the rotational stiffness 𝑘 = 3.567 × 109 kNmm.
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Table C.4: Rotational stiffness 𝑘 based upon 𝑀𝑦 and 𝜙 from elaborate shear frame model

corner 𝑀𝑦 𝜙 𝑘 = 𝑀𝑦/𝜙
(103 kNmm) (10−3 rad) (109 kNmm)

top 8218.12 5.019 1.637
bottom 2380.61 1.234 1.929

∑   3.567

Analytical solution rotational stiffness k
The reliability of the rotational stiffness based upon the shear frame model can be checked with an
analytical solution. To do this, it is assumed that the webparts contribute to the rotational stiffness
only. This assumption can be made, because the webparts are much stiffer compared to the plate
parts: they have a bigger moment of inertia and they are shorter compared to the top and bottom plate.
Equation C.4 gives the relationship between the endrotation of a simply supported beam with length
𝑙, bending stiffness 𝐸𝐼, subjected to a moment 𝑀. This endrotation is on the same end of the beam at
which the moment is applied.

𝜙 = 1
3
𝑀𝑙
𝐸𝐼 (C.4)

According to equation C.3, this means that one end of the web delivers a rotational stiffness of:

𝑘 = 𝑀
𝜙 = 3𝐸𝐼

𝑙 (C.5)

The other end of the web contributes with the same magnitude to the rotational stiffness. This
means that the web provides a total rotational stiffness of:

𝑘 = 2 × 3𝐸𝐼𝑙 = 6𝐸𝐼
𝑙 (C.6)

The web has a thickness of 𝑡 = 600 mm, this means that 𝐸𝐼𝑤𝑒𝑏 = 6.534 × 1011 kNmm2. The
web has a length of 𝑙 = 1400 mm. Filling in these values into equation C.6, it follows that 𝑘𝑤𝑒𝑏 =
3.267 × 109 kNmm.

Based upon the web only, the rotational stiffness is 91.6% of the rotational stiffness based upon the
shear frame result. It is assumed that the other 8.4% of the rotational stiffness comes from the top and
bottom plate of the bridge deck. As expected, it turned out that the web has the biggest contribution
to the rotational stiffness. The rotational stiffness based upon the elaborate shear frame model (𝑘 =
3.567 × 109 kNmm, table C.4) is used to determine the deflection of the semirigid supported beam with
support settlement.
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Result
The solution to the semirigid supported beam with support settlement was found using a script in
Maple. Figure C.7 shows the deflection of the semirigid supported beam with support settlement.
From this solution it becomes clear that 𝛿 = 78.6 mm. This deflection is slightly less (3%) compared to
the deflection of the elaborate shear frame model, for which 𝛿 = 80.9 mm.

It is chosen that the shear stiffness can be based upon the result of the elaborate shear frame model.
According to this model, the shear deformation is equal to 𝛿 = 80.9 mm, when the applied shear load
is equal to 𝐹= 10 MN.

Figure C.7: Deflection 𝑤(𝑥) semirigid supported beam with support settlement





D
GuyonMassonnetBareš method

In this thesis, the GuyonMassonnetBareš method is used to verify and compared the midspan de
flection of the 3 different models. This is done for the straight deck loaded with load case LC3 (point
load at gridline B) and LC7 (point load at gridline E and G). The theory presented below is extracted
from Analysis of beam grids and orthotropic plates, by the GuyonMassonnetBareš method [1]

Theory
In the GuyonMassonnetBareš method, the reaction forces and bending moments of a bridge deck
can be calculated using the coefficient of lateral distribution (𝑘). For 9 different positions along an
transverse section, the coefficients of lateral distribution (𝑘) can be found in tables. The coefficients 𝑘
can are defined as the local deflection along a transverse section (𝑤(𝑦)) divided by the mean deflection
over the same transverse section (𝑤0):

𝑘 = 𝑤(𝑦)
𝑤0

(D.1)

The width of the bridge is defined as 2𝑏 and the bridge deck runs from −𝑏 till 𝑏. The nodes in for
which the coefficients of lateral distribution can be found in tables are: −𝑏, −34𝑏, −

1
2𝑏, −

1
4𝑏, 0,

1
4𝑏,

1
2𝑏,3

4𝑏 and 𝑏, see figure D.1. These nodes are also called reference stations.
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Figure D.1: Reference stations GuyonMassonnetBareš

The coefficients of lateral distribution are based upon the parameters 𝜃 and 𝛼. Parameter 𝜃 is a
measure for the ratio between the transverse and torsional bending stiffness and 𝛼 is a measure for
the rotational stiffness.

𝜃 can be calculated using:

𝜃 = 𝑏
𝑙
4√𝜌𝑥
𝜌𝑦

(D.2)
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In equation D.2, 𝑏 is half the width of the bridge deck and 𝑙 is the length of the bridge deck. 𝜌𝑥 is
the longitudinal bending stiffness per unit width and 𝜌𝑦 is the transverse bending stiffness per unit width.

The torsional stiffness parameter 𝛼 can be calculated using:

𝛼 =
𝐶𝑥 + 𝐶𝑦
2 ⋅ √𝜌𝑥𝜌𝑦

(D.3)

Here, 𝐶𝑥 and 𝐶𝑦 are the torsional stiffness per unit width in the transverse and longitudinal direction
of the bridge deck.

The 𝑘values for the specific values of 𝜃 and 𝛼 can be found by using interpolation. First, the tables
for 𝑘0 (torsion weak) and 𝑘1 (torsion stiff) must be calculated for the correct value of 𝜃. This can be
done by linear interpolation. So, the 𝑘values for 𝜃 = 0.43, can be found by interpolation of 𝜃 = 0.40
and 𝜃 = 0.50. Next, the 𝛼factor can be used to interpolate between the torsion weak (𝑘0) and torsion
stiff (𝑘1) values. To do this, for this interpolation, equation D.4 must be used.

𝑘𝛼 = 𝑘0 + (𝑘1 − 𝑘0) ⋅ √𝛼 (D.4)

Blankenburg case
In case of the bridge decks of the Blankenburgverbinding, the width of the bridge deck (2𝑏) and the
length (𝑙) are:

2𝑏 = 16.96m
𝑙 = 40m

The bending stiffness per unit width is equal to (see table 3.1, page 26):

𝜌𝑥 = 8.759 × 106 kNm
𝜌𝑦 = 7.008 × 106 kNm

This means that according to equation D.2, 𝜃 is equal to:

𝜃 = 8.48
40

4√8.759 × 106

7.008 × 106
= 0.22

The transverse crosssection of the bridge deck of the Blankenburg case study has a torsional
stiffness of (see page 31):

𝐼𝑡 = 11.85m4

Using 𝐺 = 15125MPa, this means that the torsional stiffness of a transverse section is equal to:

𝐶𝑥 =
11.85
16.96 ⋅ 15125 = 1.057 × 107 kNm

In longitudinal direction, the crosssection consists of a 150 mm and a 250 mm thick plate. In
longitudinal direction, the torsional stiffness per unit width is equal to:

𝐶𝑦 =
1
6 ⋅ (150

3 + 2503) ⋅ 15125 = 4.790 × 104 kNm

According to equation D.3 the torsional stiffness parameter 𝛼 is equal to:

𝛼 = 1.057 × 107 + 4.790 × 104

2 ⋅ √8.759 × 106 ⋅ 7.008 × 106
= 0.68
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Tables with kvalues
Table D.1, D.2, D.3 and D.4 are taken from [1]. In these tables, 𝑦 is the position of the node and 𝑒
the position of the load. This means that each row of the tables is the influence line for one different
load position. As the positioning of the nodes is symmetrical, only the values for loads located on the
positive side of the bridge deck are shown. The influence lines for loads applied on the left part of the
bridge deck can be obtained by mirroring.

The values 𝑘0 and 𝑘1 for 𝜃 = 0.22 can be found by interpolation the tables for 𝜃 = 0.20 and 𝜃 = 0.25.
The interpolated tables are table D.5 (𝑘0) an table D.6 (𝑘1).

Table D.1: 𝑘0, 𝜃 = 0.20

y
e b 3b/4 b/2 b/4 0 b/4 b/2 3b/4 b

0 +0.9884 +0.9948 +1.0009 +1.0057 +1.0078 +1.0057 +1.0009 +0.9948 +0.9884
b/4 +0.2421 +0.4336 +0.6251 +0.8160 +1.0057 +1.1929 +1.3767 +1.5583 +1.7394
b/2 0.5008 0.1257 +0.2495 +0.6251 +1.0009 +1.3767 +1.7514 +2.1242 +2.4961
3b/4 1.2418 0.6839 0.1257 +0.4336 +0.9948 +1.5583 +2.1242 +2.6913 +3.2581
b 1.9823 1.2418 0.5008 +0.2421 +0.9884 +1.7394 +2.4961 +3.2581 +4.0236

Table D.2: 𝑘0, 𝜃 = 0.25

y
e b 3b/4 b/2 b/4 0 b/4 b/2 3b/4 b

0 +0.9718 +0.9874 +1.0021 +1.0138 +1.0188 +1.0138 +1.0021 +0.9874 +0.9718
b/4 +0.2309 +0.4281 +0.6251 +0.8210 +1.0138 +1.2007 +1.3791 +1.5524 +1.7244
b/2 0.5019 0.1267 +0.2489 +0.6251 +1.0021 +1.3791 +1.7535 +2.1230 +2.4905
3b/4 1.2302 0.6789 0.1267 +0.4281 +0.9874 +1.5524 +2.1230 +2.6966 +3.2696
b 1.9571 1.2302 0.5019 +0.2309 +0.9718 +1.7244 +2.4905 +3.2696 +4.0574

Table D.3: 𝑘1, 𝜃 = 0.20

y
e b 3b/4 b/2 b/4 0 b/4 b/2 3b/4 b

0 +0.9912 +0.9960 +1.0006 +1.0044 +1.0061 +1.0044 +1.0006 +0.9960 +0.9912
b/4 +0.9468 +0.9610 +0.9755 +0.9902 +1.0044 +1.0167 +1.0257 +1.0328 +1.0392
b/2 +0.9058 +0.9281 +0.9513 +0.9755 +1.0006 +1.0257 +1.0496 +1.0708 +1.0906
3b/4 +0.8674 +0.8972 +0.9281 +0.9610 +0.9960 +1.0328 +1.0708 +1.1086 +1.1449
b +0.8305 +0.8674 +0.9058 +0.9468 +0.9912 +1.0392 +1.0906 +1.1449 +1.2009

Table D.4: 𝑘1, 𝜃 = 0.25

y
e b 3b/4 b/2 b/4 0 b/4 b/2 3b/4 b

0 +0.9812 +0.9912 +1.0011 +1.0095 +1.0133 +1.0095 +1.0011 +0.9912 +0.9812
b/4 +0.9156 +0.9382 +0.9619 +0.9862 +1.0095 +1.0287 +1.0407 +1.0484 +1.0546
b/2 +0.8569 +0.8899 +0.9246 +0.9619 +1.0011 +1.0407 +1.0773 +1.1079 +1.1354
3b/4 +0.8038 +0.8456 +0.8899 +0.9382 +0.9912 +1.0484 +1.1079 +1.1669 +1.2225
b +0.7539 +0.8038 +0.8569 +0.9156 +0.9812 +1.0546 +1.1354 +1.2225 +1.3133
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Table D.5: 𝑘0, 𝜃 = 0.22 (interpolation of table D.1 and table D.2)

y
e b 3b/4 b/2 b/4 0 b/4 b/2 3b/4 b

0 +0.9804 +0.9912 +1.0015 +1.0096 +1.0131 +1.0096 +1.0015 +0.9912 +0.9804
b/4 +0.2367 +0.4310 +0.6251 +0.8184 +1.0096 +1.1967 +1.3779 +1.5555 +1.7322
b/2 0,5013 0.1262 +0.2493 +0.6251 +1.0015 +1.3779 +1.7524 +2.1236 +2.4934
3b/4 1.2362 0.6815 0.1262 +0.4309 +0.9912 +1.5554 +2.1236 +2.6938 +3.2637
b 1.9701 +1.2362 +0.5013 +0.2367 +0.9804 +1.7322 +2.4934 +3.2637 +4.0399

Table D.6: 𝑘1, 𝜃 = 0.22 (interpolation of table D.3 and table D.4)

y
e b 3b/4 b/2 b/4 0 b/4 b/2 3b/4 b

0 +0.9864 +0.9937 +1.0009 +1.0069 +1.0096 +1.0069 +1.0009 +0.9937 +0.9864
b/4 +0.9317 +0.9500 +0.9689 +0.9883 +1.0069 +1.0225 +1.0329 +1.0403 +1.0466
b/2 +0.8822 +0.9096 +0.9384 +0.9689 +1.0009 +1.0329 +1.0630 +1.0887 +1.1122
3b/4 +0.8367 +0.8723 +0.9096 +0.9500 +0.9937 +1.0399 +1.0887 +1.1368 +1.1824
b +0.7935 +0.8367 +0.8822 +0.9317 +0.9864 +1.0466 +1.1122 +1.1824 +1.2552

Using the interpolation formula of equation D.4, the values of table D.5 and table D.6 can be interpolated
to get the values for 𝑘𝛼, with 𝛼 = 0.68. The values of 𝑘0.68 can be found in table D.7.

Table D.7: 𝑘0.68, 𝜃 = 0.22

y
e b 3b/4 b/2 b/4 0 b/4 b/2 3b/4 b

0 +0.9853 +0.9932 +1.0010 +1.0074 +1.0102 +1.0074 +1.0010 +0.9932 +0.9853
b/4 +0.8088 +0.8582 +0.9081 +0.9582 +1.0074 +1.0533 +1.0940 +1.1315 +1.1679
b/2 +0.6374 +0.7264 +0.8165 +0.9081 +1.0010 +1.0940 +1.1849 +1.2718 +1.3566
3b/4 +0.4700 +0.5974 +0.7264 +0.8582 +0.9932 +1.1311 +1.2718 +1.4122 +1.5506
b +0.3046 +0.4700 +0.6374 +0.8088 +0.9853 +1.1679 +1.3566 +1.5506 +1.7478

The kvalues shown in table D.7 can be plotted in a graph, see figure D.2. The different lines shown
in this graph are for different positions (𝑒) of the load. As the position of the nodes is symmetrical, the
influence lines for loads applied to the positive right part of the bridge deck can be mirrored for loads
positioned on the left part of the deck.
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Figure D.2: Coefficients of lateral distribution (𝑘), for 𝜃 = 0.22 and 𝛼 = 0.68





E
Results straight deck

This appendix gives an overview of the results of the straight bridge deck. The reaction forces, longi
tudinal bending moments are shown for each of the 7 loadcases of the dummy loads. Also the shear
forces diagrams for loadcase 3 and loadcase 7 are shown.

Figure E.1 gives an overview of the loadcases (LC1 till LC7) of the dummy applied to the straight
bridge deck.
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Figure E.1: Load cases of the dummy loads, positioned along the transverse crosssection, in the middle of the span [mm]
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Reaction forces

Figure E.2: Reaction forces straight deck
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Longitudinal bending moments

Figure E.3: Longitudinal bending moments LC1 till LC7
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Shear forces LC3

Figure E.4: Shear forces LC3, longitudinal beam / strip B, C, D, E, G, H, I and J
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Shear forces LC7

Figure E.5: Shear forces LC7, longitudinal beam / strip B, C, D, E, G, H, I and J





F
Results curved deck

This appendix shows the contour plots of the design bending moments (MxD+, MxD, MyD+ and MyD)
of the curved bridge deck. The left plots are from the grillage model. These plots are created using
excel. The right plots are from the orthotropic plate model. These plots are extracted from SCIA
engineer directly.

Figure F.1: MxD+, grillage model (left) and orthotropic plate model (right) (kNm/m)
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Figure F.2: MxD, grillage model (left) and orthotropic plate model (right) (kNm/m)
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Figure F.3: MyD+, grillage model (left) and orthotropic plate model (right) (kNm/m)
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Figure F.4: MyD, grillage model (left) and orthotropic plate model (right) (kNm/m)



G
Results curved and skewed deck

This appendix shows the contour plots of the design bending moments (MxD+, MxD, MyD+ and MyD
) of the curved and skewed bridge deck. The left plots are from the grillage model. These plots are
created using excel. The right plots are from the orthotropic plate model. These plots are extracted
from SCIAengineer directly.

161



162 G. Results curved and skewed deck

Figure G.1: MxD+, grillage model (left) and orthotropic plate model (right) (kNm/m)



163

Figure G.2: MxD, grillage model (left) and orthotropic plate model (right) (kNm/m)
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Figure G.3: MyD+, grillage model (left) and orthotropic plate model (right) (kNm/m)
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Figure G.4: MyD, grillage model (left) and orthotropic plate model (right) (kNm/m)





H
Reinforcement design possibilities

(practical example)
This appendix shows an example of the design possibilities for the reinforcement design of the longi
tudinal reinforcement at the bottom of the bridge deck (MyD) of the Blankenburg case. This example
shows which total amounts of reinforcement can be used for different realistic spacing and bar diame
ters.

For the bridge decks of the Blankenburgverbinding, the longitudinal reinforcement of the bottom plate
is placed in between the shear reinforcement. The distance between the shear reinforcement is about
1.5 m, see figure H.1 and figure H.2 for a picture of the situation in practice. This means that for this
example it is assumed that there must be an integer number of longitudinal reinforcement bars per 1.5
m.
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Figure H.1: Longitudinal and transverse reinforcement bottom plate, Blankenburg case (mm)

Bar diameters
For infra projects, the common minimum bar diameter is a reinforcement bar with a diameter of 12
mm (R12). However, this diameter is mainly used as socalled practical reinforcement. The practical
reinforcement is for example used to help the main reinforcement holding its shape. For the main rein
forcement, the most command bar diameters for infra project are R16, R20 and R25. These diameters
are the most regular and easiest available ones.
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168 H. Reinforcement design possibilities (practical example)

Figure H.2: Picture longitudinal, transverse and shear reinforcement Blankenburg case

Spacing
For the spacing of the reinforcement bars, there are 2 important requirements. The spacing between
the bars may not be too small, otherwise the concrete mixture segregates during casting. If the space
between the bars is too small, the bigger aggregates are retained by the reinforcement bars. This
results into an undesired inhomogeneous concrete. Depending on the bar diameter, the spacing can
be translated into a minimum required center to center distance of the reinforcement. For R16, the
minimum center to center distance is 100 mm. For bigger bar diameters, the minimum spacing as
assumed to be 110 or 115 mm.

The other requirement follows from the safety of the workers on building site. The spacing of the rein
forcement bars may not be too big, otherwise it would be unsafe to walk on the reinforcement. Workers
have to walk on the reinforcement just before casting (the reinforcement has to be checked by a struc
tural engineer) and during the casting of the concrete. In order to be able to walk on the reinforcement
safely, it is advised to use a maximum center to center distance of 150 mm.

Example: stepsizes longitudinal reinforcement
As shown in figure H.1, the spacing between the shear reinforcement is about 1.5 m. Within this 1.5
m, there must be an integer number of reinforcement bars. Based upon the allowed center to center
distance of 100 till 150 mm, there can be 10, 11, 12, 13, 14 or 15 longitudinal reinforcement bars in
between the shear reinforcement. It is assumed that these bars can have a diameter of R16, R20, R25
or R32 mm.

Figure H.3 shows a table in which the total amount of reinforcement (mm2/m) is shown for different
spacing and bar diameters. As said, for R20 or bigger, the minimum spacing is 110 / 115 mm. The
spacing for 14 and 15 reinforcement bars over a width of 1.5 m is equal to 107 and 100 mm. For these
2 spacing’s, only bars with a diameter of 16 mm is considered.

All possible amounts of reinforcement per meter width shown in figure H.3 are put on a list. This
list is sorted from small to large amount of reinforcement. The sorted list can be seen in figure H.4.
For each step in the list shown in figure H.4, the stepsize in the amount of reinforcement is shown in
the last column. For example, the first step size in the total amount of reinforcement per meter width is
equal to

1474− 1340
1340 = 10%
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Figure H.3: Amount of reinforcement for different spacing and bar diameter

For realistic bar diameters (R16R32) and realistic spacing (100150 mm), the stepsize in the
amount of reinforcement varies from 4% till 26%. The mean stepsize in the amount of reinforcement
is 10%. Requirements on crack width could require that (some of) the biggest bar diameters could not
be used. This could for example be a bar with a diameter of 32 mm. Excluding R32 results into a mean
stepsize of 9%.

Adjustments on the reinforcement design can be made by using different spacing and different bar
diameters. If needed, also multiple layers of longitudinal reinforcement bars can be used. This option
was not considered in the example presented in this appendix.

Figure H.4: Steps in the amount of reinforcement
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