
 
 

Delft University of Technology

Counteracting Rowhammer by Data Alternation

Lung, Stefan A.; Gaydadjiev, Georgi; Hamdioui, Said; Taouil, Mottaqiallah

DOI
10.1109/ETS61313.2024.10567079
Publication date
2024
Document Version
Final published version
Published in
Proceedings - 2024 29th IEEE European Test Symposium, ETS 2024

Citation (APA)
Lung, S. A., Gaydadjiev, G., Hamdioui, S., & Taouil, M. (2024). Counteracting Rowhammer by Data
Alternation. In Proceedings - 2024 29th IEEE European Test Symposium, ETS 2024 (Proceedings of the
European Test Workshop). IEEE. https://doi.org/10.1109/ETS61313.2024.10567079

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/ETS61313.2024.10567079
https://doi.org/10.1109/ETS61313.2024.10567079


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



Counteracting Rowhammer by Data Alternation
Stefan A. Lung, Georgi Gaydadjiev, Said Hamdioui, Mottaqiallah Taouil

Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Delft, The Netherlands

Abstract—Modern DRAMs are vulnerable to Rowhammer
attacks, demanding robust protection methods to mitigate these
attacks. Existing solutions aim at increased resilience by im-
proving design and/or adjusting operation parameters, limit row
access count by throttling and prevent bit flips by timely row
refreshing. However, scaling these methods for future DRAM
technologies may incur significant costs in terms of area, power
and/or latency. This study analyses the impact of the values
of the neighbouring cells on victim cells and introduces a row
alternation protection method, which is a novel approach that
alternates the data of attacker rows on each access to lower
the chance of bit flips in victim rows. Our analysis show that the
minimum Rowhammer count to cause a bitflip in a particular cell
does not only depend on vertical neighbours from the attacker
row, but also on the value of the horizontal neighbours from
the victim row as well as diagonal cells from the attacker row.
Row alternation is able to protect the majority of the vulnerable
cells (i.e., with 65%) for the DRAM used in our case study and
in cases where unsuccessful it significantly increases the average
minimum required Rowhammer account by 18%.

I. INTRODUCTION

DRAM has become an essential component in modern
computer systems and evolved over the many years to increase
it’s density and capacity each generation [1]. However, pushing
the technology to its limits has come at a cost as modern
DRAM memories suffer from electrical disturbances induced
by specific access patterns causing unwanted flipping of bits,
as discussed in one of the first studies on DRAM memory [2].
In 2015, Google’s Project Zero [3] showed that it is possible
to gain kernel privileges by means of a Rowhammer attack,
i.e., repeatedly hammering certain rows in the DRAM. The
results in [4] show that newer DRAM devices are becoming
increasingly more vulnerable to Rowhammer as they require
significantly fewer row accesses to inflict bit flips in neigh-
bouring rows. To prevent such attacks, it is important to design
countermeasures with negligible impact on performance, area,
latency and power.

Several hardware-based protection methods have been de-
veloped to mitigate the effects of Rowhammer. These can
be categorized in three groups: 1) throttling the access rate
of attacker rows in order to prevent reaching the required
rowhammers within a refresh period; 2) recharging victim
rows before bit flips occur; and 3) making a more robust
design by adjusting operating parameters, altering the design
or adding steps in the production process. An example of the
first group is BlockHammer [5], which tracks row accesses
and prevents rows from being accessed too frequently. In
the second group, timely recharging of victim rows, several

countermeasures exist. Examples are PARA [6], PRoHit [7]
and MRLoc [8]; they all access victim rows with a certain
probability after a neighbouring attacker row is accessed. A
second subgroup uses counters to determine when to refresh
rows. For example, CBT [9], TWiCe [10] and an ideal refresh-
based method [11] take action depending on the neighbouring
attacker row access count. In the third group, i.e., creating
a more robust design, also several countermeasures exist. In
[12], the wordline voltage is reduced to lower the effectiveness
of a Rowhammer attack, which requires a higher access count
to flip the victim row. In [2], the authors suggest increasing
the refresh rate to the minimum rowhammers required by
an attacker to perform an attack and remapping vulnerable
cells to spare cells like performed for defective cells. In
[13], hydrogen annealing as an extra step in the production
process to increase the DRAM’s resilience is proposed. All
of the above countermeasures do not distinguish between
the hammering frequency and the data values the attacker
is applying. In [14], the authors showed that the minimum
rowhammers to induce a successful bit flip is 50% lower when
the attacker uses uncharged cells instead of charged ones.

In this paper, we analyse Rowhammer in-depth by taking the
impact of both victim and attacker cell values into account.
Thereafter, we propose a novel, low-cost protection method
called row alternation. Data written back from the DRAM
Row Buffer will be inverted. By alternating the data in the
memory, the victim cell discharge is minimally impacted by
the value of the aggressor cells. During a write operation, the
row buffer cells are randomly written to either their true or
complement value to prevent an attacker from anticipating the
cell charges. The contributions of this paper are:

• A novel row alternation protection method that reduces
the acceleration of victim cell discharge caused by
Rowhammer.

• The validation and evaluation of row alternation.
• In-depth analysis of the impact of victim and aggressor

cell values during Rowhammer.

The remainder of this paper is organized as follows. Sec-
tion II provides a background on DRAM and Rowhammer.
Section III introduces the row alternation protection method.
Section IV describes the experimental setup and list of exper-
iments. Section V presents the experimental results. Finally,
Section VI discusses and concludes this paper.

2024 29th IEEE European Test Symposium (ETS) 

	

		

979-8-3503-4932-0/24/$31.00 ©2024 IEEE 

	

20
24

 IE
EE

 E
ur

op
ea

n 
Te

st
 S

ym
po

si
um

 (E
TS

) |
 9

79
-8

-3
50

3-
49

32
-0

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

ET
S6

13
13

.2
02

4.
10

56
70

79

Authorized licensed use limited to: TU Delft Library. Downloaded on December 31,2024 at 07:03:01 UTC from IEEE Xplore.  Restrictions apply. 



Vcc/2
Capacitor

Transistor

Wordline

Bitline

(a) DRAM Cell

Row Buffer

R
ow

 D
ec

od
er

Column
Decoder Mux

Column

Row

Sense
Amplifiers

I/O

(b) DRAM Architecture

Fig. 1: DRAM Cell and Architecture

II. BACKGROUND

This section provide the basics of DRAM and Rowhammer.
First a general DRAM architecture is discussed followed by
the principle behind Rowhammer.

A. DRAM

DRAMs store their information in cells by means of capac-
itive charges. A cell consists of a transistor and a capacitor
as shown in Figure 1a. As cells lose charge over time due to
leakage, a refresh command is periodically issued to restore
the capacitor charge to its initial value. Figure 1b shows a basic
DRAM architecture. Its cells are arranged in a two dimensional
matrix; cells on a row are connected to a wordline and on a
column to a bitline. A wordline can be activated at a time by
the row decoder depending on the selected address. When a
row is active, the transistor allows access to the capacitor,
i.e., the cell and the bitline will exchange charge. In case
the capacitor is charged, charge will flow from the capacitor
to the bitline. In case discharged, charge will flow from the
bitline to the capacitor. Once a row is activated, the charge
on the cells in this row are read out via the bitlines using
sense amplifiers; they measure the voltage on the bitlines to
determine the DRAM cell content. Depending on whether the
cell is initially charged or not the sense amplifier will output
a bit value of 1 or 0. True-cells will have a bit value of 1
and anti-cells a bit value 0 when charged, and opposite a 0
and 1 respectively when discharged. The output of the sense
amplifiers are subsequently stored in the Row Buffer. Finally,
a Column Decoder is used to select the desired column bits
from or to the Row Buffer.

B. Rowhammer

Rowhammer is a security exploit in DRAM memories where
frequently accessed attacker rows cause bit flips in neigh-
bouring victim rows. In [2], the authors attribute bit flips in
victim rows due to frequently issuing activate → precharge
command sequences on a single row. As read and write
commands are limited to interaction with the Row Buffer, a
Rowhammer attack is performed by accessing at least two
distinctive rows consecutively to ensure the clearing of the
Row Buffer.

During a successful Rowhammer attack, the victim’s cell
discharge rate is accelerated causing the cell charge to drop
below the read reference voltage within the refresh period.
Studies have shown that the induced bit error rate of DRAM
devices as a consequence of Rowhammer differs between man-
ufacturers, generations and types, and that the effectiveness
of Rowhammer on these DRAM modules varies [2, 4]. Unin-
tended bit flips only occur in victim cells that are charged [14];
this can be a 1 → 0 transition for true-cells and 0 → 1
transition for anti-cells. The same study showed that uncharged
attacker cells have a higher potential to flip victim cells as
compared to charged attacker cells. The speed at which the
discharging of the victim cells takes place during Rowhammer
depends on two factors, namely, electron de-trapping [14, 15]
and wordline-crosstalk [16]. A high temperature and longer
wordline activation time may increase the vulnerability of cells
to Rowhammer [11].

III. ROW ALTERNATION PROTECTION METHOD

This section discusses the proposed row alternation protec-
tion method. First it discusses the concept followed by design
and implementation choices.

A. Concept

As demonstrated in [14], the minimum Rowhammer count
depends strongly on the applied attacker data. Uncharged
attacker cells have a higher potential to flip victim cells. In
this work we target to understand this impact and propose a
countermeasure against it. The aim is to inhibit the acceleration
of the victim cell’s discharge rate by having some control on
the attacker’s cell data by altering this data throughout the
Rowhammer attack; as a result, attacker cells will be 50%
charged and 50% uncharged during the Rowhammer attack
and hence improving the worst case where the attacker cells
are 100% uncharged. Figure 2 shows this principle. The idea
behind the row alternation protection method is to reduce
the victim cell’s voltage drop such that a refresh command
successfully can restore the cell to its initial state. To realize
this, the Row Buffer can be used. Data in the Row Buffer
is written back to the memory in case another operation is
performed on a different row. By writing the complemented
value of the Row Buffer back to memory, the attacker has
no control anymore of the values written back to the cells.
However, the attacker can still control the write data to the
Row Buffer through a write operation and counteract the
inversions from the row buffer. To prevent that, written data
should also be complemented with a 50% probability.

B. Design and Implementation Choices

Figure 3 shows the modifications made to the DRAM
array to implement the row alternating protection method.
This method does not distinguish between malicious and non-
malicious row accesses. A single column is added to the
DRAM array to store the state of each row (i.e., true or
complement value). This state bit is also loaded into the Row
Buffer during a row activation.

 

Authorized licensed use limited to: TU Delft Library. Downloaded on December 31,2024 at 07:03:01 UTC from IEEE Xplore.  Restrictions apply. 



Vcc

Vth

Refresh Period

V-Cell
A-Cell

True

Time

Comp True Comp

Fig. 2: Impact of Row Alternation on Discharge Rate

Row Buffer + Alternator 

R
ow

 D
ec

od
er

Column
Decoder Mux

Alternation
Bit

TRNG

Column 
with row 
states

MC

I/O

Fig. 3: DRAM Architecture with Status Bit

Figure 4 shows a potential implementation of the logic
needed for the row alternation protection method. Reading
from a DRAM bank is shown in the left side. A row is accessed
with the corresponding status bit. The true or complement data
is subsequently forwarded to the output (Data Out) depending
on the Row State Bit. Writing the Row Buffer back to the
memory, i.e., when the row is closed, depends on whether a
write operations has been performed since the previous close
operation. We use a latch to keep track of that as shown in
the top right of the figure. In case no write operation has been
performed, MUXB is used to forwarded the inverted value
of the status bit, i.e, the inverted values of the Row Buffer
will be written back to the memory. In case a write operation
did take place, a random bit value will be used to determine
the new value of the Row State Bit and whether true or
complementary data is written to the cells. For simplicity, we
duplicated the Row Buffer in the figure. The random bit value
is denoted by TRNG in the figure which can be provided by
the memory controller. After the row closes, the latch is reset.
The random factor from the TRNG ensures that an attacker
cannot anticipate row alternation during write operations.

IV. EXPERIMENTAL SETUP

This section discusses the experimental platform followed
by the performed experiments.

A. Experimental Platform

Figure 5 shows our experimental platform. It consists of 3
main components: host PC, FPGA and DRAM3 modules. The
host PC is used to create programs that perform experiments
that are run on the FPGA. A program consists of assembly

Row Buffer
Row
State 

Bit

M
U

X
_C

Data
Out

0
1

Row Buffer
Row
State 

Bit

MUX_D 01

Write Data

TRNG

W
rit

e 
to

 B
uf

fe
r

From Array

R
ea

d 
fro

m
 B

uf
fe

r

Closed

Write

MUX_A

To Array

10

MUX_B

S

R Q

C
lo

si
ng

0 1 

Buffer 
Width

1

1
Buffer 
Width

1

Buffer 
Width

1

Fig. 4: Row Alternation Logic

Control
Unit

E
th

er
ne

t P
H

Y

Customized
LC3

ProcessorI-M
em

Reset, Hold
Atomic

DDR3 Commands

DDR
PHY

Command
Dispatcher

DDR3
Module

DDR3 Data

PC

FI
FO

FPGA

Fig. 5: Experimental Platform

instructions that are converted by a custom assembler to
binary instructions. These binary instructions are transmitted
by an Ethernet connection to the FPGA. The host PC is also
responsible for data analysis that is collected on the FPGA,
e.g., the results of a Rowhammer experiment.

We have used a Digilent Genesys 2 [17] FPGA development
board as testing platform. The FPGA receives programs from
the PC, executes them and send the results back. The control
unit on the FPGA is responsible for receiving a program from
the host PC and starting the experiment. It places all instruc-
tions inside an instruction memory. The instruction memory
is read out by a customized processor which is based on the
LC3 instruction set [18]. The LC3 instruction set is extended
with custom atomic DRAM instructions such as activate, read,
write and precharge. These DRAM related instructions are
forwarded to a Command Dispatcher unit that is responsible
for their forwarding to the DDR3 Physical Interface (PHY)
[19]. The DDR3 PHY receives the memory commands at
specific timings according to the spec, allowing the execution
of DDR3 commands with maximum data throughput. The
DDR3 PHY is part of A DRAM controller interface generated
from the Xilinx memory interface generation [20]. The DDR3
PHY interfaces with the two SDRAM DDR3 modules on the
development board. They have a width of 16-bit each and a
maximum operating frequency of 800 MHz. Each module has
8 banks, i.e., 215 rows and 210 column addresses. The exact
operating conditions can be found in [21].

B. Performed Experiments

There are three sets of experiments; they are: (1) DRAM
characterization, (2) cell vulnerability analysis and (3) evalu-
ating the row alternation protection method.

 

Authorized licensed use limited to: TU Delft Library. Downloaded on December 31,2024 at 07:03:01 UTC from IEEE Xplore.  Restrictions apply. 



V-Row

A-Row

VV-LN

AA-LN A-RN

V-RN

Fig. 6: Directions of influence on the victim cell

Set 1: DRAM Characterization - The target of this experi-
ment is to understand the architecture of the DRAM. First, we
identify the true and anti cells using a retention test with a solid
1 and 0 data pattern, respectively. Rows that have bit errors
after a solid 1 retention test are true cells; these are cells that
are initially charged and lose their charge after a long time.
Similarly, anti cells can be identified by applying a solid 0 data
pattern. Using this information, we can identify the neighbour
rows of each row by performing Rowhammer attacks. First, all
cells are charged by writing ones to true cells and zeros to anti
cells. Thereafter, Rowhammering is performed on a single row.
The rows that contain bit errors after the Rowhammer attack
are identified as neighbours of the attacker row. Finally, the
column layout can be derived by performing a Rowhammer
attack with a walking uncharged cell pattern on an attacker
row, while having the victim row cells all charged. This allows
us to identify whether the column indices of the attacker cells
and victim cells are vertically aligned. We assume that the
column indices in general increase linear in order from LSB
to MSB, e.g., cells in column 5 are to the left of cells in
column 4 and to the right of cells in column 6.
Set 2: Cell Vulnerability Analysis - The target of this experi-
ment is to identify the vulnerable cells. They are found by per-
forming a Rowhammer sequence of activate → precharge
within a refresh period (64 ms). Figure 6 shows how a
victim cell could be influenced by its neighbours during a
Rowhammer attack. The aggressor cell in red is denoted by
A and the victim cell in yellow by V. We consider the left
neighbour (LN) and right neighbour (RN) of the aggressor
and victim cell as well during the attack. The three cells on
the victim and attacker row can both take 8 different values.
Hence, 8*8=64 patterns for each victim cell will be analyzed.
Set 3: Row Alternation Evaluation - The target of this
experiment is to understand how well row alternation works as
a protection method. We replace the activate → precharge
hammer sequence with actual read and/or write commands.
As the row alternation protection method requires the flipping
of data in the row buffer, we can only simulate the attacker
behaviour using write operations. This experiment will give
an indication of how well the protection method works.

V. RESULTS

This section provides the results of the experiments.
Set 1: DRAM Characterization - The DRAM contains true

and anti-cells that are alternated each 680 or 688 rows. Each
row contains 16,384 cells. We observed for this DRAM that
an attacker row only influences one neighbouring victim at a
time and hence that rows are isolated every two rows. This fits

TABLE I: Impact of Background patterns on Bit Flipping

Data Pattern
Total
Bit

Errors

Bit
Error
Rate

Solid 1 9973 0.0037%
Solid 0 11020 0.0040%

Rowstripe 354929 0.1313%
∼Rowstripe 327193 0.1209%

well with the Open Memory Array Structure described in [1].
We also verified that two rows are vertically aligned, meaning
that the attacker and victim cell column indices are the same.

Set 2: Cell Vulnerability Analysis - Table I shows the total
number of bit flips caused by rowhammering by maximizing
the number of hammering (i.e., an amount of 667k) within
a refresh period for different background patterns. For the
true cells, the solid 1 and rowstripe data patterns are relevant.
In solid 1 both the victim and aggressor cells are charged.
In the rowstripe data pattern the victim cells are charged,
while the aggressor cells discharged. Similarly, solid 0 and
∼rowstripe (i.e., inverted rowstripe) are applied to the anti
cells. From the table, we conclude that that the rowstripe
and ∼rowstripe cases (where the victim cells are charged and
aggressors uncharged) lead to the largest amount of bitflips,
justifying a countermeasure like row alternation.

We have selected 40 victim cells to do further analysis using
the 64 patterns as shown in Figure 6. A binary search method
is used to determine the resilience of the victim cell in terms
of minimal hammercount needed to flip the victim cell. Each
specific attacker/victim data pattern is repeated 100 times.

Similarly as previous work, we observed bit-flips only in
the cases where the victim is charged. Moreover, most victim
cells are only vulnerable when the attacker data is uncharged.

Figure 7(a) shows for a true victim cell the impact of the
aggressor cells applied as shown in Figure 6. The victim
pattern is fixed to 010 (i.e., left and right cell of the victim
are 0 and hence uncharged, while the victim is one and hence
charged) and 8 patterns for the attacker have been evaluated.
The red line represent the maximum hammer count within
a refresh period. When the direct aggressor bit is 0, the
attack has the highest chance to be successful as they need
the least number of rowhammers. The left bit of the main
aggressor cell also has some impact; for example the minimum
Rowhammer count is reasonably higher for attacker pattern
010 as compared to 110. However, the impact of the left bit is
marginal when the main aggressor cell is 0 (e.g., there is less
difference between 000 and 100). The right bit has no impact
as can be seen for example by comparing attack patterns 000
and 001 and attack patterns 010 and 011.

For the particular cell in Figure 7(a), successful rowham-
mers where also possible when the aggressor cell was charged.
We did not observe this behaviour frequently elsewhere in
the DRAM. We also did not observe a lot of impact from
the attacker cell’s left or right neighbours. However when we
did observe such impact, the left or right neighbours of the
aggressor cell should always be charged for maximum impact.
We do not exactly understand this behaviour.

 

Authorized licensed use limited to: TU Delft Library. Downloaded on December 31,2024 at 07:03:01 UTC from IEEE Xplore.  Restrictions apply. 



--- 000 001 010 100 110 101 011 111
Attacker data pattern

600K

620K

640K

660K

680K

700K

720K

740K

760K
M

in
im

um
 H

am
m

er
co

un
t

Victim data pattern: 010

(a) Attacker Impact

--- 000 001 010 100 110 101 011 111
Victim data pattern

600K

620K

640K

660K

680K

700K

720K

740K

760K

M
in

im
um

 H
am

m
er

co
un

t

Attacker data pattern: 000

(b) Victim Impact

Fig. 7: Successful Bit Flips on a True Victim Cell

Figure 7(b) shows for the same cell the impact of the victim
neighbours. This cell is only vulnerable to Rowhammer attacks
when the victim is charged. Again we observe some impact of
the victim’s left neighbour cell. Opposite to the left cell of its
aggressor, a zero value in the victim’s left neighbour reduces
the minimum Rowhammer count for a successful bit flip.

To speed up the experiments, we actually loaded multiple
half words (16-bits) in the same column address region with
the same aggressor-victim data patterns. In general, although
not occurring that frequently, we observed that some even
column bits where only impacted by left neighbours and odd
column bits by right neighbours. From this we conclude that
our assumption that all column indices increase linear from
LSB to MSB is false. Most likely, the column indices are
physically mapped in another way for example to reduce the
amount of error correction in case of soft errors. Actually
the neighbours turned out to be part of another half word.
It is possible to identify the neighbours in the following way.
First, a victim row is charged and attacker row uncharged. A
potential horizontal neighbour of the victim is uncharged and
rowhammering takes place. If the cell is actually a neighbour,
the minimum Rowhammer count of the cell will reduce. We
found that cells with a column addresses 0-63 had neighbours
with column addresses 64-128 and the opposite is also true.
To obtain the neighbour cell cn of cell c, the formulas below
can be used. If the column address is between 0-63 the top
formula is applicable and for 64-128 the bottom one.

TABLE II: Impact of Row Alternation on 40 Victim Cells

Hammer
Sequence

Max
HC

Failures
(No prot.)

Failures
(Prot.)

Imp.
rate

(act → rd → pre) 640,000 38 - -
(act → wrt → pre) 609,523 26 9 65.38%

cn = c+ 64 + (3− 2 · (c mod 4))

cn = c− 64 + (3− 2 · (c mod 4))

There was no need to further analyze the neighbours as
their impact can easily be guaranteed by giving them the same
value, e.g., victim and aggressor cell charged and uncharged,
respectively and keeping the remaining cells on the victim
and attacker rows charged or uncharged. Drawback is that in
Figure 6 only 16 patterns remain of the originally 64.

Set 3: Row Alternation Evaluation - In this experiment,
we evaluate the row alternation protection method using read
and write operations. The Rowhammer sequences are shown
in Table II. The table shows for each sequence the maximum
hammercount (HC) within a refresh period of 64 ms, the
number of failing cells with no protection, and finally (when
applicable) the number of cells with protection enabled with
the improvement rate. Here we performed the analysis only on
the same 40 vulnerable cells used in the second experiment.
However, as the hamming sequence is longer here the max HC
account is lower and hence not all 40 cells where vulnerable
for this sequence. Due to not being able to modify the DRAM
architecture, we could only evaluate write sequences. With
the proposed method we were able to protect around 65%
of the cells. Without protection, the most vulnerable cell
required 390k rowhammers and the least vulnerable one 607k.
With protection, we increased the minimum hammer count on
average by 18% for the cells that we could not protect.

Figure 8 shows how the row alternation protection method
works for a particular true cell without (part (a)) and with
the protection method (part (b)). Part (a) of the figure shows
a cell that is vulnerable to Rowhammer when the aggressor
cell contains a 0. By applying row alternation, the attacker data
always get balanced. As a result, the impact of Rowhammering
will be independent of the attacker data pattern and all of them
have similar impact. For the considered cell, the minimum
Rowhammering count for a success bitflip has been increased
from 350k to 400k. Note that for this particular cell it was not
enough. This method does have a drawback, as row hammer-
ing is also possible for this particular cell when the aggressor
data is 1. Note that to perform a successful Rowhammer attack
that the attacker only needs to have access to a small part
of the row, as the complete Row Buffer is written back in
its entirety. The Row buffer is typically very wide (e.g., 16
kbits), this might introduce data dependent vulnerabilities on
other parts in the memory.

VI. DISCUSSION & CONCLUSION

In this paper, we have characterized a DRAM using reverse
engineering. True and anti cells have been found together
with the neighbouring rows. Our proposed method focused

 

Authorized licensed use limited to: TU Delft Library. Downloaded on December 31,2024 at 07:03:01 UTC from IEEE Xplore.  Restrictions apply. 



--- 000 010 101 111
Attacker data pattern

340K

360K

380K

400K

420K

440K

460K
M

in
im

um
 H

am
m

er
co

un
t

Victim data pattern: 111

(a) (act → write → pre) No protection

--- 000 010 101 111
Attacker data pattern

340K

360K

380K

400K

420K

440K

460K

M
in

im
um

 H
am

m
er

co
un

t

Victim data pattern: 111

(b) (act → write → pre) With Row Protection

Fig. 8: Impact of Row Alternation on a True-Victim Cell

on altering the data in the attacker row. Results showed that
65% of vulnerable cells have been successfully protected. It
is worth noting the following:
• Overhead: As Figure 3 and Figure 4 showed, the required

modifications to the DRAM are minimal. Adding a column
to the memory to store the status bits causes a 0.0006%
overhead. The logic needed to invert the Row Buffer data
is also very small and barely impacts the performance. In
case the DRAM uses ECC, the protection method requires
recalculating the ECC after inverting a row. To prevent such
calculations, we could always save the ECC based on the
non-inverter true values.

• Comparison with state of the art: Row alternation has
purely been proposed against countering the data value of
aggressor cells and not as a full protection scheme against
Rowhammer. It is hard to compare our method against
other types such as throttling the access rate, recharging
victim rows on time and having a more robust design, as
they use different principles. Moreover, the selected DRAM
technology and operating conditions have a huge impact on
the results. A fair comparison can only be made using the
same platform and conditions. For example, row refreshing
methods PARA [6] and PRoHit [7] have been compared to
MRLoc in [8]. They show that PARA reduces the impact of
Rowhammer the least and that PRoHit and MRLoc perform
similar. Nevertheless, row data alternation is an independent
method that can be combined with other schemes. Our low-

cost solution could help reduce overhead of other schemes,
as our scheme already reduces the impact of Rowhammer.
More research is needed in this direction.

• Applicability: Altering the row data as a protection method
is applicable for any type of DRAM and memory controller.
The method works even when data scrambling is used as
data scrambling is performed by the memory controller and
the row alternation protection method in the DRAM device.

• Limitations: Row alternation works well against leakage
due to electron de-trapping [14, 15] (as its impact is mostly
determined by the data of neighbour cells), but is less
effective against wordline-crosstalk [16] (as its impact is
mostly determined by the Rowhammer amount).

REFERENCES

[1] B. Keeth et al., DRAM Circuit Design. Wiley, 2007.
[2] Y. Kim et al., “Flipping Bits in Memory without Accessing Them: An

Experimental Study of DRAM Disturbance Errors,” ISCA, 2014.
[3] M. Seaborn et al., “Exploiting the DRAM rowhammer bug to

gain kernel privilege,” https://googleprojectzero.blogspot.com/2015/03/
exploiting-dram-rowhammer-bug-to-gain.html, 2015, [Online; accessed
14-December-2023].

[4] J.S. Kim et al., “Revisiting RowHammer: An Experimental Analysis of
Modern DRAM Devices and Mitigation Techniques,” ISCA, 2020.

[5] A.G. Yağlikçi et al., “BlockHammer: Preventing RowHammer at Low
Cost by Blacklisting Rapidly-Accessed DRAM Rows,” in HPCA, 2021,
pp. 345–358.

[6] Y. Wang et al., “Discreet-PARA: Rowhammer Defense with Low Cost
and High Efficiency,” in (ICCD), 2021, pp. 433–441.

[7] M. Son et al., “Making DRAM stronger against row hammering,” in
(DAC), 2017, pp. 1–6.

[8] J.M. You et al., “MRLoc: Mitigating Row-hammering based on memory
Locality,” in (DAC), 2019, pp. 1–6.

[9] S.M. Seyedzadeh et al., “Counter-Based Tree Structure for Row Ham-
mering Mitigation in DRAM,” IEEE Computer Architecture Letters,
vol. 16, pp. 18–21, 2017.

[10] E. Lee et al., “TWiCe: Preventing Row-hammering by Exploiting Time
Window Counters,” in ISCA, 2019, pp. 385–396.

[11] L. Orosa et al., “A Deeper Look into RowHammer’s Sensitivities:
Experimental Analysis of Real DRAM Chips and Implications on Future
Attacks and Defenses,” CoRR, vol. abs/2110.10291, 2021.

[12] A.G. Yağlıkçı et al., “Understanding RowHammer Under Reduced
Wordline Voltage: An Experimental Study Using Real DRAM Devices,”
in DSN, 2022, pp. 475–487.

[13] S.W. Ryu et al., “Overcoming the reliability limitation in the ultimately
scaled DRAM using silicon migration technique by hydrogen anneal-
ing,” in IEDM, 2017, pp. 21.6.1–21.6.4.

[14] K. Park et al., “Experiments and root cause analysis for active-precharge
hammering fault in ddr3 sdram under 3 × nm technology,” Microelec-
tronics Reliability, vol. 57, p. 39–46, 2016.

[15] S. Baeg et al., “Estimation of the Trap Energy Characteristics of Row
Hammer-Affected Cells in Gamma-Irradiated DDR4 DRAM,” IEEE
Transactions on Nuclear Science, vol. 69, pp. 558–566, 2022.

[16] A.J. Walker et al., “On DRAM Rowhammer and the Physics of
Insecurity,” IEEE Transactions on Electron Devices, vol. 68, pp. 1400–
1410, 2021.

[17] Digilent Inc., “Genesys 2,” https://digilent.com/reference/
programmable-logic/genesys-2/start, [Online; accessed 14-Dec-2023].

[18] C. Vonk, “Instruction set: Introduces a simplified LC-3 instruction set,”
https://coertvonk.com/inquiries/how-cpu-work/instruction-set-30971,
[Online; accessed 14-December-2023].

[19] 51204 - MIG 7 Series DDR2/DDR3 - PHY Only Design Guide, https://
support.xilinx.com/s/article/51204?language=en US, Xilinx, Inc., 2014.

[20] Zynq-7000 SoC and 7 Series Devices Memory Interface Solu-
tions v4.2, https://docs.xilinx.com/v/u/en-US/ug586 7Series MIS, Xil-
inx, Inc., 2015, v4.2.

[21] Micron: 4Gb: x4, x8, x16 DDR3 SDRAM Features, https://digilent.com/
reference/programmable-logic/genesys-2/start, Micron Technology, Inc.,
2009, rev. M 4/13 EN.

 

Authorized licensed use limited to: TU Delft Library. Downloaded on December 31,2024 at 07:03:01 UTC from IEEE Xplore.  Restrictions apply. 


