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Abstract

Edge computing extends the cloud computing capabilities to the edge of the net-
work to facilitate processing of the data in the close proximity of its generation.
It augments the deployment of several applications in the Internet of Things (IoT)
domain which demand low latency and near real-time response for their reliable
operation. However, the existing approaches that help accomplish this are inher-
ently static and suffice only for scenarios offering a fixed service at the edge. Thus,
rendering them infeasible for a large scale IoT scenario with several heterogeneous
services and end users such as a Smart City. Among the several challenges in real-
izing edge computing solutions for such a scenario, the impact of incorporating
key aspects of the interactions of the IoT devices and the clients with the edge, re-
mains to be explored. These interactions translate to the ease of use which is vital
to determining the degree of adoption of an edge computing infrastructure by the
end users and subsequently its profitability for the service provider.

This thesis presents EDIRO, which is an edge-driven distributed orchestration
framework for edge computing that enables the edge to drive the workload or-
chestration through the collaboration of multiple constituent edge nodes. It takes
into account the existence of on-demand and ephemeral nature of workloads that
require an input, i.e., an IoT resource such as an image or sensor data for their
execution. These IoT resources are sourced from the end users and the IoT devices
in the vicinity. Recent studies that highlight the idea of collaborative processing
and the simultaneous presence of data producers and consumers in an IoT ecosys-
tem, support this vision. The underlying concept in EDIRO is the utilization of
such IoT resources that are contributed by the end users in the vicinity, to carry
out service orchestration for the client requests. To the best of author’s knowledge,
this is the first work in the edge computing domain to conceptualize the idea of
edge-driven distributed orchestration and implement a proof of concept followed
by its evaluation and practical feasibility analysis.

The main contribution of this thesis is the edge computing orchestration frame-
work EDIRO, which is developed in Golang and released as open source to en-
courage collaboration with the community. Experiments are conducted on three
different types of computing devices emulating edge nodes in a field scenario to
determine the practical feasibility of EDIRO. The measurements include the time
to serve a client request, the overhead due to the distributed orchestration approach
and the computing resource utilization under bursty and normal traffic scenarios.
The evaluation suggests that EDIRO is feasible for practical IoT use cases and
provides a reasonable trade-off in terms of the benefits offered by this edge-driven
approach and the overhead incurred. This thesis shares valuable insights into the
ways in which this work opens up the scope of further research in this domain along
with the key findings from the system development and experimentation phase.
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Chapter 1

Introduction

This thesis proposes EDIRO, a distributed orchestration framework for edge com-
puting which enables the edge to drive the workload orchestration and serve the
client requests by utilizing the IoT resources available at the edge of the network.
This edge-driven orchestration based approach to edge computing is crucial to ad-
dressing the gaps left behind by the literature in their efforts to realize edge com-
puting solutions for the Internet of Things (IoT).

This chapter begins by stressing on the scientific and the practical relevance of
the topic of this thesis as the motivation behind this work in Section 1.1. The
research questions defined in this thesis are described next in Section 1.2. Illustra-
tion of the research methodology, contributions and the thesis outline are captured
in Section 1.3, Section 1.4 and Section 1.5 respectively.

1.1 Motivation

Lately, there has been a keen interest towards realizing IoT in an urban context to
achieve the goal of a Smart City. Under this vision, IoT will be utilized to provide
an easy and ubiquitous access to a variety of public services such as healthcare,
transportation, waste management, tourism, safety and emergency, etc., while op-
timizing cost and resource consumption simultaneously [106, 90, 55, 91, 47]. This
vision is the key to solving the problem of provisioning, administration and main-
tenance of the public services in the wake of the increasing population and sus-
tainable livelihood related challenges faced by the urban areas. The prospective
benefits that this concept promises to both the city administration and the citizens
has led to a push by many government organizations to take a step towards its
adoption [102, 75].

Meanwhile, the edge computing paradigm has contributed remarkably to the
advancement of the IoT by significantly reducing the network congestion, privacy
concerns and the latency involved in the response times for the IoT applications
[86, 88, 105]. It has been able to accomplish the aforementioned by bringing the
computing and storage resources close to the source of data generation, i.e., the IoT
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devices at the edge of the network 1. Thus, avoiding the need for transmitting the
massive amounts of data generated by these devices all the way to the distant cloud
data centre for processing and the subsequent wait for the arrival of the results. It
is this high latency and the poor response times resulting from the above round trip
in the Cloud Computing paradigm that renders the safety critical applications in
the IoT domain such as connected and autonomous vehicles infeasible [108, 109,
79, 107]. Edge computing, through its distributed architecture and geographical
proximity to the IoT devices, facilitates offloading of computations and data to
achieve near real-time response times. This further prevents the network from
getting overloaded with the traffic bursts while considerably reducing the attack
surface of an IoT application simultaneously.

However, the state of the art in edge computing is inherently static and suffices
only for scenarios that offer a particular service at the edge. This limitation stems
from the master-slave architecture that the existing approaches employ [101, 2,
50, 96]. It marks the presence of a control plane (master) in the cloud and in a
few cases, also at the edge 2, that remotely dispatches, deploys, orchestrates and
monitors the workloads that executes on the edge (slave). The major drawback
that emanates from such an architecture is the limitation of it not being applicable
in the context of a large scale distributed and complex application domain such as
Smart City which is characterized by the existence of a plethora of heterogeneous
services, devices, systems and end users that utilize these services.

One of the key challenges in realizing edge computing solutions for the IoT is
large scale service management and orchestration [88, 100, 54]. Accommodating
multi-tenancy, service level agreements (SLA), privacy concerns and the indigen-
ous heterogeneity among the end users calls for a more granular and uniquely dis-
tinguishable service management per user or a group of users, for their on-demand
service requests [78, 106, 35]. However, due to the master-slave topology, the state
of the art renders the edge oblivious to the events and the interactions among the
IoT devices and end users in its immediate vicinity, of which, it lies at the receiv-
ing end of. It is these events and interactions which forms the channel for the end
users to offload data and computations on the edge or issue on-demand service re-
quests, especially in the context of IoT and pervasive computing. Hence, the state
of the art would require the cloud to regularly fetch information regarding the inter-
actions at the edge concerning these on-demand requests. The round trip between
the edge and the cloud involved in performing such updates would result in a sig-
nificantly high latency. It also becomes infeasible for the cloud from the latency

1There appears to be no standardized or formal definition for the term edge of the network. This
term is used throughout this thesis to refer to the imaginary boundary, the immediate vicinity of
which, marks the existence of the IoT devices. The cloud resources lie at the other end of this
boundary at a far greater geographical distance from it as compared to the IoT devices. Usage of this
term is a logical means to convey the physical location of the close proximity to the source of data
generation, that is often referred to in this thesis.

2For simplicity, the term edge is used consistently throughout this thesis to refer to the infra-
structure consisting of interconnected distributed computing and storage resources placed in close
proximity to the sources of data generation to implement the edge computing paradigm.
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perspective to monitor the individual workloads executing at the edge and act on
them in response to any updates or events at the edge of the network. Besides the
high latency, this approach also suffers from failures in the event of an intermittent
or total absence of network connectivity between the edge and the cloud, thereby
disrupting the transmission of updates and subsequently the orchestration process.

Although the subject of realizing edge computing solutions for large scale IoT
has been approached in the literature from different angles and has shown prom-
ising results [103, 84, 50, 42, 69], some of the challenges remains to be explored.
Incorporating key aspects of the interactions of the IoT devices with the edge in
the edge computing infrastructure is one such challenge. It holds a crucial im-
portance from both the user and the service provider’s perspective as it translates to
the ease of use of the edge infrastructure by the former and subsequently its profit-
ability to the latter and the other stakeholders. One such key aspect is collaborative
processing in the IoT context which enables a group of IoT devices to leverage
each other’s resources on a sharing basis to combine their computational capacity
for carrying out a certain computing task.

Collaborative processing has transformed the way IoT devices and clients at the
edge of the network interact with and utilize the edge computing infrastructure
[60, 61, 103]. In a typical connected vehicles scenario, a vehicle’s query about the
condition of the road ahead of it is serviced by executing a workload on the nearby
edge compute node installed on a traffic light that utilizes the input, i.e., high defin-
ition (HD) maps and sensor data offloaded on it by other vehicles in the vicinity
[108, 109]. The aforementioned input is termed as an IoT Resource. Existing ap-
proaches lack to consider the dynamic availability of the mobile IoT resource on
the edge in making workload offloading decisions. This is central to the idea of
data locality aware workload offloading on the edge which involves bringing the
computations closer to the data. In an ideal scenario, from the user perspective, it
should be possible to offload data, computations and requests ubiquitously. On the
contrary, the master-slave topology in the the state of the art does not offer this
transparency at the edge and limits the offloading to be done on a specific node(s),
thereby requiring the users to be aware of the topology at the edge.

To this, we propose that an edge-driven orchestration architecture possesses the
potential to solve all the above highlighted problems. The edge is in the vicinity of
the events at the edge of the network and also to the IoT devices that interact with
it. Hence, it is both logical and efficient for the edge to drive the workload orches-
tration considering its capability of utilizing the local knowledge available in the
form of IoT resources and context related information to aid in the orchestration
process. The scope of collaborating with the other edge nodes to accomplish the
above opens up exciting research challenges and opportunities from the distributed
systems perspective in edge computing [82]. Although reducing the dependence
of the edge on the cloud certainly offers benefits in this context, it also implicitly
burdens the resource constrained edge with the task of performing control and man-
agement plane operations in addition to executing the workloads corresponding to
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the client requests. Investigation of this trade-off could lead to gaining valuable
insights into the practical feasibility of this edge-driven approach and the broader
idea of an autonomous edge computing architecture. This could not only open up
interesting research directions in the edge computing domain, but also benefit the
users from an improved user experience and the edge infrastructure provider from
the subsequent profits.

1.2 Problem Statement

The primary goal of this thesis concerns with exploring the feasibility of an edge-
driven IoT resource-aware orchestration architecture for practical IoT use cases.
In this regard, three major research questions (RQ) are defined with further sub-
questions identified for each of them as listed below.

RQ1: What is the significance of and the need for an edge-driven orchestration
based edge computing architecture for IoT?

a) What are the impacts of such an edge computing infrastructure on the users
and edge service providers in the context of IoT?

b) Why are existing proposals inadequate for the evolving IoT environment?

RQ2: How to orchestrate the workloads corresponding to the on-demand service
requests by utilizing the local knowledge available at the edge in the form of IoT
resources?

a) How to perform IoT resource-aware edge offloading via the collaboration of
constituent edge nodes in the infrastructure?

b) How to provide dedicated service management features to an individual or a
group of end users in such a scenario?

c) How to accomplish providing edge transparency to the end users to maxim-
ize their ease of use of the edge computing infrastructure in place?

d) What are the architectural design and operational challenges associated with
this edge-driven distributed orchestration approach?

RQ3: What is the feasibility and the associated trade-off of this edge-driven
approach for practical IoT use cases?

a) What is the latency overhead incurred due to the inter edge collaboration and
what is the trend of its variation with the increasing load on the system?
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b) How does the overhead from the inter edge collaboration affect the handling
of the on-demand client requests and what is the trend of its variation with
the increasing load on the system?

c) How does the system respond to the traffic bursts that emanate from the data
and computation offloads from several clients simultaneously?

d) What is the trade-off between the benefits from this edge-driven approach
and the overhead incurred due to the same?

e) What are the limitations of the framework with respect to its feasibility for
practical IoT use cases?

1.3 Methodology

The research style of the author can be summarized as one that is driven by identi-
fying and approaching to solve problems of scientific and practical significance in
the literature through proof of concept development and measurements. The re-
search methodology followed in this thesis comprises of several phases in which
this project was carried out as described below. The answers to the questions con-
cerning the What, Why and How for the activities in each phase are also provided
below to render further clarity and justification to the research methodology fol-
lowed in this thesis.

1. Literature survey

The literature survey for this thesis was conducted in two phases. The first phase
served as a means to discover a challenging research topic of significant scientific
and practical relevance within an emerging but widespread technical domain such
as edge computing. This was followed by thoroughly reviewing the current state
of research in the selected research topic to identify the existing limitations, open
questions, unconvincing implicit assumptions, trends and opportunities which would
contribute in constructing the problem statement for this thesis. The outcome of
the literature survey was an organized category wise classified collection of the pa-
pers published on edge computing. The comments added in the papers were later
utilized in writing the literature review for the research proposal.

Inputs from key stakeholders and developer community

A crucial part of the literature survey was the involvement and interactions with
several teams and stakeholders directly associated with the state of the art in edge
computing for IoT such as Microsoft Azure IoT Edge [2], Amazon IoT Greengrass
[1], Kubeedge [14, 101], etc. Valuable insights were gained into several design and
deployment aspects of the respective state of the art through discussions with the
aforementioned people via active participation in online community forums and
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conferences. One of the main highlights of these interactions was recording of
some findings in particular that do not directly feature on the online documenta-
tions of the aforementioned projects.

2. Formulation of Research Proposal

Post the conclusion of the literature review, a research proposal was formulated
containing the literature review, research questions, target use cases, intended con-
tributions and a tentative project timeline. However, it underwent significant modi-
fications later following the redefinition of the scope of the thesis, the problem
statement, deprioritization and the subsequent elimination of contributions and
ideas that were purely engineering focused.

3. System Design

The goal of the system design phase was to come up with the blue print of the
system architecture which can be later implemented as a software prototype using
appropriate tools. Since the proposed orchestration framework should be able to
answer all the research questions formulated earlier, the very same research ques-
tions are laid as the foundations for the development of the system design.

Approach to answering research questions:

• The approach to answering RQ1 is driven by studying the evolving trends
in the target application domain and the use case in the context of which
an edge computing solution in this thesis is proposed. Because the research
question concerns with the significance and the need for the proposed idea,
it is logical and important to study its impact on the associated application
domain, the end users and the concerned stakeholders. Moreover, it is clearly
highlighted why the existing approaches are inadequate in this regard which
helps further strengthen the relevance of the proposed idea.

• The approach to answering RQ2 is driven by the architectural and design per-
spective of the orchestration framework as each of the sub questions maps to
a feature that is provided in the framework. The thought process behind the
design of the orchestration strategies and the service management techniques
concerning the research question was based on studying the requirements of
the application domain, i.e., the evolving trends in the large scale IoT envir-
onment and the limitations of the state of the art. Hence, this approach is in
synchronization with the ultimate goal of the orchestration framework and is
the ideal choice for answering the associated sub-questions.

• In order to convey the overhead incurred due to the proposed approach in
RQ3, certain measurement metrics are identified and relevant experiments
are devised to measure it in different scenarios. The main criteria for the
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selection of these metrics was based on the overhead that emanates from the
frequent communication and synchronization in the operation of a distrib-
uted system, as is the case in the proposed orchestration framework.

4. Proof of concept implementation and experiments

This phase was marked by the conscious design choices that are made for the tools,
techniques, hardware and software platforms to be utilized for the software devel-
opment of the orchestration framework and its subsequent evaluation. These design
choices include the selection of the programming language, virtualization techno-
logy and a baseline orchestration platform which could be further extended with
the proposed framework. The most common development tools and techniques
in the context of edge computing were compared and weighed against each other
based on their pros and cons before proceeding to select one. Besides being a sys-
tematic way of going about implementing a proof of concept, this exercise helped
in gaining key insights into some of the tools and discover their capabilities from
system design perspective especially in the context of edge computing.

1.4 Contributions

The contributions in this thesis are summarized as follows:

1. Identification, explanation and documentation of the current research and
knowledge gap that exists in literature of edge computing for IoT in form of a
gap analysis. It renders insights into the shortcomings of the current research
in this domain and lays emphasis on the need for an alternative architecture
for edge computing through relevant justifications and examples.

This part of the work addresses the research question, ”What is the signific-
ance of and the need for an edge-driven orchestration based edge computing
infrastructure for the IoT?”

2. Design and implementation of a distributed orchestration framework in Golang
for edge computing that is capable of utilizing the local knowledge available
at the edge in the form of IoT resources to orchestrate the workloads.

This part of the work addresses the research question, ”How to orchestrate
the workloads corresponding to the on-demand service requests by utilizing
the local knowledge available at the edge in the form of IoT resources?”

3. Experimental evaluation and practical feasibility analysis of EDIRO provid-
ing insights into the into the ways in which the work carried out in this thesis
opens up the scope of further research in this domain along with the key
findings from the system development phase.
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This part of the work addresses the research question, ”What is the feasibility
and the associated trade-off of this edge-driven approach for practical IoT
use cases?”

4. Open source contribution: The source code of EDIRO is released as an open
source at [5] to encourage collaboration with and experimentation by the
research and developer community related with edge computing.

5. Research contribution: The proposed idea and the preliminary results of this
work were published at the poster session of ACM CoNEXT 2019. The
associated paper published for the same is available at [26]. This activity
served as an effort to make a contribution to the research community by
sharing the valuable insights into the ways in which the work carried out in
this thesis opens up the scope of further research in this domain along with
the key findings from the system development phase. It was also a means
to receive feedback on the work which could be incorporated for further
improvements.

1.5 Thesis Outline

The remainder of the thesis is structured in the following way.

• Chapter 2: Background and Related Work provides the technical back-
ground and the literature survey for the work carried out in this thesis.

• Chapter 3: EDIRO: Edge-driven IoT resource-aware Orchestration Frame-
work describes the design and implementation of EDIRO, i.e., the proposed
edge-driven distributed orchestration framework for edge computing.

• Chapter 4: Experiments and Results presents the experimental evaluation
of EDIRO.

• Chapter 5: Conclusions and Future Work summarizes the contributions,
provides answers to the research questions defined in the thesis, makes re-
commendations for future work and presents the concluding remarks.
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Chapter 2

Background and Related Work

This chapter provides the technical background and presents the literature survey
conducted for this thesis. Section 2.1 provides the necessary background, defin-
itions of core concepts and terminologies related to edge computing to equip the
reader with the required technical competency in order to understand and appreci-
ate the work done in this thesis. Section 2.2 introduces the underlying technologies
and concepts that enable the edge computing paradigm. Section 2.3 describes the
impact of edge computing on the IoT by highlighting relevant application scenarios
and gives on overview of the core challenges concerning the realization of an edge
computing solution for the IoT. This is followed by the literature review of the ex-
isting work in the domain of edge computing for the IoT. The chapter concludes
with presenting a gap analysis in Section 2.4 highlighting the unexplored chal-
lenges and open questions as identified by a detailed analysis of the key findings
from the literature survey.

2.1 Edge Computing Overview

Edge computing is an emerging technology which has had a profound impact on
the Information, Communication and Technology (ICT) domain in a quick span
of time. This is evident from the growing research interests towards it from the
academia and investments from the industry. It has rendered a significant contri-
bution in enabling the modern trends in the ICT domain such as IoT, mobile and
ubiquitous computing by addressing the key concerns and shortcomings that arise
from the Cloud Computing model.

In order to set up the context for the work done in this thesis, understanding why
and how edge computing came to the fore in the first place in a space that was dom-
inated by the cloud including the very concept of it, is of paramount importance.
This chapter begins by explaining the same in Section 2.1.1. This is followed by
introducing the related concept and the explaining the edge computing architecture
in Section 2.1.2.
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2.1.1 The Shift from Cloud Computing to Edge Computing

Over the years, Cloud Computing has been the key enabler of the deployment and
distribution of infrastructure, services and applications in the information techno-
logy domain [81, 31]. Enterprises leverage the infinite compute, storage and net-
working resources in the cloud through a convenient pay as you go model for their
routine business operations and to deploy services and applications for their cus-
tomers [52]. The Infrastructure as a Service (IaaS), Platform as a Service (PaaS),
Software as a Service (SaaS) and serverless computing models [62, 68, 57, 98]
offered by the cloud liberates the enterprises and the individuals from having to
possess, operate and manage the hardware and software assets themselves in order
to use the aforementioned services. To put things into perspective, all one needs
is an internet connection on their personal computing device in order to access an
otherwise computationally and storage intensive application which is hosted on a
cloud server at a large data centre in some part of the world. The ubiquitous adop-
tion of Cloud Computing has made it possible to access desired media content over
the internet delivered by platforms such as Netflix, download and use billions of
mobile applications on a smartphone, leverage high end servers to train a machine
learning model or set up an IT infrastructure for an entire organization in a matter
of few seconds to minutes among many others.

Figure 2.1: Shift from Cloud to Edge Computing

With its highly available centralized pool of abundant resources, cloud becomes
the ideal choice for offloading data intensive and resource greedy computations or
workloads. However, this approach fails to deliver when it comes to latency sens-
itive applications especially in the Internet of Things (IoT) domain as explained in
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the discussion to follow.
The arrival of the IoT has witnessed a proliferation of devices or the Things em-

bedded with processing and sensing capabilities [28, 32]. These devices account
for a significant presence on the internet owing to their connections to the mobile
applications and other similar devices. Such devices have a ubiquitous presence
around us by virtue of their integration into wearables, smartphones, homes, trans-
portation, urban infrastructure, etc., and are characterized by their limited compu-
tation capabilities and battery life. In a cloud computing infrastructure, the data
generated by these devices is offloaded to the cloud servers for processing from
the perspective of the end to end IoT applications. Lately, there has been an emer-
gence of IoT applications in the domain of autonomous and connected vehicles,
smart city, security and surveillance which enable innovative use cases. These
applications demand near real time response and low latency for their reliable op-
eration [106, 45, 48, 99].

However, Cloud Computing fails to deliver on this front due to the following
reasons.

1. The Round Trip Time (RTT) from the IoT device to the cloud correspond-
ing to the transportation of the entire data from the device to the cloud for
processing, to the reception of the results back to the device, is beyond the
latency and real time response requirements for the applications in discus-
sion [30, 108]. Taking into account the criticality and the context of these
applications, a violation of the latency requirements could lead to fatal con-
sequences.

2. Considering the substantial increase in the number of IoT devices and sub-
sequently the data produced by them, the network bandwidth consumption
increases manifold due to the data transaction to and from the cloud which
ultimately puts the network under immense load further worsening the scen-
ario.

3. Transmitting raw data from the IoT devices over the network to the cloud
raises privacy and security concerns.

Edge computing is a computing paradigm that facilitates computation and pro-
cessing close to the source of data generation by extending the cloud resources to
the edge of the network [86, 88]. This is achieved via an infrastructure consisting
of interconnected distributed computing and storage resources, commonly referred
to as edge nodes, placed in close proximity to the sources of data generation itself
as shown in Figure 2.1. By doing so, it compliments the cloud by extending its pro-
cessing capabilities to the edge of the network, although in a limited capacity. The
practical realization of edge computing paradigm has been made possible by the
technological advancements in the hardware aspect of the IoT which have marked
the arrival of low cost stand alone embedded computing devices and single board
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computers. The small form factor and sufficient computing capabilities that these
devices possess makes them ideal for utilization in the context of edge computing
[70].

2.1.2 Related Concepts and Architecture

The idea of provision computing and storage resources at the edge of the network
is the key to ensuring service delivery guarantees to the end user and devices be-
sides enabling several applications. This subsection introduces the key concepts
and technologies enabling computation at the edge of the network followed by the
architecture of edge computing. Although referred in the literature by different
names, these concepts share the same end goal and differ only slightly in their
approaches and the underlying implementation. The following discussion is struc-
tured in a manner which offers insights into the evolution of this idea over the years
since its inception and how the technological trends around it have influenced it to
a state that it is at present.

A. Cyber Foraging

Cyber foraging, proposed by Satyanarayanan [85], is among the first works in this
regard. In this concept, a mobile device with limited computational resources lever-
ages the rich computing resources of servers available in its close proximity to aug-
ment its computational capabilities. The servers referred to in this work are termed
as surrogates and specified as the desktop computers with wired access to high
bandwidth internet. In a typical scenario, a mobile device could offload a compu-
tation heavy task to such a surrogate server in the vicinity which can then make use
of its computation resources and the high speed internet connection to perform the
computation and fetch the required data in quick time. After the processing, the
results are conveyed back to the mobile device. The underlying technique in cyber
foraging is computation offloading which is discussed in detail in Section 2.2.2.

B. Cloudlet

The concept of Cloudlet was introduced in 2009 in order to adapt cyber foraging
for mobile computing [87]. A cloudlet is a resource rich micro data centre com-
prising of a single computer or clusters of computers with access to high speed
internet connection. Presence of such multiple cloudlets facilitate seamless com-
putation offloading by mobile clients. The cloudlets are implemented using the
virtual machine (VM) technology in order to meet the demands of the mobile cli-
ents to be able to instantiate multiple diverse and customized applications on the
cloudlets with specific run time and operating system requirements.
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C. Mobile Edge Computing

Mobile edge computing (MEC) is an initiative by ETSI (European Telecommu-
nications Standards Institute) to provide cloud computing resources at the edge of
the mobile networks within the radio access network (RAN) [25, 41]. The RAN
is part of the cellular network infrastructure which connects the end users to the
core network of their respective mobile network provider through which cellular
services are offered. The large geographical area covered by RAN is split up in
specific sectors which are covered by individual base stations. MEC servers with
computing and storage resources are installed on these base stations for the end
users to leverage them. MEC is a key enabling technology for 5G as the end users
can benefit from leveraging the computing and storage resources at the edge of the
mobile network accessible over high speed 5G internet connection. MEC servers
are operated by the mobile network infrastructure provider. Being co-located with
base stations, MEC servers benefits from the additional features of accessing posi-
tion and mobility related information of the end users by being co-located with the
base station [84]

D. Fog Computing

Fog computing was introduced by Cisco in 2012 [73]. It shares the same end goal
as edge computing which is to facilitate computation at the edge of the network by
extending the cloud resources there. There are numerous overlapping definitions
and interpretations of fog computing in the literature. A common notion among
these is that fog computing lays specific emphasis on the interaction between the
resources at the edge of the network and the cloud [73]. Thus, focusing on the
networking aspects in particular. On the other hand, edge computing is typically
associated with provisioning the computation capabilities at the edge of the net-
work and is often associated with the compute and storage infrastructure rather
than its communication and connection with the cloud. However, both edge and
fog computing aims to solve the same problem and share similar design philosophy
and technical challenges. Since this thesis is concerned about the design, develop-
ment, and feasibility analysis of an edge computing infrastructure that can operate
autonomously with minimal support from cloud, the term ’edge’ is used through-
out this work for consistency except when referring specific works in the literature
which use the title ’fog’ explicitly.

Edge Computing Architecture

The edge computing paradigm extends the cloud resources to the edge of the net-
work, i.e., in close proximity of the sources of data generation. The most widely
used and referred to architecture of edge computing is the three tier architecture
[74] as shown in Figure 2.2. The description of the entities that constitutes these
tiers is as follows:

15



Figure 2.2: The three tier edge computing architecture

1. Tier 1 comprises of the end devices which are the source of data generation.
These could be the sensors installed in an IoT environment, mobile phones,
handheld mobile computing devices, vehicles embedded with IoT sensors,
etc.

2. Tier 2 constitutes the edge layer which comprises of one or more intercon-
nected compute servers and storage resources. These are the resources which
are extended from the cloud towards the edge of the network in order to sup-
port the applications and end users by facilitating computation offloading.

3. Tier 3 represents the cloud data centre which houses a large pool of abund-
ant resources and is typically characterized by centralized management and
processing of computations. Often the cloud is responsible for managing
the workload deployment and management operations at the edge while also
acting as an offloading destination itself for the computations that are too
resource heavy for the compute resources at the edge.

While the three tier architecture is the most basic and logical architecture for
edge computing, it has been revisited by several studies in the past according to
the requirements of the target application and strategies of resource management.
Variations and modifications to this exist as per target application domain and the
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enabling technologies used. For example, [72] proposed a multi-tier cloud archi-
tecture deployed over the geographic span of the network. It provides compute and
storage resources of varying capacities in succession along the path between the
edge of the network and the cloud. The authors termed the proposed computing
paradigm as path computing.

2.2 Key Characteristics and Enabling Technologies

This section introduces and discusses three main contributing technologies and key
characteristics of an edge computing infrastructure, namely, lightweight virtualiz-
ation, computation offloading and service orchestration.

2.2.1 Lightweight Virtualization

Edge computing deals with the deployment of a multitude of applications which
have dependencies on specific operating systems, run time environments and lib-
rary packages. Furthermore, the privacy and security regulations demands these
applications to be executed in isolation from other applications on the same edge
server. In order to meet these requirements, the edge computing paradigm utilizes
virtualization technology to facilitate provisioning of multiple heterogeneous ap-
plications by providing them a virtualized build and runtime environment. The
sandbox execution environment provided by these technologies is ideal in this
scenario.

This subsection discusses of the impact of the state of the art in lightweight
virtualization technology on the edge computing paradigm. It describes how the
usage of virtualization technology in edge computing has evolved over time with
respect to the impact of the evolving characteristics and trends in the IoT domain
on edge computing.

A. From Virtual Machine to Containers

The first use of an underlying virtualization infrastructure in edge computing was
done in the form of virtual machines in Cloudlet [87]. This was the first step to-
wards improving the scalability of edge computing by enhancing the capability of
the edge servers to simultaneously accommodate multiple applications with differ-
ent operating system and run time dependencies. The sandbox like functionality
offered by VMs and the fact that multiple of such VMs could run in isolation with
the help of a hypervisor on a single computer, opened the doors for its quick adop-
tion in edge computing. However, the large memory footprint, high I/O overhead
and slow boot up time of VM is a major bottleneck in the context of edge comput-
ing.

An operating system based virtualization technology such as container is able to
solve the aforementioned issues that exists in VM. A container is basically a run-
ning instance of a container image which is created by packaging the application
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code together with the required set of libraries and other dependencies. Since mul-
tiple containers on a machine share the same host operating system’s kernel, the
size of the application images are significantly smaller as compared to a VM. This
is conveyed by an architectural comparison between VM and containers as shown
in Figure 2.3. It is for these reasons that container is currently the go to choice for
the underlying virtualization technology in edge computing [39, 63, 77, 33, 27].

Figure 2.3: Comparison of VM, Containers and Unikernels [24]

B. Unikernel

Unikernels are specialised, application specific, single address space machine im-
ages created using library operating systems [64, 23, 65]. They are a very resource
efficient way of deploying services on the cloud. A developer can create a stan-
dalone kernel by compiling the application code written in a high level language
bundled together with the libraries required by the application. These libraries
are offered by a library operating system such as Mirage OS [17] under a pro-
gramming framework which provides the underlying operating system constructs
that are required for the application’s execution. The resulting machine image, i.e.
the unikernel, can be booted on hypervisor such as Xen or KVM. As conveyed
through Figure 2.3, unikernels are considerably lightweight as compared to VMs
and containers and can boot in milliseconds since they only contains the libraries as
required by the application, thereby reducing the attack surface on the application
simultaneously [23].

C. MicroVM

The choice of selecting either VM or containers comes with its own set of advant-
ages and disadvantages. VM provides better security and workload isolation fea-
tures but suffer primarily from a large memory footprint, while containers drastic-
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ally reduce the memory footprint as compared to virtual machine but compromise
on the level of security and workload isolation aspects. To this end, Firecracker
is a new open source virtualization technology from Amazon that brings the best
of both worlds [6]. It enables the deployment of lightweight virtual machines or
microVms. Firecracker in essence is a virtual machine monitor (VMM) that uses
KVM as the underlying virtualization technology to run and manage microVMs.
It was initially planned to be utilized for development and experimental purposes
in this thesis with a motive to make the first effort to benchmark it for IoT edge
computing use cases and generate insights into its capabilities. But, this decision
had to be done away with in the interest of time and the lack of community support
because this technology was still in early development phase then.

Takeaways

Although by providing better security and isolation among the various applications
executing on the host machine VM forms the ideal choice for supporting multi ten-
ancy at the edge, its large memory footprint, high I/O overhead and slow boot up
time makes its utilization infeasible for large scale IoT scenarios. In such cases, the
use of VM becomes a bottleneck on resource constrained edge servers due to the
issues highlighted above. Containers are the preferred virtualization technology
in edge computing these days due to their small memory footprint and fast boot
up times [39, 63, 94]. Presence of several open source projects offering container
runtime, full fledged platforms and even tools to build a customized container plat-
form [18] further make their usage convenient and popular [77, 33, 27]. The latest
lightweight virtualization technology such as unikernels possesses even smaller
footprint than containers and quicker boot up times. Unikernels are relatively new
in the virtualization technology world, however, their benefits have attracted them
to their utilization in edge computing. Recent researches have exploited unikernels
to run computations at the edge and have shown promising results [71, 36, 37].
While unikernels offer several benefits over containers and VMs, their adoption in
the edge computing domain is still in a very early stage. The downside being that
unikernels need to be built from scratch which can prove to be a significant engin-
eering effort based on the complexity of the base application. Recent works in this
area in the form of programming frameworks and open source projects [11, 34] is
an encouraging sign and the adoption of this technology in edge computing domain
is expected to pick up pace in near future.

To summarize, the development of lightweight virtualization technology has res-
ulted in a significant positive impact on edge computing. Besides facilitating ex-
ecuting multiple different computations on the edge servers packaged as applica-
tions with a tiny memory footprint, they also play a vital role in enabling an im-
portant phenomena in edge computing as discussed in the following subsection.

19



2.2.2 Computation Offloading

Computation Offloading enables the end users with resource limited computing
devices to offload any compute-intensive or latency-sensitive tasks to a more power-
ful computing device in the vicinity possessing rich processing capabilities. In the
context of edge computing, this phenomena is central to facilitating the end users
to leverage the compute and storage resources on the edge servers and also on the
mobile computing devices possessed by other clients in the vicinity. Hence, com-
putation offloading is the backbone of edge computing in many ways. It is the way
of delegating the computation to a capable edge server or device to ensure service
guarantees to the end users and reduce the delay in response to the client requests.

Computation offloading is a phenomena in edge computing that is applicable
to both the end users and the edge infrastructure, and can be studied or analyzed
from either perspective. The end user perspective of computation offloading is
concerned with relaying a service request, transmitting the raw data or offloading
a computation on the edge servers. This procedure involves the discovery of the
appropriate edge server(s), the subsequent communication and data exchange with
it which goes out of the scope of this thesis. Hence, the discussion related to it
is skipped. The edge infrastructure perspective of computation offloading is of
interest in the context of this thesis as it is an integral part of the edge orchestration
process. The computation offloading procedure in edge computing involves two
main steps concerning with the questions concerning What to offload? and Where
to offload?. A brief description of each step is provided below and highlight the
most common approaches undertaken in the literature to implement them.

Step 1. Application Partitioning

Application or task partitioning is the first step in the computation offloading pro-
cedure and it corresponds to answering the question concerning What to offload?
in edge computing. This practice is carried out to accelerate the process of execut-
ing a workload at the edge by splitting the task into multiple smaller tasks which
can then be offloaded to either the other edge nodes in the vicinity, to the cloud or
to the IoT devices as well. This practice is utilized in scenarios when either the size
of the offloaded task is big enough to be handled by a single resource constrained
edge node or when certain components of the task are best suited to be handled
by specific edge nodes considering the parameters such as data locality, computing
resource availability, etc. This mechanism is of significant importance especially
from a distributed edge computing architecture point of view. An effective task
partitioning scheme and its subsequent distribution to the constituent nodes in the
system is the key to ensure quick servicing of client requests by breaking computa-
tions into smaller chunks, distributing it among the edge servers and operating on
them in parallel. The computations offloaded to the edge servers by the end users
is partitioned on the basis of certain set of constraints. These constraints are spe-
cific to the application or the desired optimization parameter such as cost, latency,
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energy, etc. [53, 59]. For instance, Tsai et al. proposed a fog computing platform
for distributed analytics in which the multimedia applications such as crowd detec-
tion is split into three separate sub components using TensorFlow and deployed on
respective edge nodes [96].

The downside of application partitioning approach is the post processing accu-
mulation of the results from all the participant nodes and conveying the results
back to the end user. The overhead will only grow with increasing complexity of
the applications. Hence, application partitioning is dependent to a large extent on
the feasibility of partitioning the application itself into smaller chunks of compu-
tations which can be executed independently and then aggregated towards the end
to generate the final results.

Step 2. Determining Offloading Destination

This step corresponds to answering the question concerning Where to offload? in
the computation offloading process of edge computing. From a broader perspect-
ive, an edge computing infrastructure comprises of the cloud, the edge servers at the
edge of the network and the IoT devices in possession of the end users. Although
the edge servers are the most appropriate choice to execute the offloaded and sub-
sequently partitioned computations, recent studies have also explored the prospects
of offloading the computations to the IoT devices held by end users and also to the
cloud. The possession of sufficient processing capabilities in the IoT devices as a
result of the advancements in embedded computing technology has made it feas-
ible for them to contribute to the processing of the workloads offloaded at the edge.
For instance, Yigitoglu et al. proposed an edge computing infrastructure that in-
telligently partitions the tasks in real time based on the capacity possessed by by
the edge devices and servers to execute them [103]. In this manner, besides the
edge servers, a chunk of the computations offloaded by mobile clients can also be
handled by other mobile clients in the vicinity. Offloading a part of computations
to the IoT devices is an effective and clever way of exploiting the computing re-
sources on mobile devices. However, in order to accomplish this, the end users
must be a part of the edge infrastructure itself and must identify themselves with it.

On the other hand, offloading part of the computations to the cloud is a way for
the edge to relieve itself from computation heavy, latency insensitive tasks or utilize
cloud as a backup for handling client requests in case of peak loads. For instance,
Tong et al. proposed a hierarchical edge cloud architecture to efficiently serve the
peak loads of the offloaded computations from mobile users [95]. They developed
algorithms for workload placement to distribute the loads between the edge and
the cloud. Their results showed that their hierarchical edge cloud approach outper-
formed the flat edge model by more than 25% when considering the average delay
in program execution. Bruneo et al. proposed a fog computing platform for Smart
City applications in which a major part of the workload was executed on the end
devices [35]. Kar et al. leverage the vehicles as edge compute nodes for estimating
the traffic on the road by processing the video streams from front facing cameras
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[56]. The decision regarding determining the offloading destination can be based
on several factors and optimization metrics such as cost, latency, energy, mobility,
etc. as explored in the literature [53, 59, 104]. Among these, two main techniques
of computation offloading are discussed particularly given their relevance in this
thesis.

A. Computing resource-aware offloading

Computing resource-aware offloading is driven by the availability of the comput-
ing resource such as the RAM, CPU, disk space, etc on an edge node to execute a
workload. In this technique, the incoming computation at the edge is offloaded to
the edge node which possesses sufficient computing resources to execute it. Such
an offloading scheme requires continuous monitoring of the resource availability
on all the edge nodes that constitute the edge infrastructure. Typically, this is ac-
complished via a master or a central controller entity either on the edge or in the
cloud. Recent research have also proposed techniques to further compliment this
offloading technique by monitoring the environmental parameters that may cause
potential impact like network bandwidth. For instance, Albalawi et al. proposed
an architecture for in network computing called INCA that considers the availabil-
ity of computing resources and the current status of the network bandwidth as the
basis of workload placement across the edge and the cloud [29]. The main object-
ive of their work is to achieve join optimization of the computing and networking
resources in order to reduce the delay in handling client requests.

B. Edge Offloading

Edge offloading is a technique proposed by Cozzolino et al. in their work on de-
veloping an edge offloading architecture called FADES [36] which enables applic-
ations to be shipped to the edge from the cloud. The objective of this architecture
is to carry out small and lightweight tasks at the edge by directly taking advantage
of the data locality there. The execution of small task fragments on the edge fur-
ther enables to partially hide the core of the application logic that executes on the
cloud. The authors utilize unikernels as the lightweight virtualization technology
to package applications with tiny memory footprint which can be offloaded to the
edge. The aforementioned also answers the question concerning How to offload?
in the computation offloading process.

2.2.3 Service Orchestration

A key characteristic of an edge computing infrastructure is the presence of geo-
graphically distributed micro clouds servicing IoT devices and end users across
various sites. Providing edge computing services to a diverse group of end users
and devices involves provisioning of as many heterogeneous applications on the
edge servers. In order to optimize the resource utilization on the resource con-
strained edge servers and assure the guaranteed QoS to such a large number of end
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users, an automated deployment and management of workloads becomes crucial.
Such an automation can intelligently determine the workload placement locations
for the end user requests based on either a predefined set of optimization constraints
or actively monitoring the current status of parameters like network bandwidth,
availability of sufficient computing resources (RAM, CPU, disk space, etc.) on
the edge servers, context related information or correlation among the incoming
requests and the reusability of the intermediate results produced.

This automated management and deployment of workloads and resources at the
edge is termed as orchestration. A more formal definition for the same is provided
by [38] which defines orchestration as a process which coordinates the interactions
between different applications and services at the edge of the network. Service
orchestration is the key to automated handling of user requests and computation
offloads, deployment of respective applications, management and allocation of re-
quired software and hardware resources in order to deploy the applications on the
edge. A major differentiation factor among the many edge computing architectures
and solutions proposed for the IoT is the architecture of the orchestrator and the
underlying orchestration technique they employ. At its core, the orchestrator im-
plements the computation offloading strategy and handles the execution and man-
agement of the applications that run on the edge.

Containers are among the most commonly utilized underlying virtualization
technology in edge computing currently for executing applications at the edge serv-
ers. Thus, the orchestration of containerized applications is an important feature in
modern edge computing solutions for the IoT. The following subsection provides
an overview on the state of the art in container orchestration, related concepts and
the review some of the relevant works in the literature.

Container Cluster Management and Orchestration

Following are the main features that forms the core of the container cluster man-
agement and orchestration solutions in the edge computing domain [77].

• Placement of containerized applications on specific edge nodes in the cluster.
This ensures portability and interoperability among the applications execut-
ing on the edge.

• Provision of adding or removing edge nodes from a cluster. This facilitates
scaling up the edge infrastructure by adding new edge compute nodes in the
events of peak load or decommissioning an edge node in an event where the
security of an edge node is compromised.

• Resource allocation to the containerized applications. Resources mentioned
here refer to RAM, CPU, access to disk storage on the edge compute node
and networking capabilities to communicate with other applications on the
edge cluster or exchange information with the outside world.
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• Fault management: Facilitates the restart of the applications in case of fail-
ure during execution and their migration to another active edge node on the
cluster in case of an event where the host edge node suffers a downtime.

There exists several platforms for container cluster management and orchestra-
tion such as Docker Swarm, Kubernetes, Mesos, etc. which offer the above men-
tioned features. A brief overview of Docker is provided below in particular as it is
extensively utilized for implementing edge computing solutions in various applic-
ation domains [27, 76, 38, 49]. It not only provides the virtualization technology
infrastructure that enables executing applications as containers, but also provides
inbuilt cluster management and orchestration features.

Docker

Docker is an open source platform that enables building and running applications as
containers. In order to run an application as a container, a corresponding container
image referred to as the Docker image, needs to be created. The process of creating
a Docker image involves creating a text document called as a Dockerfile specifying
the dependencies for the base application such as operating system, programming
run time, support libraries, etc. and any commands or metadata needed to run the
container. Docker provides command line utilities to create a container image for
the base application from a Dockerfile and to subsequently launch and monitor the
containerized applications. The description of Docker’s internal architecture, APIs
and the underlying technology is skipped to keep the discussion here relevant to
just introducing the main features offered by Docker in the context of its usage in
edge computing.

The container cluster management and orchestration features in Docker are provided
through a dedicated mode called as the Swarm mode [22, 21]. Swarm mode
turns a cluster of multiple separate physical Docker host machines into a logical
single large pool of compute nodes where containers can be deployed and migrated
across. The control and core control and management responsibilities are fulfilled
by dedicated manager node(s) while the worker nodes execute the workloads. The
workloads deployed on a swarm of docker hosts are referred to as a service. A
desired state of the service is required to be mentioned while creating the service.
This is done by specifying certain parameters in the configuration file or on the
command line at the time of service creation. These parameters may include the
desired number of replicas of the service running on the cluster, opening of certain
ports to enable networking, access to specific storage volumes on the host machine
to fetch data or store intermediate results, etc. The built in orchestrator works to
maintain this desired state by continuously monitoring the service. For example,
if three replicas of the service was requested to run and one of the instances sud-
denly crashes, the orchestrator will instantiate another instance of the same service
to maintain the desired state.
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2.3 Edge Computing for the Internet of Things

IoT, which is typically characterized by the devices and applications that often op-
erate in geographically distributed locations and with a significant degree of mobil-
ity [58, 93, 97], benefits immensely from the edge computing paradigm by being
able to exploit the compute and storage resources available in their close proximity
at the edge of the network [89, 51, 67]. At the same time, the IoT devices also
prolong their battery lives by being exempted from transmitting the data to the dis-
tant cloud data centres. Besides supporting the deployment of the latency sensitive
safety critical applications, the edge computing paradigm also provides better QoS
(Quality of Service) to the end users as compared to the cloud due to the significant
reduction in latency achieved by the former.

2.3.1 Application Scenarios

This subsection discusses three main application scenarios in IoT in which edge
computing plays an important role. These also form the target use case for the
work done in this thesis as the problems that are being tackled in this thesis apply
directly to the use cases in these application domains.

A. Smart City

Smart City is the concept of applying IoT in an urban context with the objective of
providing a range of services to the citizens by setting up an information and com-
munication infrastructure that integrates the IoT technology with the individual
sectors and industries associated with these services. In this manner, services such
as healthcare, transportation, waste management, etc. will be rendered under one
umbrella by the city administration for the citizens to avail. This concept leads to
an efficient use of public resources, offers quality of service offered to the citizens
while reducing operational cost of managing these services. Recent studies such
as [43, 44] have explored setting up edge infrastructure for smart cities by placing
computing and storage resources in base stations, traffic lights and other public in-
frastructure. For instance, Taleb et al. proposed an approach to enhance the real
time video streaming experience of the users by utilizing mobile edge computing
(MEC) [92]. Sapienza et al. proposed an MEC based approach to detect crit-
ical events in a city and trigger notifications to end users in response [84]. They
processed the crowd sourced data from various IoT devices such as surveillance
cameras at the edge servers installed on the mobile base stations to detect an ab-
normal activity or a critical event. The base stations then cooperate with each other
and broadcast alerts to a large group of people under their coverage area.

B. Connected and Autonomous Vehicles

The use of edge computing in automotive and transportation domain has rendered
an enhanced and safe driving experience to the drivers. In such a scenario, the
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roadside infrastructures such as traffic lights, street lights, lamp posts, etc. are
embedded with computing and storage resources that facilitate offloading of the
data captured by the sensors on the vehicles. By enabling features such as vehicle
to infrastructure (V2I) communication and vehicle to everything communication
(V2X), edge computing provides the vehicles with a better and quick knowledge
about their surroundings in form of alerts such as unsafe road condition, traffic
congestion etc. For instance, Zhou et al. proposed a technique to augment a driver’s
view by rendering a 3D map generated from the data shared by other vehicles by
an edge server placed on the roadside infrastructure [108].

C. Collaborative Processing in IoT

The end users with their IoT devices at the edge of the network not only act as data
producers that continuously offload data to the edge, but also as data consumers that
request services from edge. Thus, there is a dual and simultaneous presence of such
data producers and consumers in an IoT environment [88]. Meanwhile, the com-
puting capabilities of the IoT devices is only improving by the day, thanks to the
advancements in embedded computing technology that packages sufficient com-
puting power in credit card sized single board computers. Slightly more sophist-
icated end user devices such as smartphones now feature RAM and CPU specific-
ations comparable to a desktop computer. Enabled by wireless connectivity and
4G/5G connections, further makes them a self-sufficient mobile computing device.
Another example in this category include the modern vehicles which are embed-
ded with an array of sensors and inbuilt computing capabilities. Such presence of
end devices with sufficiently rich computing capabilities offer rich opportunities
for collaboration with the edge servers in handling the offloaded computations.

This is an effective and innovative way of approaching to solve the challenges
of utilizing edge computing for large scale IoT , i.e., by exploiting the rich pres-
ence of computing capabilities within the end user devices. Although there are
several factors that needs to be taken into consideration such as determining which
IoT device(s) can participate in processing the computations together with the edge
servers and security concerns regarding this participation to avoid penetration by a
malicious IoT device that could access a chunk of computation. There are mainly
two types of collaborative processing scenarios in edge computing. In the first
category, the computations offloaded to the edge servers are partitioned and dis-
tributed intelligently among the edge, the cloud and the IoT devices or commonly
referred to as the edge devices. In this case, the end user devices collaborate with
the edge by sharing and contributing their computing resources. The second cat-
egory refers to the scenario where the data produced by end device(s) is aggregated
at the edge servers to serve other end user(s). This category is the one where the
end device share and contribute the data generated by them to achieve the end goal
of serving other end users.
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2.3.2 Key Challenges

While there are numerous benefits that edge computing offers to the IoT [40], there
are several challenges that exists in its utilization for IoT [88, 54, 100]. An over-
view of the main challenges that exist in applying edge computing to the IoT is
provided below.

1. Service Orchestration: A large scale IoT scenario is characterized by a large
number of applications that need to be provisioned at the edge in order to
cater to demands of several end users at the same time. This requires an effi-
cient orchestration strategy for workload orchestration and resource manage-
ment at the edge servers in order to ensure that the edge servers are able to
handle many concurrent client requests in manner that provides a sufficient
QoS to them. It is also a challenge to find effective ways to provision several
different applications on the resource limited edge servers.

2. Interoperability : IoT is characterized by presence of several devices in form
of mobile computing devices, IoT sensors, personal hand held devices, cell
phones, wearables, etc. which use different communication technologies to
interact with and exchange information with the edge resources and among
themselves. Also, the edge resources in a large scale IoT could be owned by
different service providers and hence may differ vastly in the hardware they
possess, the applications they can run, etc. It is crucial to have these different
technologies to operate seamlessly and interact with each other if the goal of
a edge computing solution for IoT needs to be realized.

3. Scalability: When operating in a large scale scenario, scalability of an edge
computing solutions becomes important as it determines how effectively it
can handle large number of end users, adapt to changing traffic conditions,
scale horizontally as well as vertically. Horizontal scaling refers to scaling
up the number of instances deployed for an application in order to serve
several service requests and vertical scaling refers to the ability to add new
applications, services, hardware and other computing resources on top of
existing edge computing infrastructure to accommodate new requirements
and vendors.

4. Security and Privacy : IoT devices at the edge of the network produce data
and offload it to the edge servers for further processing. Varying levels of
security needed at different times, example, in smart home scenario, only
when a critical event is identified, the information will be shared by other
areas in the vicinity to prioritize safety over privacy. Ownership of data at the
edge in the presence of several service providers presents another challenge,
for example, several individuals or a group could be managed by one service
provider at the edge and this activity must not be visible to other service
provider at the edge that manages other group. This is required to keep
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business logic private for services in what is a very competitive market these
days.

2.3.3 Related Work

The aforementioned challenge of service orchestration for large scale IoT has been
addressed in the literature from different angles. Orchestration is still in a very
early stage of research in the edge computing domain with several works limited
to just proposing an architecture and projecting its benefits rather than a prototype-
driven experimental evaluation in a simulated or a real test bed to give an idea of its
practical feasibility. This subsection reviews the research proposals and industry
solutions that particularly focus on solving problems related to applying edge com-
puting to large scale IoT scenarios in the context of service orchestration.

Research proposals overview

Jiang et al. explored the applicability of the cloud computing orchestration model
to edge computing for supporting IoT applications [54]. The authors envision an
orchestration framework that supports affinity-aware offloading and enables an ap-
plication to be partitioned into segments and offloaded onto different fog nodes.
The discussion refers to the three layer cloud computing orchestration in which the
top service layer provides abstractions for cloud applications to access the com-
puting services. The central controller in the control layer allocates the resources
in the lower physical resource layer to the cloud applications in the upper service
layer. The authors identify challenges regarding scalability of the control layer
and support for affinity aware offloading, and propose design recommendations
for the same. For achieving scalability, the authors focus on the interoperability
aspect and propose a distributed orchestration architecture where edge nodes com-
municate with each other in per to peer fashion. The flow of operation of the edge
infrastructure is driven from top to bottom with the northbound interface provides
the abstraction for the application to access resources similar to cloud computing.

Yigitoglu et al. proposed a system called ISYMPHONY [103] to better scale
the IoT service provisioning for on-demand and real-time requests in a large scale
IoT environment. The solution is particularly focused on mobile clients such as
vehicles which submit on-demand requests to the edge servers, for example, query-
ing the condition of the road ahead of them. The main idea behind their proposed
distributed orchestration architecture is the intelligent partitioning of the computa-
tions corresponding to the clients requests into the tasks which could be executed
by the edge servers and the tasks which could be executed by other mobile clients
in the vicinity. Their results showed that this coordinated processing approach can
lead up to two orders of magnitude of reduction in the edge server load and also
provide better accuracy.

Santoro et al. proposed an edge computing architecture named Foggy [83] for
workload orchestration in a Smart City scenario. The architecture utilizes Kuber-
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netes as the underlying container orchestration platform. Their experiments show
that the system is able to perform workload orchestration for on demand client re-
quests. It is able to do this when clients submit their requests to the manager node
in the edge cluster.

Flores et al. propose a large scale offloading architecture in [42] to address the
challenge of handling multiple concurrent client requests. However, it is studied
and experimented purely from a cloud perspective. The authors propose an offload-
ing architecture to analyze the capacity of several cloud servers to handle multiple
concurrent client requests in a large scale IoT scenario. Each client request cor-
responded to offloading a computation on the cloud server. A component called
Autoscaler was developed to receive the simulated client requests and then dis-
tribute them to several cloud servers in a round robin fashion. The architecture
scales horizontally with increasing traffic and is suitable for multi tenancy. From
the experiments and results they observed that the Autoscaler component added an
overhead of about 150 milliseconds to the response time of a client request.

Some solutions utilize the crowd sourcing approach to detect and then generate
fast response to critical events such as disasters, emergency and safety cases. For
instance, Sapienza et al. proposed a MEC based crowd sourcing approach to detect
critical events in a Smart city domain [84]. The edge servers co-located on the
baste stations run ML based applications continuously on the data received from
the surveillance systems and air quality monitoring sensors installed in the city
to detect an abnormal activity. The base stations then collaborate to send alerts
and safety evacuation information details to the citizens in the respective coverage
areas. Through the concept of MEC, a large geographical area is served in a quick
span of time. Moreover, MEC particularly benefits in this case as the edge servers
are co-located with base stations and have knowledge about users position and
mobility that helps in planning a safe evacuation routes.

In a large scale IoT, distributed IoT analytics is a key. Hsieh et. al realized
this gap of distributedly deploying and managing IoT analytics on heterogeneous
devices from data center servers, edge cloud workstations, and embedded IoT
devices (such as smart sensors). The authors proposed a series of works on a man-
aged edge computing platform using Docker, Kubernets and tensorflow [50, 96]
to run distributed data analytics on edge nodes by launching containers. It allows
IoT devices to be remotely monitored, diagnosed, and upgraded while IoT analyt-
ics can be split and distributedly deployed on multiple IoT devices. The authors
added support for event-triggered container deployment using the MQTT (Mes-
sage Queuing Telemetry Transport) pub/sub protocol. The authors present only a
preliminary evaluation plan to measure the deployment time with varied sizes of
applications and instance of container deployment. The authors also plan to meas-
ure fast application deployment via distributed analytics by cutting the applications
into several chunks and then deploying the individual chunks on different nodes.

Research efforts have also proposed design of a middleware that facilitates in-
tegration, communication of several applications in a large scale IoT domain like
Smart City. For instance, Mohamed et. al proposed a service oriented middleware
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for smart city applications in fog computing [69]. Rausch proposed a message
oriented middleware for edge computing applications [80]. However, since a mid-
dleware deals with infrastructure development for facilitating interoperability, it is
not in the scope of this thesis as the focus lies mainly on the orchestration frame-
work.

Industry Solutions for IoT edge computing

Kubeedge [14, 101] is an open source platform which provides an edge computing
infrastructure based on Kubernetes [15]. It provides a unified runtime environ-
ment for the applications to be deployed and access resources across the edge and
the cloud. The edge infrastructure proposed by Kubeedge consists of a cloud part
and an edge part. The cloud part features a Kubernetes controller plugin that al-
lows remote deployment and management of applications on the edge nodes. A
communication protocol and metadata sync service is implemented to facilitate bi-
directional data synchronization between the cloud and the edge. It also enables
the edge nodes to operate in offline mode or adapt the size and rate of data trans-
mission to cloud in the case of a poor network connectivity between the edge and
the cloud.

Azure IoT Edge by Microsoft [2, 3] is another open source solution which en-
ables packaging the business logic of the applications into containers and deploying
them on the edge devices. The application deployment and management is done
through a device twin of the target edge device that resides in the cloud. The edge
devices runs the Azure IoT Edge runtime which manages the containerized applic-
ations that runs on these edge devices after they are deployed from the cloud.

Amazon IoT Greengrass extends the Amazon Web Services (AWS) to the edge
[1]. It consists of the AWS IoT Greengrass Core which provides cloud based man-
agement of applications that runs on the edge devices. The Greengrass Core itself
runs on the edge device and enables the local execution of the Lambda functions in
response to certain events as programmed by the developer. Moreover, it facilitates
multiple edge devices to interact with each other securely and exchange messages
without relying on the cloud.

Solutions by the standardization bodies

The OpenFog Reference Architecture (OpenFog RA) [46] is the IEEE standard for
fog computing [10]. It is a joint effort of several technical working groups from
the industry and the academia such as Microsoft, Intel, Princeton University, ARM,
etc. under the umbrella of the OpenFog Consortium (now merged with Industrial
Internet Consortium) [12] to contribute towards an open architectural framework
concerning the design, development and operational aspects of fog computing. It
is intended to help multiple stakeholders such as software developers, end users,
network operators, investors in the fog/edge computing infrastructure, hardware
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developers, etc., in analyzing and understanding the best practices for an edge com-
puting infrastructure that tackles both technical and business challenges.

The OepnFog RA lays the foundation for an edge/fog computing solution for
the IoT by defining eight core design principles called as the pillars. These pillars
are Security, Scalability, Autonomy, Openness, Programmability, RAS (Reliability,
Availability and Serviceability), Agility and Hierarchy [46]. Aligning the design
choices with some of the architectural guidelines mentioned in the OpenFog RA
provides a level of credibility to the work carried out in this thesis. Incorporating
both the end users and service providers perspective in the design of an edge com-
puting architecture is one of the objectives of this thesis. Synchronizing the ideas
proposed in this thesis with the standardization body that aims to not only benefit
the end users but also the service providers helps to meet this objective.

2.4 Summary and Gap Analysis

Table 2.1 provides an overview of the key findings from the literature survey, their
associated significance in the context of a large scale IoT scenario such as a Smart
City and the potential solutions proposed in this thesis.

The first main finding from the literature survey on edge computing solutions for
IoT is that the existing proposals employ a master-slave model for edge architecture
and service orchestration. The edge infrastructure possesses a fixed hierarchy and
consists of one or more masters that perform management and control operations
and a set of slaves or worker nodes that are dedicated to executing the workloads.
The control plane consisting of the aforementioned managers is often located in
the cloud and shares a communication link with the worker nodes at the edge. In
some cases, the master resides on the edge cluster itself. The control plane re-
motely dispatches, deploys, orchestrates and monitors the workloads that executes
on the slave nodes on the edge. The workload orchestration process in such an
architecture involves the following steps.

1. Supplying a configuration file at the control plane containing the information
regarding the applications to run at the edge, desired number of replicas,
opening of network ports, etc.

2. The manager node in the control plane parses this configuration, determines
the ideal worker node primarily based on the computing resource require-
ments to run the requested workloads.

3. Post the determination of the target edge node(s), the workloads are deployed
on them. Continuous updates are sent from worker nodes to the manager
node about status of the application, availability of the computing resources
such as CPU, RAM, etc.
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Gaps in the literature Impact in large scale IoT Potential solution
Cloud driven edge architec-
ture and master-slave orches-
tration model

Renders the edge servers
passive and oblivious to the
interactions of the end users
with the edge that govern is-
suing of service requests or
contribution of computing re-
sources

Edge-driven orchestration
that enables the edge nodes
to react to the events and
interactions at the edge of the
network

Absence of transparency at
the edge

Restricts ubiquitous sensing
and access of computing
resources by the end users,
thereby degrading their ease
of use and subsequently
the profits of the concerned
stakeholders

Flat hierarchy at the edge in
the form of edge nodes with
equal privileges to orches-
trate client requests

Runs applications indefin-
itely on the edge servers,
only suitable for scenarios
that offer a fixed service at
the edge, for example, IoT
analytics

Renders existing solutions
infeasible for handling mul-
tiple different and simultan-
eous client requests that re-
quire ephemeral workloads
to be executed on the edge
servers and demand custom-
ized service

Dedicated service manage-
ment features for on-demand
client requests with the abil-
ity to serve multiple clients
simultaneously

Lack of incorporating the
tight coupling between the
workloads that execute on the
edge servers and their input
data source

Renders existing solutions
infeasible for evolving IoT
trends such as collaborat-
ive processing in connected
vehicles domain

Enable ubiquitous sensing
and pooling of the IoT and
computing resources contrib-
uted by end users at the edge
and utilize them in orches-
trating client requests

Table 2.1: Overview of the Gap Analysis
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The term top-down is used to refer this flow of operation and design ideology
in the existing edge architectures, analogous to the flow of information from the
higher end of the hierarchy, i.e., manager node to the lower end, i.e., the worker
nodes.

The second main finding is that the existing solutions lack to address some key
aspects of the interactions of the edge devices and end users with the edge com-
puting infrastructure particularly in the context of IoT. The first of these include
the on-demand service requests that require specific ephemeral applications to be
deployed on the edge. This is in contrast to the workloads that require continuous
up time on the edge servers such as data analytics applications which continuously
processes the incoming sensor data streams or the web applications which are ac-
cessed by several clients simultaneously.

Significance of on-demand service requests in a large scale IoT scenario

A large scale and complex IoT application domain such as the Smart City involves
the provisioning of several applications through the ICT infrastructure of the city
with a target to encompass the varied service requirements of the large urban pop-
ulation. Consequently, in order to provide these applications at the edge of the
network for a better QoS, the edge computing solutions must deal with deploy-
ment and management of a plethora of heterogeneous applications and end user
devices. A typical practice followed in edge computing that reflects in the literat-
ure is to keep the applications running on the edge servers indefinitely. However,
considering the limited compute and storage resources at the edge, this approach
is infeasible. A more effective approach would be to exploit the lightweight virtu-
alization techniques that offer a sand box like execution environment enabling the
applications to be deployed and terminated on-demand [78]. Connected vehicles is
identified as a use case that can benefit from such an approach. A typical example
of an on-demand service request in this scenario is a vehicle contacting the nearby
roadside infrastructure embedded with edge computing resources to query about
the condition of the road or traffic situation in the neighborhood for an improved
driving experience [103].

Collaborative processing: Tight coupling between the service requests and the
corresponding IoT resource

The second key aspect of the end user’s interactions with the edge computing infra-
structure concerns with the nature of service requests and the evolving trend in the
IoT. The workloads corresponding to the on-demand client requests under consid-
eration are tightly coupled with the input data source which they consume in order
to generate the desired end result. This input data is referred to as the IoT resource
corresponding to the service request. To render further relevance and clarity to the
aforementioned dependence between the IoT resource and the service request, a
practical IoT use case applicable in this context is discussed. Recent studies have
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highlighted the idea of simultaneous and dual presence of data producers and con-
sumers in an IoT ecosystem [88]. When this phenomena is combined with the
sufficiently powerful computing capabilities that the portable IoT devices possess
nowadays, the outcome is the existence of rich opportunities for collaborative data
sharing and processing.

As discussed in Section 2.3.3, some of the works in the literature have pro-
posed techniques to incorporate and address this aspect in designing edge comput-
ing solutions for the IoT in order to further augment the benefits offered by edge
computing via leveraging end devices as additional compute, storage and data re-
sources. One such research effort proposes a technique to augment a driver’s view
by collecting and combining the HD maps, snapshots and sensor data offloaded by
other vehicles in the vicinity to render a full view of the surroundings and updates
on incidents to the driver [108, 109]. Hence, the IoT resource in this case, i.e.,
the data contributed by other vehicles is a key ingredient for the applications to
generate useful information.

Limitations of the master-slave edge computing architecture

Due to the master slave topology, the state of the art and the existing approaches
in edge computing renders the edge oblivious to the events and the interactions
among the IoT devices and end users in its immediate vicinity, of which, it lies at
the receiving end of. As explained above, it is these events and interactions which
forms the channel for the end users to offload data and computations on the edge
or issue on-demand service requests, especially in the context of IoT and pervasive
computing. Hence, the state of the art would require the cloud to regularly fetch
information regarding the interactions at the edge concerning these on-demand re-
quests. The round trip between the edge and the cloud involved in performing
such updates would result in a significantly high latency. It also becomes infeas-
ible for the cloud from the latency perspective to monitor the individual workloads
executing at the edge and act on them in response to any updates or events at the
edge of the network. Besides the high latency, this approach also suffers in the
event of an intermittent or total absence of network connectivity between the edge
and the cloud, thereby disrupting the transmission of updates and subsequently the
orchestration process.

Thus, this makes the existing approaches static and only suitable for scenarios
that offer fixed services at the edge, for example, data analytics applications that
continuously monitor sensor data streams. To tackle this issue, IFTTT (If This
Than That) or rule based approaches have been proposed in the literature to enable
the edge to react and deploy workload in response to events at the edge of the
network such as joining of a new IoT device, critical threshold overflow detected
by a CEP (Complex Event Processing) engine that fuses multiple sensor streams,
etc. However, such approaches only solves a tiny and rather trivial part of the
problem in this context.
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Absence of transparency at edge degrades ease of use

One of the main objectives of the edge computing paradigm is allowing the involve-
ment of the edge servers in helping the end users and IoT devices with computing,
storage, and networking capabilities [78]. The effectiveness of the edge comput-
ing approach will ultimately depend on the manner in which the edge and the IoT
devices interact [78]. However, the presence of the worker nodes in the existing
approaches restricts the ubiquitous sensing and interaction of mobile clients with
the edge servers, thus, limiting the effectiveness of the edge computing solution
in place. This is due to the inability of the worker edge nodes to participate in
the sensing and orchestration process as they are dedicated towards executing the
workloads passively. As a result, the end users are restricted to issue the service
requests or offload IoT resources only to a specific set of edge nodes, thereby re-
quiring them to be aware of the topology of the edge infrastructure. This limitation
deteriorates the ease of use and the QoE (Quality of Experience) of the edge com-
puting infrastructure as perceived by the end users which ultimately affects the
profitability of the edge service provider.

Need for an edge-driven distributed orchestration

Existing approaches lack to address the orchestration of on-demand client requests
and incorporate the above discussed key aspects of the end user’s interactions with
the edge infrastructure in a large scale IoT scenario. As discussed above, the in-
teractions of the clients with the edge infrastructure are not only limited to issuing
service requests but also offloading data or contributing other computing resources
to the edge servers. In such a scenario, the challenges faced by the orchestration
framework of the edge computing infrastructure are manifold.

1. The edge nodes, i.e., the edge servers offering the computing and storage
services, needs to be intelligent enough to differentiate the interactions at the
edge of the network into client requests and offload of data or computing
resources.

2. Dynamic orchestration and computation offloading based on real time avail-
ability of the IoT resources as extracted from the ubiquitous sensing of events
and interactions of end user devices at the edge of the network. The availab-
ility of the IoT resources on the edge is subjective to the mobility of the end
users.

3. Ensure a sufficient level of QoS to the end users by handling the multiple
concurrent client requests and traffic bursts during peak loads with minimal
overhead.

4. Maximize the profitability of the edge computing service provider by enhan-
cing the ease of use of the edge computing infrastructure for the end users.
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An edge-driven distributed orchestration architecture possesses the potential to
address all the above highlighted challenges. The edge nodes are in in the vicinity
of the events at the edge of the network and also to the IoT devices and end users
that interact with it. Hence, it is both logical and efficient for the edge nodes to
drive the workload orchestration considering their capability of utilizing the local
knowledge available in the form of IoT resources and context related information
to aid in the orchestration process. The distributed operation of the orchestrator
across the constituent edge nodes in the infrastructure will enable the geographic-
ally distributed edge nodes to take part in the orchestration and decision making
process. Moreover, by proposing such an architecture for edge computing, this
thesis also aims to significantly reduce the dependence of the edge on and the in-
volvement with the cloud. This enables the edge to operate autonomously and
unaffected by network outages and disruptions. However, the dual responsibility
on the edge nodes to orchestrate and execute the workloads is bound to induce an
overhead which may affect the QoS as perceived by the end users. This thesis aims
to study this trade off and collect insights. The first impression is that the benefits
offered by this approach outweigh the overhead induced by it.

This design ideology is supported by referring to the edge computing architec-
tural guidelines as defined in the standards. It can be particularly related with the
Autonomy pillar, i.e., one of the core design principles for an edge computing
architecture listed by the OpenFog Reference Architecture (OpenFog RA). The
autonomy pillar particularly refers to the features enabling autonomy at the edge
of the network through collective intelligence from end user devices, information
or data exchanges via peer to peer connections and discourages centralized decision
making model. This is in alignment with the proposed idea of distributed orches-
tration via collaboration of edge nodes in a peer to peer fashion and the concept of
having a flat hierarchy at the edge enabling all the edge nodes to take part in the
decision making process.
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Chapter 3

EDIRO: Edge-driven IoT
resource-aware Orchestration
Framework

This chapter describes the design and implementation of EDIRO : the edge-driven
IoT resource-aware orchestration framework proposed in this thesis. Section 3.1
describes the design of EDIRO including the justification of the approaches and
associated challenges foreseen at the time of system design. Section 3.2 describes
the implementation of the software prototype of EDIRO. Section 3.3 provides the
reasoning for the choice of tools used for software prototyping of EDIRO.

3.1 System Design

Following from the gap analysis presented in Section 2.4, this thesis proposes an
edge-driven IoT resource-aware orchestration framework called EDIRO which fa-
cilitates collaborative processing in large scale IoT. EDIRO has the following key
design goals.

1. An autonomous edge infrastructure that processes the events at the edge
of the network and drives the service orchestration through the collabor-
ation of the constituent edge nodes. This design goal is partially aligned
with the Autonomy pillar of the OpenFog Reference Architecture (Open-
Fog RA) which is the IEEE standard for fog computing [10]. The aspect
of the Autonomy pillar that this specific design goal relates to is facilitating
autonomy at the network edge that enables the intelligence from peer data
and local devices to carry out the desired tasks at the most logical location
[46].

2. Offer a flat hierarchy or transparency at the edge to the end users, enabling
them to interact with the edge infrastructure ubiquitously.
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Figure 3.1: Overview of EDIRO in a connected vehicles scenario

3. Support collaborative processing use cases by performing IoT resource-aware
offloading in which effective resource utilization takes priority over low
latency.

4. Demonstrate the ability to service a large number of multiple simultaneous
on-demand client requests and process traffic bursts resulting from offload of
IoT resources such as sensor data, images, etc. in a large scale IoT scenario.

3.1.1 Overview

Figure 3.1 presents an overview of the application EDIRO to a connected vehicles
use case in a Smart City scenario where an edge infrastructure consisting of mul-
tiple interconnected edge nodes run the EDIRO framework in a distributed fash-
ion. These edge nodes are installed on the roadside infrastructure such as street
lights. The orchestration of on-demand service requests by the end users which are
vehicles in this case is considered particularly. An example of such an on-demand
request is ”What is the condition of the road in sector 1 of the city?”. The edge
nodes collaborate among themselves to orchestrate the on-demand service requests
of the end users by utilizing the IoT resources collected at the edge nodes contrib-
uted by other clients. Besides servicing end user requests, EDIRO also facilitates
their ubiquitous interactions with the edge infrastructure which includes sharing
and offloading the IoT resources such as sensor data, images, etc. to the edge
nodes [108, 109].
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3.1.2 Transparency at the Edge

One of the main design goals of EDIRO is to offer transparency at the edge for
the end users so that they are not required to be aware of the edge topology and
be restricted to offload their computations, data or place service requests only at
a specific edge node(s). This is essential to maximizing the ease of use of the
edge infrastructure for the end users which brings subsequent benefits to the the
edge service providers as well. The existing approaches deems the edge nodes
passive under the role of worker nodes and renders them oblivious to the events
and end user interactions. Consequently, the end users are often limited to offload
their requests or workloads to the centralized entity or the master node(s) in the
edge infrastructure. In the context of IoT, this is clearly ineffective considering the
presence of mobile clients such as vehicles.

In an IoT environment, when the end users perceive the edge infrastructure as
transparent or flat, they need not be obliged by the service provider to be aware of
the edge topology. The benefits are twofold.

1. Hiding the complexity of the edge infrastructure from the end users and en-
abling ubiquitous access of edge compute and storage resources can enhance
the user experience significantly.

2. Abstracting the details about the topology of the edge infrastructure from the
outside world results in an increased privacy and security of the edge infra-
structure. For example, a publicly known set of master node(s) in an edge
infrastructure can be potential targets of disruption and their security could
be compromised as well. This is highly undesirable for the edge service
providers from a business perspective and also for the end users.

The design of EDIRO concerns with incorporating both the end user perspective
and the edge infrastructure perspective of rendering transparency at the edge. In
alignment with the goals of EDIRO, both the perspectives must be considered and
incorporated in the system design. In order to render transparency at the edge from
end user perspective, each edge node should be able to receive client requests and
IoT resource offloads. This suffices the requirement of the end users enabling them
to offload their service requests or resources to any edge node(s).

However, rendering transparency at the edge from the edge infrastructure per-
spective holds much greater importance and forms the centre of the discussion.
Since the events at the edge of the network play an important part in the orches-
tration of the workloads, enabling each edge node to actively receive and process
such events would require them to be also involved in the orchestration process.
Hence, the need for a distributed orchestration which is driven by the edge.

3.1.3 Distributed Orchestration

The rationale behind the need for distributed orchestration is that the various events
at the edge of the network impact the orchestration of service requests. Since the
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end user interactions are spread across multiple edge nodes in the edge infrastruc-
ture, the edge nodes must collaborate to orchestrate the workloads. The essence
of distributed orchestration lies in achieving a decentralized decision making for
workload orchestration. Since, practically any of the edge nodes can be at the re-
ceiving end of the client requests, it is essential that each edge node must possess
the ability to participate in the decision making process of workload orchestration.
This is achieved by designing EDIRO such that it enables an individual edge node
to work independently and benefit from the presence of other edge nodes if any.

In EDIRO, the orchestrator performs three main functions: event parsing, ser-
vice management and resource management. These are highlighted in the system
architecture shown in the Figure 3.5 and explained in detail below.

A. Event Parsing

Event parsing corresponds to the processing of events and end user interactions
at the edge followed by their segregation into client requests and IoT resource
offloads. Each edge node listens for these events continuously and processes them.

B. Service Management

Service management is the core of the orchestration process in EDIRO. It corres-
ponds to the serving of on-demand client requests by determining and offloading
the corresponding workloads to the target edge node followed by their execution.
This procedure involves involves several sub-processes as explained below.

Computation Offloading

As explained earlier in Section 2.2.2, computation offloading is one of the main
procedures within workload or service orchestration. In EDIRO, the edge servers
perform computation offloading upon reception of an on-demand service request
from the end users. This thesis focuses on the computation offloading that happens
in the edge infrastructure. The discussion regarding the computation offloading
from end users onto the edge nodes does not fall in the context of this thesis as it
concerns with aspects such as detection of the ideal edge node to offload requests,
the type of networking technology used to offload computations, etc. The afore-
mentioned aspects often concerns with an embedded intelligence in the form of a
software logic running on the end devices which enables them to accomplish such
tasks. However, this thesis mainly concerns with developing an autonomous edge
that can facilitate edge computing demands of the end devices ubiquitously and any
form of embedded intelligence in the end device will only compliment the overall
QoS perceived by it.

The computation offloading from the edge perspective refers to the offloading of
an application to a specific edge node for its execution that serves a particular end
user service request. The two important considerations concerned with the com-
putation offloading procedure are What to offload? and Where to offload?. In the
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context of the design of EDIRO, the answer to the first question is determined by
using an application orchestration reference model and the second by the proposed
computation offloading strategy as explained below.

Application Orchestration Reference (AOR) Model

In a large scale IoT scenario such as a Smart City, a plethora of different applica-
tions need to be provisioned on the edge servers to cater to a large number of end
users that differ in their service requirements, inbuilt technology, QoS agreements,
etc. The approach of hosting applications indefinitely on the edge servers tends
to become infeasible given the limited computing resources on the edge nodes.
The on-demand execution and termination of the applications on the edge servers
in response to the end users service requests is a more effective approach. Exist-
ing preliminary but promising research on lightweight virtualization technologies
and recent studies on practical scenarios such as connected vehicles in which such
on-demand requests already exists, supports this vision [36, 71, 103].

In considering the application of EDIRO to the target use case of connected
vehicles in a Smart City, this thesis particularly deals with applications that have a
dependence on an IoT resource such as sensor data, image, etc for their execution.
The rationale behind the same is EDIRO’s goal of supporting collaborative pro-
cessing in the IoT domain. These IoT resources are the input for the applications
that run on the edge servers. In such a scenario, the edge must not only possess
the knowledge of the workloads that needs to be executed in response to the end
user service requests but also the associated IoT resource(s). This knowledge can
be acquired in two ways.

1. Imperative approach - By using a predefined model that defines the rela-
tional dependency of the end user service requests on the applications and
the IoT resources. Such a model can provided by the edge service provider
in an attempt to advertise the services on offer.

2. Declarative approach - By using machine learning and artificial intelligence
techniques that starts with a training set initially and eventually predicts the
associated applications and IoT resources required to serve the future end
user service requests.

The declarative approach tends to go out of the scope of this thesis as the end
goal is to not develop such an algorithm or predictive model. The aim of this thesis
is to develop an edge orchestration framework that can work with several of such
dependency models. Therefore, an imperative approach is chosen that utilizes a
static relational dependency model. Although not a standardized term but this is
referred to as the Application Orchestration Reference (AOR) model throughout
this work. The AOR model defines the relation of the end user service requests
with the workloads that need to be run on the edge servers and the IoT resources
they require. For the evaluation of EDIRO, a one to one mapping based on an
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IFTTT (If This Than That) logic is considered , i.e., each end user service request
maps to exactly one unique application and one unique IoT resource.

IoT Resource-aware Edge Offloading

This is the underlying computation offloading strategy that is employed in ED-
IRO to determine the answer to the question concerning where to offload? in the
workload orchestration process. Typically, computing resource-aware offloading
techniques are utilized in the existing edge computing solutions in which the edge
node with sufficient computing resources (CPU, RAM, etc) becomes the default
choice to run the workload. This thesis proposes IoT resource-aware edge offload-
ing for collaborative processing use cases in IoT where the availability of an IoT
resource with an edge node takes higher priority than the computing resources on
it. With this idea, this thesis aims to extend the existing computing resource aware
orchestration platforms and further make them IoT resource-aware, thereby ren-
dering them feasible for related IoT scenarios. The offloading strategy is based
on data locality aware edge offloading that aims to place applications on the edge
in a manner which exploits the data locality [36]. With this technique, applic-
ations packaged using lightweight virtualization technologies are offloaded from
the cloud to run on the edge.

In relation to EDIRO’s application to the connected vehicles use case, the avail-
ability of an IoT resource is dynamic and spread throughout the edge cluster1 con-
sidering the ubiquitous access of the edge infrastructure by the end users. Hence,
the edge nodes must coordinate among themselves and share the information re-
garding the availability of the IoT resources on the edge cluster in order to enable
the proposed IoT resource-aware edge offloading strategy. This process is termed
as resource management which is yet another important feature of the orchestrator
in EDIRO and is explained in detail below.

C. Resource Management

One of the main design goals of EDIRO is to enable each edge node to participate
in equal capacity and drive the service orchestration process by acting on the end
user service requests received by it. In order to serve these requests, the edge node
must offload the corresponding application to the edge node on the edge cluster
that possesses the associated IoT resource. However, as a side-effect of rendering
transparency at the edge, the availability of the IoT resources in the edge cluster
turns dynamic and is spread across multiple constituent edge nodes. Thus, the
information regarding availability of a particular IoT resource may not be available
with an edge node resulting in it being unable to serve a client’s service request.
This behavior may further deteriorate with the increasing number of subsequent
client requests.

1The term edge cluster is used throughout this thesis to collectively refer to the group of inter-
connected edge nodes or edge servers that form the edge computing infrastructure.
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Figure 3.2: IoT Resource Management

To solve the above problem, a resource management feature is provided in ED-
IRO which runs as a distributed application on the edge nodes in the edge cluster. It
enables each edge node to know the availability of all the IoT resources offloaded
on the edge cluster and their locations at all times via synchronized event-driven
updates. The event here refers to the event of an IoT resource being offloaded on
the edge infrastructure. A centralized resource management scheme isn’t feasible
considering the non uniform and dynamic distribution of the IoT resources among
the edge nodes resulting from the ubiquitous utilization of the edge infrastructure
by the end users. Thus, a technique is proposed with which the edge nodes in the
cluster collaborate to maintain a consistent state of the IoT resource availability
information throughout the edge cluster on each edge node in a distributed fashion.

The design of the distributed IoT resource management technique in EDIRO is
as follows. The event parser module is the first point of processing of the end user
interactions with an edge node. Among these interactions, the ones that are identi-
fied as an IoT resource offload are forwarded to the resource management module.
Each edge node maintains a local record to store the global IoT resource avail-
ability information. The term global is used to highlight that this record captures
details about the IoT resources available on all edge nodes in the edge infrastruc-
ture. Thus, each edge node stores the metadata about the IoT resources available
in the entire edge cluster. After an IoT resource is offloaded by an end user on an
edge node, the local record of that edge node is updated with a new entry corres-
ponding to this new IoT resource. An update request in form of a control signal
is then broadcasted to all the other edge nodes in the edge cluster requesting them
to update their respective local records with this new entry. In this update request,
only the metadata about the IoT resource is transmitted and not the data itself to
maintain a low communication and bandwidth usage overhead.
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A consistent state after every new IoT resource offload on the edge cluster is said
to have reached when all the edge nodes have identical contents in their respective
local IoT resource catalog following the update request cycle. This is achieved
when the other edge nodes acknowledge the change request by the host edge node.
In between this there might be other new IoT resource arriving but the term con-
sistent state is used to refer the successful update of an IoT resource by all the edge
nodes in order to ensure that a client request depending on this IoT resource for
its service will be surely served regardless of which edge node in the edge cluster
receives it. Since this is the bottleneck for a client request to get served, it also
serves as a metric to evaluate the system performance. Because, otherwise the cli-
ent request may have to be offloaded to the cloud or may have to wait for a certain
predefined time period hard coded in the system as indicated in the edge processing
pipeline in the Figure 3.3.

Since all the edge nodes running the EDIRO framework are identical, they be-
have both as a client and as a server simultaneously. The client behavior of an edge
node corresponds to it announcing the availability of a new IoT resource to the
entire edge cluster while the server behavior of the same corresponds to it being
actively listening for update requests from other edge nodes. Figure 3.2 captures
this dual client-server behavior.

An alternate approach is to avoid regular broadcasts after every new IoT re-
source offload and generate a query broadcast only when a certain IoT resource is
needed at a certain instant of time. However, considering the distribution of the
end user service requests and IoT resource offloads in large scale IoT scenario,
this approach would tend to overlap with the proposed resource management tech-
nique. Moreover, maintaining a consistent state on the edge cluster renders each
edge node a global view of the edge infrastructure at all times. This is beneficial in
scenarios where if one of the edge node shuts down abruptly, the other edge nodes
would get notified after multiple control signal exchanges withing the edge cluster
and a consistent state can be reached eventually. However, this particular failure
recovery mechanism is not implemented in EDIRO at the moment.

Service Management Design Principle

An important aspect of service orchestration in a large scale IoT scenario is accom-
modating parameters such as multi-tenancy, service level agreements (SLA), pri-
vacy concerns and the indigenous heterogeneity among the end users [88, 100, 54].
This requires a granular and uniquely distinguishable service management per user
or a group of users, for their on-demand service requests so that specific controls,
policies and updates can be applied while processing their respective offloaded
computations or service requests [78, 106, 35].

Existing container orchestration platforms such as Docker Swarm and Kuber-
netes enables the users to perform updates to the in progress workloads by sup-
plying a set of commands to the control plane entity on the edge. Examples of
the parameters and the aspects of a workload that can be updated include increas-
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Figure 3.3: Edge Processing pipeline for servicing client requests
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ing/decreasing the number of replicas of a running application instance, reschedule
the workload to run on a different compute node, supplying a new base container
image to be used by the application, limiting CPU and RAM usage, etc [4]. How-
ever, in a collaborative IoT environment, performing updates is often not a manual
process but event driven. The interactions of the end users with the edge and the
ongoing workloads on the edge forms the probable triggers for such updates. For
example, availability of a newer version of an IoT resource, which is already being
consumed by a workload, can be utilized to generate an end result that captures this
latest update. Another example is where an intermediate or the end result produced
by a workload on the edge may be utilized for another ongoing workload to reduce
the computation time or improve the end result.

Handling such updates using a centralized orchestration model isn’t feasible as
the updates from across the edge cluster needs to be conveyed to the manager entity
which then takes appropriate actions, thereby resulting in a high latency. To this, a
per client dedicated service management feature is provided in EDIRO in the form
of an edge processing pipeline. A unique edge processing pipeline is established
on-demand in response to a client’s service request and terminated post serving
the client. Computation offloading marks the start of the pipeline followed by the
execution of the workload using the underlying virtualization technology as shown
in the Figure 3.3. In addition this, the pipeline also consists of a module dedicated
for handling updates to the in-progress workloads in the form of utilization of new
version of IoT resources. It utilizes the distributed resource management feature in
EDIRO to continuously monitor for such updates which can then be performed as
per a custom behavior defined. Hence, this dedicated service management feature
per client is the key to the effective utilization of the resources and handling updates
in a distributed orchestration framework such as EDIRO.

3.1.4 System Architecture

Figure 3.4 compares EDIRO with the state of the art in order to exhibit the be-
nefits the proposed approach provides [26]. By proposing EDIRO, this thesis
approaches the design and operation of an edge computing infrastructure in
a bottom-up fashion as opposed to the typical top-down strategy in the existing
approaches which ignores the interactions of the end users with the edge infra-
structure and the related context information [26].

As shown in the Figure 3.5, EDIRO comprises of several individual modules
which collectively provide its three main functionalities, i.e., resource manage-
ment, service management and event parsing. EDIRO is designed to run on a
single edge node and the distributed orchestration is facilitated when multiple of
such similar edge nodes exist in an interconnected network. EDIRO is self suf-
ficient for a single edge node to serve client requests considering IoT resources
are available on the very same node. However, the edge infrastructure benefits
from the presence of multiple edge nodes that run the same EDIRO framework.
In such a scenario, each edge node runs an identical instance of EDIRO, thereby
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Figure 3.4: EDIRO vs State of the Art [26]

possessing an ability to orchestrate workloads in a capacity that is equal to any
other edge node in the edge infrastructure. Hence, in this manner, an edge infra-
structure consisting of several dissimilar edge nodes from hardware specification
perspective, but running an instance of EDIRO, results in a flat hierarchy at the
edge which eventually renders edge transparency to the end users. EDIRO uses
containers as the virtualization technology for executing the workloads to serve the
client requests for the reasons explained in Section 2.2.1. The description of the
components that make up EDIRO is as follows.

• Library - Stores the information about the application packages correspond-
ing to a particular client service request and the IoT resources corresponding
to these applications in the form of key-value pairs. It is assumed that this
information is made available by a knowledgeable party such as the service
provider. For the practical evaluation of EDIRO, real containerized applica-
tions are used which are executed on the edge nodes in response to the on-
demand client requests. Hence, The library stores the application packages
by their corresponding container image labels.

• Client Request Parser - Parses the client service requests and fetches in-
formation about the corresponding application packages and the IoT re-
sources required to serve the client request using the configuration library.

• Event Parser - The communication interface which enables the reception
of client requests, IoT resource offloads and and sharing of the IoT resource
availability updates to other edge nodes.

• Resource Manager - It performs the following tasks.
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Figure 3.5: EDIRO System Architecture

1. Maintains a catalog of the IoT resource availability throughout the
cluster in the edge node in form of the local state of the system.

2. Facilitate communication among the edge nodes to share the IoT re-
source availability metadata information each time an IoT resource is
offloaded on the edge infrastructure. This includes the broadcast by an
edge node to the edge cluster announcing the availability of a new IoT
resource and the updating of its own local IoT resource catalog after
hearing similar broadcast update requests from the other edge nodes.

• Resource Discovery - It performs the following tasks.

1. Determines the availability of the IoT resource needed by a workload
and its location on the edge cluster by communicating with the resource
manager.

2. Monitors any updates to the IoT resource in use and notifies the availab-
ility of a new version to take appropriate custom actions, for example,
restarting task with the new version of IoT resource as the input.

• Task Initiator - It is responsible for the execution of the workloads using the
underlying virtualization technology, i.e., container in this case. It translates
the information provided by the Resource Discovery module into commands
for the underlying container orchestration engine to launch the containerized
tasks.
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3.1.5 Workflow

Figure 3.4 shows the typical sequence of events involved in the distributed or-
chestration process in EDIRO. The process starts from an event or an interaction
detected at the edge of the network on one of the edge nodes. The event parser
module identifies the type of event as a client service request or an IoT resource of-
fload and forwards it to the respective modules in EDIRO for subsequent handling.
The client requests are processed in a edge processing pipeline as shown in the
Figure 3.3 and the IoT resources are processed by the resource manager module as
shown in the Figure 3.2. While a dedicated processing pipeline is established for
each client request to facilitate dedicated service management, the IoT resources
are processed together by a single resource management process that runs concur-
rently in the background. As explained earlier in Section 3.1.3, the edge processing
pipeline relies on the latest IoT resource availability information rendered by the
resource manager to orchestrate the client requests.

3.1.6 Challenges Involved

The first main challenge in developing EDIRO lies in implementing the distrib-
uted orchestration and maintaining a global and consistent state of events at the
edge. As described earlier, the availability of the IoT resources on the edge in-
frastructure is captured and represented in the form of a system state by EDIRO.
Each edge node maintains a local copy of this state that records the IoT resources
available throughout the edge cluster which is eventually utilized for orchestrating
the end user service requests by performing IoT resource-aware edge offloading.
This challenge amplifies in the absence of a leader node(s) as the state on each
edge node undergoes continuous modifications both by the host edge node in an
event of a new IoT resource offloaded on it and also by an update request issued by
other edge nodes announcing the arrival of a new IoT resource on them. In order to
successfully serve the client requests, this state must be consistent throughout the
edge cluster. A consistent state is said to have reached when the local state of each
edge node is identical. However, the non uniform and dynamic distribution of the
IoT resources on the edge cluster will lead to multiple simultaneous writes to the
system state and the overhead that comes from the frequent communication among
the edge nodes to synchronize these write operations. This overhead is expected to
grow with increasing load on the system. Thus, it presents a challenge to ensure a
sufficient QoS to the end users in this scenario.

The second main challenge is associated with the service management in ED-
IRO. As per the service management design principle described earlier, a unique
edge processing pipeline is established on-demand for each client request. It com-
prises of multiple modules that collectively perform service orchestration. In a
large scale scenario multiple clients are expected to access the edge servers sim-
ultaneously resulting in the creation of several of such pipelines and the increased
communication among the edge nodes to serve these requests. This operation is
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likely to consume computing resources (CPU, RAM, etc.) in an additive manner
and may slow down the system eventually affecting the QoS perceived by the end
users. This requires the edge infrastructure to possess a modular architecture and
process several events in a concurrent and coordinated manner to avoid significant
delays in servicing of client requests.

A key characteristic of EDIRO is the presence of several modules that work
independently but simultaneously. For instance, the event parser and the resource
management modules function in the background while the service management
module orchestrates the client requests. Translating this design into a software
framework presents a challenge to demonstrate a significant level of concurrency
and interoperability of the constituent modules needed to achieve this functionality.
At the same time, it needs to be ensured that the operational overhead does not
affect the end user QoS drastically.

One of the goals of this work is to release EDIRO as open source to encourage
collaboration with and experimentation by the research community. In this regard,
special attention is paid to three main aspects of EDIRO as an open source project:
ease of development, extensibility and maintenance. In an attempt to render the
edge intelligent and autonomous, certain specific features have been embedded in
EDIRO as part of its design in this work. However, several other features could
be added to EDIRO in future to further enhance the edge intelligence. Hence, the
implementation must consider a style of development which allows it to be flexible
for such improvisations. While this thesis aims to integrate EDIRO into an existing
container orchestration platform, it should also be able to run as standalone. This
will facilitate the development and testing of EDIRO in isolation and not being
limited by the design of the third party orchestration platform. Considering that
the selection of specific software tools and techniques to achieve the above may
impose certain limitations or impact the design goals of EDIRO, the challenge
lies in making appropriate design choices for software prototyping that can help
achieve an optimum trade-off.

3.2 Implementation

EDIRO is implemented as an executable software package. The source code for the
same is written in the Go programming language [7] and lives as an open source
project at [5]. This section is structured as follows. First, it introduces the build-
ing blocks that constitute the software prototype of EDIRO to provide a technical
background for understanding the implementation of EDIRO. This is followed by
describing the software architecture of EDIRO, the core components, their im-
plementations, their interaction with each other and the method of solving design
challenges identified earlier in Section 3.1.6. This also includes the reasoning for
the choice of software prototyping tools were made to implement EDIRO.
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3.2.1 Building Blocks

Goroutines

A goroutine is just another function that is specified to run concurrently to the call-
ing function by prefixing it with the keyword ’go’ in the program. Unlike threads
in other programming languages, goroutines are scheduled by the Go runtime and
not by the OS (operating system) such that multiple goroutines map to the same
underlying OS thread [16]. Thus, goroutines are more lightweight than threads
with an overhead in the range of a few KBs (Kilobytes) which facilitates running
millions of goroutines on currently available computing systems [16].

Channels

Channels facilitate the execution synchronization of multiple goroutines in a pro-
gram by allowing them to communicate with other go routines and exchange data
[13, 16]. A channel is essentially a pipe to which a goroutine can pass data to and
read from [16]. By default, channels are synchronous and blocking, i.e., once the
sender writes data to a channel, it blocks until the receiver reads from the chan-
nel and vice versa. However, a buffered channel operates asynchronously, i.e., the
sender or receiver need not wait for the other side to be ready until the channel is
full. This is useful in the case when multiple inputs need to processed concurrently
but separately from each other such as in the case of EDIRO where each client
request is serviced separately in a unique edge processing pipeline established for
it. Usage of a default channel otherwise will lead to other client requests waiting
in the queue until the previous one is serviced.

gRPC

Remote Procedure Call (RPC) is a client-server based mechanism that enables a
computer program to execute functions in a program residing on another computer
in a different address space as if those functions resided locally [20]. Hence, this
technique enables the design of distributed applications and forms an important
part of the implementation of distributed orchestration in EDIRO, particularly, the
resource management functionality. gRPC is utilized as the RPC framework for
the implementation of distributed orchestration in EDIRO.

gRPC is an open source RPC framework that facilitates developing distributed
services and applications in a variety of programming languages [9]. Developing
a distributed application using gRPC involves defining the desired service, spe-
cifying the functions which can be remotely called, their input arguments and the
output return types [9]. gRPC uses protocol buffers by default as the Interface
Definition Language (IDL) for defining the desired service in the form of RPC
methods and specifying the structured format for data that is exchanged in the pro-
cess [9]. Protocol buffers are a language and platform neutral mechanism for seri-
alizing structured data [19]. The explanation of the detailed procedure for building
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a distributed application using gRPC goes beyond the relevance of this chapter in
the context of this thesis. While the detailed documentation can be accessed at [9],
a brief overview is provided of the same below based on the procedure described in
[9] in order to familiarize the reader with the general approach involved in this pro-
cess. The below description mainly focuses on the aspects of the application that
the developer needs to focus on and implement as the low-level details concerning
the transmission of the bits on the wire are taken care of by gRPC.

Since gRPC is based on the client-server model, when building a distributed ser-
vice using gRPC, the developer needs to first define the desired service by specify-
ing the RPC methods that constitute it and the request and response message types
they deal with. Request corresponds to the message that the client sends to the
server while calling a RPC method and response is the message which the server
responds to the client with after handling that particular RPC call. For example,
a handshake service between two computers may define a RPC method named
’Hello’ which takes in a request message by the name ’Hi’ of the type string and
emits a response by the message name ’Hi there’ of the type string.

After the service definition, the client and the server side of the application needs
to be developed in the choice of programming language. Development of the client
side involves establishing a connection to the server, calling a RPC method, passing
the data as an argument and optionally a custom action post receiving a response
from the server. In order to facilitate this, gRPC provides the required APIs to and
the client interfaces that contains the signature of the RPC defined in the previous
step. These can be generated by compiling the service definition file in the choice
of programming language. However, it’s up to the developer to implement the
RPC method from the provided signatures. The same approach holds good for the
development of the server side as well where the developer needs to implement the
core logic for handling of the client requests by the server which corresponds to
the main part of the service.

3.2.2 Software Architecture

A modular design approach has been followed in the development of the soft-
ware prototype of EDIRO. EDIRO is implemented as an executable software pack-
age that is composed of several modules that offer a specific functionality each.
These modules and their respective functionality is mapped to the core components
and their tasks as mentioned in the system architecture of EDIRO earlier in Sec-
tion 3.1.4. These modules are implemented as individual library packages which
combine together to compose a single software package for EDIRO.

EDIRO is designed and implemented as an event-driven architecture. The mod-
ules constituting EDIRO listen for events and act in response to deliver their re-
spective functionality. The key events that trigger the system software of EDIRO
are the end user interactions at the edge nodes that correspond to either offload of
IoT resources or arrival of on-demand client requests. As described in the work-
flow in Section 3.1.5, following these events, concurrent processing branches are
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created for service management and IoT resource management corresponding to
the type of event. Each stage of the edge processing pipeline and the resource
management results in the creation of new events that propagates through the re-
spective branch and further trigger the functioning of the subsequent modules in
EDIRO. Thus, each module in EDIRO listens and acts on a specific type of event
depending on its designated role. All the modules constituting EDIRO are initial-
ized to run as goroutines at software startup. At this point, each module is ready to
process any events generated in the system. These concurrently running modules
synchronize their operations and interact with each other using channels. While
the precise and detailed explanation of the functionality of each of the modules is
documented as comments in the source code which lives at [5], an overview of the
implementation methodology for the modules in EDIRO and their interaction with
each other is provided below.

3.2.3 Implementation Methodology for Core Components

For the software development of the modules constituting EDIRO, a common
design template is followed as shown in the Listing 3.1. A module has a desig-
nated input and output channel dedicated to it using which it receives the events
and writes post processing data to exchange with other modules respectively. The
type of data that is exchanged over these channels vary only slightly per module as
per its functionality but it typically represents and includes the details regarding the
client’s service request, corresponding workload to launch and the IoT resource.

Upon the initialization at software startup, each of the modules run concurrently
and waits for the arrival of events by blocking on their respective input channels
in an infinite loop. This behavior is comparatively more resource efficient than
polling as the goroutine is blocked until there is some data on the channel. Upon
the arrival of data on the channel, the Go runtime schedules the respective module
enabling it to process the event and write the result on its output channel. Although
the processing loop shown in the Listing 3.1 is sequential, the core processing part
is delegated to another goroutine to facilitate concurrent processing of multiple
events and avoid long waiting queues of events. Another point to note is that both
the input and output channels are buffered which means that the sender or receiver
side need not wait for the other end to be ready to handle the data passed over the
channel. This holds particular significance here as buffered channels enable the
sender and receiver to operate asynchronously, thereby allowing each module in
EDIRO to operate asynchronously and independent from each other.
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1

2 func module(input_channel, output_channel) {
3 for {
4

5 /* Read input from channel in an infinite loop.
6 Blocks until ’event’ arrives on channel
7 */
8 input := <- input_channel
9

10 {
11 /* delegating the event processing task
12 to a goroutine to facilitate concurrent
13 processing of multiple events
14 and avoid queuing
15 */
16

17 go func(process_input)
18

19 }
20

21 /* Write result to output channel.
22 This will be the ’event’ for another
23 module. Buffered channel allows
24 non-blocking write operation
25 */
26 output_channel <- result
27

28 }

Listing 3.1: Template for module implementation in EDIRO

3.2.4 End user Interactions With Edge Nodes

EDIRO is designed to react to and process the interactions that the end users have
with the edge infrastructure in real life IoT scenarios. These interactions are the
on-demand service requests and IoT resource offloads. However, for experimental
purposes in this thesis, end user interactions at the edge nodes are simulated by
representing them in a JSON format in a file and supplying it as an external input
to EDIRO during testing. The event parser module in EDIRO parses the contents
of this file and passes them to the other modules for subsequent processing in an
appropriate structured data format as explained earlier in Section 3.2.3.

The rationale behind opting for the simulation based approach is that this thesis
focuses on the feasibility of an edge-driven orchestration architecture purely on the
basis of its capability to orchestrate the workloads and IoT resources that arrive
on the edge nodes. The mode of wireless networking which the end users use
to offload the IoT resources or issue service requests on the edge nodes assumes
secondary importance in this regard. Hence, supporting a specific mode of wireless

54



or wired connectivity means in EDIRO for the end users to interact with the edge
nodes wouldn’t add any specific significance to EDIRO at this point. Therefore,
a REST interface is not implemented and neither is a semantic language or an
API developed which allows the end users to interact with the edge nodes in a
sophisticated manner, although this could be a future work which could serve as an
add-on to the current design of EDIRO.

Two separate sets of unique files are utilized for each edge node during a test
run. These files contain the information regarding the on-demand client requests
received and the IoT resources offloaded on an edge node respectively. Both the
on-demand client requests and the IoT resources are represented as strings in these
files. The rationale behind representing the client requests as strings is as follows.
In a practical scenario of the target use case, an on-demand client request will
ultimately be a form of a control message or a signal embedding a message that
represents the desired service request. Moreover, in the context of EDIRO, the
client requests are only used as keys which are plugged into the AOR (Application
Orchestration Reference) model to determine the corresponding workload to be
deployed on the edge nodes.

The rationale behind representing the IoT resources as strings is as follows. An
IoT resource such as an image or sensor data offloaded on the edge node in a
practical scenario will ultimately reside on the local disk storage of that edge node
with its reference being its location on the file system, which is a string. Although
the action of IoT resource offloads is simulated but real IoT resources in the form
of sensor data sets and images are used for conducting experiments and evaluating
EDIRO in this thesis. Before the start of a test run, each edge node is populated
with a set of IoT resources. Their respective locations on the disk storage of that
edge node is mapped to a string and captured in the file that is supplied as an
external input.

3.2.5 Leveraging Underlying Container Orchestration Engine

EDIRO uses container as the virtualization technology for executing the workloads
to serve the client requests for reasons explained in Section 2.2.1. While EDIRO
implements the orchestration part, the following features are needed in order to
deploy the containerized applications across the edge cluster.

1. Control and manage the deployment of applications on edge nodes in the
cluster.

2. Execute the containerized workloads.

3. Access the current status of workloads on the edge cluster.

Docker is utilized as the container platform purely for the evaluation purposes of
EDIRO. In addition to providing the means to build and run containerized applica-
tions, Docker also provides container cluster management features via the Swarm
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Mode. This mode enables to turn a cluster of physical host machines into a single
large pool of computing resources on which the containerized applications can be
deployed [22]. It provides the features to control and manage the deployment of
applications across these hosts machines or edge nodes, as required in the case of
EDIRO. Docker must be installed on each edge node. In order to use the swarm
mode, all nodes must be added to the swarm. Generally the swarm mode has some
managers and some worker nodes but considering the goal of this thesis of possess-
ing a flat hierarchy, an all manager mode is chosen so that enables each edge node
to offload and execute containerized applications anywhere on the edge cluster.

The output of the orchestration process is the determination of what workload
runs where. In order to actually run the workload, or leverage any additional ser-
vice from Docker, contact to the Docker engine needs to be established. Docker
possesses a client-server architecture in which the Docker engine is the server that
exposes a REST API for the client to specify the desired action to be performed,
for example, launching a container. The system command are constructed based on
the information derived from the orchestration process to launch the containerized
workloads and query the information about ongoing workloads.

3.3 Rationale for Choice of Software Prototyping Tools

This thesis makes specific choices for the software development tools and techno-
logies used to develop the software prototype of EDIRO. These choices were driven
by the goals of this thesis and the design goals set for EDIRO in particular. Three
key ones are discussed in this regard, namely the choice of programming language,
the RPC framework and the underlying container orchestration platform.

3.3.1 The Go Programming Language

A significant level of concurrency is the key to facilitating handing of several events
at large scale that needs to be processed separately from each other. The Go pro-
gramming language also known as Golang, offers support for concurrency in the
form of goroutines and channels. As explained earlier in Section 3.2.1, the light-
weight and low overhead of goroutines enables the application to spin up several
go routines as compared to threads. Channels allow safe communication among
go routines by sharing memory by communicating and not the other way around
which is the case with threads [8]. Choosing Go as the programming language
for development of EDIRO facilitates extending Docker’s container orchestration
system (also implemented in Go) as a future work identified in this thesis. Go
also provides APIs for benchmarking the application which can help identify the
sections of program that contribute to resource contention or consume consider-
able amount of CPU eventually slowing down the entire application. However, this
feature is not utilized as part of this work.
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3.3.2 gRPC

The rationale behind opting for gRPC as the RPC framework for implementing the
distributed orchestration in EDIRO is based on the following characteristic features
of gRPC.

• A development environment that facilitates building a distributed application
by defining a service with a set of methods makes for a structured application
development process. It improves readability of the software manifolds and
renders a significant clarity to the application unlike the case with using TCP
sockets which is primarily based on sending raw data over the wire.

• Self manages the low level details of the distributed application such as send-
ing the bits over the wire. Thus, the developer needs to only focus on design-
ing and implementing the core logic of the application and not deal with the
engineering aspects of the underlying networking and data transfer mechan-
isms.

• It allows the application to be extended in future by facilitating updating the
service definition with adding more features that could be supported on both
the client and the server side.

• Supports application development in several programming languages to a
level where the client and server side could be implemented in different
languages. This facilitates building a distributed application for use case
involving dissimilar hardware infrastructure. For example, developing a
distributed edge orchestration framework involving edge nodes owned by
different vendors running different operating systems and runtime environ-
ments could potentially benefit from this.

• Last but not the least, gRPC is backed by an active community with strong
online presence and a well maintained open source repository with good
documentation.

3.3.3 Docker

The choice of the underlying container platform was based on the following cri-
terion.

• It should offer container cluster and management features required for ex-
perimental evaluation of EDIRO.

• Must possess a simplified architecture of the inbuilt container orchestrator
whose source code is easily accessible and extendable.

Docker stood out as the clear choice as compared to Kubernetes. Simplicity in
container deployment is one of the main reasons why Docker is preferred over
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Kubernetes. Container deployment and cluster management in Kubernetes in-
volves several steps of configuration of the infrastructure, setting up volumes, net-
works, etc. The other main reason behind opting for Docker as the choice of under-
lying container platform is the easy access to ’Swarmkit’ which is the open source
project that houses the source code for Docker’s inbuilt orchestrator. Although the
only documentation available for it is a few short design documents, the source
code overall does not appear as very difficult to follow.
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Chapter 4

Measurements and Results

This chapter presents the description of the experiments conducted and the ana-
lysis of the results obtained for the experimental evaluation of EDIRO. Section 4.1
describes the experimental set up. Section 4.2 describes the measurement meth-
odology and the results obtained for the overhead from distributed orchestration in
EDIRO. Section 4.3 describes the measurement methodology and results obtained
for the client request servicing time in EDIRO. Section 4.4 describes the measure-
ment methodology and results obtained for the computing resource utilization of
EDIRO on different hardware devices. Section 4.5 correlates the different results
obtained and discusses the implications of the same in the context of the research
questions defined in the thesis.

4.1 Experimental Setup

This section describes the four main components of the test setup for the exper-
imental evaluation of EDIRO, namely the edge infrastructure, workload applica-
tions, client requests and the IoT resources.

Edge Infrastructure

The test setup comprises of a set of interconnected computing devices emulating
edge nodes in an edge computing infrastructure. For the experiments, three differ-
ent types of devices are used as listed below.

1. An Intel NUC (Intel Core i3-8109U CPU@3.6GHz, 8GB RAM) running
Ubuntu 18.04.3 LTS with Docker community edition version 19.03.6 in-
stalled.

2. A laptop PC (HP Probook 440G4, Intel Core i5-7200U CPU@2.5GHz, 8GB
RAM) running Ubuntu 18.04.4 LTS with Docker community edition version
19.03.6 installed. This will be referred to as just ’PC’ henceforth for simpli-
city.
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3. A Raspberry Pi 3B+ (BCM2837B0 quad-core ARMv8 CPU@1.4GHz, 1GB
RAM) running Raspbian GNU/Linux 10 (buster) with Docker community
edition version 19.03.6 installed.

Two different variants of the test setup are created to emulate two edge com-
puting infrastructures that differ vastly in terms of the computing, networking and
storage resources available on each of them. This facilitates evaluating EDIRO on
two distant ranges and types of edge infrastructures. To accomplish this, the afore-
mentioned set of computing devices are paired with each other accordingly to form
a two node edge computing setup. An Intel NUC interconnected with the PC over a
1Gbps Ethernet link forms one setup and two Raspberry Pi devices interconnected
over a 100Mbps Ethernet link forms another.

Each edge node is populated with the EDIRO software package and added to a
cluster initialized using Docker Swarm. The swarm mode in Docker turns a cluster
of multiple separate physical Docker host machines into a logical single large pool
of compute nodes where containers can be deployed and migrated across. The
control and core control and management responsibilities are fulfilled by dedicated
manager node(s) while the worker nodes are only limited to executing the work-
loads. Aligning with the ideology of a flat hierarchy at the edge, each edge node is
assigned a manager role in this cluster. Furthermore, while adding the edge nodes
in the cluster, a specific label is assigned to each edge node which acts as a unique
identifier for that node. A unique identifier for each edge node facilitates deploying
containerized workloads on a specific edge node in the cluster.

Simulation of the input traffic : Client requests and IoT resources

EDIRO is designed for IoT edge computing scenarios where the clients offload
their on-demand requests to the edge nodes requesting a service in return. This
service corresponds to the result produced by a corresponding workload applica-
tion that executes on an edge node. Furthermore, the workload application requires
an IoT resource such as sensor data, image, etc., as an input for its execution which
is sourced from the IoT resources offloaded by other end users on the edge nodes in
their vicinity. This is one of the underlying methodologies to accomplish collabor-
ative processing in an IoT domain. A typical example for this is a vehicle querying
an edge node installed on a nearby street light for the driving conditions in a certain
part of the city. To serve the vehicle’s request, the edge infrastructure collectively
processes the IoT resources ,i.e., images, HD maps and sensor data offloaded by
other vehicles on the edge nodes in their vicinity [108]. This application scenario
of collaborative processing for connected vehicles in a Smart city domain is also
the target use case for this work.

For experimental purposes in this thesis, this input traffic to the edge nodes is
simulated. This is accomplished by simulating the event of offloading client re-
quests and IoT resources to the edge nodes. The rationale behind opting for the
simulation based approach is that this thesis focuses on the feasibility of an edge-
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driven orchestration architecture purely on the basis of its capability to orchestrate
the workloads and IoT resources that arrive on the edge nodes. The mode of wire-
less networking which the end users leverage to offload the IoT resources or service
requests on the edge nodes assumes secondary importance in this regard.

The client requests and the IoT resources are represented as strings and the event
of offloading either of them on an edge node is represented by a JSON notation in
a file as explained earlier in the Section 3.2.4. This file represents a uniform distri-
bution of these events across the two edge nodes. Two separate sets of unique files
are utilized for each edge node which embed the information of the on-demand cli-
ent requests received and the IoT resources offloaded on an edge node respectively.
Multiple of such sets of files are created to simulate the application of varying
amounts of traffic at the edge nodes for different test runs. The rationale behind
this form of input representation is as follows.

In a real life scenario involving actual vehicles on the road, the events of offload-
ing service requests and IoT resources on the edge nodes by the end users can be
characteristically described as the following.

• Client requests are typically of the form of a control message embedding the
service request metadata [103]. Upon their reception by an edge node, they
will be processed and a workload application will be deployed for execu-
tion in response that will produce an output that serves the particular client
request.

• An IoT resource such as an image or sensor data offloaded by an end user
on the edge node will ultimately reside on the local disk storage of that edge
node.

Since, in the context of EDIRO, the client requests are only used as keys which
are plugged into the AOR (Application Orchestration Reference) model to determ-
ine the corresponding workload to be deployed on the edge nodes, they are rep-
resented as a set of strings in the simulated input traffic. And, an IoT resource
offloaded on an edge node can be referenced by its location on the disk storage,
thus it is represented as a string too. However, although the action of offloading an
IoT resource is simulated, actual IoT resources in the form of sensor data sets and
images are used for conducting experiments and evaluating EDIRO in this thesis.

Traffic Index

The term Traffic Index is used to specify the amount and the type of traffic in the
form of incoming client requests and IoT resources that is applied to the edge nodes
running the EDIRO framework. Traffic Index is represented either by an ordered
pair (A,B) or an ordered triplet (A,B,C) with the description of the notations as
given below.

• ’A’ denotes the number of client requests received by one edge node.
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• ’B’ denotes the number of IoT resources offloaded on one edge node.

• ’C’ denotes the inter-arrival time between the incoming client requests on
an edge node. An inter-arrival time of zero seconds between the consecutive
client requests signifies a bursty traffic which is characterized by multiple
simultaneous client requests issued towards the edge nodes. A finite inter-
arrival time between the consecutive client requests denotes a normal or
regular traffic scenario. For the experiments, this finite inter-arrival time is
fixed to 3 seconds.

Workload Applications

In order to serve the multiple different client requests, as many number of dif-
ferent applications need to be executed on the edge nodes in response. As stated
earlier in Section 3.1.3, an imperative approach has been followed to map each
of the incoming client requests to a specific workload application that needs to be
deployed on the edge nodes to serve that request. While making the selection of
the aforementioned applications for this evaluation, the relevance of a logical map-
ping of the applications with the client requests is not considered as the aim of this
experimental evaluation is to only show the feasibility to orchestrate a variety of
applications and requests regardless of their logical significance to each other. A
set of different applications are mapped to a set of different client requests in order
to simulate an environment in which a set of unique end users request a specific
workload to be deployed on the edge nodes.

The workloads are executed as containerized applications on the edge nodes.
Docker is used as the container platform to facilitate the creation of the application
images and their deployment on the edge nodes. Two sample IoT applications
are built and packaged as container images, i.e., Docker images to use for this
experimentation as mentioned below.

• An image resizing application that takes an image of approximately 1.2MB
in size as an input, resizes it to a lower resolution and returns a resized ver-
sion of the image as the output which is approximately 250KB in size. The
Docker image for this application is approximately 1.26GB in size.

• An application that performs a quicksort on a set of multiple sensor readings
such as temperature, humidity and pressure. The sensor readings are stored
in a JSON format in form of a dataset. The application takes this dataset as
an input, performs quicksort on each of the set of sensor readings in it and
renders the sorted set of values for each type of sensor as the output. The
Docker image for this application is approximately 100MB in size.

In this case, the IoT resources for the above two applications, i.e., the image for
the image resizing application and the sensor data set for the quicksort application,
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are embedded in the container images of these application itself. In order to emu-
late the provisioning of several different applications on the edge nodes, different
versions of these applications images are created, which upon deployment runs as
individual containers, although the underlying core application is the same in each
of them.

Since EDIRO aims to study the feasibility of an edge architecture that operates
autonomously with minimal or no dependency on the cloud, it implicitly means
that the application images must reside somewhere on the edge cluster and made
available in advance. An option is to store the images in a registry server placed
on the edge cluster which is reachable by each of the edge nodes. However, the
approach of populating each edge node with all the application images is taken.
Although this approach is not an ideal option in field scenarios considering the
limited storage capacity available on an edge nodes, it is chosen and relied upon
only as a temporary solution for this experimentation phase. The rationale behind
the same is that it does not become a bottleneck from storage perspective as dif-
ferent versions of the same base image are created. The layered file system in
containers ensures that the total space on the disk occupied remains constant and
equivalent to the base image regardless of the several different versions of it that
are created.

Measurements Overview

The system is profiled under different combinations of computing devices, work-
load applications and traffic conditions. The goal of the experimentation phase is
to measure and analyze the performance trend of EDIRO with respect to the afore-
mentioned parameters. For the experiments, the edge cluster topology is restricted
to a two node edge computing setup to facilitate precise measurement and compar-
ison of the performance of EDIRO in varying traffic load conditions on different
types of computing devices. Opting for a two node topology consisting of sim-
ilar devices facilitates stress testing in this scenario as the amount of traffic flowing
into an edge node can be controlled with better ease which enables to study the per-
formance trend precisely. Performance evaluation on a large topology consisting of
similar devices on the other hand would not prove to be an ideal testing ground for
this purpose considering that modern edge computing infrastructure often consists
of edge servers owned by multiple vendors that vary in hardware specifications.
Although it can help gain insights into specific use cases such as performance on
an edge infrastructure consisting of dissimilar edge nodes, it is identified as a future
work. In such scenario, specific type of edge node is bound to become a bottle-
neck in the system and thus would require an algorithm to enhance and adapt the
orchestration policy accordingly.

The three main parameters measured in order to evaluate EDIRO are presented
below along with the rationale behind their choice.
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• Time taken to serve an on-demand client request, especially in a large scale
scenario where multiple of such requests arrive simultaneously. The end user
QoS is the most important and ultimate objective of any edge computing
solution. This measurement will help determine how does the client request
servicing time vary with increasing traffic in large scale scenario and render
insights into EDIRO’s response to varying load.

• Overhead incurred from the distributed orchestration approach in EDIRO
that facilitates servicing of the client requests. Measurement of this para-
meter will convey how much the overhead grows with increasing traffic and
adds to the client servicing time of EDIRO.

• Computing resource utilization , i.e., the CPU and RAM usage of ED-
IRO when running on different computing devices. This is measured to get
an idea of resource consumption pattern keeping in mind the resource con-
strained edge nodes for which EDIRO is targeted.

All the measurements are averaged over five runs. Mean is chosen as the metric
instead of median because the data set of measured values of a parameter across
multiple runs demonstrated a uniform trend in which the individual values in the
dataset were comparable and outliers were absent.

4.2 Overhead from Distributed Orchestration

Measurement Methodology

The parameter measured here is the average time it takes for the edge infrastruc-
ture to reach a consistent state after an IoT resource is offloaded anywhere on
the edge cluster. Reaching a consistent state is crucial for the maximization of
the serviceability of a future client request irrespective of the edge node it is of-
floaded on. The edge infrastructure is said to have reached a consistent state when
the information about the availability of an IoT resource offloaded on one of the
edge nodes in the edge cluster is shared with all the other edge nodes such that
each edge node bears an identical local record corresponding to that IoT resource.
This process repeats post the offload of any new IoT resource on the edge cluster.
Hence, each time a consistent state is reached for a particular IoT resource, the
entire edge cluster possesses the knowledge of its availability information which is
needed to serve a future client request that is dependent on it. Figure 4.1 illustrates
this process for a two node edge computing setup. Step 5 specifies the achievement
of the consistent state in the edge cluster. The overhead that is being referring to
here corresponds to the time it takes to execute step 1 through step 5 in order.

For the measurement, the events of several IoT resources being offloaded sim-
ultaneously to the two edge nodes is simulated by subjecting the test setup to an
input traffic that embeds the IoT resources information in it. This bursty traffic is
applied to the edge nodes in a manner that equally distributes the number of IoT
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Figure 4.1: Methodology for measuring the overhead due to distributed orchestra-
tion in EDIRO to serve a client request

resources among the edge nodes. The number of IoT resources offloaded by this
traffic burst is increased by 10 in every subsequent iteration. There are no client
requests generated towards the edge nodes during this process as the aim is to meas-
ure the overhead caused by the inter-edge communication that takes place post the
reception of an IoT resource by the edge node. Through a dedicated measurement
logic embedded in the EDIRO software, the time taken to reach a consistent state
for each IoT resource received by an edge noes in each iteration is measured and
recorded. To convey the final result, the average of the individual values recorded
for every test run is taken.

Assumption

It is assumed that the IoT resources required to serve a client request are available
prior to the arrival of the request. Hence, during the test runs, the input traffic that
EDIRO is subjected to is applied in a manner such that the client requests appear
after the IoT resources with a certain inter-arrival time in between. The rationale
behind this assumption is that in an event of unavailability of an IoT resource,
either the client request will have to wait for a certain time out period before its
service period expires or it would have to be offloaded to the cloud eventually.
The bottleneck in each of the two cases is the time it takes for the IoT resource to
be offloaded onto the edge cluster after a client request has arrived. Considering
these IoT resources will be provided by other clients in the vicinity, this is an
external factor and the additional latency experienced in serving the client request
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will be dependent on it. Since, this does not help in gaining any insights specific to
EDIRO’s performance or related aspects, this assumption is made.

Figure 4.2: Comparison of the average overhead incurred in serving a client request
due to distributed orchestration across different hardware

Results Analysis

Figure 4.2 captures the trend of the average overhead in serving a client request due
to distributed orchestration across three different types of computing devices. This
is the worst case scenario and hence the values indicated here forms the benchmark
for the upper limit on the latency experienced in the system in the specific traffic
bursts sizes. The results are interpreted in the following manner. When 10 IoT re-
sources are offloaded simultaneously on NUC, a future client request dependent of
any one of these resources can be guaranteed a successful service if it arrives after
4.2 milliseconds after this. For PC and Raspberry Pi, this value is 7.6 milliseconds
and 15 milliseconds respectively.

The following key observations are made:

1. The first impression from the result is that the average overhead in serving
a client request increases with the number of IoT resources offloaded on
the edge node. The rate of increases is gradual as compared to the rate of
increase in the traffic initially but grows steeply afterwards. Differences in
computing and networking capabilities of the devices largely influences this
overhead as the ability to process a traffic burst quickly and communicate
with other edge nodes is tested.

66



2. This overhead is the result of the flat hierarchy at the edge which enables the
end users to offload IoT resources anywhere on the edge cluster. However,
the comparatively steep rise of the overhead with increasing traffic across
hardware is an indication that at some point this overhead will outweigh the
benefits of the flat hierarchy and hence it is a trade-off of this edge-driven
orchestration architecture.

3. Although the multiple IoT resources embedded in the traffic burst arrive sim-
ultaneously on the edge nodes, there is a certain degree of fairness observed
in the manner each of them is processed as the input is not queued for long
periods waiting to be processed. This is evident from a low standard de-
viation as indicated in the plot which increases gradually as the size of the
traffic bursts increases. This is an encouraging sign especially for traffic
bursts scenario which implies that when the same number of IoT resources
are offloaded with an inter-arrival time in between, the performance is bound
to be better than the worst case.

4.3 Client Request Servicing Time

Measurement Methodology

The procedure of serving a client request in EDIRO involves the coordinated work-
ing of multiple concurrent processes. Hence, the time taken to serve a client request
is the sum total of the time taken by each of these processes. The processes that
are being referring to here are the following.

• Distributed orchestration to serve a client request.
This refers to the distributed IoT resource management process which in-
volves the collaboration of the edge nodes to serve a client request by sharing
the availability of the IoT resources on the edge cluster among each other.
Since frequent inter-edge communication is the main characteristic of this
process, it accounts for an overhead to the overall client request servicing
time. This is another measurement parameter as already described in Sec-
tion 4.2.

• Time taken to execute the edge processing pipeline for a single client re-
quest.
EDIRO establishes an edge processing pipeline to processes each incoming
client request as they are received by the edge nodes. As described earlier
in Figure 3.3, the sequence of operations constituting this pipeline includes
performing the computation offloading, triggering of the resource monitor-
ing feature and initiation of the containerized workload application that ex-
ecutes on the edge node.

The above list of processes omits the process corresponding to measuring the
time it takes for the containerized application to complete its execution after it has
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been launched. The rationale behind the same is that the aforementioned time will
vary depending on the application and it’s an aspect which does not include the
involvement of EDIRO in any capacity. Hence, measurement of this time does not
render any insights into any specific aspect of the EDIRO.

4.3.1 Execution time of the edge processing pipeline

Measurement Methodology

As highlighted in the Figure 3.3, at the last stage of the pipeline EDIRO contacts
the underlying Docker engine to launch the containerized workload. Until this
point in the pipeline, the execution control resides with EDIRO but at this point,
it is transferred to the underlying Docker engine which is external to EDIRO. The
measurement of the execution time of the edge processing pipeline is split into two
parts in order to collect insights specific to the performance of EDIRO and study
the overhead, if any, introduced by Docker. The first part of this measurement pre-
cisely measures the pipeline execution time until the point where the containerized
workload is launched. The second half measures the time it takes for the Docker
Engine to launch the containerized workload.

For the measurement, the events of several client requests and IoT resources be-
ing offloaded to the two edge nodes is simulated by subjecting the test setup to
an input traffic that embeds the information about the client requests and the IoT
resources in it. Two types of traffic is applied to the edge nodes which differs in the
manner in which the client requests are offloaded to the edge nodes. This is accom-
plished by specifying the inter-arrival time between two consecutive client requests
in the traffic index. For an input traffic consisting of multiple client requests, the
time to serve each client request is measured separately. These individual values
are then used to calculate the average that represents the mean time it takes for a
client request to be served for a specific size of traffic burst.

Results Analysis

The trends of edge processing pipeline execution time in bursty and regular traffic
scenarios for NUC, PC and Raspberry Pi are captured in the Figure 4.3, Figure 4.4
and the Figure 4.5 respectively.

The following key observations are made:

1. For the case of bursty traffic with simultaneous incoming client requests, a
trend similar to the one observed for the distributed orchestration overhead
is observed which shows a steep increase in the time it takes to serve a client
request as the size of the traffic burst increases. This indicates that even in a
large topology comprising of multiple nodes, it is possible for the end users
to experience a varying QoS for similar service demands considering that a
particular edge node(s) may be overloaded with serving other clients. Thus,
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Figure 4.3: Comparison of time taken to execute the edge processing pipeline on
Intel NUC in bursty and normal traffic scenarios

Figure 4.4: Comparison of time taken to execute the edge processing pipeline on
PC in bursty and normal traffic scenarios
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Figure 4.5: Comparison of time taken to execute the edge processing pipeline on
Raspberry Pi in bursty and normal traffic scenarios

distribution of client requests in such a scenario becomes crucial but when
a flat hierarchy at the edge is offered to the end users, the distribution of
incoming client requests can’t be controlled directly. Offloading the client
request to run on another edge server could be a potential option but that
would involve offloading the IoT resource, i.e, the data as well which may
add an additional overhead resulting from data transmission. Hence, this is
another trade-off that must be considered when using such an edge-driven
architecture.

2. The latency improvement in serving the client requests with an inter-arrival
time over the client requests that arrive in a traffic burst becomes significant
as the traffic increases. This is an encouraging sign especially in devices such
as NUC and PC because of the following reason. Since each incoming client
request results in the execution of a containerized workload, the processing
of every subsequent client request is subject to suffer an added latency due to
the computing resources occupied by the ongoing containerized workloads
of previous requests executing in the background. However, the service man-
agement design principle of EDIRO that processes each client request con-
currently and separately, facilitates compensating for this latency.

3. An interesting observation is that the standard deviation in the client request
servicing time for the requests that are part of the same traffic burst, increases
steeply with the increase in traffic, i.e, the variation in the time taken to sever
client requests that are part of the same traffic burst differ increasingly. The
reason behind the same is the continuous variation in the amounts of comput-
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ing resources available on the edge node due to the launch and termination
of the containerized workloads that affects the processing of the subsequent
client requests to come. As a result, some client requests, are processed
quicker than the others, thereby only slightly affecting the average. This is
later related with the findings from the computing resource utilization results.
This phenomena is highlighted as an aspect of an edge-driven orchestration
architecture that renders the measurement and analysis challenging due to
dynamically changing parameters in the system.

4. Hardware differences influence the client request servicing time more than it
influenced the overhead incurred from distributed orchestration. This is due
to the reason that in order to handle multiple client requests concurrently, the
system demands resources dynamically from the underlying CPU to run the
required processes. This takes a toll on devices such as Raspberry Pi which
failed to operate when it was subject to a traffic burst with a traffic index of
(24,30,0), thereby making it an upper bound for such a device.

4.3.2 Overhead from Docker

Figure 4.6, Figure 4.8 and Figure 4.7 presents the overhead incurred due to Docker
in the process of serving a client request.

Results Analysis

When launching of the containerized workload is taken into consideration for a cli-
ent request, there is no visible latency improvement for client requests that arrive
with an inter-arrival time over the ones that arrive simultaneously. This behavior is
unlike what was observed in the case that excludes the initiation of the container-
ized workload initiation. This is attributed to the fact that the latency gain margin
in the latter case is compensated by the delay involved in launching of the contain-
ers by the Docker engine that already manages the containerized workloads from
previous requests. However, overall, this overhead maintains an approximately
constant trend of variation with increasing load unlike the steep increase noticed in
previous cases.

Average time taken to serve a client request

Having measured each of the processes as listed earlier in Section 4.3, the total
time it takes for EDIRO to serve a client request can be calculated and is represen-
ted by the following expression.

Average time to serve a client request = A + B + C

where A, B and C are the following.
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Figure 4.6: Docker overhead in orchestration of client request in Intel NUC

Figure 4.7: Docker overhead in orchestration of client request in Raspberry Pi
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Figure 4.8: Docker overhead in orchestration of client request in PC

A: Average overhead from distributed orchestration to serve a single client re-
quest

B: Average execution time of the edge processing pipeline for a single client re-
quest excluding workload initiation

C: Average overhead from Docker to launch the containerized workload for a
single client request

Results Analysis

Given that the time taken by A and B are in the order of tens of milliseconds and
that by C is in the order of seconds, the average time taken to serve a client request
is ultimately determined by C, i.e., the overhead from Docker. Figure 4.9 and
Figure 4.10 presents the trend of the total time it takes to serve a client request in
bursty and regular traffic conditions respectively.

The following key observations are made:

1. For a bursty traffic scenario, NUC and PC show similar trends of variation
of the average client request servicing time with increasing size of traffic
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Figure 4.9: Comparison of time taken by EDIRO to serve a client request in bursty
traffic scenarios (Raspberry Pi fails to handle a load of 24 concurrent client re-
quests).

Figure 4.10: Comparison of time taken by EDIRO to serve a client request in
regular traffic scenarios
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bursts. When the number of simultaneous client requests that the edge nodes
are subjected to, are doubled from 10 to 20 and subsequently to 30, the
service time increases by 3.8% and 19.6% respectively. This indicates that
the EDIRO adapts well to a sudden increase even in a bursty traffic and
controls the increase in the time it takes to serve a client requests.

2. In the case of a regular traffic scenario for NUC and PC, no such clear in-
creasing trend in the average client request servicing time is observed as the
size of the traffic burst is increased. This can be explained in the following
manner. An increase in the number of client requests implies an equal in-
crease in the number of containerized workload to be deployed on the edge
nodes. But since in a regular traffic scenario, the client requests arrive with
a certain time interval in between, it gives that much additional time win-
dow for the previous workloads to be terminated and release the computing
resources to be consumed by the next workloads in line, thereby reducing
the load on the container deployment engine as compared to the case of the
bursty traffic.

3. In the case of Raspberry Pi, the aforementioned phenomena is not observed
and a distinct trend of increase in the average client request servicing time is
observed as the traffic is increased. This is attributed to the lack of sufficient
computing resources on low cost and portable embedded computing devices
such as the Raspberry Pi. As evident from Figure 4.7, a container platform
such as Docker consumes a significant amount of the computing resources
when in operation. Hence, the contention for the computing resources by the
workloads is continuously present leading to a development of a potential
queuing effect which builds up the load on the container deployment engine
resulting in an increase in the client request servicing time as seen in the
Figure 4.10.

4.4 Computing Resource Utilization

Measurement Methodology

In order to determine the runtime computing resource utilization of EDIRO, the
CPU and the RAM usage of EDIRO are measured during its execution on each
of the edge nodes. These parameters are measured using the Linux command
’top’ with a sampling interval of 1 second. The measurement of the percentage
of CPU usage by EDIRO during its runtime considers the amount of CPU used
by the processor to run both the user space processes as well as the Kernel space
processes because the user space processes demand dynamic memory allocation
and involves execution of system commands. While the RAM usage measured
using the top command provides a comprehensive view of the memory usage in
runtime, the memory utilization specific to the EDIRO software is also measured.
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To accomplish this, the ’runtime’ package of Golang is used that provides func-
tions and structures to fetch runtime memory statistics. The functionality to collect
the runtime memory statistics is embedded in the EDIRO software with a sampling
interval of 1 second. The parameters measured here include the total memory re-
served from the OS by the Go runtime, the current number of goroutines running
and the stack in use, etc. Out of the total RAM utilized for its execution, EDIRO
reserves 10 MB and 68MB of memory from the OS on Raspberry Pi and on each
of NUC and PC respectively. This memory is reserved specifically for the program
by the GO runtime at the beginning of its execution.

Results Analysis

Figure 4.11a, Figure 4.12b and Figure 4.13a presents the trend of CPU and RAM
utilization in runtime across the three devices. Although both NUC and PC possess
similar hardware specifications, the RAM utilization in the former is almost half
of that in the later. This is not due to any specific performance trend in PC as is
evident from other other results where both show comparable performance, but due
to some background processes running on the PC apart from EDIRO and Docker.

The following key observations are made:

1. In the case of the client requests that come with an inter-arrival time in
between, the behavior of dynamic consumption and release of computing
resources is observed which is captured in the form of continuous pattern of
high and low peaks over a period of time in the result plots. This is due to the
combination of the several events that happen on the edge node during the
execution of EDIRO while the input traffic is being applied. The high peaks
correspond to the events such as starting of a containerized application and
establishment of an on-demand edge processing pipeline for a client request
which internally requests for memory from the CPU. The low peaks cor-
respond to events such as termination of a containerized application, finish
serving a client request, etc. However, in the case of bursty traffic, the same
events keep the CPU busy all the time which is reflected in the plots by a flat
line extending a short period of time.

2. A measurable difference is noticed in the CPU utilization for the client re-
quests that arrive at the edge nodes with an inter-arrival time and the ones
that arrive simultaneously as pat of a traffic burst. This difference ceases to
be visible in devices such as Raspberry Pi. On an average, the CPU utiliza-
tion for bursty traffic is higher by approximately 11% in NUC and 15% in PC
than the traffic in which the client requests are separated by an inter-arrival
time.

3. Overall, the computing resource utilization of EDIRO indicates that although
the CPU resource utilization is slightly on the higher side, it is able to deliver
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(a) CPU utilization in NUC

(b) RAM utilization in NUC

Figure 4.11: Computing resource utilization of EDIRO on Intel NUC
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(a) CPU utilization in PC

(b) RAM utilization in PC

Figure 4.12: Computing resource utilization of EDIRO on PC
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(a) CPU utilization in Raspberry Pi 3B+

(b) RAM utilization in Raspberry Pi 3B+

Figure 4.13: Computing resource utilization of EDIRO on Raspberry Pi 3B+
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the resources required by the constituent modules of EDIRO to facilitate
handling of multiple events via concurrent processing. Moreover, analyzing
the CPU utilization trend usage facilitates reasoning for the results obtained
for other parameters such as the time to serve client request and the overhead
due to Docker. For example, the phenomena of dynamic consumption and
release of computing resources that affects the aforementioned parameters
differently.

4.5 Discussion

Although the benefits of an edge-driven approach as offered via EDIRO are mani-
folds as described earlier in Section 2.4, there are certain overheads and limitations
that come with them. These are a by product of the features and benefits offered
by such an edge-driven approach. Hence, certain trade-offs need to be considered.
From the results, four such sets of trade-off parameters are identified and an ana-
lysis of each of them is provided below.

Trade-off 1 : Benefits offered by the flat hierarchy or transparency at the edge
vs the latency experienced by the end users.

Rendering the edge infrastructure as transparent ,i.e., enabling the end users to of-
fload the data and requests to any of the constituent edge nodes directly implies that
the same set of edge nodes need to communicate frequently in order to exchange
and spread that information throughout the edge cluster. Since the knowledge of
the data (IoT resources) availability on the edge cluster maximizes the chances of
the edge to be able to serve the client request, this action becomes crucial. This
results in an overhead and as noticed from the results, it increases steeply with the
increase in the size of traffic bursts. This ultimately degrades the end user QoS
due to increased latency experienced by them. Hence, this approach would tend to
incline towards being infeasible for a scenario involving a large topology of edge
nodes that receives a high amount of data and client requests in short bursts. How-
ever, the results in this work are generated for the worst case scenario that captures
the system’s response to traffic bursts of increasing sizes. Considering that this is
the upper bound of the latency overhead that can be incurred by EDIRO, it can be
expected that a comparatively lower overhead could be induced by the system in
scenarios where consecutive IoT resources offloaded to the edge nodes are separ-
ated with a certain inter-arrival time even when the number of participating nodes
in the system are on the higher side. However, an experimental evaluation of the
same would be the ideal way to analyze and confirm the same.
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Trade-off 2 : Number of multiple unique applications to be provisioned at
the edge vs the storage resources required for the same as per the imperative
approach employed in this work.

In this work, an imperative approach has been utilized for determining the applic-
ation that should be executed or provisioned on the edge servers in order to serve a
particular client request. This approach assumes that the dependency of the client
requests with the applications is known beforehand. The imperative approach does
offers benefits as applications can be launched quickly but there is a downside to it
as well. Since EDIRO is an autonomous edge-driven architecture with minimal or
no dependence on the cloud, the application packages must be made available at a
location on the edge cluster that is reachable by each edge node. An increase in the
number of unique applications required to be provisioned on the edge implies an
increase in the storage resources available on the edge. Considering that a typical
container image is of several hundred Megabytes or even a few Gigabytes in size, it
will lead to an overkill of the resources on the edge. In the experiments conducted
for this work, 24 unique applications on the edge cluster are executed. However,
for experimentation purposes on handheld computing devices, several distinct rep-
licas of two base application images are made to emulate the presence of multiple
applications. To put things into perspective, in a field scenario, provisioning 24
unique applications on the edge cluster would require 24GB of storage space in
form of a registry server placed somewhere on the edge.

However, recent studies have investigated and proposed an architecture that can
not only solve the aforementioned problem of lack of storage space to store several
different images, but also reduce the start time for the containerized workloads.
Mahajan et. al propose a peer-to-peer network based container deployment system
in [66] that exploits the similarity between the data blocks that comprise a container
image across multiple compute nodes. The underlying idea is based on their obser-
vation that several applications use certain popular libraries for machine learning,
image processing, etc. which can be referred to as a data block in the context of
their proposed approach and utilized across multiple containers, thereby avoiding
the need for storing a full image for each application. Hence, such a container de-
ployment system has the potential to further improve the feasibility of EDIRO for
practical scenarios.

Trade-off 3: Overhead from Docker vs the client request servicing time

The average time taken by EDIRO to serve a client request is a combination of
several parameters that includes the overhead from the distributed orchestration,
the overhead from Docker and the time taken to run the client request through the
edge processing pipeline. An insightful observation is made after correlating the
results obtained for the average time taken for edge processing pipeline execution
for a client request and the average time taken to serve a client request, specifically
for NUC and PC. From the Figure 4.3 and the Figure 4.4, it is observed that the
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edge processing pipeline execution time follows a trend that increases steeply as
the size of the traffic burst is increased irrespective of whether the client requests
arrive simultaneously or with a certain inter-arrival time between them. Moreover,
the similar increasing trend shown by the standard deviation in the plots indicates
that the time it takes for the system to process each client request that is part of the
same traffic burst varies significantly. Merging this together with the overhead from
Docker to launch the containerized workloads for each client request, the average
time taken by the system to serve the client request is determined as shown in the
Figure 4.9 and the Figure 4.10.

Contrary to the trend of steep increase with increasing traffic as highlighted
above, the average time taken to serve a client request exhibits a trend that increases
rather gradually in the case of traffic burst scenarios for NUC and PC. However, the
response in the case of regular traffic scenario makes for an interesting discussion
point. When the edge nodes are subjected to a traffic in which the consecutive cli-
ent requests are separated with an inter-arrival time, an overhead of approximately
2 seconds is added by Docker but no distinct increasing trend in the average client
request servicing time is observed as the size of the traffic burst is increased. This
is unlike the case when Docker overhead measurement is excluded. This indicates
that overall EDIRO’s performance scales well with the increase in the size of the
traffic burst in the incoming traffic.

Trade-off 4 : A hybrid IoT resource-aware and computing resource-aware
offloading approach vs the cost of migrating data within the edge cluster

The underlying concept of the IoT resource-aware edge offloading approach pro-
posed in this thesis is data locality aware edge offloading which aims to bring
application close to the data instead of transporting the data to the application that
resides on a specific host machine [36, 71]. Furthermore, in EDIRO the edge nodes
exchange the metadata about the IoT resources offloaded on them instead of the
data itself to maintain a low transmission overhead. It could be possible that an
edge node(s) may run out of computing resources to run the future workloads or
may not guarantee the desired QoS to the end users given the scarcity of the com-
puting resources. A potential solution in this case is to offload or migrate (if already
running) the workload to another edge node that posses sufficient resources as per
the concept of computing resource-aware orchestration. Since EDIRO deals with
orchestrating workloads that consume an IoT resource or data, this would involve
migrating the data too, which may result in transmission overhead depending upon
its size.

Hence, a hybrid of IoT resource-aware and computing resource-aware orches-
tration approach is an ideal approach to deal with such scenarios but a runtime
consideration should be made of the cost involved in terms of the overhead in the
process of data transmission across the edge nodes. Such a hybrid approach in this
work has not been implemented as the goal is to specifically study the behavior
of IoT resource-aware offloading precisely. However, with the planned integration
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of EDIRO with Docker in future, this feature could be implemented by leveraging
Docker’s inbuilt computing resource-aware orchestrator which would be valuable
addition in terms of the fault management capabilities of EDIRO.
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Chapter 5

Conclusions and Future Work

This chapter concludes the thesis by summarizing the contributions, providing the
answers to the research questions defined for the thesis, making recommendations
for future work and presenting the concluding remarks.

5.1 Contributions

This thesis presents the work on an edge-driven orchestration based edge comput-
ing architecture for the Internet of Things (IoT). It first investigates the feasibility
of the state of the art in edge computing for IoT use cases by reviewing the current
research, identifying its limitations for the upcoming and evolving trends in the IoT
domain and consider the end user and service provider perspective of the utiliza-
tion of an edge infrastructure to understand the knowledge and research gap that
exists in this domain. In this regard, the thesis presents a detailed literature review
(Chapter 2) and an extensive gap analysis (Section 2.4). These studies provide
valuable insights into the current state of affairs with respect to edge computing
for IoT. The gap analysis in particular provides a structured description of the key
findings from the literature survey that renders insights into the shortcomings of
the current research in this domain and lays emphasis on the need for an alternative
architecture for edge computing through relevant justifications and examples. This
phase of the thesis lays a strong foundation for the subsequent design, development
and evaluation phases of the thesis.

The gap analysis also provides the answer to the below research question defined
in the thesis.

• RQ1: What is the significance of and the need for an edge-driven orchestra-
tion based edge computing architecture for IoT?

Answer: The key finding from the literature review is that the state of the art
in edge computing possesses a master-slave architectural model and operates in a
top-down fashion ,i.e., the master (often located in the cloud) performs the orches-
tration and other control plane operations, while a set of slave compute nodes at
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the edge of the network simply executes the workload deployed on them by the
master. This renders the edge nodes oblivious to the events at the edge of the net-
work and the direct interactions of the end users with them. These interactions
are essentially the channel for the end users to perform computation offloading or
issue on-demand service requests on the edge nodes in the context of ubiquitous
computing and IoT. In order to actively respond to these interactions, the state of
the art would require frequent round trips between the slave nodes and the master
for the former to communicate these updates to the latter. The resulting latency
from these round trips and the strong dependency on an active network connectiv-
ity between the two ends renders the state of the art infeasible for IoT use cases.
Moreover, such an architecture requires the end users to be aware of the topology
at the edge and restricts them from offloading their computations or placing service
requests on the edge servers ubiquitously. This degrades the ease of use of the edge
infrastructure by the end users and the resulting drop in its utilization subsequently
affects the service provider.

An edge-driven architecture for edge computing as proposed in this thesis is able
to solve the above problems. Since the edge nodes are in the vicinity of the events
and the end user interactions at the edge of the network, it is efficient for the edge
to drive the workload orchestration by itself. This approach can exploit opportun-
ities of collaborative processing in an IoT domain by utilizing the IoT resources
such as sensor data or images, that are either offloaded by the end users or sensed
by the edge nodes from the surroundings, to serve the future client requests. On
a large scale, through multiple of such edge nodes, this edge-driven approach can
improve the ease of use of the edge infrastructure for the end users by offering a
transparency at the edge, i.e., a flat hierarchy that allows the end users to interact
with the edge nodes ubiquitously.

Based on the research gaps identified from the gap analysis in the literature re-
view, this thesis proposes EDIRO, which is an edge-driven IoT resource-aware
orchestration framework for edge computing. EDIRO is a distributed orchestration
framework that facilitates service orchestration for serving the on-demand client
requests through the collaboration of the multiple edge nodes in an edge cluster.
Through EDIRO, it is demonstrated how to achieve an autonomous edge infra-
structure that operates with minimal or no dependence on the cloud.

The design of EDIRO is discussed in reference to its application to connected
vehicles in a Smart City scenario, which is also the target use case of this work.
In such a domain, the clients (vehicles) contact the edge nodes embedded in the
roadside infrastructure (street lights) to request location-based information queries
which are served by executing specific ephemeral workloads on the edge serv-
ers. Contribution of IoT resources such as sensor data, images, etc., to the edge
nodes by the same set of end users is another characteristic of such an environment.
EDIRO utilizes these IoT resources to serve the client requests to simultaneously
exploit and promote collaborative processing opportunities available in such scen-
arios that is infeasible for the state of the art. In this regard, this thesis presents the
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EDIRO framework design (Section 3.1) providing detailed description, reasoning,
and implications of the design choices along with the challenges that are foreseen,
a prototype implementation (Section 3.2) and the rationale behind the choices of
the tools used for the same (Section 3.3). This part of the thesis provides the answer
to the below research question in the following manner.

• RQ2: How to orchestrate the workloads corresponding to the on-demand
service requests by utilizing the local knowledge available at the edge in the
form of IoT resources?

Answer: EDIRO is designed as an event-driven architecture that comprises of
different but concurrent processing paths for handling the events ,i.e., the incom-
ing client requests and the IoT resources offloaded to the edge nodes. A unique
edge processing pipeline is established on-demand per incoming client request to
process it. The management of the IoT resources is performed in a distributed
fashion involving multiple edge nodes in an equal capacity. In order to maximize
the chances to be able to serve the future client requests, the edge nodes work in
collaboration towards maintaining a global consistent state in the edge cluster that
holds the information regarding the availability of the various IoT resources on the
edge cluster.

To serve the client requests, an imperative approach is opted to determine the
corresponding application and the IoT resource, following which, the requests are
offloaded to the edge nodes which possess the required resources. The main chal-
lenge that is solved here is approaching the system design in a manner which en-
ables the edge nodes to concurrently perform control and management plane oper-
ations in addition to the workload execution. These tasks are embedded into ded-
icated modules to achieve a concurrent and coordinated functioning on the whole,
especially in peak load scenarios when the utilization of the edge infrastructure
goes up significantly as a result of simultaneous access by several end users.

The experiments conducted for the evaluation of EDIRO to determine its feasib-
ility for practical IoT use cases provides the answer to the below and the primary
research question defined in the thesis.

• RQ3: What is the feasibility and the associated trade-off of this edge-driven
approach for practical IoT use cases?

Answer: Through prototype implementation and experimentation on low and
mid range embedded computing devices it is demonstrated how a static edge com-
puting architecture can be converted to one that functions autonomously with the
collaboration of multiple constituent edge nodes. Experiments on a two node setup
running the EDIRO framework are conducted to analyze the performance in vary-
ing traffic scenarios. The results indicate that the system adapts well to the sud-
den increase in the traffic load applied on it. The average client request servicing
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time (including the overhead from distributed orchestration) increases by 3.8% and
19.6% when the number of multiple simultaneous clients that are trying to access
the edge servers are doubled and tripled from 10 to 20 and 30 respectively. In the
case where the incoming client requests were separated in time, no such increase
in client serving time is observed and this trend remains approximately constant.
However, this comes at the cost of an overhead contributed by the underlying con-
tainer platform ,i.e., Docker in this case, which itself showed a similar trend with
the increasing load on the system. This is one of the trade-offs of this edge-driven
approach.

Insights from the results obtained are shared and a detailed trade-off analysis is
also provided that weighs the benefits offered by the proposed edge-driven archi-
tecture against the overhead and limitations contributed by it (Section 4.5). The
key points are highlighted here to summarize the same. Firstly, the benefits that a
flat hierarchy or transparency at the edge offers to the end users in terms of facil-
itating a ubiquitous utilization of the edge infrastructure, also leads to an overhead
that results from the communication among the increased number of edge nodes
which can potentially receive client requests or offloaded computations. Secondly,
since such an edge-drive architecture operates with minimal or no dependence on
the cloud, an increase in the number of different applications that needs to be pro-
visioned on the edge servers demands for that much extra storage space on the edge
cluster to store the application packages.

The experimental evaluation in this work is focused on evaluating EDIRO on
low range hardware and basic topologies to get a first view of the feasibility of
this approach instead of evaluating it over large scale scenarios involving many
nodes. The rationale behind the same is that such topologies with sophisticated
hardware aren’t realistic from edge computing scenarios perspective. Unlike cloud
computing, edge computing deployments feature dissimilar nodes owned by dif-
ferent parties. In this regard, from the experiments it is shown that a device with
low computing resources such as Raspberry Pi will become a bottleneck for such a
scenario. Although the results from the measurements on a two node topology can
be opportunistically extrapolated to qualitatively project the trend for topologies
that grow in size, a practical evaluation will definitely give concrete information
about the same and is a part of the future work. Hence, with the current state of
the work and research findings it is concluded that such an edge-driven approach
is feasible for practical IoT use cases considering the trade-offs associated with it.

5.2 Recommendations for Future Work

EDIRO is not yet utilized at its full potential. Below are the recommendations and
suggestions through which this framework and the edge-driven architecture can be
further extended.

1. Lately, the demand for performing machine learning and Artificial Intelli-
gence at the edge has been on the rise. An edge-driven approach as proposed
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in this thesis can benefit the applications and systems that employ machine
learning algorithms on the edge nodes by facilitating them to sense and pro-
cess the events at the edge of the network, thereby extracting the latest con-
text from such events to improve the decisions making process.

2. An interesting future research topic concerns the application of the trade-
offs listed in Section 4.5 and achieving optimization for a specific parameter
such as latency, cost, energy, etc. A detailed analysis of this for specific
target applications can yield further valuable insights into this edge-driven
approach.

3. The inbuilt container orchestrator in Docker orchestrates the workloads based
on the availability of the computing resource on the host machines. At
present EDIRO runs as a standalone application on the edge nodes. An
immediate future work is to integrated it with the internal container orches-
tration engine in Docker to further make it IoT resource-aware and extend
its functionality. The outcome will be a customized binary for Docker that
embeds EDIRO.

4. Currently, the overhead from using containers as the virtualization techno-
logy is on the higher side. As a future work, utilization of a lightweight
virtualization technology such as unikernel for the application deployment
could be considered to bring down this overhead. However, it would require
the development of an additional basic orchestration and cluster manage-
ment system for launching and managing unikernel deployment across the
edge cluster.

5.3 Concluding Remarks

The existing edge computing solutions for IoT are unable to meet its evolving de-
mands and adapt to the current trends as they lack to incorporate the key aspects
that govern the utilization of an edge computing infrastructure. These aspects con-
cern with identifying the specific type of edge computing services offered in an
IoT domain, the opportunities to exploit collaborative processing among a group
of end users and enhancing the ease of use of the edge computing infrastructure for
the end users. An architectural style and an operational methodology that is signi-
ficantly dominated by cloud computing is one of the primary reasons that hinders
the state of the art in edge computing from addressing the aforementioned aspects.

This thesis proposes an edge-driven orchestration based edge computing archi-
tecture that bridges the gaps left behind by the literature in their efforts to realize
edge computing solutions for IoT. The feasibility of this proposed approach for
practical scenarios is shown through a proof of concept development and experi-
mentation. The thesis shares the insights gained into this edge-driven approach by
highlighting the key considerations that should be made in the form of a detailed
trade-off analysis which discusses the associated benefits and the limitations.
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Based on the research findings, the conclusion drawn from this thesis is that
an edge-driven approach in edge computing is feasible and possesses a promising
scope for future edge computing solutions in the IoT domain. Further enhance-
ments and customization to this work as per the documented findings could help in
the exploitation of this approach to its full potential or discovering further insights
into the same. Several emerging trends such as ubiquitous computing, Machine
learning and Artificial Intelligence at the edge can benefit from the proposed edge-
driven approach in particular due to its distributed, autonomous and bottom-up
style of operation. In this regard, the insights shared from this work can prove as
valuable guidelines that lay the foundation over which an edge computing solution
can be implemented for the desired application or use case. The EDIRO frame-
work itself is a useful asset which is released as open source to encourage further
extension and collaboration.
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