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We investigate the role of coherency strains on the thermodynamics of two-phase coexistence during Li �de�intercalation of
LixFePO4. We explicitly account for the anisotropy of the elastic moduli and analytically derive coupled chemical and mechanical
equilibrium criteria for two-phase morphologies observed experimentally. Coherent two-phase equilibrium leads to a variable
voltage profile of individual crystallites within the two-phase region as the dimensions of the crystallite parallel to the interface
depend on the phase fractions of the coexisting phases. With a model free energy for LixFePO4, we illustrate the effect of
coherency strains on the compositions of the coexisting phases and on the voltage profile. We also show how coherency strains can
stabilize intermediate solid solutions at low temperatures if phase separation is restricted to Li diffusion along the b-axis of olivine
LixFePO4. A finite element analysis shows that long needlelike crystallites with the long axis parallel to the a lattice vector of
LixFePO4 minimize coherency strain energy. Hence, needlelike crystallites of LiFePO4 reduce the overpotential needed for Li
insertion and removal and minimize mechanical damage, such as dislocation nucleation and crack formation, resulting from large
coherency strain energies.
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The kinetics of intercalation processes in the electrode materials
of primary and secondary batteries involves both diffusion and
phase transformations.1-6 The first-order phase transformations that
occur during the insertion or removal of Li usually result in only
slight structural modifications of the host.7-12 As a result, the trans-
formations proceed by the passage of coherent or semicoherent in-
terfaces that separate the new stable phases from the metastable
phase. Any difference in lattice parameters between the two phases
participating in the phase transformation, however, introduces co-
herency strains, which affect thermodynamic potentials such as the
Li chemical potential and the overall free energy. This, in turn, can
modify the composition bounds of any two-phase coexistence re-
gions as well as the voltage profile for cathode compositions where
two-phase coexistence occurs and may even alter phase stability
qualitatively.

Coherency strains are especially important in determining the
two-phase equilibrium in the LixFePO4 system, as was made evident
by the discovery of Chen et al.13 of a peculiar two-phase morphol-
ogy within large, chemically delithiated crystallites of LixFePO4. Li
diffusion in LixFePO4 is restricted to one-dimensional channels par-
allel to the b-direction of the orthorhombic �Pnma, space group 62�
LixFePO4 crystal structure.14 An elementary analysis of phase sepa-
ration would therefore suggest that the interface separating Li-poor
Li�FePO4 from Li-rich Li1−�FePO4, where � and � are both small,
should be perpendicular to the b-direction �i.e., parallel to the ac
plane�, as this would allow a uniform extraction �insertion� of Li
ions from �in� the surfaces perpendicular to the diffusion direction.
Transmission electron microscopy �TEM� observations of chemi-
cally oxidized large platelike crystallites, however, have shown that
the interfaces separating the Li�FePO4 and Li1−�FePO4 phases
within the crystallites of LixFePO4 are perpendicular to the
a-direction �parallel to the bc plane�.13 Chen et al. argued that this
morphology should minimize the elastic strain energy, allowing the
crystal to relax along the a-direction of the orthorhombic cell, which
varies by almost 5% between Li-poor Li�FePO4 and Li-rich
Li1−�FePO4.13

Meethong et al.15,16 recently highlighted the importance of co-
herency strains on the rate capabilities of LiFePO4 crystallites with
differing two-phase solubility limits, showing that the nucleation
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and growth kinetics depend strongly on the misfit strains of the
first-order phase transformation in LixFePO4. The observed decrease
in the miscibility gap was argued to be due to strain and surface
energy and stress. They also compared the elastic strain energy of
the core/shell and spherical cap two-phase morphologies within
spherical crystallites, finding that the strain energy incurred by the
core/shell morphology is significantly more costly than the spherical
cap morphology. This work clearly demonstrated the importance of
strain energy in selecting the phase transformation morphology dur-
ing the intercalation processes.

Many morphologies of two-phase coexistence are geometrically
possible at intermediate Li concentration in LixFePO4. Several
simple ones are illustrated in Fig. 1 for a crystallite having a rect-
angular prism shape. While a homogeneous distribution of Li
throughout the crystallite is only stable for dilute or very high Li
concentrations at room temperature, a complete solid solution for all
x between 0 and 1 in LixFePO4 is stable above 520 K.17,18 Two-
phase coexistence can be derived from a homogeneous crystallite
either through the electrochemical removal or insertion of Li ions, or
through the cooling of a high temperature solid solution with inter-
mediate Li composition. For the LixFePO4 system, we denote Li-
poor Li�FePO4 as the �-phase and Li-rich Li1−�FePO4 as the
�-phase. If many crystallites are present, which can exchange Li
ions among each other, two-phase coexistence can be realized by
having a subset of crystallites exist as � while the others exist as
�.19 We refer to this state as an incoherent two-phase mixture, and
its free energy is simply the weighted average of the free energies of
each individual phase � and �. If two-phase coexistence occurs
within the same crystallite, coherency strain energy becomes impor-
tant. Figure 1 illustrates two important coherent two-phase mor-
phologies for LixFePO4. Morphology I is similar to that observed by
Chen et al.13 in chemically delithiated LixFePO4 crystallites and has
the interface separating � and � parallel to the bc plane �perpen-
dicular to the a-axis�. Morphology II has the interface between �
and � parallel to the ac plane �perpendicular to the b-axis� and
would emerge if phase separation occurred in the crystallographic
direction of Li diffusion �b lattice vector�.

While generally recognized as important, the effect of coherency
strains on two-phase equilibrium is rarely taken into explicit consid-
eration. Cahn, early on, explored the role of coherency strains on
two-phase equilibrium, initially in the context of spinodal decompo-
sition close to the critical point of a miscibility gap.20 Williams21,22
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subsequently pointed out differences in thermodynamic equilibrium
criteria between coherent two-phase coexistence and incoherent/
fluid two-phase coexistence for substitutional solids, while Larche
and Cahn23-26 developed a systematic thermodynamic formalism
that incorporates coherency strains in analyses of chemical equilib-
rium in substitutional and interstitial solids. Johnson and
co-workers27-30 expanded on this work, recently publishing an ex-
cellent and comprehensive review paper on the topic.30

Much of the past work on coherent equilibrium has focused on
substitutional solids, while intercalation compounds should be
viewed as interstitial solids in which guest ions, such as Li, occupy
the interstitial sites of a relatively open host structure. Recently, the
effect of coherency strains in interstitial solids has been investigated
in the context of hydrogen sorption in metal hydrides, assuming
isotropic elasticity.31,32 Here, we derive general equilibrium criteria
for coherent two-phase coexistence in interstitial Li-intercalation
compounds using the LixFePO4 system as a specific example. We
derived equilibrium criteria that explicitly account for the two-phase
morphology recently observed by Chen et al.13 The general equilib-
rium equations incorporate the anisotropy of the elastic constants
arising from the orthorhombic symmetry of the LixFePO4 crystal
structure.33

We show how coherency strain can modify solubility limits of
two-phase coexistence and introduce hysteresis in the voltage curve.
Within the two-phase coexistence region, the presence of coherency
strains results in an equilibrium voltage curve for individual crystal-
lites that depends on the phase fraction, as the dimensions of the
crystallite and hence the thermodynamic boundary conditions of the
system depend on the relative amounts of the coexisting phase in
coherent equilibrium. We also show that in the presence of coher-
ency strains, the free energy of a two-phase mixture in the LixFePO4
system is minimized by a morphology in which the interface is

a
bc

+α β

Homogeneous

Morphology I Morphology II

Incoherent two-phase mixture

a
bcα β α β α β β α β α β

Figure 1. Various morphologies within a cathode crystallite are possible.
Insertion of Li into a host such as FePO4 can lead to a homogeneous distri-
bution of Li ions within the crystallite, as observed at high temperatures in
LixFePO4. At low temperatures, two-phase coexistence between a Li-poor
�-Li�FePO4 phase and a Li-rich �-Li1-�FePO4 phase is thermodynamically
stable. Two-phase coexistence can occur incoherently whereby a subset of
electrode crystallites is in the �-phase and the remainder is in the �-phase.
Two-phase coexistence can also occur within the same crystallite, as illus-
trated by morphologies I and II.
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perpendicular to the a lattice parameter, as opposed to the kinetically
more facile morphology having an interface perpendicular to the
b-direction corresponding to the direction of Li diffusion.

The thermodynamic effects of coherency strains also allow us to
rationalize the more recent observations of Chen et al.34 on large
quenched crystallites in which a high temperature solid solution is
stabilized indefinitely at room temperature. LixFePO4 has a complex
electronic structure, involving localized electronic states that couple
to Li-vacancy disorder,35,36 and is responsible for unique finite tem-
perature thermodynamic properties.37 Phase diagram measurements
by Delacourt et al.17 and Dodd et al.,18 as well as a first-principles
study by Zhou et al.,37 show that while LixFePO4 forms a solid
solution at high temperature, it decomposes to a two-phase mixture
of Li-poor Li�FePO4 and Li-rich Li1−�FePO4 upon cooling, not
through a miscibility gap but rather through a eutectoid reaction at
approximately 200°C with a eutectoid composition x = 0.6.18 The
recent studies of Chen et al.34 on large quenched particles suggest
that phases having the eutectoid composition can be quenched to
room temperature and do not decompose over time to form a two-
phase mixture of Li-poor Li�FePO4 and Li-rich Li1−�FePO4. Here,
we show how coherency strains could be responsible for stabilizing
LixFePO4 at intermediate Li concentrations.

As a final result, we show that crystallites having a needle shape
with the longest length parallel to the a lattice vector of the ortho-
rhombic cell minimize the strain energy incurred during the two-
phase coexistence, thereby reducing the required overpotential for
the � to � transformation as well as the mechanical damage38 during
cycling.

Free Energy of Coherent Two-Phase Coexistence within an
Orthorhombic Crystallite

We considered a crystallite having a rectangular prism shape and
a simple two-phase morphology with phase fractions �� and �� for
the �- and �-phases, as illustrated in Fig. 1. The total number of
interstitial Li sites within the crystallite is denoted by M such that
M�� is the number of interstitial sites within the �-phase and M��

is the number of interstitial sites in the �-phase. If the total number
of Li ions within the crystallite is N, a fraction N� is distributed
within the �-phase and the remaining N� = N − N� resides in the
�-phase. In terms of these variables, the Li concentration within the
� ���-phase can then be written as x� = N�/M�� �x� = N�/M���,
while the overall Li concentration of the crystallite x = N/M is re-
lated to the phase fractions and concentrations within the �- and
�-phases according to

x = ��x� + ��x� �1�

The dimensions of the crystallite depend on the Li concentrations
and phase fractions of the �- and �-phases. To describe the changes
in the dimensions with Li concentration and phase fraction, we work
within a Lagrangian description30 and express strains relative to the
equilibrium volume of a single phase crystallite having a concentra-
tion x = 0. The strain of the crystal along a particular direction �tak-
ing out rigid rotation and in the absence of shear� then becomes

�̃i =
Li − Li

0

Li
0 �2�

where Li is the length of the deformed crystalline along direction i,
while Li

0 is the length of the undeformed crystallite along i when
x = 0. We label the six independent strains in terms of one index
according to the following convention of Nye:39 �̃1 = �̃11, �̃2 = �̃22,
�3 = �̃33, �̃4 = 2�̃23 = 2�̃32, �̃5 = 2�̃13 = 2�̃31, and �̃6 = 2�̃12 = 2�̃21.

The strain �̃i, relative to the reference volume at x = 0, can be
decomposed as a sum of a chemical strain, �i

0�x�, that emerges from
a change in crystal dimensions as Li is added to the crystallite and
an elastic strain due to coherency constraints, �
i
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�̃i = �i
0�x� + �i �3�

The elastic strains result in elastic stresses, which for the orthorhom-
bic crystals of LixFePO4 take the form

�1 = c11�1 + c12�2 + c13�3

�2 = c21�1 + c22�2 + c23�3

�3 = c31�1 + c32�2 + c33�3

�4 = c44�4 �5 = c55�5 �6 = c66�6 �4�

where the elastic constants, cij, generally depend on the Li concen-
tration of the host �see, e.g., Ref. 33�.

A crystallite having a homogeneous Li concentration, x, has a
free energy per interstitial site at its equilibrium volume given by
g�x�. The Li chemical potential � for an interstitial host such as
FePO4 is related to g according to � = �g/�x and corresponds
graphically to the slope of g in a free energy vs a Li concentration
plot.

If we consider coherent two-phase coexistence between the �-
and �-phases, as illustrated in Fig. 2, neither phase has its equilib-
rium dimensions as coherency requires that the coexisting phases
are stretched or compressed to maintain crystallographic continuity
at the interface. Neglecting changes in the shape of the crystallite,
the strains are homogeneous, with stretching �contraction� in the 2
and 3 directions of the � ���-phase. Because the crystal is not con-
strained on the surfaces perpendicular to the 1 direction, it can relax
fully with the stress along 1, thereby equilibrating with the external
pressure, which for simplicity we take as zero. This reduces the
problem to a plane stress description.

The total free energy of the coherently coexisting phases within
the crystallite can be written as

G = ��M · g��x�� + ��M · g��x�� + Estrain �5�

which is a sum of the free energies of the �- and �-phases at their
equilibrium dimensions when unconstrained by coherency plus the
total elastic strain energy, Estrain, arising from coherency strains. The
elastic strain energy corresponds to the changes in energy of the �-
and �-phases as they are strained from their equilibrium lattice pa-
rameters at concentrations x� and x� to a common lattice parameter
to ensure coherency at the interface. Neglected in the above expres-
sion for the total free energy of the crystallite are surface and inter-
facial free energy terms. These are important for small
crystallites,40,41 but relative to volume contributions to the free en-
ergy are small for large crystallites.

Assuming homogeneous strains, we can calculate an expression
for the strain energy analytically. The elastic strain energy in the
absence of shear strains for an orthorhombic crystallite under plane
stress becomes

1
2

3 α β α β α β

Figure 2. Definition of the coordinate system relative to the periodic two-
phase morphology within a rectangular prism crystallite. Axis 1 is perpen-
dicular to the interface between � and �.
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Eelastic =
1

2�
V0

��2�2 + �3�3�dV0 =
1

2�
V0

�c̃22��2�2 + 2c̃23��2 · �3�

+ c̃33��3�2�dV0 �6�

where the integral extends over the reference volume V0 of the crys-
tallite. Here, the plane stress elastic moduli depend on the full ma-
trix of elastic moduli according to

c̃ij = cij −
c1ic1j

c11
�7�

with i, j = 1,2,3. The elastic constants, in principle, depend on the
Li concentration. Assuming uniform strain in each phase, the above
integral can be written as

Eelastic = V0���e���2
�,�3

�� + ��e���2
�,�3

��� �8�
where

e��2,�3� = 1
2 �c̃22��2�2 + 2c̃23��2 · �3� + c̃33��3�2� �9�

should be interpreted as a strain energy density. The total free energy
of the crystallite having two-phase coexistence and normalized per
interstitial Li site can then be written as

g̃coex =
G

M
= ��g̃� + ��g̃� �10�

where

g̃ = g�x� + �e��2,�3� �11�
can be interpreted as the free energy of a homogeneous crystallite
per interstitial site having concentration x when the crystallite is
elastically strained in the 2 and 3 directions by �2 and �3 but free to
relax in the 1 direction relative to its equilibrium volume at concen-
tration x. In Eq. 11, � is the volume of the crystal per Li site
�measured in the reference state at x = 0�, such that V0/� is equal to
the total number of interstitial sites. With Eq. 3, the free energy for
the strained crystallite can be considered to depend explicitly on the
temperature T, the pressure P �which determines the stress along
direction 1, �1�, the Li concentration x, and the total strains �̃2 and
�3 in the 2 and 3 directions, i.e., g̃�T,P,x, �̃2, �̃3�.

Coherent Two-Phase Equilibrium Criteria

We analyze coherent two-phase equilibrium within a rectangular
prism crystallite, with the interface separating � and � perpendicular
to the 1 direction, all at constant temperature T, pressure P, and
constant number of Li ions N. �Because the stress arising from co-
herency strains is significantly larger than the hydrostatic pressure
from the environment, we neglect the role of ambient pressure and
take P = 0. This also avoids the need for cumbersome Legendre
transforms.� The crystallite has several internal degrees of freedom
that are not fixed by the experimental boundary conditions. Al-
though the total number of Li ions is constant, their distribution over
the coexisting phases � and � is not. We can use N� as an indepen-
dent internal metric for the distribution of Li between the coexisting
phases �N� = N − N��. The phase fraction of � �or �� within the
crystallite is also not imposed by external boundary conditions but
sets in at a particular value of �� in equilibrium ��� = 1 − ���.
Finally, due to coherency constraints, there are also dimensional
degrees of freedom in the 2 and 3 directions that are not imposed
externally. The total strains, �̃2 and �̃3, relative to the reference vol-
ume at x = 0 can serve as variables for these degrees of freedom
within the assumption of homogeneous deformations within each
phase.

In equilibrium, the internal independent degrees of freedom
choose values that minimize the total free energy of the two-phase
crystallite. This minimum can be determined by setting the partial
derivatives of G �Eq. 5� with respect to the independent variables
equal to zero
ECS license or copyright; see http://www.ecsdl.org/terms_use.jsp
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� � G

� N��
��,�̃2,�̃3

= 0 �12a�

� � G

� ���
N�,�̃2,�̃3

= 0 �12b�

� � G

� �̃2
�

N�,��,�̃3

= 0 �12c�

� � G

� �̃3
�

N�,��,�̃2

= 0 �12d�

An explicit solution to the above equations leads to four equilibrium
criteria for a coherent two-phase equilibrium between � and �
within a crystallite

�̃� = �̃� �13�

g̃� − x��̃� = g̃� − x��̃� �14�

���2
� + ���2

� = 0 �15�

���3
� + ���3

� = 0 �16�

In Eq. 13, the lithium chemical potential �̃	, where 	 refers to either
the � or � phase, is derived from the free energies g̃	 defined in Eq.
11 of the strained crystallite at constant �̃2 and �̃3 �i.e., constant
lateral dimensions in the 2 and 3 directions� according to

�̃	 = � � g̃	

� x	�
�̃2,�̃3

�17�

The Li chemical potential can be written explicitly as

�̃	 =
�g	

�x	 +
�

2
���2

	�2� c̃22
	

�x	 + 2��2
	 · �3

	�
� c̃23

	

�x	 + ��3
	�2� c̃33

	

�x	 	
− �


i=2

3
�e	

��i
	

��i
0	

�x	 �18�

accounting for the possibility that the elastic moduli and lattice pa-
rameters depend on the Li concentration. The stresses appearing in
Eq. 15 and 16 are related to the strain energy densities according to

�i
	 = � �e	

��i
	�

x	,�j�i
	

= � � g̃	

� �̃i
�

x	,�̃ j�i

�19�

where the second equality emerges because the free energy g, ap-
pearing in Eq. 11 and corresponding to the free energy of the crystal
at its equilibrium volume, does not depend on �̃2 and �̃3. Equations
15 and 16 are the mathematical statements that the average stresses
of the crystallite in the 2 and 3 directions are zero. In view of the
second equality in Eq. 19, the mechanical equilibrium criteria, Eq.
15 and 16, for two-phase coexistence can be expressed in terms of
gcoex, defined by Eq. 10, according to

� � g̃coex

� �̃i
�

x�,x�,�̃ j�i

= ��� � g̃�

� �̃i
�

x�,�̃ j�i

+ ��� � g̃�

� �̃i
�

x�,�̃ j�i

= 0

�20�

where implicitly the overall concentration x is also held constant
during differentiation. In general, because equilibrium lattice param-
eters and elastic moduli may depend on concentration, the mechani-
cal equilibrium criteria, Eq. 15 and 16, depend on the chemical
equilibrium criteria, Eq. 13 and 14, and vice versa, and all four
equations need to be solved simultaneously.

At constant �̃2 and �̃3, the chemical equilibrium criteria, Eq. 13
and 14, are equivalent to the well-known common tangent construc-
tion for the two-phase equilibrium applied to g̃� and g̃�. For inter-
ownloaded 12 Aug 2011 to 131.180.130.114. Redistribution subject to 
stitial intercalation compounds, such as LixFePO4, that maintain the
same host crystal structure over the whole concentration range, the
free energy of the homogeneous phase is one continuous curve as a
function of x. This is illustrated schematically in Fig. 3. The free
energy g̃� then denotes the free energy of LixFePO4 corresponding
to the Li-poor free energy well ��-phase�, while g̃� denotes the free
energy of LixFePO4 for the Li-rich free energy well ��-phase�.
Equation 13 requires that the slopes to g̃� and g̃� at x� and x� are
parallel, while Eq. 14, which corresponds to an equality of grand
canonical potentials, requires that the tangents to g̃� and g̃� at x� and
x� intersect the g̃-axis at x = 0 at the same point. The total free
energy per interstitial site, g̃coex, resides on the common tangent at
the bulk concentration x, as illustrated in Fig. 3. The mechanical
equilibrium criteria, Eq. 15 and 16, expressed in the form of Eq. 20,
requires that the normalized free energy of the two-phase crystallite
gcoex �Eq. 10� at the bulk concentration x is minimum with respect to
variations in the lateral dimensions �̃2 and �̃3 of the crystallite. The
corresponding matrix of second derivatives ��2g̃coex/� �̃i � �̃ j� is
positive definite because the strain energy densities, e� and e�, are
convex by construction. The extrema are therefore minima.

The four equilibrium criteria and their graphical interpretation of
Fig. 3 clearly illustrate an important difference with incoherent two-
phase equilibrium, as discovered by Cahn and Larche,25

Williams,21,22 and Voorhees and Johnson.30 For incoherent two-
phase equilibrium, the concentrations of the coexisting phases x�

and x� are independent of the overall concentration x, and the Li
chemical potential remains constant as x is varied between x� and
x�. For coherent two-phase equilibrium, in contrast, x� and x� are
not necessarily constant, and the Li chemical potential varies with
the overall concentration x. This arises from the fact that the free
energies, g̃� and g̃�, and chemical potentials, �̃� and �̃�, of Eq. 12
and 13 depend on the lateral dimensions, �̃2 and �̃3, of the �- and
�-phases, which vary with x.

xα xβ

gα~ gβ~

g~

εi~
x

gcoex
~

Li concentration x
0.0 1.0

Figure 3. Graphical construction to determine coherent two-phase coexist-
ence, including the effect of strain. Chemical equilibrium is determined by
the common tangent construction at fixed strains �̃2 and �̃3. g̃coex resides on
the common tangent at the overall crystallite concentration x. Mechanical
equilibrium is then determined by a minimum of g̃coex with respect to strains
�̃2 and �̃3. In a coherent two-phase crystallite, the equilibrium strains �̃2 and
�̃3 therefore depend on the composition x.
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Application to LixFePO4

While LixFePO4 at room temperature appears to have thermody-
namic properties similar to that of a regular solution model, exhib-
iting a miscibility gap between crystallographically identical host
structures with different Li compositions, its thermodynamic prop-
erties are significantly more complex as manifested by its high tem-
perature behavior.17,18,37 Delacourt et al.17 and Dodd et al.,18 for
example, showed that LixFePO4 becomes a solid solution at high
temperature, but the phase diagram at intermediate temperatures is
qualitatively different from that of a simple miscibility gap. At
around 200°C, LixFePO4 solid solutions decompose to Li-poor
Li�FePO4 and Li-rich Li1−�FePO4 through a eutectoid reaction with
a eutectoid composition x = 0.6. Hence, the free energy curve, even
at room temperature, is likely to differ from that of a simple regular
solution model. To have an accurate model for the free energy of
LixFePO4, we used an empirical free energy expression commonly
used in calculation of phase diagrams �CALPHAD� descriptions of
experimental thermodynamic data, relying on a Redlich–Kister
polynomial expansion42 of the excess free energy along with an
ideal-solution configurational entropy term �for both Li-vacancy dis-
order and localized electron disorder�. The free energy for LixFePO4
can then be written according to

g�x� = g0�1 − x� + g1 · x + x�1 − x�

n=0

m

Ln�1 − 2x�n

+ 2RT�x ln x + �1 − x�ln�1 − x�� �21�

where g0 and g1 are the free energies of FePO4 and LiFePO4, and Ln
are coefficients of the Riedlich–Kister polynomial expansion. Terms
up to order n = 5 were included. The factor of 2 in front of the
ideal-solution entropy expression arises from the fact that for every
Li site that can accommodate Li-vacancy disorder, there is also an
Fe site that can accommodate localized electron–hole disorder.37

The coefficients of the Redlich–Kister expansion were adjusted to
produce an open cell voltage curve similar to that measured by
Meethong et al.43 and also to ensure that two-phase coexistence is
predicted, even in the presence of coherency strains. No attempt,
however, was made to perform an in-depth CALPHAD-like assess-
ment as voltage curves for true bulk phases of LixFePO4 with neg-
ligible surface and interface contributions are unlikely available. The
resulting free energy at room temperature is illustrated in Fig. 4. We
point out the existence of a local minimum in the free energy curve
around x = 0.55. This feature in the free energy, while an artifact of
matching a high order polynomial to thermodynamic data for dilute
and concentrated LixFePO4 at room temperature, is not inconsistent
with the eutectoid reaction at 200°C whereby the �/� two-phase
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Figure 4. �Color online� Model free energy curve for LixFePO4 parametrized
by adjusting the coefficients of the voltage curve derived from the empirical
free energy model �Eq. 21� to experimental measurements.43
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mixture decomposes into the intermediate solid solution phase,
LixFePO4, with x � 0.6, upon heating.

In treating coherent two-phase coexistence in LixFePO4, we
make two assumptions to simplify the analysis: �i� the elastic moduli
are independent of the Li concentration and �ii� the lattice param-
eters obey Vegard’s law �linear dependence of the lattice parameters
on Li concentration�. Vegard’s law for the lattice parameters implies
that the chemical strains have the form

�i
0��x�� = 
i · x� and �i

0��x�� = 
i · x� �22�

In Eq. 22, 
i has the same value in both the �- and �-phases. As a
quantitative estimate of realistic elastic moduli, we used values pre-
dicted from first principles, taking the average of each cij for FePO4
and LiFePO4.33

With these assumptions, a solution to the mechanical equilibrium
criteria, Eq. 15 and 16, is possible without simultaneously having to
consider the chemical equilibrium criteria, yielding

�̃i = 
ix �23�
for the total strains of the crystallite in the lateral dimensions 2 and
3. As Eq. 23 shows, the lateral dimensions of the crystallite now
only depend on the overall Li concentration of the crystallite, x, and
not independently of the phase fractions or Li concentrations in the
�- and �-phases. Within each phase, the elastic strains in the 2 and
3 directions become, using Eq. 3, 22, and 23

�i
� = − 
i�x� − x� and �i

� = − 
i�x� − x� �24�
This expression shows that the elastic strains in the coexisting
phases depend on the difference in the concentration of each phase
relative to the overall Li concentration of the crystallite.

With Eq. 22 and 24 and constant c̃ij, we can write the Li chemi-
cal potential in coherent two-phase coexistence �Eq. 18�, which for
the �-phase, for example, becomes

�̃��x�� = ���x�� + ���x� − x� �25�
while the free energy in coherent two-phase coexistence becomes

g̃��x�� = g��x�� +
��

2
�x� − x�2 �26�

where � is a function of the elastic constants and 
i of Eq. 22

� = c̃22
2
2 + 2c̃23
2 · 
3 + c̃33
3

2 �27�

Similar expressions hold for �̃� and g̃�. Although the expressions
for �̃� and g̃� ��̃� and g̃�� take a simple form, they still depend
explicitly not only on x� �x�� but also on the overall Li concentra-
tion x �because the bulk composition x determines the lateral dimen-
sions �̃2 and �̃3�. Hence, as the overall concentration of the crystal-
lite, x, is varied within the two-phase region, the coherent two-phase
equilibrium free energies, g̃� and g̃�, also change. Cahn20 presented
similar expressions for a cubic crystal in his study of coherent equi-
librium close to the critical point of a binary miscibility gap.

With Eq. 22 and 23, the chemical equilibrium criteria for coher-
ent two-phase coexistence, Eq. 13 and 14, reduce to a simple com-
mon tangent construction in a free energy vs Li composition plot.
This is illustrated in Fig. 5a and b for morphology I �Fig. 1� in which
the interface between � and � is parallel to the bc plane. For mor-
phology I, we take the a lattice vector of the orthorhombic crystal to
be aligned with axis 1, the b lattice vector along axis 2, and the c
lattice vector parallel to axis 3. The misfit strains are taken to be

2 = 0.036 and 
3 = −0.0186 based on the experimentally measured
difference in lattice parameters between FePO4 and LiFePO4 in the
b- and c-directions.13 Figure 5a and b illustrates how the free energy
in coherent two-phase equilibrium, g̃ of Eq. 26, depends on the
overall crystallite concentration x, with Fig. 5a showing g̃ at x
= 0.3 and Fig. 5b showing g̃ at x = 0.7. The free energies corre-
sponding to the free energy wells in the Li-poor and Li-rich regions
are referred to as g̃� and g̃�, respectively, as illustrated in Fig. 5,
even though they reside on a single free energy curve g̃. The total
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free energy of the crystallite per formula unit for the two-phase
equilibrium state, g̃coex, given by Eq. 10, lies on the common tangent
to g̃� and g̃� at the overall crystallite concentration x. The black
curve in Fig. 5a and b corresponds to the envelope of the coexist-
ence free energy g̃coex as a function of x.

Effect of coherency strain on solubility limits.— We can assess
the importance of coherency strain energy in altering the concentra-
tions within the coexisting phases x� and x�. In the absence of
coherency strains �i.e., equivalent to incoherent two-phase equilib-
rium�, these concentrations for LixFePO4 for our free energy model
illustrated in Fig. 4 are x� = 0.03 and x� = 0.94. With the inclusion
of coherency strain energy, the concentrations within the coexisting
phases change to x� = 0.05 and x� = 0.93. Hence, the effect of co-
herency strain energy on the concentrations of coexisting phases for
our free energy model of LixFePO4 is quite small, changing them by
1–2%. For the assumptions made here �constant elastic moduli and
linear concentration dependence of the lattice parameters�, the con-
centrations, x� and x�, happen to be independent of x, as was shown
by Lee and Tao.44 However, relaxing these assumptions results in
compositions x� and x� that vary with the bulk concentration x.

Effect of coherency strain on two-phase morphologies.— Figure
6 illustrates free energies per interstitial site for the different mor-
phologies of two-phase coexistence of Fig. 1. For incoherent two-
phase coexistence �in the absence of coherency strains�, the normal-
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Figure 5. �Color online� Illustration of the common tangent construction for
coherent two-phase equilibrium in the special case that the elastic moduli are
independent of concentration and the lattice parameters vary linearly with
concentration. �Color: The middle red free energy curve is for the homoge-
neous phase, while the top green free energy curve corresponds to g̃�.
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ized free energy �per Li interstitial site� resides on the common
tangent to the free energy of the homogeneous phase. This free
energy is the weighted sum of the free energies of � and � in their
unstrained states. The free energy of coherent two-phase coexistence
is always higher than that of incoherent coexistence due to the pres-
ence of a coherency strain energy penalty. The solid line in Fig. 6
corresponds to the free energy, g̃coex

I , of coherent two-phase coexist-
ence with morphology I �Fig. 1� in which the interface is oriented
parallel to the bc plane. The dashed line denoted g̃coex

II corresponds
to the coherent two-phase coexistence free energy for morphology II
with the interface parallel to the ac plane. For morphology II of Fig.
1, the b lattice vector is parallel to axis 1, the c lattice vector is
parallel to axis 2, and the a lattice vector is parallel to axis 3. The
misfit strains for this morphology are then 
2 = −0.0186 and 
3
= 0.052 based on changes in lattice parameters between FePO4 and
LiFePO4.13

Figure 6 clearly shows that morphology I has a lower free energy
than morphology II, consistent with experimental observations of
two-phase coexistence with the interface perpendicular to the
a-direction.13 In morphology I, the a lattice parameter, which under-
goes the largest change when transforming from FePO4 to LiFePO4,
is able to fully relax, while in morphology II, the lattice parameters
a of coexisting � and � must be constrained to a common value.

Coherency strain and low temperature stabilization of high tem-
perature solid solutions.— In Fig. 6, g̃coex

II merges with the local
minimum of the homogeneous free energy around x = 0.55. This
local minimum corresponds to a metastable phase around x = 0.55,
which we shall call the �-phase. The local minimum is an artifact of
using a high order polynomial when fitting an empirical free energy
expression �Eq. 21� to the voltage profile for single-phase � and �.
Nevertheless, due to the experimentally observed eutectoid reaction
around 200°C,18 where LixFePO4 at x � 0.6 emerges from the de-
composition of a two-phase mixture of �-FePO4 and �-LiFePO4, it
is likely that such a local minimum exists in the actual free energy of
LixFePO4 at room temperature. The implication of Fig. 6 is that if
coherent two-phase coexistence is only permitted to occur according
to morphology II, the �-phase around x = 0.55 can be thermody-
namically stabilized at room temperature. This emerges because any
coherent two-phase separation into � and � along the b-direction at
x � 0.55 has a higher free energy than the metastable �-phase. For
coherent two-phase coexistence with morphology II, Fig. 6 predicts
that a two-phase mixture between � and � occurs below x � 0.55,
while above x � 0.55 a coherent two-phase mixture between � and
� is stable.

Although morphology II has a higher strain energy penalty than
morphology I, the fact that Li diffusion can only occur along the
b-axis in Li FePO can lead to scenarios where two-phase decom-
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position is kinetically only feasible according to morphology II. The
formation of morphology I requires selective Li extraction from the
surface of the crystallite, such as that proposed by the domino-
cascade model,19 either electrochemically or through chemical oxi-
dation, as Li redistribution along the a-direction is not possible
within the interior of a LixFePO4 crystallite. If, however, a crystallite
with a homogeneous Li distribution at high temperature was subse-
quently quenched to room temperature in air, it would only be able
to redistribute Li along the one-dimensional diffusion channels par-
allel to the b-axis, thereby leading to morphology II �excluding sur-
face diffusion as a possible redistribution mechanism�. Chen et al.34

recently performed these experiments and found with TEM analysis
that high temperature intermediate compositions such as Li0.6FePO4
can be quenched to room temperature and remain stable over time.
Furthermore, they observed two-phase coexistence similar to that of
morphology II of Fig. 1, stating that their “results indicate that upon
cooling, the solid solution disproportionates into the fully lithiated
phase and a partially lithiated intermediate phase via lithium-ion
movement along the b-direction, with phase boundaries lying in the
ac plane.”34

Coherency strains and voltage.— Although the effect of coher-
ency strain energy on solubility limits is small for olivine LixFePO4
when using our empirical free energy model, its effect is more sig-
nificant on the voltage curve. In the absence of coherency strains,
the voltage within a two-phase region is constant, as the thermody-
namic properties of coexisting phases do not change with a variation
in the overall concentration; only their phase fraction changes. With
coherency strains, the state of strain of the coexisting phases con-
tinuously evolves with x due to a variation in the relative phase
fractions of the two phases. The intrinsic voltage is related to the Li
chemical potential in the crystallite ��Li

cathode� according to

V�x� = − ��Li
cathode − �Li

anode�/eF

where �Li
anode is a constant reference chemical potential �e.g., of me-

tallic Li� and F is Faraday’s constant �needed if the chemical poten-
tials are expressed in joules�.

Figure 7 illustrates the voltage curve for LixFePO4 derived from
the above described free energy model. This voltage curve is strictly
for a single crystallite when the bulk concentration of the crystallite
is controlled externally �e.g., by controlling the current�. Upon
charging the particle, the voltage must be reduced below the inco-
herent two-phase equilibrium voltage �dashed line in Fig. 7� to over-
come the strain energy incurred by coherent two-phase equilibrium.
Hence, the system follows the metastable voltage curve of the Li-
poor phase until the thermodynamic driving force for two-phase
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Figure 7. Voltage curve for a single crystallite. The dashed line corresponds
to the voltage plateau of incoherent two-phase equilibrium, while the in-
creasing sloped solid line is the voltage during coherent two-phase equilib-
rium having morphology I of Fig. 1.
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coexistence is larger than the coherency strain energy incurred by
that coexistence. As the overall concentration of the crystallite is
increased once inside the coherent two-phase region, the phase frac-
tion of the Li-rich phase increases at the expense of the Li-poor
phase. Due to coherency, a change in the relative fractions of the
Li-rich and Li-poor phases changes the lateral dimensions of the
crystallite, thereby making the voltage dependent on the bulk con-
centration of the crystallite within the two-phase region. When as-
suming constant elastic moduli and Vegard’s law, the voltage for a
single crystallite increases linearly inside the two-phase region.
Similar behavior was predicted for the hydrogen partial pressure
during hydrogen sorption in Pd.31,32

Discussion

An important approximation in our analytical treatment of elas-
ticity was to assume that the crystallite does not change shape but
only expands or contracts along the three axes parallel to the crys-
tallographic lattice vectors. In reality, the shape of the crystallite
changes during the two-phase coexistence with some degree of sur-
face rumpling. Chen et al.13 observed slight rotations of coexisting
phases relative to each other. The analytical coherency strain energy
therefore serves as an upper bound to the coherency strain energy in
real crystallites as it is derived assuming restricted deformational
degrees of freedom. The analytical treatment becomes more accurate
if the two-phase morphology is periodic, as illustrated in Fig. 1 and
2, and systematically improves as the periodicity between � and �
domains along the 1 direction reduces relative to the dimensions of
the crystallite in the 2 and 3 directions. This is illustrated in Fig. 8
where the coherency strain energy for three different phase fractions
of �, obtained from a finite element calculation that allows the shape
of the crystallite to change, is compared to the analytical coherency
strain energy used in our thermodynamic analysis. In the analytical
and finite element treatment of Fig. 8, different elastic moduli were
used for the �- and �-phases, as predicted from first principles.33

X-ray diffraction measurements by Chen et al.34 show that coex-
isting LiFePO4 and FePO4 have different lattice parameters, imply-
ing that coherent equilibrium is relaxed to some extent. In actual
crystallites, the strain is not uniform throughout each individual
phase. A more rigorous treatment of coherent two-phase equilibrium
would then require the introduction of field variables for the local
concentration and strains followed by an integration over the local
strain energy and chemical free energy to obtain the total free energy
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Figure 8. �Color online� Relative error of the analytical approximation for a
periodic two-phase coexistence as a function of the crystallite dimensions
relative to the periodicity of the two-phase morphology. The dashed line
indicates a relative error of 5%.
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of the crystallite. Equilibrium criteria then emerge after taking varia-
tional derivatives of the total free energy with respect to the concen-
tration and strain fields as well as the interface shape separating �
from �.26,30

The most important result of the analytical treatment from an
experimental point of view is the effect of coherency strain energy
on the compositions of the coexisting phases and on the overpoten-
tial required to initiate the transformation from � to � �or vice
versa�. These are determined by the coherency strain energy associ-
ated with a very small phase fraction of the new phase. As is clear in
Fig. 8, the analytical treatment becomes a better approximation as
the phase fraction of the minor phase diminishes.

The voltage profile of Fig. 7 for coherent two-phase equilibrium
is strictly valid for individual crystallites when the concentration of
the crystallite is controlled externally �e.g., by controlling the cur-
rent�. While voltages are usually measured at a constant current,
electrochemical measurements can also be performed controlling the
voltage, which, in thermodynamic equilibrium, imposes a constant
Li chemical potential on the system as opposed to a constant number
of Li ions. Under this constraint, the voltage vs composition profile
has a different appearance, exhibiting hysteresis, as illustrated in
Fig. 9. When discharging an electrode that transforms coherently, for
example, the voltage must be reduced sufficiently below the inco-
herent two-phase equilibrium voltage plateau to overcome the en-
ergy penalty of coherency strains. Once that underpotential has been
reached, the crystallite at the constant external voltage transforms
irreversibly to the Li-rich phase at the same voltage. Upon charging,
a similar overpotential must be exceeded in the opposite direction to
overcome coherency strain energy of two-phase coexistence, after
which the system irreversibly transforms to the Li-poor phase if the
voltage is externally controlled. Hence, coherency strains, when
controlling the voltage, lead to losses as the builtup elastic strain
energy that must be overcome is released to the environment in an
irreversible manner �e.g., sound waves, crack, and dislocation for-
mation�.

Even if the concentration of the electrode is externally con-
trolled, it is unlikely that the qualitative voltage profile of Fig. 7 is
observed in actual electrochemical cells as electrodes consist of
many crystallites, allowing Li ions to redistribute between the dif-
ferent crystallites. If, for example, a situation were reached where all
particles had the same concentration inside the coherent two-phase
region, then the overall free energy of the composite electrode
would be minimized by having some crystallites give up Li and
become a single-phase Li-poor crystallite and other crystallites ac-
cumulate more Li and become single phase but Li rich. This is
equivalent to incoherent two-phase equilibrium without the coher-
ency strain energy penalty. In equilibrium, the voltage would then
coincide with that for incoherent two-phase equilibrium �neglecting
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Figure 9. Voltage profile accounting for the role of coherency strains when
the voltage �as opposed to the Li concentration� is externally controlled.
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surface energy terms�. Nevertheless, upon addition of Li, a subset of
crystallites must transform from the Li-poor phase to the Li-rich
phase, and the transformation involves the temporary existence of
coherent two-phase equilibrium. Before this is possible, an underpo-
tential �overpotential� is required to overcome the strain energy aris-
ing from coherent two-phase equilibrium. However, the collection of
electrode crystallites again relaxes to a collection of coexisting
single-phase crystallites, as has recently been observed
experimentally.45

We emphasize that the quantitative as well as qualitative predic-
tions of the current treatment are sensitive to the behavior of the free
energy of the homogeneous phase inside the incoherent two-phase
region. This portion of the free energy of LixFePO4, which in our
free energy model is simply a polynomial extrapolation, is currently
not known and very difficult to access experimentally. The effect of
coherency strain on the compositions of the coexisting phases, x�

and x�, will be more significant than predicted here if the difference
between the homogeneous free energy inside the two-phase region
and the common tangent, 
g, is smaller than in the free energy
model for LixFePO4 used in the present study. In fact, two-phase
coexistence could be completely suppressed within individual crys-
tallites at room temperature if the maximum value of 
g inside the
two-phase region is less than the coherency strain energy penalty of
two-phase coexistence.

The coherency strain energy scales with the size of the crystallite
and depends on the crystallite shape. For macroscopic crystallites,
this coherency strain energy is too large to be overcome by thermal
fluctuations, and two-phase coexistence can only be achieved by a
large overpotential in the voltage, as described above. One way to
reduce the overpotential needed to initiate two-phase coexistence in
macroscopic crystallites is by adjusting the crystallite shape in a way
that minimizes the coherency strain energy introduced upon nucle-
ating the new phase. Figure 10 illustrates the coherency strain en-
ergy density �strain energy divided by the volume of the crystallite�
for a rectangular prism when a thin �-phase �phase fraction of 1%�
exists at the center of a � crystallite. The interface is taken to be in
the bc plane, perpendicular to a. The strain energy density was
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Figure 10. �Color online� Coherency strain energy density as a function of
crystallite dimensions when the �-phase forms at the center of a pre-existing
� crystallite �a 1% phase fraction of � is assumed�.
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obtained from finite element computations, allowing the shape of the
crystallite to relax and using elastic moduli for � and � predicted
from first principles.33 The strain energy density is plotted as a func-
tion of the crystallite lengths in the 2 and 3 directions relative to the
crystallite length in the 1 direction. The minimal strain energy asso-
ciated with nucleating a thin slice of the new phase occurs for long,
needlelike crystallites where lengths L2 and L3 are significantly
shorter than length L1. In this geometry, the strain energy resulting
from the lattice mismatch along the b and c lattice vectors is mini-
mized because the interface area across which the mismatch occurs
is minimized.

A minimization of the coherency strain energy through particle
shape optimization not only leads to a reduction in the overpotential
required to initiate the phase transformation from � to � �or vice
versa�, but also reduces the likelihood of mechanical damage and
fatigue. Large localized stresses during two-phase coexistence can
result in the formation of irreversible defects such as dislocations
and cracks.38 These extended crystalline defects hamper the subse-
quent passage of interfaces during �- to �-phase transformations
and result in overall particle degradation. As the crystallites ap-
proach the nanoscale, the total coherency strain energy becomes
small as well. At very small scales, the coherency strain energy may
become comparable to thermal energy and could then be overcome
by thermal fluctuations. Hence, at the nanoscale, less of an overpo-
tential is needed to initiate the �- to �-phase transformation. This
appears to be confirmed by size dependent electrochemistry mea-
surements, where crystallites with linear dimensions �110 nm dis-
play a �dis�charge curve with an overpotential, whereas smaller par-
ticles around 40 and 27 nm do not exhibit this overpotential.15,16

Conclusion

We derived mechanochemical equilibrium criteria for two-phase
coexistence within LixFePO4 crystallites and analyzed the role of
coherency strains in affecting solubility limits, phase stability, and
overpotentials required to initiate first-order phase transformations
during �dis�charging. We have also shown how coherency strains
can stabilize high temperature solid solution phases at low tempera-
ture when phase separation is restricted to occur along the Li diffu-
sion direction of the olivine LixFePO4 crystal structure. A finite el-
ement analysis shows that the crystallite shape that minimizes the
coherency strain for the nucleation of two-phase coexistence has a
needle shape with the long axis parallel to the a-direction of the
olivine crystal structure.
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