

Delft University of Technology

An Exploratory Study on Faults in Web API Integration in a Large-Scale Payment
Company

Aué, Joop; Aniche, Maurício; Lobbezoo, Maikel; van Deursen, Arie

DOI
10.1145/3183519.3183537
Publication date
2018
Document Version
Accepted author manuscript
Published in
ICSE-SEIP '18: 40th International Conference on Software Engineering: Software Engineering in Practice
Track

Citation (APA)
Aué, J., Aniche, M., Lobbezoo, M., & van Deursen, A. (2018). An Exploratory Study on Faults in Web API
Integration in a Large-Scale Payment Company. In ICSE-SEIP '18: 40th International Conference on
Software Engineering: Software Engineering in Practice Track (pp. 13-22). Association for Computing
Machinery (ACM). https://doi.org/10.1145/3183519.3183537
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3183519.3183537
https://doi.org/10.1145/3183519.3183537

An Exploratory Study on Faults in Web API Integration in a
Large-Scale Payment Company

Joop Aué1,2, Maurício Aniche2, Maikel Lobbezoo1, Arie van Deursen2
1Adyen B.V., 2Delft University of Technology

{joop.aue,maikel.lobbezoo}@adyen.com,{m.f.aniche,arie.vandeursen}@tudelft.nl

ABSTRACT

Service-oriented architectures are more popular than ever, and in-

creasingly companies and organizations depend on services ofered

through Web APIs. The capabilities and complexity of Web APIs

difer from service to service, and therefore the impact of API er-

rors varies. API problem cases related to Adyen’s payment service

were found to have direct considerable impact on API consumer

applications. With more than 60,000 daily API errors, the poten-

tial impact is enormous. In an efort to reduce the impact of API

related problems, we analyze 2.43 million API error responses to

identify the underlying faults. We quantify the occurrence of faults

in terms of the frequency and impacted API consumers. We also

challenge our quantitative results by means of a survey with 40 API

consumers. Our results show that 1) faults in API integration can

be grouped into 11 general causes: invalid user input, missing user

input, expired request data, invalid request data, missing request

data, insuicient permissions, double processing, coniguration,

missing server data, internal and third party, 2) most faults can

be attributed to the invalid or missing request data, and most API

consumers seem to be impacted by faults caused by invalid request

data and third party integration; and 3) insuicient guidance on

certain aspects of the integration and on how to recover from errors

is an important challenge to developers.

CCS CONCEPTS

· Information systems → Web services; Web applications; ·

Software and its engineering;

KEYWORDS

web engineering, web API integration, webservices.

ACM Reference Format:

Joop Aué1,2, Maurício Aniche2, Maikel Lobbezoo1, Arie van Deursen2. 2018.

An Exploratory Study on Faults inWeb API Integration in a Large-Scale Pay-

ment Company. In Proceedings of 40th International Conference on Software

Engineering: Software Engineering in Practice Track, Gothenburg, Sweden,

May 27-June 3 2018 (ICSE-SEIP ’18), 10 pages.

https://doi.org/10.1145/3183519.3183537

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proit or commercial advantage and that copies bear this notice and the full citation
on the irst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speciic permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE-SEIP ’18, May 27-June 3 2018, Gothenburg, Sweden

© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5659-6/18/05. . . $15.00
https://doi.org/10.1145/3183519.3183537

1 INTRODUCTION

Service-oriented architectures are now more popular than ever.

Companies and organizations increasingly ofer their services

throughWeb Application Programming Interfaces (Web APIs). Web

APIs enable client developers to access third party services and data

sources, and use them as building blocks for developing applica-

tions, e.g., Airbnb utilizes Google’s Calendar API to automatically

insert bookings into the renter’s calendar, and Google Maps con-

sumes Uber’s Ride Request API to ofer Uber’s services as means of

transportation in their maps application.

The capabilities and complexity of Web APIs inevitably difer

from service to service. Retrieving a list of followers for a user

on Twitter requires a GET request including a single parameter,

and posting a Twitter status update using the Twitter API takes a

single parameter POST request. As the complexity of the actions

increases, so do the possibilities of failure. For instance, Github’s

Repo Merging API supports merging branches in a repository. In

addition to the intended merge, other possible outcomes are amerge

conlict, a missing branch error or a nothing to merge response.

Adyen1, a multi-tenant Software as a Service (SaaS) platform

that processes payments, ofers an authorization request used to

initiate a payment from a shopper, which takes up to 35 param-

eters. Multiple types of shopper interaction, and optional ields

to optimize fraud detection and improve shopper experience lead

to numerous failure scenarios. In addition to the happy path, the

method can return at least 34 unique error messages to inform the

API consumer that something has gone wrong.

To make error handling for client developers easier, practioners

have written a variety of best practice guides and blogposts on

API design [11] [21] [13] [18]. Apigee [1], a platform ofering API

tools and services for developers and enterprises, discusses error

handling in multiple ebooks. Apigee’s error handling best practices

focus on which HTTP status codes to use [2] and suggest to re-

turn detailed error messages for users and developers [3]. However,

to our knowledge no research has been conducted on what type

of errors occur in practice and what causes them to happen. Not

only can this knowledge complement existing API design best prac-

tices, it can help improve API documentation and help developers

understand the common integration pitfalls.

The potential impact of API errors on API consumer applications

is enormous. At the same time an understanding of API errors

that occur in practice and their impact is missing. This gap of

knowledge motivated us to investigate the domain of Web API

errors. To this aim, we study the API error responses returned

by Adyen webservices which handle millions of API requests on

a daily basis. We analyze 2.43 million error responses, which we

1http://www.adyen.com

https://doi.org/10.1145/3183519.3183537
https://doi.org/10.1145/3183519.3183537
http://www.adyen.com

ICSE-SEIP ’18, May 27-June 3 2018, Gothenburg, Sweden Aué et al.

extract from the platform’s production logs, discover the underlying

faults, and group them into high-level causes. In addition, we survey

API consumers about their perceptions on the impact and how

often they observe such cases in their APIs, as well as practices

and challenges they currently face when it comes to integrating

to Web APIs. Finally, we provide API developers and consumers

with recommendations that would help in reducing the number of

existing integration errors.

Our results show that (1) faults in API integration can be grouped

in 11 causes: invalid user input, missing user input, expired request

data, invalid request data, missing request data, insuicient per-

missions, double processing, coniguration, missing server data,

internal and third party. Each cause can be contributed to one of

the four API integration stakeholders: end user, API consumer, API

provider, and third parties; (2) most faults can be attributed to the

invalid or missing request data, and most API consumers seem

to be impacted by faults caused by invalid request data and third

party integration; and (3) API consumers most often use oicial

API documentation to implement an API correctly, followed by

code examples. The challenges of preventing problems from occur-

ring are the lack of implementation details, insuicient guidance

on certain aspects of the integration and insights in problems and

changes, insuicient understanding of the impact of problems, miss-

ing guidance on how to recover and a lack of details on the origin

of errors.

The main contributions of this work are as follows:

(1) A classiication of API faults, resulting in 11 causes of API

faults, based on 2.43 million API error responses of a large

industrial multi-tenant SaaS platform (Section 4.1).

(2) An empirical understanding of the prevalence of API fault

types in terms of the number of errors and impacted API

consumers (Section 4.2).

(3) An initial understanding of the impact of each cause as ex-

perienced by API consumers as well as their observations

on current challenges during API integration (Section 4.3).

(4) A set of recommendations for API providers and API con-

sumers to reduce the impact of API related faults (Sec-

tion 5.1).

2 BACKGROUND: UNDERSTANDING THE
WEB API ENVIRONMENT

An API integration can involve up to four diferent stakeholders,

that all inluence the interaction between the API and its consumer.

As a result, each of these stakeholders can cause the API to return

with an error that possibly leads to a failure in the consumer’s appli-

cation. In this section, we give an overview of the API environment,

the parties involved and API error related terminology, to clarify

the diferences and nuances that could lead to confusion.

In a typical integration with an API, two stakeholders, or parties,

are involved. On one side the API provider, ofering their services

by exposing an API, and one the other side the API consumer, utiliz-

ing the services ofered by communicating with the API. The API

provider may optionally itself be connected to third party services

behind the scenes in order to provide the intended functionality.

For instance, an API ofering stock data may itself be connected to

Figure 1: The API integration environment containing the

involved stakeholders and the relation between faults, er-

rors and failure.

diferent stock exchanges to obtain the latest stock prices. We de-

liberately refer to API consumer, instead of API user, to leave room

for the term end user. The API consumer may optionally provide an

application used by its customers, who indirectly make use of the

API’s services. These end users supply information, while using the

application, that is used as request data for the API. For example,

Google Maps users are given the option to choose Uber as means

of transportation when searching for directions. Indirectly they are

supplying input to the Uber API, which locates nearby drivers and

estimates the cost for the trip.

In the system under study, the API provider, Adyen, provides

its payment services through its API. The API consumer is the

merchant processing payments using the Adyen solution (e.g., a

store). The end users are shoppers, who use the merchant’s services

to buy goods or services. Finally, third parties connected to Adyen

typically include banks, schemes, and issuers.

Each of the stakeholders in the API stakeholder overview can,

by introducing a fault, potentially cause an erroneous response to

be returned by the API, which if unexpected can result in problems

for the application. We provide an overview of the integration

environment containing the involved stakeholders and the relation

between faults, errors and failure in Figure 1. In case the API is

indirectly in use by customers of the API consumer, the end user

can, by supplying invalid information, cause the API to return an

error. The API consumer, on the other hand, may have implemented

the API incorrectly, which can result in requests with a speciic

input to be rejected by the API. The API provider may have a bug

in its system, which could, for instance, cause requests to fail on

a speciic input. Lastly, when a third party service fails, the API

provider may decide to return an error to the API consumer.

3 RESEARCH METHODOLOGY

The goal of this study is to understand the faults that occur in

API integration that can potentially result in production problems

for consumers of an API. To this aim, we propose the following

research questions:

RQ1. What type of faults are impacting API consumers?

Translating the understanding of faults in one API integration

to API integrations in general is diicult, because every API has

its own use cases, speciic methods and corresponding errors. To

enable generalization of the results we identify general causes of

faults that can occur in an API integration.

Faults in Web API Integration ICSE-SEIP ’18, May 27-June 3 2018, Gothenburg, Sweden

RQ2. What is the prevalence of these fault types, and how

many API consumers are impacted by them? The answer to

this question provides insights into the frequency of each type of

fault and the impact in terms of number of API consumers. API

designers can leverage the information of what type of fault impact

the user the most when designing an API to lower the probability

that these faults take place and result into problems. In addition,

the knowledge will help identify what aspects of integration are

more diicult to get right, which therefore require more attention

in terms of, for instance, documentation.

RQ3. What are the current practices and challenges to avoid

and reduce the impact of problems caused by faults in API

integration? Understanding what type of faults occur in API in-

tegrations, how often these faults occur and their impact is not

enough to determine how the impact of production problems can

be reduced. An understanding is needed of the current practices

used to avoid and reduce problems, before recommendations for

improvements can be made. Similarly, an understanding of the cur-

rent challenges faced by API consumers is needed to identify areas

of improvement.

To answer the RQs, we collect and analyze data from two difer-

ent sources: over 2 million API error response logs from Adyen’s

production services, and a survey with API consumers. We use this

irst batch of data to answer the types of fault in Web API integra-

tion as well as their prevalence. After, we challenge our indings

by means of a survey with 40 API consumers. In the following, we

detail each data collection mechanism.

3.1 Analysis of the API error response logs

The data extraction approach can be depicted into four steps: (1)

We extract API error responses from production log data to obtain

unique API errors, (2) we manually analyze each unique error

message in context of the web service and API method to identify

unique faults, (3) the time span covered by the data set is veriied

to cover enough data, and (4) we derive a set of causes that explain

the API integration failures.

The logs of the system under study contain information about

everything that happened in the production environment. Among

the logs are the API requests and corresponding responses. Using

domain knowledge of the system, we identiied queries to capture

the erroneous API response log messages from the entire set of log

messages. The data set we use contains 28 days of data and 2.66

million API error responses.

To make sure 28 days would provide enough data for the analysis,

we measured the amount of new information each new day was

bringing to the dataset. We ind that, after 14 days of data, at most

2 new faults are identiied per day with the number decreasing as

more days pass. For this reason we conclude that the most com-

mon and therefore impacting faults in our data set are discovered

within 14 days and therefore consider the 28 day data set to cover

a suicient time span. In Figure 2, we show the amount of new

information that each day aggregates to the dataset.

As the same error can happen more than once, we identify the

unique errors (i.e., unique erroneous API response messages) that

have happened in the dataset. However, the error messages alone

0

10

20

30

0 7 14 21 28

Data set time window size in days

N
u

m
b

e
r

o
f

fa
u

lt
s
 i
m

p
a

c
ti
n

g
 >

=
 1

0
 c

o
n

s
u

m
e

rs

 c
o

m
p

a
re

d
 t

o
 t

h
e

 p
re

v
io

u
s
 i
n

te
rv

a
l

Figure 2: The number of newly identiied faults for each in-

terval for compared to the previous interval.

are not enough to explain the faults. There are messages that indi-

cate one fault, but in practice have a diferent meaning. For instance,

łUnsupported currency speciiedž, appears to be a coniguration

mistake or an invalid input fault. However, this speciic error is

caused by a missing value. Other messages, e.g., łInternal errorž,

are too ambiguous to categorize in the irst place. Thus, to reduce

the number of unique messages with multiple explanations, we add

more context to the unique error messages. To do so, we use the

corresponding API method and web service that caused the error.

For instance, the message łInvalid amount speciiedž has multiple

explanations that depend on the API method used. Adding context

allows for more granularity during analysis. We end up with 363

diferent errors to analyze.

In practice, we observed that the analysis of these errors are

intensive manual tasks, i.e., for each error, we had to comprehend

the failure, inspect the source code, and talk to the developers of

the system. Thus, we consider errors that impacted 10 API con-

sumers or more. Following this approach, we analyzed 89 of the 363

errors, which covers approximately 2.44 (91.3%) of the 2.66 million

erroneous API responses. After analyzing each of them, we found

69 diferent explanations for these 89 errors (we refer to them as

fault cases [FC01..FC69] and they can be found in our appendix [4]),

which we use as an input to determine the high-level causes.

Identifying the causes and assigning each of them to a fault is an

iterative process, based on a detailed qualitative analysis of the fault

cases. Investigating a subset of faults gives the intuition needed to

deine initial causes, which can be assigned to most of the annotated

faults. During further analysis, if a fault does not it into one of the

existing causes, we deine a new cause. A cause that is too generic

may have to be split up into two or more causes, while a cause that

is too speciic may be joined with another cause. Categorization

can therefore not be described by a predeined set of steps, but is

guided by our understanding of the problem domain, and the actual

analysis of the cases at hand. After assigning a cause to each fault,

we iterate once more over all faults to check that all causes are

accurate. Following this procedure we obtain a set of causes that

describe faults in API integration in general.

ICSE-SEIP ’18, May 27-June 3 2018, Gothenburg, Sweden Aué et al.

To verify the accuracy of the categorization, we asked a specialist

in API integration from Adyen to check a subset of the cause assign-

ments. As our list was already randomized, the specialist validated

the irst 50% assignments. In case the specialist does not agree with

the cause, the diference is discussed until agreement is reached.

Using this approach, we verify that the causes are understandable

and reduce the possibilities of mistakes. At the end, we derived 11

causes that explain faults in Web API integration.

In practice, we observed that, due to unclear error messages,

about half of the faults originating from error messages that have

two or more diferent causes. Propagating these causes to the entire

2.43 million error messages would require analyzing each case in

isolation. Thus, we are not able to perfectly estimate the prevalence

of each cause; rather, we provide lower and upper bounds. The

former is calculated by only counting the number of times that a

cause unambiguously explains the error (i.e., the error message was

clear enough to identify the exact cause) and ignoring the number

of times we were not able to precisely identify that the cause was

the root cause. The latter is calculated by counting all the times

that cause was involved in an error (unambiguously or not).

3.2 Survey with API consumers

We challenge the 11 derived causes by testing them outside the

scope of the system under study. To this end, we survey API con-

sumers that have experience with problems related to API integra-

tion. We ask them for each cause whether they have experienced a

problem. Furthermore, we allow them to name additional causes to

capture the ones we may have missed.

The survey contains ive main parts: 1) the process of integration

to understand how the API consumer obtains the knowledge to

implement the API correctly, 2) API fault prevention to identify

areas of improvements for the API provider, which suggest current

challenges face by the API consumer, 3) API error handling practices

employed by API consumers and the challenges they face while

doing so, 4) the fault detection mechanisms in place, and the areas

the API consumer sees to improve and why this is not in place,

and 5) the API consumer’s idea of what causes faults and related

problems to occur.

The target audience of this survey is developers that have experi-

ence in API integration for an application that is used in production.

To understand the participants in terms of experience we ask them

about their years of experience in both software development and

Web API integration. We exclude participants without API integra-

tion experience as they do not it our target audience.

In order to learn the most about API problems we ask the partic-

ipant to consider the API they worked with, which they consider to

be the most complex and give them suggestions as to what kind of

metrics they can use to determine this. These include: ofered fea-

tures and functionality, number of required or optional parameters

and the number of possible error scenarios.

In addition, we ask them to answer the questions based on their

experience, instead of what they believe is happening or is the ideal

situation. For instance, we would like the participants to report

their experience of what causes API errors to occur, and not what

they think causes these errors in general.

We pre-tested the survey with ive participants to make sure the

questions are understandable and to remove possible ambiguities.

The participants were asked to read the questions aloud as well as

what theywere thinkingwhen answering the questions. This helped

us understand the participants’ reasoning and identify problematic

situations.

We posted the survey on the following programming communi-

ties: Code Ranch’sWeb Services forum, Hackernews and Reddit’s

subreddits programming (815,000 subscribers), Webdev (160,000

subscribers), API (600 subscribers) andWebAPIs (235 subscribers).

Although the number of subscriber for the irst two subreddits is

high, the topics are very general, so the expected number of re-

sponses from these is relatively low compared to the more speciic

forums.

To increase the response rate, we additionally resorted to non-

programming speciic media and personal contacts. The survey

was shared with the general public on Twitter by two colleagues;

one with primarily academic followers (2500) and the other with a

mix of academics and practitioners (4600 followers). In total, the

posts were retweeted 25 times. On LinkedIn our post was viewed

approximately 1000 times and was shared by two connections.

Three companies in industry were contacted via personal contacts

of which one was Adyen, the company under study. Lastly, the

irst author reached out to personal contacts that match the target

audience.

The survey has been online for three weeks and a total of 40

qualiied participants out of 70 who answered at least 1 question.

We decided to consider partial responses in the results as well,

but only those participants that answered questions that are not

background related; 11 out of the 40 participantes provided partial

responses. The survey can be found in our online appendix [4].

3.3 Characterization of Survey Participants

On average, the respondents have over 10 years of development

experience and 5 years of API integration experience. 13 of the

developers were individually responsible for the API integration

and 27 worked in a team of two or more developers.

95% of the respondents answered the survey based on an appli-

cation that they worked on in a professional setting. The remaining

5% used an API in a hobby project, which however was used in

production. According to 28% of the participants, the API they con-

sume can be considered complex; 22% of them consider the API

not complex, and 50% were neutral. 13 APIs used by the partici-

pants were data management related. For instance, providing data

about products and orders, and managing inancial and account

data. Payment related APIs were considered 6 times. Even though

many respondents are from Adyen, a payments company, only 3

of the respondents considered an payment related API. Other APIs

that the participants integrated with are used for authentication,

ecommerce, project management, geocoding and notiications, such

as SMS services.

Faults in Web API Integration ICSE-SEIP ’18, May 27-June 3 2018, Gothenburg, Sweden

Stakeholder Cause Explanation Fault Cases

End user Invalid user input A fault introduced by invalid input by the end

user of the application

FC6, FC15, FC16, FC19, FC22, FC23, FC33,

FC34, FC35, FC36, FC37, FC45, FC63, FC64

End user Missing user input A fault introduced by missing input by the end

user of the application

FC3, FC4, FC5, FC7, FC8, FC9, FC17, FC21,

FC38, FC61

End user Expired request data The input data was no longer valid at the mo-

ment of processing

FC-19, FC67

API consumer Invalid request data A fault introduced by invalid data caused by the

API consumer

FC1, FC13, FC14, FC20, FC29, FC30, FC31,

FC32, FC41, FC43, FC44, FC47, FC51, FC54,

FC55, FC66, FC68

API consumer Missing request data A fault introduced by missing data caused by

the API consumer

FC10, FC25, FC27, FC28, FC39, FC46, FC48,

FC52, FC58, FC59, FC60, FC65

API consumer Insuicient permissions Not enough rights to perform the intended re-

quest

FC40, FC49, FC50

API consumer Double processing The request was already processed by the API FC11, FC18, FC69

API consumer Coniguration A fault caused by missing/incorrect API settings FC26, FC53

API consumer Missing server data The API does not have the requested resource FC56, FC57

API provider Internal An internal fault caused by the API FC2, FC12, FC62

Third party Third party A fault caused by a third party FC24, FC42

Table 1: The 11 causes of API faults, their related stakeholder, and fault cases (FC) assigned to the cause.

4 RESULTS

4.1 RQ1. What type of faults are impacting API
consumers?

In Table 1, we show the 11 derived causes. Two causes, related to

user input, can be contributed to the end user, who is also responsi-

ble for expired request data faults. Most of them are caused by the

API consumer, and the API provider and the third party stakeholder

each match one cause. In the following, we detail each of the causes.

Invalid user input. Invalid user input regards requests that fail

because an end user supplied input that cannot be used to complete

the intended action. The invalid information is forwarded by theAPI

consumer to the API. There are multiple types of input invalidity.

We observed inputs that (1) do not match a pre-deined list of

expected values or ranges, e.g., invalid country code, and month

should be between 1 and 12 (FC-06, FC-22, FC-23, FC-35), (2) do not

match the expected type or format, e.g., year should be an integer

value (FC-15, FC-33, FC-34, FC-37, FC-45, FC-63, FC-64), (3) do not

contain the expected length, e.g., CVC code should have three digits

(FC-16, FC-36). In practice, Invalid user input can be caused by a

user that is not aware that certain input is not allowed.

Missing user input. Missing user input is strongly related to in-

valid user input. In this case however, the end user neglects to ill

in required information, which causes the subsequent request to

fail. We decided to distinguish between missing and invalid user

input, because the nature of the mistake is diferent. An end user

that does not ill out a ield either forgets to or is unaware that the

ield is required. This is diferent from invalid input where the user

supplies incorrect information. We observed cases such as missing

payment details, such as bank information, card holder name, CVC,

expiry month, IBAN, credit card (FC-03, FC-09, FC-17, FC-21, FC-38,

FC-61), as well as billing information, such as city, state, country,

and street of the buyer (FC-04, FC-07, FC-05, FC-08).

Expired request data. Expired request data faults occur when

the request is not handled in time. This occurs when the request

contains a timestamp that deines a timeframe that the server has

to handle the request (FC-19, FC-67). In Adyen’s case, a timestamp

is generated when a shopper starts a transaction. When the request

comes in, the system checks whether the start of the transaction

is not too far into the past. If a shopper takes too much time an

expired request data fault translates to an error being returned.

Invalid request data. Invalid request data faults are caused by

input that cannot be handled by the API. There is a multitude of

diferent reasons for such a fault to occur. We observe rounding

problems, e.g., passing value 72.20 instead of 72.21 (FC-01, FC-68),

functionality not available for that combination, e.g., chosen bank

does not support recurring payments (FC-13, FC-54, FC-55, FC-66),

invalid information, e.g., merchant does not exist (FC-41, FC-43,

FC-47, FC-51), bad encoding, e.g., wrong URL encoding (FC-14),

bad format or data outside a list of acceptable values, e.g., amount

should be greater than zero (FC-20, FC-29, FC-30, FC-31, FC-32),

and using test data into production environment, e.g., use testing

payment reference in production (FC-44). This is similar to the

mistake made by the end user causing an invalid user input fault,

however, in this case, caused by the API consumer.

Missing request data. Missing request data faults are similar to

invalid request data faults. However, in this case the API consumer

neglects to send in information that is required for the intended

action. Also in this case we decided to distinguish between invalid

and missing request data. We reason that the mistake of not sup-

plying required information is of a diferent nature than making

ICSE-SEIP ’18, May 27-June 3 2018, Gothenburg, Sweden Aué et al.

a mistake by supplying incorrect input. We observe missing cryp-

tographic data (FC-10, FC-25), and diferent business related data

(FC-27, FC-28, FC-39, FC-46, FC-48, FC-52, FC-58, FC-59, FC-60,

FC-65).

Insuicient permissions. Insuicient permissions faults are caused

by API consumers that attempt to use an endpoint or make use

of a resource, while they are not allowed to do so. We ind users

making this mistake because they attempt to use the production

services, while they are not yet through the process of obtaining

the permissions for this (FC-40, FC-50), or waiting for the service

to be properly conigured (FC-49). We also see API consumers still

interacting with the API, while their contract has been ended and

therefore their permissions have been revoked.

Double processing. Double processing faults are caused by API

consumers that send in a request more than once. The API un-

der study is designed to be idempotent; sending in the same call

repeatedly will produce the same result. Double processing faults

should therefore not be possible. However, in case of attempting to

repeatedly delete the same remote object, a double processing faults

occurs because the reference to this object can no longer be found,

e.g., contracts (FC-11) and payment related objects (FC-18, FC-69).

Coniguration. Coniguration faults are caused by incorrect con-

iguration of the API consumer account. The API consumer assumes

that certain functionality is set up for their account, however in real-

ity it is conigured incorrectly or not set up at all, e.g., coniguration

for installments (FC-26) or speciic payment methods (FC-53).

Missing server data. Missing server data faults happen when the

API consumer asks for data that used to exist, but does not anymore,

as it was updated, removed or disabled in the past (FC-56, FC-57).

Internal. Internal faults occur when the API provider is unable

to handle an incoming request for an unanticipated reason. This

can be because of a bug, due to the system being unable to handle a

speciic input or unexpected API consumer interaction. Data related

replication issues between internal components in the system can

result in new data resources to not be available immediately on all

servers in a distributed API server architecture (FC-02, FC-12). We

also observe internal failures in cryptographic routines (FC-62).

Third party. A third party fault can result in an API error when

the API consumer makes a request that involves the API provider

to make use of a third party (e.g., a bank), which does not respond

or returns an error (FC-24, FC-42). In this case the request failed

and the consumer is notiied by means of an error.

In Figure 3, we show how often survey participants experienced

production problems with the API due to each of the 11 causes.

Missing server data and coniguration related problems were experi-

enced relatively more often than other problems for the participants.

Problems caused by the API provider and third parties, internal and

third party fault related problems respectively, are relatively ex-

perienced more than other problems caused by the API consumer

or end user. It is to be noted that for third party faults 10 out of

34 respondents did not know whether these problems occurred

or regarded the cause as not applicable. Missing request data and

missing user input faults both result into less problems than invalid

55% 29% 13% 3%

34% 45% 17% 3%

31% 47% 19% 3%

53% 20% 27%

31% 38% 28% 3%

19% 48% 19% 13%

20% 40% 33% 7%

29% 25% 29% 17%

25% 28% 25% 22%

29% 23% 19% 29%

31% 16% 34% 19%

Invalid user input (n=30)

Missing user input (n=29)

Expired request data (n=31)

Invalid request data (n=31)

Missing request data (n=32)

Insufficient permissions (n=29)

Double processing (n=30)

Configuration (n=31)

Missing server data (n=32)

Internal error (n=32)

Third party error (n=24)

0 25 50 75 100
Percentage

Response Never Rarely Sometimes Often

Figure 3: How often API related problems are experienced

by the survey participants. N=number of survey participants

that replied the question.

request data and invalid user input faults. The latter two are expe-

rienced relatively by most participants. Expired request data and

double processing related problems are not experienced by over half

of the participants.

Several participants added additional causes to the 11 we pro-

pose. Four participants mentioned that they experienced errors

because the API was not responding. We summarize these issues as

API downtime, which we consider part of the internal cause. Fur-

thermore, two participants experienced problems caused by hitting

the API requests limits. We regard these to be related to faults in

the insuicient permissions cause. Namely, the API consumer is not

allowed to make more requests.

RQ1: Faults in API integration can be grouped in 11 causes:

invalid user input, missing user input, expired request data,

invalid request data, missing request data, insuicient per-

missions, double processing, coniguration, missing server

data, internal and third party.

4.2 RQ2. What is the prevalence of these fault
types, and how many API consumers are
impacted by them?

In Table 2, we show the number of unique faults that occur in each

of the 11 causes found during manual analysis. As aforementioned,

due to ambiguity we are not able to present the exact percentage

of errors and impacted consumers. For this reason, we show the

estimated percentage of corresponding API error responses and

estimated percentage of impacted consumers for each cause. In four

causes of faults no ambiguity was present, hence the exact percent-

ages are given instead of a range. Note that the total percentages

for the lower and upper bound do not add up to 100% due to the

estimation in the total number of errors, and to the fact that the

same consumer may generate diferent faults.

Faults in Web API Integration ICSE-SEIP ’18, May 27-June 3 2018, Gothenburg, Sweden

Cases Errors (%) Consumers (%)

Lower Upper Lower Upper
Cause (N=69) bound bound bound bound

Invalid user input 13 6.5 6.6 33.3 34.8

Missing user input 10 0.7 5.4 11.5 24.8

Expired request data 2 0.0 0.5 2.0 15.8

Invalid request data 17 3.2 10.5 23.9 62.3

Missing request data 12 23.0 28.7 20.2 24.0

Insuicient permissions 3 0.1 0.1 9.5 9.5

Double processing 3 36.0 36.0 12.3 12.3

Coniguration 2 16.7 16.7 19.9 21.4

Missing server data 2 1.5 1.5 13.9 13.9

Internal 3 0.1 4.9 0.7 18.9

Third party 2 0.4 0.9 21.8 46.6

Table 2: The number of faults per cause grouped by stake-

holder, and the estimated percentage range of errors and im-

pacted API consumers. The percentages are based on 2.43

million API errors and 1,464 impacted API consumers. Note

that the percentages do not add up 100%.

27% 60% 13%

17% 44% 28% 11%

17% 44% 17% 22%

16% 42% 37% 5%

14% 38% 29% 19%

14% 36% 36% 14%

44% 17% 39%

21% 14% 21% 43%

33% 14% 52%

29% 21% 50%

5% 19% 24% 52%

Invalid user input (n=18)

Missing user input (n=15)

Expired request data (n=14)

Invalid request data (n=21)

Missing request data (n=18)

Insufficient permissions (n=19)

Double processing (n=14)

Configuration (n=21)

Missing server data (n=18)

Internal error (n=21)

Third party error (n=14)

0 25 50 75 100
Percentage

Response None Low Moderate High

Figure 4: The impact of API related problems per cause as

experienced by the survey participants.

For the end user, we see the input to be the largest cause of faults.

23 of the 25 faults are caused by invalid or missing input, collectively

causing 7.2% to 12% of the errors. Invalid user input does not only

result in more unique faults than missing user input, it also impacts

more API consumers, 33.3% to 34.8% compared to 11.5% to 24.8%.

Expired request data sent in by the end user causes two diferent

faults, causing an impact in 2.0% to 15.8% of our consumers.

The request data causes the most faults for the API consumer,

similar to the end user. Invalid request data results in 17 of the 39

unique faults caused by the API consumer. Faults in this category

impact the most consumers for this stakeholder, namely between

23.9% and 62.3%. This corresponds to between 350 and 912 API

consumers.Missing request data, good for 12 faults, has an impact on

fewer consumers (between 20.2% and 24.0%), but does however yield

more erroneous API responses. Interestingly, only 0.1% insuicient

permissions related errors caused by 3 faults impact 9.5% of the API

consumers. Double processing related error in comparison are also

caused by 3 faults, but occurred 36.0% of the time corresponding

to 875,000 errors for 12.3% of the consumers. Two coniguration

faults cause more than 400,000 errors (16.7%) for 19.9% to 21.4% of

the consumers. This is similar to the missing request data, with the

diference that this cause has 12 unique faults. Finally, 1.5% missing

server data fault related error responses are given back to the API

consumer, which is a relatively small amount compared to the other

causes for this stakeholder. The number of impacted consumers,

however, is similar to other causes.

The API provider and third party stakeholder both experience

errors in one category each, internal faults and third party faults

respectively. The number of unique faults caused by these stake-

holders is small compared to the end user and API consumer. Third

party faults however impact more API consumers, which is esti-

mated to be between 319 and 682, or 21.8% and 46.6%.

In addition, in Figure 4, we show the perceptions of survey par-

ticipants’ on the impact of each cause. We observe that: (1) Internal

and third party related problems, caused by the API provider and

third parties, are experienced as most impactful on production appli-

cations; (2) Problems originating from the end user, such as invalid

user input and missing user input, have a relative small impact on

the applications using the API; and (3) Interestingly, double process-

ing related problems seem to have either no impact, or relatively

much impact compared to the other causes.

RQ2: Most faults are caused by invalid request data,missing

request data, and double processing. Faults caused by the API

provider and third parties are experienced most impactful

according to API consumers. On the other hand, faults

originating from the end user, although very frequent in

our dataset, are regarded as having the least impact.

4.3 RQ3. What are the current practices and
challenges to avoid and reduce the impact
of problems caused by faults in API
integration?

To understand how API consumers obtain the knowledge necessary

to integrate with an API we asked them how often they used difer-

ent information sources. Oicial API documentation is by far used

the most. 74% of the respondents indicated to be using this source

of information often or very often. Only 10% did not use oicial

API documentation when integrating with the API they selected

during the survey. Code examples are second most used with 44%

of the participants using them often or very often. About one-third

of the participants uses them sometimes. Questions and answer

websites are used never or rarely by 42% of the participants, while

the number of participants that uses this information source very

often is relatively low with 10%. The API provider support team is

used the least with only 18% of the participants using this source

often or very often.

In addition to the four proposed information sources the partici-

pants mentioned other sources of information. Four participants

mentioned that they used a trial and error approach on the API to

ICSE-SEIP ’18, May 27-June 3 2018, Gothenburg, Sweden Aué et al.

discover what is possible and what is not. Three respondents had

access to the API’s source code or used the schema deinition of

the web service to understand the workings of the API. Finally, two

participants used the source code of existing external libraries that

wrap the API to understand how to use the API.

When it comes to preventing problems that they experienced

with the API, 13 (of a total of 18) mentioned the documentation

should be improved. Common implementation scenarios could help

prevent problems, instead of only stating the diferent options for

API calls. The restrictions of calls and parameters should be more

clearly documented. The API provider should identify the most

common API mistakes and describe how to prevent them. In addi-

tion, more details on error codes should be given and the edge cases

should be highlighted and better explained. Two participants men-

tioned the need of an API status page to inform the API consumer

of any outages. On call support for any issues was a suggested

improvement by two more participants. The participants suggested

both more informative error messages as well as a categorization

of errors based on their similarities. Furthermore, the respondents

mentioned the importance of an upgrade policy of the API and the

usefulness of more code examples to illustrate the diferent API

calls. Lastly, one participant suggests the API provider to set up a

testing environment that is capable of returning all possible API

errors, which allows the API consumer to properly test and handle

these responses.

A subset of the participants (n = 15) elaborated on the challenges

they face in error handling. One of the main diiculties is under-

standing the impact of API errors. Three impact perspectives were

mentioned: an implementation perspective, business perspective

and end user perspective. Not knowing the details and impact of

an error makes it diicult from an implementation perspective to

know what the request did and did not do. A participant exempli-

ied: łYou send a batch of 20 objects to be saved, but an error gets

thrown. However, you don’t know if none of them was saved or all

of them but one.ž From a business perspective it is experienced as

diicult to understand the business impact of the error. The error

may explain that a parameter is invalid, but the consequences of

this remain unclear. Finally, communicate errors to the end user is

also experienced a challenge: łTranslating the messages to something

actionable by the end user.ž

Another challenge faced in handling errors is the appropriate

way to recover. Diiculties experienced include insuicient clarity

and documentation about the right way to recover from a given

error: łOften errors have no clear recovery option or even worse, do not

clearly indicate what’s wrong.ž Handling errors is diicult when the

diferent lows the application should take given the API response

are not clear. This is even more diicult when multiple related API

calls are subsequently made and can fail with diferent errors.

The survey participants (n = 29) also apply diferent strategies to

detect problems in their integration. The end user detects problems

in the application related to the API integration for 23 respondents.

Log analysis is second most efective in detecting problems with

19 respondents. Monitoring dashboards have detected issues for

13 respondents and both alerts, such as SMS or email, and API

integration tests worked for 9 respondents. Five respondents had

additional mechanisms in place, among which are łcontinuous live

smoketestingž, łmanual tests in productionž, and monitoring API

tools that can detect downtime and schedule API test cases, such

as Runscope Radar.

RQ3: API consumers most often use oicial API documen-

tation to implement an API correctly, followed by code

examples. The challenges of preventing problems from oc-

curring are the lack of implementation details, insuicient

guidance on certain aspects of the integration, insuicient

understanding of the impact of problems, and missing guid-

ance on how to recover from errors.

5 DISCUSSION

In this section, we provide developers with recommendations that

we derive based on our indings (Section 5.1). Finally, we discuss

the possible threats to the validity of this work and actions we took

to mitigate them (Section 5.2).

5.1 Recommendations

We observed that a great challenge for both API providers and

consumers is indeed the documentation; providers need to keep

it up-to-date, while consumers need to understand it. The same

challenge has been observed by Robillard et al [17], where authors

propose API documentation to have clear intent, code examples,

matching APIs with scenarios, discuss the penetrability of the API,

and to have a clear format and presentation. Our indings suggest

that an important feature of documentation is regarding the possible

errors an API may return.

We therefore suggest documentation to clearly state which error

codes can be returned by the API and in what circumstances it

can happen. The API provider should enrich API error responses

with actionable information. An error type allows for generic error

handling for groups of errors, a handling action indicates the right

action for the API consumer to take to deal with the error, and a

user message can inform the end user of the system about the error

and actions to proceed. In addition, API providers should also make

explicit which errors are ‘retriable’, i.e., , where users may try again,

and which cases users have no way of recovering from the error.

As recovering from errors is a fundamental part of the API con-

sumer’s logic, we suggest API providers to ofer easy-to-use test

environments for integrations, where consumers can exercise not

only the happy paths, but also the recovering paths. API consumers,

on the other hand, should make sure that their application handles

all error codes that are returned by the provider.

Finally, error messages are commonly logged by the API provider.

Such logs are vital for future inspection and debugging. We suggest

API developers to provide consumers with their logs. Toolmakers

should step in and build dashboards that provide live insights about

the consumers’ API usage and, more speciically, about their errors.

5.2 Threats to validity

In this section, we discuss the possible limitations of this work and

our approach to mitigate them. We distinguish between the internal

and external validity of our results.

Faults in Web API Integration ICSE-SEIP ’18, May 27-June 3 2018, Gothenburg, Sweden

Internal validity. Internal validity is concerned with how con-

sistent the result is in itself. Factors that cannot be attributed to

our technique, which can have an inluence on the results, are a

potential threat to validity: (1) The causes were derived manually

and could therefore have been subject to bias or misinterpretation.

To reduce this threat we worked together closely with the Adyen

development and technical support team to avoid misunderstand-

ings, (2) To discover possible multiple explanations of a fault, we

analyzed the error messages for several API consumers. However,

it is possible that a fault remained undiscovered because it occurred

infrequently. This has a possible impact on our indings. Similarly,

we iltered the data for analysis based on 10 impacted API con-

sumers or more. The iltered data could be explained by faults that

would alter the distribution of faults over the causes. For instance,

internal faults could occur more often in the data that was iltered

out, therefore posing a potential threat to validity.

External validity. External validity is concerned with the repre-

sentativeness of the results outside the scope of the research data:

(1) We used API error log data from the Adyen’s platform to deter-

mine the fault causes and provide insights into the frequency and

impacted consumers of these faults. Since these results are appli-

cable to Adyen only, we cannot generalize these results to faults

in other APIs, To reduce this threat we veriied the completeness

of the fault causes by surveying API consumers. (2) An arbitrary

window of 28 days of API error logs was selected for fault analysis

and categorization. A diferent 28 day window could however have

resulted in a diferent set of faults, and a diferent number of occur-

rences and impacted consumers. It would be useful to replicate the

analysis based on a diferent time window to investigate the impact

on the results, (3) We only obtained 40 survey responses, of which

11 were partial responses. This sample is insuicient to generalize

results about integration, detection, handling and prevent practices,

and future work would be required for such generalization.

6 RELATED WORK

Wittern et al. [27] identiied three challenges for developers calling

Web APIs and argue in favor of corresponding research opportuni-

ties to support API consumers: 1) API consumers have no control

over the API and the service behind it, both of which may change,

in contrast to a traditional local library. 2) The validity of the Web

API request, in terms of URL, payload and parameters, is unknown

until runtime. When using a local library the compiler can check

whether the call conforms to the library’s API interface. Eforts

to solve this challenge can help to reduce faults in the following

categories we identiied: invalid user input and invalid request data.

3) The distributed nature of the API connection comes with a set of

issues concerning availability, latency and asynchrony. A diferent

architecture or additional logic may be required to handle these

issues.

Suter and Wittern [23] use API usage logs from 10 APIs to infer

speciications based on API URLs and parameters using classiica-

tion techniques to tag and detect parameters. The conclusion is that

inferring web API descriptions is a diicult problem that is limited

mostly by incomplete or noisy input data. Sohan et al. [20] apply a

similar approach where API requests and responses are used to gen-

erate documentation. Using actual requests and responses the tool

is able to include examples in addition to the documentation. The

authors identiied undocumented ields in 5 out of 25 API actions

for which they generated documentation. However, in this work

the precision of the generated documentation is not validated and

compared to a ground truth making it diicult to see the usefulness

of the proposed generator.

Bermbach and Wittern [5] performed a geo-distributed bench-

mark to assess the quality of Web APIs, in terms of performance

and availability. The authors ind a great variety in quality between

diferent APIs. They make suggestions on how API providers can

become aware of these problems by monitoring, and can mitigate

them by suggesting architectural styles. This work discusses an

angle of API related problems which we were not able to cover, as

our work only considers API requests for which API consumers

received an API response. We do however cover third party unavail-

ability as this results into third party errors for the API consumer.

Wittern et al. [26] attempt to detect errors by statically checking

API requests in JavaScript to overcome the fact that traditional

compile-time errors are not available for developers consuming

APIs. Their static checker aims to check whether the API requests

in the code conform to the speciications that were made using the

Open API speciication. The authors report a 87.9% precision for

payload data and a 99.9% precision on query parameter consistency

checking.

A vast amount of research has been conducted in the ield of

traditional oline APIs, some of which can be relevant to the Web

APIs as well. Robillard et al. [16] provide a survey on automated

property inference for APIs. The authors state that using APIs can

be challenging due to hidden assumptions and requirements, which

is also found in this work. Robillard et al [15, 17] also investigated

the obstacles of learning traditional oline APIs by surveying de-

velopers at Microsoft. Similar to our results, Robillard found most

respondents use oicial documentation to learn APIs with code

samples as the second most used source of information.

The learnability of an API can be afected by the overall usability

of the API itself. Stylos et al. [22] ind that if API providers take the

efort to refactor their APIs to make them more usabe,this can help

reduce the errors that could occur due to incorrect usage of the

API. One such example shown by Ellis et al. [6] is the refactoring

of the factory pattern in an API to the usage of the consutructor

directly. More recently, Stylos and Myers [12] have suggested that

API usability techniques are not limited to the world of oline APIs,

but are applicable to the world of web APIs as well.

The evolution of an API has an impact on the API clients as well.

Linares-Vásquez et al. [10] have shown that breaking changes in An-

droid APIs can have a negative impact on the rating of an Android

app. Sawant et al. [19] conducted a study of 25,567 Java projects to

show how deprecation of an API feature can impact an API client.

Robbes et al. [14] study the ripple efect of API evolution in the

entire SmallTalk ecosystem and show that deprecation of a single

API artifact can have a large ranging impact on the ecosystem.

In the case of web APIs, evolution of an API can have a major

impact too. Espinha et al. [8] explored the state of Web API evo-

lution practices and the impact on the software of the respective

API consumers. The impact of API changes on the clients’ source

code was found to depend on the breadth of the API changes and

the quality of the clients’ architectural design. Suggestions for API

ICSE-SEIP ’18, May 27-June 3 2018, Gothenburg, Sweden Aué et al.

providers include not changing too often, keeping usage data of

diferent features and doing blackout tests, which involves disabling

old versions for a short time to remind developers that changes in

the API are coming. In other work, Espinha et al. [7] developed a

tool to understand the runtime topology of APIs in terms of usage

of diferent versions by diferent users. Wang et al. [25] study the

speciic case of the evolution of 11 REST APIs, where they collected

questions and answers from Stack Overlow that concern the chang-

ing API elements and how API clients should deal with evolution.

Li et al. [9] identiied 6 new challenges when it comes to dealing

with web API evolution as opposed to traditional API evolution.

This understanding can be useful for maintenance purposes where

the impact of changes can be evaluated and predicted.

Venkatesh et al. [24] mention that to help the integration process

one should understand the challenges that are encountered by client

developers. The authors base their analysis on developer forums

and Stack Overlow by mining the questions and answers related

to 32 Web APIs. They ind that the top ive topics per Web API

category contribute to over 50% of the questions in that category.

The indings imply that API providers can optimize their learning

resources based on the dominant topics.

7 CONCLUSION

API errors can indicate signiicant problems for API consumers. In

the system under study over 60,000 API error responses are returned

every day, causing the potential number of problems and their

impact on API consumer applications to be enormous. Practitioners

have written a variety of best practice guides and blog posts on API

design and error handling, however to our knowledge no research

had been conducted on what type of API errors occur in practice

and what their impact is.

Our results show that (1) faults in API integration can be grouped

in 11 causes: invalid user input, missing user input, expired request

data, invalid request data, missing request data, insuicient per-

missions, double processing, coniguration, missing server data,

internal and third party. Each cause can be contributed to one of

the four API integration stakeholders: end user, API consumer, API

provider, and third parties; (2) most faults can be attributed to the

invalid or missing request data, and most API consumers seem

to be impacted by faults caused by invalid request data and third

party integration; and (3) API consumers most often use oicial

API documentation to implement an API correctly, followed by

code examples. The challenges of preventing problems from occur-

ring are the lack of implementation details, insuicient guidance

on certain aspects of the integration and insights in problems and

changes, insuicient understanding of the impact of problems, miss-

ing guidance on how to recover and a lack of details on the origin

of errors.

Our indings indicate that the integration between API providers

and consumers is still far from ideal. We hope this work motivates

researchers to further explore the domain of faults in Web API inte-

gration. Furthermore, we hope that API providers use our indings

to optimize their APIs to enable better integration, and that API

consumers use our ideas to reduce the impact that API errors may

have on their applications.

REFERENCES
[1] Apigee. [n. d.]. Apigee: The Cross-Cloud API Platform. https://apigee.com/

api-management/. ([n. d.]). [Online; accessed 28-Jun-2017].
[2] Apigee. [n. d.]. Web API Design: Crafting Interfaces that Developers Love.

http://bit.ly/2EILoin. ([n. d.]). [Online; accessed 28-Jun-2017].
[3] Apigee. [n. d.]. Web API Design: The Missing Link. http://bit.ly/2gtEhz6. ([n. d.]).

[Online; accessed 28-Jun-2017].
[4] Joop Aué, Maurício Aniche, Maikel Lobbezoo, and Arie van Deursen. [n. d.]. An

Exploratory Study on Faults in Web API Integration in a Large-Scale Payment
Company: Appendix. https://www.zenodo.org/record/1035151. ([n. d.]).

[5] David Bermbach and Erik Wittern. 2016. Benchmarking web api quality. In
International Conference on Web Engineering. Springer.

[6] Brian Ellis, Jefrey Stylos, and Brad Myers. 2007. The factory pattern in API
design: A usability evaluation. In Proceedings of the 29th international conference
on Software Engineering. IEEE Computer Society, 302ś312.

[7] Tiago Espinha, Andy Zaidman, andHans-Gerhard Gross. 2013. Understanding the
interactions between users and versions in multi-tenant systems. In Proceedings
of the 2013 International Workshop on Principles of Software Evolution. ACM.

[8] Tiago Espinha, Andy Zaidman, and Hans-Gerhard Gross. 2014. Web API growing
pains: Stories from client developers and their code. In Software Evolution Week-
IEEE Conference on Software Maintenance, Reengineering and Reverse Engineering.

[9] Jun Li, Yingfei Xiong, Xuanzhe Liu, and Lu Zhang. 2013. How does web service
API evolution afect clients?. InWeb Services (ICWS), 2013 IEEE 20th International
Conference on. IEEE, 300ś307.

[10] Mario Linares-Vásquez, Gabriele Bavota, Carlos Bernal-Cárdenas, Massimiliano
Di Penta, Rocco Oliveto, and Denys Poshyvanyk. 2013. Api change and fault
proneness: A threat to the success of android apps. In Proceedings of the 2013 9th
joint meeting on foundations of software engineering. ACM, 477ś487.

[11] Brian Mulloy. [n. d.]. RESTful API Design: what about errors? http://bit.ly/
2GU9pUi. ([n. d.]). [Online; accessed 28-Jun-2017].

[12] Brad A Myers and Jefrey Stylos. 2016. Improving API usability. Commun. ACM
59, 6 (2016).

[13] Aniket Patil. [n. d.]. Get developer hugs with rich error handling in your API.
http://bit.ly/2gxacyH. ([n. d.]). [Online; accessed 28-Jun-2017].

[14] Romain Robbes, Mircea Lungu, and David Röthlisberger. 2012. How do developers
react to api deprecation?: the case of a smalltalk ecosystem. In Proceedings of
the ACM SIGSOFT 20th International Symposium on the Foundations of Software
Engineering. ACM, 56.

[15] Martin Robillard. 2009. What Makes APIs Hard to Learn? Answers from Devel-
opers. IEEE Software 26, 6 (2009).

[16] Martin Robillard, Eric Bodden, David Kawrykow, Mira Mezini, and Tristan Ratch-
ford. 2013. Automated API property inference techniques. IEEE Transactions on
Software Engineering 39, 5 (2013).

[17] Martin P. Robillard and Robert DeLine. 2011. A ield study of API learning
obstacles. Empirical Software Engineering 16, 6 (01 Dec 2011), 703ś732. https:
//doi.org/10.1007/s10664-010-9150-8

[18] Kristopher Sandoval. [n. d.]. Best Practices for API Error Handling. http://bit.ly/
2E5xExh. ([n. d.]). [Online; accessed 20-Jul-2017].

[19] Anand Ashok Sawant, Romain Robbes, and Alberto Bacchelli. 2016. On the
reaction to deprecation of 25,357 clients of 4+ 1 popular Java APIs. In Software
Maintenance and Evolution (ICSME), 2016 IEEE International Conference on. IEEE,
400ś410.

[20] SM Sohan, Craig Anslow, and FrankMaurer. 2015. Spyrest: Automated restful API
documentation using an HTTP proxy server (N). In 30th IEEE/ACM International
Conference on Automated Software Engineering (ASE).

[21] Mike Stowe. [n. d.]. API Best Practices: Response Handling. http://bit.ly/
2nH77QN. ([n. d.]). [Online; accessed 28-Jun-2017].

[22] Jefrey Stylos, Benjamin Graf, Daniela K Busse, Carsten Ziegler, Ralf Ehret, and
Jan Karstens. 2008. A case study of API redesign for improved usability. In Visual
Languages and Human-Centric Computing, 2008. VL/HCC 2008. IEEE Symposium
on. IEEE, 189ś192.

[23] Philippe Suter and Erik Wittern. 2015. Inferring web API descriptions from usage
data. In Third IEEE Workshop on Hot Topics in Web Systems and Technologies.

[24] Pradeep Venkatesh, Shaohua Wang, Feng Zhang, Ying Zou, and Ahmed Hassan.
2016. What Do Client Developers Concern When Using Web APIs? An Empirical
Study on Developer Forums and Stack Overlow. In IEEE International Conference
on Web Services (ICWS).

[25] Shaohua Wang, Iman Keivanloo, and Ying Zou. 2014. How do developers react to
restful api evolution?. In International Conference on Service-Oriented Computing.
Springer, 245ś259.

[26] Erik Wittern, Annie Ying, Yunhui Zheng, Julian Dolby, and Jim Laredo. 2017.
Statically checking web API requests in JavaScript. In Proceedings of the 39th
International Conference on Software Engineering. IEEE Press.

[27] Erik Wittern, Annie Ying, Yunhui Zheng, Jim Laredo, Julian Dolby, Christopher
Young, and Aleksander A Slominski. 2017. Opportunities in software engineer-
ing research for web API consumption. In Proceedings of the 1st International
Workshop on API Usage and Evolution.

https://apigee.com/api-management/
https://apigee.com/api-management/
http://bit.ly/2EILoin
http://bit.ly/2gtEhz6
https://www.zenodo.org/record/1035151
http://bit.ly/2GU9pUi
http://bit.ly/2GU9pUi
http://bit.ly/2gxacyH
https://doi.org/10.1007/s10664-010-9150-8
https://doi.org/10.1007/s10664-010-9150-8
http://bit.ly/2E5xExh
http://bit.ly/2E5xExh
http://bit.ly/2nH77QN
http://bit.ly/2nH77QN

	Abstract
	1 Introduction
	2 Background: Understanding the Web API environment
	3 Research Methodology
	3.1 Analysis of the API error response logs
	3.2 Survey with API consumers
	3.3 Characterization of Survey Participants

	4 Results
	4.1 RQ1. What type of faults are impacting API consumers?
	4.2 RQ2. What is the prevalence of these fault types, and how many API consumers are impacted by them?
	4.3 RQ3. What are the current practices and challenges to avoid and reduce the impact of problems caused by faults in API integration?

	5 Discussion
	5.1 Recommendations
	5.2 Threats to validity

	6 Related work
	7 Conclusion
	References

