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Abstract—Despite the clear influence of sex on biomechanics,
research continues to exhibit a sex bias, positioning male anatomy
as the default. Consequently, current open-source musculoskeletal
(MSK) models are primarily based on male bone geometry,
mixed-sex musculotendon parameters and deviated from female
muscle mass distribution. This raises concerns about the validity
of MSK model predictions for females. While sexual dimorphism
in the femur and pelvis is well-documented, its role in explaining
sex-related differences in proportional muscle volumes remains
unclear. This study aimed to investigate whether sex-specific
variations in bone geometry can predict differences in the
proportional volumes of the Gluteus Maximus (GMAX) and
Rectus Femoris (RFEM), two muscles with known sex-based
distinctions.

To address this question, an automatic MRI-based segmen-
tation model was developed using an nnU-Net deep-learning
network trained on MRI scans of 16 healthy young adults (9
females, 7 males). Bone geometrical measurements were extracted
using the STAPLE toolbox, and muscle volumes were normalized
using lean volume to derive proportional volumes (% GMAX and
%RFEM). Finally, linear stepwise regression was performed to
assess whether bone metrics could predict muscle volumes.

The developed segmentation model demonstrated superior
accuracy, outperforming existing methods with Dice Similarity
Coefficients (DSC) of 0.926 for bones and 0.954 for muscles.
Results revealed significant sexual dimorphism in bone geometry,
with males exhibiting larger femoral offsets and knee widths,
while females displayed greater posterior pelvic width and pelvic
depth. %RFEM volume was significantly higher in males (p =
0.01), whereas %GMAX showed no significant sex-related dif-
ferences. Regression analysis identified femoral offset and femur
length as partial predictors of muscle volume proportions for
%RFEM (R? = 0.478) and pelvis-femur length for %GMAX (R?
= 0.151), but the low R? values indicate limited predictive power,
particularly for %GMAX. These findings highlight potential
errors in the calculation of proportional muscle volumes using
lean volume, as well as limitations in the method used to measure
bone metrics, suggesting that % RFEM and % GMAX cannot be
reliably estimated using the included bone metrics.

These findings suggest that sexual dimorphism in the femur
may partially explain sex-related differences in % RFEM, while
its influence on % GMAX remains inconclusive. Further research
is needed to fully understand the biomechanical implications of
these differences. Integrating additional factors, such as muscle
insertion points, actual muscle volume proportions, and a broader
range of muscles to explore muscle leverage patterns, will
help us understand the relationship between sexual dimorphism
and muscle volume distribution better. As a result, this may
improve the accuracy of sex-specific biomechanical simulations
and deepen our understanding of sex-related differences in
biomechanics.

I. INTRODUCTION

Until the 1990s, medical and scientific research was con-
ducted almost exclusively on male subjects, as women were
considered as "smaller men", apart from their reproductive
system. However, studies in recent decades have shown sig-
nificant sex-based differences in physiology and anatomy [I].
These findings have led to critical insights, such as the reduced
efficacy or even harm of treatments tested solely on males
when applied to women []. Moreover, the most common mus-
culoskeletal diseases are more prevalent in females, including
osteoporosis and osteoarthritis [B]. Sex-related differences also
influence injury risk, with women being four to six times more

likely to suffer anterior cruciate ligament (ACL) injuries in
elite sports compared to men [@]. This discrepancy is linked to
skeletal and musculotendon differences, which affects biome-
chanics among sexes [5].

Despite the evident role of sex in biomechanics, research
continues to exhibit a sex bias, positioning male anatomy
as the golden standard, a phenomenon referred to as bias-
mechanics [B]. One of the primary tools for studying human
movement is musculoskeletal (MSK) modeling, which embod-
ies mathematical representations of the muscular and skeletal
system [[1]. While MSK models have the potential to improve
our understanding of sex-related differences in biomechanics,
they must first accurately reflect anatomical reality [8]-[I0].
However, current MSK models remain male-based or rely
on mixed-sex musculotendon parameters [[I1], [T2]. A recent
systematic review further revealed that female muscle mass
distribution is not adequately represented in these models [3].
This questions the validity of MSK model predictions for
females and underscores the need for a deeper understanding
of sex differences in the musculoskeletal system.

Developing a scaling method that accounts for sex-related
differences in muscle volume distribution would be a key step
toward creating more accurate MSK models that reflect sex-
specific variations. Notably, the Gluteus Maximus (GMAX)
and Rectus Femoris (RFEM) show the most pronounced
differences between both sexes, with RFEM proportional
volumes being 12% higher in males and GMAX 17% higher
in females [[3]. These deviations are particularly relevant
as proportional muscle volumes influence muscle leverage,
significantly impacting estimated joint moments and muscle
forces in static optimization during MSK modeling [14].

Research indicates a strong association between bone ge-
ometry and muscle volume [I5], [I&]. For example, femoral
offset and the inter-femoral head distance are significant
predictors of Gluteus Medius muscle volume across a diverse
population with balanced sex distribution [I&]. However, to
our knowledge, no studies have investigated whether lower-
extremity bone geometry can explain sex-related differences
in proportional muscle volumes. Given that bones such as the
pelvis have often been demonstrated to exhibit sex-based mor-
phological differences [I'7], it is crucial to examine whether
sexual dimorphism in the pelvis and femur contributes to
variations in GMAX and RFEM proportional volumes. Un-
derstanding these relationships could provide valuable insights
into sex-specific musculoskeletal adaptations and enhance the
accuracy of MSK models.

The aim of this study is to investigate the relationship
between sexual dimorphism in the pelvis and femur and
the proportional volumes of the Gluteus Maximus (GMAX)
and Rectus Femoris (RFEM). To achieve this, an automatic
segmentation model was trained to extract the lower-extremity
skeleton and relevant muscles from MRI scans from a cohort
of 16 healthy young adults. Bone geometrical measurements
were then derived from segmented bones using STAPLE
[I®] and analyzed for sexual dimorphism. Similarly, muscle
volumes of GMAX and RFEM were examined to see if they



exhibited sex-related differences and compared to existing
literature. Finally, relationships between bone geometry and
muscle volume were explored to determine whether sexual di-
morphism in the pelvis and femur could explain differences in
proportional RFEM and GMAX volumes, potentially serving
as a predictive tool for muscle volume distribution.

II. METHODS
A. Participants

This thesis analyzed data from nine young adult female
subjects (age: 28 £ 3 years, height: 172.4 + 4.3 cm, weight:
63.8 £ 5.7 kg) and seven male subjects (age: 30 £ 4 years,
height: 180.8 4+ 10.6 cm, weight: 74.0 + 10.1 kg). The MR
images were obtained as part of a data collection effort for
a PhD project within the BODIESlab at the BioMechanical
Engineering department of TU Delft. Body weight and body
fat percentage were measured using bioelectrical impedance
analysis (BIA). This study exclusively included healthy indi-
viduals. For detailed anthropometric data for each subject, see
the table in Appendix B.

B. MRI acquisition

All MRI scans were conducted by professionals at Hol-
landPTC in Delft using a Philips Ingenia 3 Tesla scanner
retrieving T1-weighted Dixon in-phase and water MR images
for all subjects. The full body was imaged using 9 or 10
sequences in the superior-inferior (S-I) direction, depending
on the subjects height. This study considered only stacks that
capture the lower extremities, including the pelvic region and
both legs. The majority of the sequences was captured with
dimensions of 960 x 400 x 960. Still, the last two sequences,
located around the lower legs and feet exhibited dimensions
of 1024 x 400 x 1024 to capture the feet completely.

C. Post-processing of MRI sequences

To establish complete lower-body MR images, the seven
sequences capturing the pelvic area, legs and feet, were
registered using the NumPy [[Y] and NiBabel [20] libraries in
Python. To address variations in voxel spacing and dimensions
in the scans, all sequences were resampled to match the
voxel dimensions of a reference sequence, typically the first
sequence located around the pelvic area. This sequence was
chosen as the reference because most sequences exhibited
comparable voxel spacing, precisely 0.5729 [mm] x 0.7500
[mm] x 0.5729 [mm]. Only the last two sequences, located
around the lower legs and feet, exhibited different voxel
spacings. Empty slices and slices containing overlapping data
from subsequent sequences were identified and removed from
the preceding sequence to ensure accuracy in the concatenation
process. Afterward, the sequences were concatenated in the
inferior-to-superior direction based on their respective z-offsets
to create full-leg compressed NIfTi files. Eventually, to reduce
the computation time for the automatic segmentation models
and enhance their model training by doubling the sample
size, the full-leg MR images were also split symmetrically
along the x-axis in Python to create an image for each leg.

If the automatic splitting process was inaccurate, e.g. if it
included muscle or bone segments from the opposite leg or
pelvic region, manual cropping was performed in 3D Slicer
[2T1]. The middle of the sacrum and the pubic symphysis were
anatomical reference points for these manual corrections.

D. Segmentation of MRI data

This study focuses on the analysis of the lower limbs.
Therefore, only bones and muscles in this region of interest
were considered for segmentation. For manual segmentation,
visualization, and refining automatic segmentations of the MR
images, the biomedical imaging software 3D Slicer [Z1] was
used.

1) Bone segmentation: For bone segmentation, all bones
in the pelvic area, legs, and feet were divided into 19 sep-
arate segments in total and 10 segments per leg, where the
sacrum was split in half (see Figure I2 in Appendix O).
Since foot joints will not be modeled, the cuboid, cuneiforms,
metatarsals, and phalanges were grouped into a single seg-
ment: the foot bones. On the other hand, the ankle joint
was used in the MSK model and therefore, the calcaneus,
talus and navicular were segmented into separate segments. In
appendix O, an overview of the bones segmented per subject
were given. TotalSegmentator, a nnU-Net-based deep-learning
network trained on 561 MR scans across different modalities,
was utilized for 4 subjects [?2]. Although segmentation for
some bones, e.g. the femur and pelvis was accurate, manual
refinement was performed in 3D Slicer to improve precision.
Additionally, certain bones, including the patella and foot
bones, were not segmented by TotalSegmentator, at the time,
and were therefore segmented entirely manually.

2) Muscle Segmentation: For muscle segmentation, various
automatic segmentation models were explored. Among these,
another trained 3D nnU-Net network [23], was employed to
predict muscle structures for the muscles of interest, namely
GMAX and RFEM. This 3D nnU-Net network, also referred
to as the Henson099 model, had been trained on an open-
source database comprising 69 MRIs and segmentations of
34 muscles in the lower limb of postmenopausal women
[24] [P5]. However, due to differences in imaging modalities
and demographic characteristics between the training dataset
and the MRI data used in this study, the predictions were
suboptimal. Consequently, manual adjustments were made to
the muscle segmentations to ensure accuracy.

3) Training of nnU-Net: Currently, U-Net-based architec-
tures, a type of convolutional neural network used for semantic
segmentation, are considered state-of-the-art in automatic seg-
mentation [26], [271]. Therefore, nnU-Net [28] was employed
in this study to train two separate networks for MRI segmen-
tation: BODIES_skeletonLLL047 for bone segmentation and
BODIES_muscles021 for muscle segmentation.

An iterative training approach, consisting of two phases, was
applied to reduce the time required for manual segmentation.
See Figure [ for a flowchart illustrating the training process.
For the first training phase, 4 subjects were segmented using
the semi-automatic approach described in previous subsections
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Fig. 1: Flowchart illustrating the training process for both nnUNet models, where N represents the number of subjects and n

denotes the number of legs used as training sample.

[I-DT and I=DZ. To increase the sample size for training
the network and enhance computational efficiency, subject
data was divided unilaterally, training each leg separately.
This resulted in eight samples for the first training iteration
(two per subject, one for each leg). For this training phase,
networks for bone segmentation were trained on 3 folds using
100 epochs for 2 configurations, namely the 2D and 3D full
resolution. After analyzing the results for bone segmentation,
we choose to run the segmentation network for the muscle
segmentation only for 3D full-resolution, as this delivered the
best results. Furthermore, since the losses for the training and
validation set were still high, it was decided to run it on 3
folds using 250 epochs. Subsequently, 5 additional subjects
(again divided into 2 samples, capturing each leg) were run
through the preliminary nnU-Net. Predictions were refined
manually in 3D Slicer if needed. In the second and last
training phase, the final nnU-Net for both models, namely
the BODIES_skeletonLL047 and BODIES_ muscles021, was
trained on 18 samples. Each segmentation model’s final nnU-
Net was trained for the 3D full-resolution configuration across
five folds, utilizing 500 epochs. Across all folds, different
training/validation splits of 80/20 ratio were used, resulting
in 14 samples for training and 4 for validation. Training was
conducted in parallel on the DelftBlue supercomputer [29]
using five NVIDIA A100 GPU nodes, each equipped with 80
GB of video RAM, and required around 37 hours to complete
per fold. After training, cross-validation across the five folds
was applied to remove bias introduced by the training set
during the post-processing of predictions.

E. Data analysis

During data analysis, the final automatic segmentation mod-
els were validated against current automatic models from
literature to ensure their accuracy. Afterwards, the relation-
ship between bone geometrical measurements and the muscle
volume ratios was analyzed.

1) Validation of automatic segmentation models: For analy-
sis, one sample that was not in the training set were considered
for validation. To analyze the robustness of the automatic
segmentation models, the outcomes of these models were
related to the ground truth, being the manual segmentation,
using the DICE similarity coefficient (DSC) and the Hausdorff
Distance (HD). The DSC is a common metric to evaluate
segmentation performance by measuring the overlap between
the ground truth and automatic segmentation, in the following
way:

_ 2- |AGT N APre|
|AGT| + |APTE|

where |Agr N Ap,e| represents the number of overlapping
voxels between the ground truth segmentation (Agr) and the
predicted segmentation (Ap,.). |Agr| is the total number
of voxels in the ground truth. |Ap,.| is the total number
of voxels in the predicted segmentation. The DSC ranges
from O to 1, where 1 indicates a perfect match between the
predicted segmentation and the ground truth, while O indicates
no overlap.

Since DSC is sometimes lacking in evaluating the true
precision of the models, the Hausdorff distance was also
analyzed. The HD measures the worst-case boundary error
by computing the maximum distance between the ground

DSC (1
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Fig. 2: Bone measurements illustrated that were obtained using
STAPLE [I8].

truth and the predicted segmentation surface, expressed in
millimeters:

HD = max< sup inf d(z,y), sup inf d(y,x 2
{sup inf dla).sop int a0} @

where X represents the set of points on the surface of
the ground truth. Y represents the set of points on the
surface of the predicted segmentation. d(z,y) is the Euclidean
distance between points. The function inf finds the closest
point distance, and sup ensures the maximum of all minimum
distances.

Both metrics were calculated using the SciPy [BU] and
NumPy [IY] libraries in Python. Both metrics were calculated
for the separate segments as well as for the complete segmen-
tation predicted by the models. A heatmap of the HD was
created using MeshLab [B1] to get more insight on location
of these errors.

2) Analysis of bone geometry and muscle volumes: The
analysis of bone geometry and muscle volumes was conducted
on data collected unilateral, yielding a total of 32 samples,
consisting of 18 samples from female subjects and 14 samples
from male subjects.

a) Calculation of bone geometrical measurements: To
get insights on the bone geometry, the partial bone seg-
mentations were transformed into a skeletal model of the
lower extremity using the STAPLE toolbox [I8] in MATLAB
R2024b [B2]. The STAPLE toolbox makes use of algorithms

Variable \ euclidian distance between

Femur length (F})
Femoral offset (Fy)
Knee width (Kneeqw)
Pelvis height (Pp1)
Pelvis height (Py2)
Pelvis-Femur length (PFy)
Pelvis depth (Py)
Pelvis width (P2")
Pelvis width (PE°®)

knee joint center and the hip joint center
hip joint center and the greater trochanter
Lateral epicondyle and medial epicondyle of the femur
pubic symphysis and ASIS
hip join center and ASIS
ASIS and knee joint center
ASIS and PSIS
left and right ASIS
left and right PSIS
TABLE I: Description of the bone geometrical measurements

and their derivation based on particular anatomical landmarks.

to fit spheres and cylindrical structures on the bone segmen-
tations, identifying joint centers and marker placements on
bony landmarks. Additionally, the centers of the bone segment
were explored. Euclidean distances between data points were
computed to derive the bone geometrical measurements related
to pelvic and femoral morphology, listed in Table L.

Figure D illustrates these metrics on the bilateral model
created by STAPLE. Additional metrics were initially con-
sidered but excluded from the results due to measurement
errors or the statistical criteria outlined in Section M=EZd.
The specific reasons for exclusion, along with a complete list
of these metrics, are provided in Appendix D. Furthermore,
bone metrics were normalized by body height to enable a fair
comparison when evaluating sexual dimorphism.

b) Calculation of Muscle volumes: Muscle volume for
each leg was determined by the number of voxels per muscle
segment and multiplying it by the voxel volume, derived from
the voxel spacing in the segmentation. The muscle volume
formula is:

3
Vmuscle = Nvo:rels * Vvozel * 10

where V,uscie is the muscle volume in [em3], Nyogels 1S
the number of voxels and V,,;.; is the volume of one voxel
in [mm?3].

Since the total muscle volume in the lower limbs was
not segmented, muscle volumes were normalized by their
partition in the lean volume of the lower limbs. Total volume
of the lower limbs was derived by automatic segmentation
of the body by TotalSegmentator. This volume was then
cropped just above the pelvis and above the ankle joint, at
the distal end of the tibia and fibula shafts before widening
begins, since MRI data for the feet was missing for one
subject. Skeletal structures within this cropped volume were
subtracted, yielding the soft tissue volume:

V;aft = W)ody — Vskeleton

where Vi, is the volume of all soft tissues in this cropped
volume in [em?], Vbody 18 the total body volume [em?] and
Viskeleton 18 the volume of bones within this cropped volume
in [em3].

To derive lean volume, fat volume had to be derived first.
Since fat has a lower density than total of all soft tissues, the
proportional fat volume within soft tissue was corrected using
the density ratio between lean soft tissue and fat tissue:



%Vfat = ’;)SOft * %Mfat

fat

%Vfat
102

where pjeqn, Which is 1.10 [g/cm3] represents the mass
density of lean soft tissue (excluding bone tissue) and pyq¢
is the mass density of fat tissue which is 0.9 [g/cm3] [B3].
M fat% refers to the percentage of fat in the body mass. Vi
is the fat volume in [c¢m?3], whereas Vfat% represents fat as a
percentage of soft tissue volume.

Afterwards the lean volume (Vj.q,,) Was calculated in [c¢m?®]
by substracting fat volume from the soft tissue volume:

Vfat = ‘/soft *

Viean = soft — Vfat

Using the lean volume, the proportional muscle volumes
(Vinuscle 7o) were derived in the following way:

Vinuscle
%Vmuscle = Vil * ]-02

lean

c) Statistical analysis: Data for bone geometry and mus-
cle volume were first tested for normality using the Shapiro-
Wilk Z-test and for homogeneity of variance using Levene’s
test. Paired t-tests were conducted to assess bilateral symmetry
in bone geometry measurements and muscle volumes between
legs. Students t-tests were used to analyze sex-related differ-
ences in (proportional) muscle volumes and bone metrics when
Levene’s test confirmed homogeneity of variance; otherwise,
a Welchs t-test was performed.

To identify the most predictive bone geometrical parameters
for muscle volume proportions, linear stepwise regression was
employed. Significantly asymmetrical bone metrics between
legs were excluded from regression to account for mea-
surement error. In addition to bone metrics, anthropometric
variables such as body height, body mass, and sex were
included as independent predictors.

This method used bidirectional selection, combining for-
ward selection and backward elimination. In forward selection,
variables were added if they minimized the Akaike Infor-
mation Criterion (AIC), which evaluates model quality by
balancing goodness-of-fit and model complexity. Additionally,
variables were only retained if they significantly improved
model performance (p < 0.05). In backward elimination,
variables with p > 0.10 were removed to prevent overfitting
and improve model interpretability.

The final Ordinary Least Squares models were evaluated
using R? and adjusted R?, with only statistically significant
predictors (p < 0.05) reported. The best model was selected
based on AIC minimization, ensuring a balance between model
fit and complexity. Additionally, R? and adjusted R? were
used to assess explanatory power, while only predictors with
p < 0.05 were retained to ensure statistical significance.

All statistical analyses were conducted in Python, utilizing
the Seaborn [B4] and SciPy [BU] libraries.

TotalSegmentator BODIES_skeletonLL047

Hausdorff Distance [mm)]
&

Fig. 3: Heatmaps illustrating location of the Hausdorff dis-
tances on the meshes of the prediction by both models for
the lower extremity skeleton. Red areas indicate inaccurate
predictions, whereas dark blue areas present better accuracy.

BODIES_SkeletonLL047 TotalSegmentator
Bone DSC [—] HD [mm] DSC [-] HD [mm]
Pelvis 0.900 15.78 0.770 38.86
Sacrum 0.851 55.64 0.831 20.00
Femur 0.960 11.47 0.908 12.25
Patella 0.848 8.77 0.881 8.36
Tibia 0.964 9.90 0.719 222.33
Fibula 0.884 15.39 0.570 210.83
Calcaneus 0.902 10.09 0.848%* 16.40*
Talus 0.881 11.22 - -
Navicular 0.871 8.77 - -
Foot bones 0.801 16.31 0.387 1431.78
Overall 0.926 24.50 0.807 208.49

TABLE II: Results of the Dice Similarity Coefficient (DSC)
and Hausdorff Distance (HD) for the different automatic bone
segmentation models on the sample used for validation. *
is denoted as these values represent the DSC and HD for
the Calcaneus, Talus and Navicular, since these were not
separately segmented by TotalSegmentator.

III. RESULTS

A. Validation of segmentation models

1) Bone segmentation models: Table LI presents the Dice
Similarity Coefficients (DSC) and Hausdorff Distances (HD)
for individual segments and overall predictions by both
models. At first glance, both models perform reasonably
well, with DSC values ranging from 0.807 to 0.964. The
BODIES_SkeletonLL.047 model consistently outperformed
TotalSegmentator, achieving higher DSC values overall. The
HD results reveal distinct differences between the models.
TotalSegmentator’s overall HD remained exceptionally high



BODIES_Muscles021 Henson099 TotalSegmentator
Muscle DSC[-] HD [mm] | DSC[-] HD [mm] | DSC[-] HD [mm]
Gluteus Maximus 0.953 19.05 0.834 175.65 0.756 52.21
Rectus Femoris 0.960 17.11 0.636 25.73 - -
Total 0.954 17.11 0.798 175.65 0.756 52.21

TABLE III: Results for the Dice Similarity Coefficient (DSC) and Hausdorff Distance (HD) achieved by various automatic
muscle segmentation models on the validation sample. Note: TotalSegmentator does not provide separate segmentation for the

Rectus Femoris (RFEM).

TotalSegmentator
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Fig. 4: Heatmaps illustrating location of the Hausdorff dis-
tances on the meshes of the prediction by all the evaluated
models for the muscles. Note: TotalSegmentator did not seg-
ment RFEM.

(208.49 [mm]), whereas the BODIES_SkeletonLL.L047 model
exhibited a significantly lower overall HD value of 24.50
[mm].

Analysis of individual segments further highlights the su-
periority of the BODIES_Skeleton.LL047 model. In particular,
the Pelvis, Tibia, and Fibula were predicted with far greater
accuracy compared to TotalSegmentator, as evidenced by
Figure 3. The largest disparity was observed for the Fibula,
where BODIES_SkeletonLL.047 achieved a DSC of 0.884 and
HD of 15.39 [mm], compared to a DSC of 0.570 and HD
of 210.83 [mm] by TotalSegmentator. Similarly, the Pelvis
and Tibia predictions by TotalSegmentator showed noticeable
segmentation gaps (see Figure [§). Both models performed
similarly for the Sacrum (DSC: 0.831 vs. 0.851) and Femur
(DSC: 0.908 vs. 0.960), both achieving high performances for
the Femur.

Notably, BODIES_SkeletonLLLLO47 encountered modest
challenges with smaller structures, such as the Patella and
all bones in the feet, yet still outperformed TotalSegmentator
in these regions. The Patella was predicted with a DSC of
0.848 and an HD of 8.77 [mm] by BODIES_Skeleton.L047,
compared to 0.881 DSC and 8.26 [mm] HD by TotalSegmen-
tator, demonstrating comparable performance for this bone.
However, TotalSegmentator’s results for the Foot Bones were
substantially less accurate (DSC: 0.387, HD: 1431.78 [mm]),
compared to BODIES_SkeletonLL.047 (DSC: 0.801, HD:
16.31 [mm]), highlighting significant segmentation errors in

these smaller structures. Additionally, as TotalSegmentator did
not segment the Calcaneus, Talus, or Navicular separately,
a combined DSC of 0.848 and HD of 16.40 [mm] was
reported for these bones, whereas BODIES_Skeleton.L047
demonstrated stronger performance with individual DSC val-
ues of 0.902, 0.881, and 0.871 for the Calcaneus, Talus, and
Navicular, respectively.

In general, the BODIES_SkeletonLL.0O47 model demon-
strated better predictions than TotalSegmentator, particularly
for the Tibia, Fibula, and smaller bones, while maintaining
robust accuracy across most bone structures.

2) Muscle segmentation models: Two other models, Hen-
son099 and again TotalSegmentator, were compared and an-
alyzed against the trained model in this study, namely BOD-
IES_Muscles021. Similar to the evaluation of bone segmenta-
tion models, muscle segmentation performance was assessed
using the Dice Similarity Coefficient (DSC) and Hausdorff
Distance (HD) metrics, with results summarized in Table [II.

BODIES_Muscles021 demonstrated the best overall perfor-
mance, achieving the highest DSC values (0.953 to 0.960)
and the lowest HD values (17.11 [mm] to 19.05 [mm])
among the three models. Although Henson099 outperforms
TotalSegmentator with higher DSC (0.834 vs. 0.756), its HD
was significantly higher for Henson099 (175.65 [mm] vs.
52.21 [mm]). Both Henson099 and TotalSegmentator showed
volume shrinkage compared to ground truth, as evident in
cross-sectional comparisons (see Appendix H).

A closer examination of muscle-specific performance re-
veals that Henson099 achieved notably higher DSC values for
the GMAX (DSC: 0.834) than for the RFEM (DSC: 0.636),
whereas HD is much higher for GMAX than RFEM, indicating
suggested noise in specific areas (see Figure FIXME). In con-
trast, BODIES_Muscles021 achieved consistent performance
across both muscles, with balanced DSC (GMAX: 0.953,
RFEM: 0.960) as well as HD values (GMAX: 19.05 [mm],
RFEM: 17.11 [mm]).

Overall, BODIES_Muscles021 exhibited the most robust
and reliable segmentation, consistently achieving high accu-
racy and minimal errors across both muscles.

B. Analysis of bone geometry and muscle volumes

1) Bone geometry measurements: Figure B presents violin
plots of the analyzed bone metrics in this study, while Figure
@ illustrates the same values normalized by body height.
Most femoral measurements were consistently larger in males,
whereas pelvic measurements exhibited greater variability
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Fig. 5: Violin plots comparing bone metrics between female and male subjects. The broken dotted lines inside the plots
represent the 1st and 3rd quartiles, while the middle dashed line indicates the median. n represents the number of available
data points for each metric, which varies for some measurements due to bilateral assessment.
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Fig. 6: Pelvic morphologies from our cohort ordered on their sexual dimorphism, based on the analysis by Fischer et al. (2017)
[7]. From left to right, pelves transitioning from an ’ultra-female’ to an ’ultra-male’ morphology. The ’ultra-female’ pelvis
showed a more anterior-tilted orientation with a higher pelvic inlet and straight posteriorly pointing sacrum. In contrast, the
‘ultra-male’ pelvis features a more vertically aligned ilium, a narrower inlet, and an inwardly curved sacrum.
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Fig. 7: Violin plots comparing bone metrics normalized by body height between female and male subjects. n represents the
number of available data points for each metric, which varies for some measurements due to bilateral assessment. The ratio
F,/Knee,, was excluded as it is inherently independent of body height.

between sexes. When normalized by body height, pelvic
measurements were larger in females.

Posterior pelvic width was significantly greater in females
(p = 0.048), whereas anterior pelvic width showed no signif-
icant difference between sexes (p > 0.05). These differences
persisted even after normalization by body height. Although
other pelvic dimensions did not exhibit significant sex differ-
ences, males displayed greater variability in absolute pelvic
metrics, except for posterior pelvic width, where females
showed higher variability. However, after normalization, nearly
all pelvic measurements (except anterior pelvic width) were
significantly larger in females (p < 0.01), with pelvic depth
showing the most pronounced variability in females. In con-
trast, anterior pelvic width exhibited greater variability in
males.

Among femoral measurements, knee width and femoral off-
set were significantly larger in males (p < 0.001), a difference
that persisted after normalization (p < 0.05). When femoral
offset was normalized by knee width, the ratio remained simi-
lar across sexes (p > 0.05), indicating proportionality between
these two metrics. Additionally, femur length and pelvis-
to-femur length did not significantly differ between sexes
in absolute terms (p > 0.05), but after normalization, these
values were larger in females (p < 0.01). Although absolute
femoral measurements exhibited greater variability in males,
after normalization, variability was comparable between sexes,
except for knee width, where females had a slightly wider
range.

Overall, femoral offset and knee width were consistently

larger in males, whereas most normalized pelvic metrics, such
as pelvic height, pelvic depth, and posterior pelvic width, were
larger in females. Variability was similar for most metrics,
though pelvic depth showed greater variation in females, while
anterior pelvic width was more variable in males.

2) Muscle Volume: Table IM presents a comparison of
muscle volumes measured in this study with values reported
in the literature. To ensure a fair comparison, the referenced
studies also investigated a young adult population, including
female and male subjects, with muscle volumes derived from
MRI. The study by Handsfield et al. (2014) [35] only published
values for the total population without distinguishing between
sexes.

Interestingly, values for both muscles fall within the range
of values reported in previous literature. Whereas our cohort
exhibited consistently higher muscle volumes than those found
by Lube et al. (2015) [B6], Handsfield et al. (2014) [35]
reported overall higher muscle volumes. Similarly to Lube et
al. (2015), muscle volumes for the GMAX and RF were higher
in male subjects than in female subjects.

The violin plots in Figure B further illustrate these sex-based
differences. The distribution of absolute muscle volumes in
female subjects appears more uniform, while male subjects
display a wider range, including some instances of higher
muscle volumes. Notably, proportional muscle volume for
%RFEM is significantly higher in males (p = 0.01), whereas
for %GMAX, no significant difference was found (p > 0.05)
between sexes based on the t-test.



Female Male Overall

Average + STD [em3] Average + STD [em3] Average &+ STD [cm3]
This study GMAX | 756.7 £ 118.6 990.6 + 90.3 859.0 £+ 158.2
(N=16, F/M: 9/7) RFEM 194.2 £+ 29.7 286.0 £ 45.4 2343 £ 59.1
Handsfield et al. [BY] GMAX | - - 849.0 £ 194.7
(N=24, F/M.: 8/16) RFEM | - - 269.0 + 64.3
Lube et al. [BA] GMAX | 657.2 £ 115.1 871.1 £ 344 764.1 + 138.0
(N=6, F/M: 3/3) RFEM 158.9 + 23.5 265.7 £+ 30.8 2123 £ 61.6

TABLE IV: Comparison of muscle volumes from this study with MRI-derived values reported in the literature for young adult
cohorts. N: number of participants, F/M: partition between sexes.
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Fig. 8: Violin plots comparing muscle volumes [c¢m?] and the
proportions of muscle volume [%] within the lean volume
between sexes. n represents the number of muscles, with one
per leg.

3) Stepwise regression: Table M presents the regression
equations for (proportional) muscle volumes, along with R2,
adjusted R? values, indicating the variance explained by
the model, and the standard estimated error (SEE). Figure
B visualizes the predicted vs. actual values, illustrating the
accuracy of the regression equations.

Sex emerged as the strongest predictor (p < 0.001) for
absolute muscle volumes (GMAX and RFEM) but was not
a significant predictor for proportional volumes. Moreover,
the models predicting absolute muscle volumes (GMAX: R?
= 0.679, RFEM: R? = 0.664) demonstrated higher accuracy,
explaining more variance compared to the proportional volume
models (%GMAX: R? = 0.151, %RFEM: R? = 0.478). In par-
ticular, the low R? for %GMAX suggests poor predictability,
which is further reflected in Figure B; its scattered data points
do not follow the regression trend. Notably, %#GMAX had only
one significant predictor, whereas the other models had at least
two.
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Fig. 9: Scatter plots showing predicted versus actual values
for (proportional) muscle volumes. The dashed line indicates
perfect prediction, where data points on the line correspond
to accurate predictions. Red points represent female subjects,
while blue points represent males.

For GMAX and %GMAX, both pelvic and femoral metrics
were predictive, indicating dependency on both bones. Inter-
estingly, femur length and pelvis-to-femur length (capturing
part of femur length) negatively correlated with GMAX and
%GMAX, suggesting that a longer femur is associated with
lower GMAX volume.

While RFEM had no bone metrics in its predictive equation,
%RFEM was dependent on femoral metrics. Noteworthy,
femur length also negatively influenced %RFEM, similar to its
effect on GMAX and indirectly on %GMAX. Femoral offset
was also predictive, positively affecting %RFEM.

IV. DISCUSSION

In the first part of this thesis, an automatic segmentation
method was developed for the segmentation of the lower
extremity skeleton and two muscles (GMAX and RFEM)
from T1-weighted MRI, such that bone and muscle data



Predicted muscle [ Prediction equation [ R? Adj. RZ SEE ‘
GMAX [cm?] 276.757 * Sex(F = 1, M = 2) + 98.817 * Pelvisq — 22.131 * Femur; — 137.596 | 0.679  0.645 88.194 [cm3]
P%GMAX —0.074 « PFy + 7.857 0.151  0.122 0.475 [%]
RFEM [em?] 73.898 * Sex(F =1,M = 2) + 1.758 x BW + 8.193 0.664  0.641 33.692 [cm?]
%RFEM —0.075 x Femur; + 0.280 x Femur, + 2.332 0478 0.442 0.116 [%]

TABLE V: Regression equations for GMAX and RFEM (proportional) muscle volumes. All variables were statistically
significant at p < 0.05. BW refers to body weight in [kg], while all other variables, except Sex, represent bone metrics

mentioned earlier.

could be derived. This was successfully achieved through
training of nnU-Net, a deep-learning network, on 18 samples,
training two separate networks: one for bone segmentation,
i.e. the BODIES skeletonLLLO47 model, and one for the
muscles, known as the BODIES_muscles021 model. Both
models demonstrated superior performances with a DSC of
0.926 for the BODIES_skeletonL.L047 and a DSC of 0.954
for BODIES_muscles021, significantly outperforming existing
segmentation models.

While the BODIES_skeleton.LLO47 model is no longer the
first to segment all bones in the lower limbs from MRI,
its ability to separately segment the Calcaneus and Talus
makes it highly valuable for automatic pipelines in the gener-
ation of subject-specific MSK models of the lower extremity.
MRI-based data collection may be preferred over CT-based
methods as it avoids radiation exposure and, in the context
of MSK modeling, allows for the simultaneous collection
of both skeletal and muscle data in a single acquisition.
While TotalSegmentator combines the Calcaneus, Talus, and
Navicular into a single segment and exhibits low accuracy for
foot bones, BODIES_skeletonL.LL.LO47 provides more detailed
segmentation of these structures. Additionally, it outperforms
TotalSegmentator in key regions such as the Pelvis, Tibia, and
Fibula, making it a robust choice for MSK model development.

However, performance varied across anatomical structures.
Smaller bones, such as the sacrum, patella, and foot bones,
exhibited lower DSC values compared to larger bones, in-
dicating reduced segmentation accuracy. This discrepancy is
expected, as DSC is a relative measure, and smaller structures
inherently lead to greater proportional errors. Despite this, the
HD values for the patella and foot bones were comparable
to those of larger bones, suggesting that these structures were
still segmented with high accuracy. The primary exception was
the sacrum, which demonstrated the highest HD, indicating
a notable segmentation error. A closer analysis of the seg-
mentation heatmaps (Figure B) revealed that errors primarily
occurred at the base (sacral promontory) and tailbone (coccyx)
of the sacrum. The tailbone segmentation error was likely due
to inconsistencies in the ground truth rather than a model
deficiency, as BODIES_skeletonL.L.047 appeared to capture
the structure more accurately. In contrast, errors at the sacral
base may have stemmed from training samples where parts of
the first vertebral disc were mistakenly included, leading to
over-segmentation in this case.

Likewise, BODIES_muscles021 has a very high perfor-
mance for both muscles and outperforms the other models
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substantially. Although the model, for now, is only trained for
two muscles, it demonstrates the power it has in segmenting
muscles, even when accounting for variability in muscle
morphology between subjectsparticularly for RFEM. Notably,
some females exhibited a more curved and rounded RFEM,
whereas in both males and some females, RFEM appeared
straighter and flatter (see Appendix K).

Notably, the errors observed in the comparison models do
not appear to stem from deficiencies in model architecture,
as these models were also trained using nnU-Net. Instead,
discrepancies likely arise from inconsistencies in segmentation
quality, variations in MRI modalities, lower image resolution,
and differences in the demographics of the training popula-
tions.

For instance, Henson099 was trained on a different MRI
modality with lower image quality, and the segmentations used
for training were less refined (see Appendix H). These factors
point out that muscle segmentation models are highly depen-
dent on the imaging modality they are trained on. As a result,
it cannot be guaranteed that BODIES_muscles021 will achieve
the same high performance on MRIs acquired with different
modalities or scanner settings (see Appendix ). Furthermore,
Henson099 was trained on an elderly female population (mean
age: 69 + 7 years), which differs significantly from the
demographic composition of this study’s participant group.
MRI scans from that dataset reveal increased subcutaneous fat
and lower muscle volumes, which may influence segmentation
performance when applied to younger or more physically
active individuals. Conversely, it can not be confirmed whether
the BODIES_muscles021 has promise in segmenting elderly
muscles accurately.

Similarly, TotalSegmentator, while trained on a diverse
range of MRI modalities, presents its own set of limitations.
The broad applicability of this model is an advantage; however,
segmentation accuracy was compromised to optimize com-
putational efficiency. Additionally, although TotalSegmentator
was trained on a large dataset (561 MRI scans), a significant
portion of these scans focused on the abdominal region,
rather than the lower extremities. Specifically, only 60 to 70
scans included the pelvic and hip region, and even fewer
covered the legs, particularly the lower legs. Given this limited
representation of lower-extremity structures, together with the
reduced segmentation quality in the training set (see Appendix
[), the model may not be as robust for detailed and accurate
muscle and bone segmentation in these regions compared to
our models.



Moreover, both Henson099 and TotalSegmentator were
trained on lower-quality MRIs compared to the higher-
resolution scans used in this study, further enhancing the pre-
cision of BODIES_muscles021 and BODIES_skeletonLLL047
at a finer scale. This suggests that, despite TotalSegmentators
adaptability across different MRI modalities, our models likely
provide higher segmentation accuracy for the lower-extremity
skeleton and the two muscles in high-quality T1-weighted
MRI scans.

The second part of this study was to analyze sex-related dif-
ferences in (proportional) muscle volumes and bone geometry.
Consequently, if differences were found in the bone geometry,
they could be related to, or even explain, the differences in the
muscle volumes.

The analysis of bone geometrical measurements revealed
that several femoral metrics were consistently larger in males.
As expected, males demonstrated significantly greater femoral
offset and knee width than females (p < 0.003). However,
femur length did not differ significantly between sexes (p >
0.05), which contrasts with established literature associating
longer femurs with greater body height, typically observed
in males [B5], [B7]. Interestingly, when normalized by body
height, femur length appeared proportionally greater in fe-
males (p = 0.01) (see Table XI in Appendix G). This suggests
that females may have relatively longer femurs, though the
measurement was taken between joint centers rather than along
the femoral shaft. The result may be influenced by the femoral
neck angle relative to the femoral shaft (FSA) in the frontal
plane, indicating a higher FSA in females, which is supported
by existing literature [38], [BY]. Despite males having greater
overall body height (p = 0.003), femoral offset and knee width
remained significantly larger in males even after normalization
(p < 0.05).

Notably, the ratio between femoral offset and knee width
was nearly symmetrical between sexes (F: 0.881 vs. M: 0.876,
p > 0.05), suggesting a proportional relationship between
these two measures. This symmetry may reflect the role of
femoral offset in determining knee-loading conditions and the
adaptive response of bone in the knee joint to mechanical
forces. Increased femoral offset has been shown to influence
joint alignment and load distribution across the hip and knee,
affecting muscle moment arms and joint reaction forces, as
observed in total hip arthroplasty [20]. However, as previously
mentioned, FSA was not accounted for in these measurements,
limiting the interpretation of this relationship. Additionally,
femoral anteversion, defined as the angle between the femoral
neck and the knee joint center axis, reflects the degree of
femoral torsion. This structural parameter plays a crucial role
in joint mechanics and load distribution across the hip and
knee. Given its influence on the position of the femoral neck
relative to the knee, it may also be relevant for analyzing its
influence regarding this ratio [&1]. Despite the absence of these
factors, the observed proportionality between femoral offset
and knee width suggests that sex-related differences in knee-
loading conditions may originate from sexual dimorphism in
the femoral neck and head. If this ratio remains consistent
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across larger populations, including different age groups, it
could serve as a valuable scaling law for MSK modeling.
In particular, it may aid in estimating the hip joint center
using knee width. Nevertheless, further investigation is re-
quired, particularly to assess the influence of FSA and femoral
anteversion on this relationship.

On the other hand, absolute pelvic measurements only found
a significant difference for posterior pelvis width, which was
higher in females (p < 0.05). This is particularly interesting
since anterior pelvis width was found to be similar for both
sexes, even when normalized by body height (p > 0.05).
Given the well-established role of pelvic dimorphism due to
reproductive adaptations for females [I'7], this is unexpected.
This observation suggests that relative pelvic width may not
be significantly greater in females, contrary to conventional
assumptions.

On the other hand, the distance between the left and right
anterior superior iliac spine (ASIS) may not be the most
accurate measure of pelvis width. As illustrated in Figure
3, the pelvis widens more superiorly, suggesting that a
more appropriate measurement may be taken from the iliac
crest. This also underscores potential challenges in scaling
pelvis geometry, such as pelvis width, based on anatomical
landmarks, a common practice in MSK modeling. Relying
on such scaling methods may introduce errors in estimating
muscle attachment sites and locating hip joint centers, as linear
scaling based on bony landmarks has been shown to lead
to inaccurate model predictions stemming from these errors
[@], [TO]. Beyond its implications for MSK modeling, this
limitation also restricts our ability to confirm whether true
pelvis width differences exist between sexes in our cohort.

Yet, Normalized measurements by body height demon-
strated clear sexual dimorphism in the pelvis for our cohort.
Pelvic height 1, pelvic height 2, and pelvic depth were all
significantly greater in females (p < 0.001). While pelvic
height was initially expected to be higher in males, this
assumption highlights the limitations of defining pelvic height
based on anatomical landmarks and joint centers rather than
true pelvic morphology. This again questions the validity of
linear scaling in capturing such differences.

Pelvic height 1, measured as the distance from the pubic
symphysis to the ASIS, appeared greater in females. However,
this aligns with the more inferior positioning of the pubic
symphysis in females, as observed in Figure D3. Similarly,
pelvic height 2, defined as the distance from the hip joint
center to the ASIS, was also greater in females. This can be
attributed to the higher positioning of the hip joint center in
males, along with their deeper pubic arch, which shifts the
pubic symphysis more superiorly and posteriorly.

These differences were further validated when pelves were
classified based on the sexual dimorphism characteristics men-
tioned by Fischer et al. (2017) []] in Figure 3. Furthermore,
the male pelvis exhibited less pelvic depth, with the pubic sym-
physis positioned more superiorly and posteriorly, explaining
the lower pelvic height 1 in males. On the other hand, the pubic
symphysis for females was located more anteriorly. These



findings align with those of Fischer et al., who demonstrated
that males exhibit greater pelvic elongation, whereas females
show a more pronounced expansion in the anterior-posterior
plane to facilitate childbirth-related adaptations [IZ].

Conversely, pelvic morphology exhibits substantial individ-
ual variability, meaning that not all anatomical differences are
strictly sex-dependent. This is consistent with the findings
of Delprete et al., who investigated pelvic inlet shape and
concluded that sex-based classification alone does not fully
account for morphological diversity [&7]. Further supporting
this, Figure 3 reveals an overlap between some of the male
and female pelvis shapes. Interestingly, the "moderate female"
shape corresponds more to the "ultra-male" shape, with the
sacrum curved inwards, a heightened pelvis, and a narrower
inlet shape. The other way around, the "moderate male"
shape also shows features of the "ultra-female" shape, with
a posterior and outwards pointing sacrum, wider pelvis and
rounder inlet shape.

Secondly, muscle volumes retrieved from MRI segmenta-
tions were analyzed and compared against values reported in
the literature for further validation. Notably, absolute muscle
volumes for GMAX and RFEM in this study aligned with
previously documented ranges. However, our reported muscle
volumes were significantly higher than those found by Lube et
al. [BA]. This discrepancy is likely due to differences in body
height, as our subject group exhibited greater average heights
compared to subjects in their study (F:167.3 + 4.0 [cm] and
M: 174.3 + 4.0 [cm]). Given that muscle volume is known to
scale with body height [BS], this is not an unexpected finding.

On the other hand, the overall muscle volumes reported in
this study were lower than those reported by Handsfield et al.
[35]. This is assumably caused by the deviation in the partition
for both sexes as the Handsfield et al.’s cohort included a
higher proportion of male participants, whereas this study had
a greater representation of female subjects. Given that males
generally exhibit higher absolute muscle volumes, it explains
why the overall muscle volume for GMAX and RFEM in the
population of their study is higher.

Despite previously reported sex-related differences in mus-
cle mass distribution in the comprehensive overview of Maar-
leveld et al. (2024), these findings were not fully replicated in
our cohort. Although %RFEM was slightly higher in male
subjects (F: 1.0% vs. M: 1.2%, p = 0.01), %GMAX was
similar between sexes (p > 0.05). This discrepancy may be
attributed to differences in normalization methods: in this
study, muscle volumes were normalized by lean volume of
the lower limbs, whereas Maarleveld et al. normalized muscle
volume as a proportion of total muscle volume. This method-
ological difference likely led to higher proportional muscle
volumes in their study, making sex-related discrepancies more
pronounced.

Finally, the relationship between bone geometry and muscle
volume was examined to determine whether the observed
sexual dimorphism in the bones could explain sex-related
variations in (proportional) muscle volumes. Several notable
positive and negative predictive relationships emerged between
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Fig. 10: Hip flexion moment arms of the gluteus medius,
adductor longus, and rectus femoris during running [44].

specific bone geometrical measurements and the two muscles
investigated, likely reflecting underlying biomechanical fac-
tors.

For absolute RFEM volume, no bone metrics were found
to be predictive; instead, body weight and sex emerged as
the primary predictors, explaining 66.4% of the variance in
our cohort (R? = 0.664). This is unsurprising, as the analysis
considered absolute muscle volume. As demonstrated in our
results, male participants exhibited significantly greater RFEM
volumes than females (F: 189.2 [em3] vs. M: 289.6 [em?],
p < 0.001). Furthermore, body weight is known to correlate
of muscle volume, as it reflects greater muscle mass due to
its higher density compared to other soft tissues such as fat,
making its predictive role expected in this context [I6], [B5],
[B77], [43].

When largely accounting for anthropometric factors such
as body weight and sex by using proportional volume, bone
metrics remained predictive of %RFEM, albeit to a lesser
extent (R? = 0.478). Notably, femur length exhibited a nega-
tive relationship with %RFEM, which appears counterintuitive
given its expected influence on the muscle moment arm for
hip flexion. As femur length increases, the RFEM insertion
shifts distally, reducing its line-of-action angle with the femur
in the sagittal plane (see Figure M). This shift, combined
with femoral sagittal curvature, which is more pronounced
in shorter femurs, affects the moment arm. Additionally, the
anterior inferior iliac spine (AIIS), the attachment site for
RFEM at the pelvis, though not directly measured in this study,
likely contributes to this relationship.

Still, a shorter moment arm increases RFEMs force demand
to achieve similar joint moments, which should theoretically
result in a higher %RFEM in individuals with longer femurs.
However, the observed negative relationship with femur len
suggests that other anatomical factors, such as muscle insertion
variability, may also contribute. Since muscle moment arms for
RFEM vary significantly [A3], individuals with longer femurs
may have a more anteriorly positioned AIIS, altering the
moment arm. Given that RFEM achieves its highest moment
arm at 35-40 degrees [24], closely aligning with the AIIS
(see Figure M), this landmark appears crucial in determining



Fig. 11: Moment arms for hip flexion and extension of GMAX
and RFEM, based on a subject from our dataset exhibiting
relative differences in predictive bone variables. Red lines
indicate the line of action for RFEM and GMAX, while yellow
lines represent their moment arms. The dot marks the hip joint
center.

RFEMs function. Further research is needed to verify this
relationship.

Femoral offset appears to influence hip and knee joint
biomechanics, as previously mentioned [40], and may, there-
fore, be predictive of %RFEM. Given RFEMs role in both hip
flexion and knee extension during gait [24], [46], alterations in
hip and knee joint force patterns due to higher femoral offset
may increase RFEMs compensatory force demand. Although
RFEM does not directly counteract lateral or medial joint
reaction forces, a study found that its activation increases
when hip abductor strength, particularly in the gluteus medius
and minimus, is reduced due to higher femoral offset [27].
Reduced strength in the abductors may result from greater
femoral offset, as their moment arms increase and therefore
reduced force demand to create similar joint moment [AS].
Consequently, muscle recruitment patterns may differ for those
with higher femoral offset, with RFEM compensating more for
joint stability. This could explain why males exhibited higher
%RFEM, as their femoral offset was significantly greater than
that of females (p < 0.001). Conversely, sexual dimorphism
in femoral offset may also explain the smaller partition of the
gluteus medius in muscle mass distribution for males [I3].
Alternatively, femoral offset may simply reflect the width of
the Rectus Femoris, serving as an indirect indicator of its
muscle volume. As shown in Appendix K, males appear to
have wider RFEMs.

Similar to RFEM, absolute GMAX volume was primarily
influenced by sex (R? = 0.679). However, bone metrics such
as pelvis depth and femur length also contributed to absolute
GMAX volume. Femur length likely affects the moment
arm for hip extension, where GMAX serves as the primary
contributor [A9]. As femur length increases, GMAX attaches
more distally on the femur, shifting its line of action farther
from the hip joint center and increasing its moment arm (see
Figure [). This shift would reduce the force demand on
GMAX for generating joint moments. However, similar to
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RFEM, GMAX exhibits considerable variation in its femoral
insertion site across individuals [45], leading to variability in
moment arms and making this effect more subject-specific.
As shown in Figure [, females with longer femurs appear to
have a more proximal femoral attachment compared to those
with shorter femurs.

Additionally, %GMAX was negatively influenced by the
pelvis-femur length metric, which is largely determined by
femur length. However, this metric predicted %GMAX only to
a limited extent (R2 = 0.151). This further suggests that femur
length may contribute to an increased moment arm of GMAX
for hip flexion and could, therefore, be a potential predictor
of its proportional volume. As females in this study had
relatively longer femurs than males (p = 0.01), the regression
equations suggest this would result in lower %GMAX and
absolute GMAX volumes. This contrasts with the findings
of Maarleveld et al. [[3], who reported that %GMAX was
17% higher in females compared to males. However, this
difference was not confirmed in the present study. One possible
explanation is the relatively tall female cohort in this study.
Additionally, males typically exhibit greater femur length due
to increased body height [B7], which could contribute to the
lower %GMAX observed in males by Maarleveld et al.

The positive predictive relationship of pelvis depth with
GMAX volume appears contradictory. A deeper pelvis could
shift the posterior superior iliac spine further posteriorly,
thereby repositioning GMAX attachment points. This would
increase the angle between the muscles line of action for hip
flexion and the femoral shaft, resulting in a larger moment
arm and consequently reducing the force demand on GMAX.
Likewise, it seems to increase the moment arm for exorotation
due to this more posteriorly positioned PSIS (see Figure I3 in
Appendix M). Therefore, its positive association with GMAX
volume seems unexpected. However, since this relationship
pertains to absolute GMAX volume, pelvis depth may primar-
ily reflect the width of GMAX rather than its force-generating
capacity. From a superior view, pelvis depth closely relates
to the width span of GMAX, suggesting that a higher width
relates to greater muscle volume.

Taking this all together, using proportional muscle volumes
allows for a more precise analysis of the biomechanical im-
plications of skeletal dimorphism, as absolute muscle volumes
remain influenced by anthropometric factors such as sex and
body weight. Interestingly, body height was not a determining
factor for absolute muscle volume, despite its previously es-
tablished strong relationship with muscle volume [33]. While
proportional volumes provide insight into sexual dimorphism,
the regression models explained less variance (%GMAX:
R? = 0.151, %RFEM: R? 0.478) compared to those
for absolute muscle volumes (GMAX: R? = 0.679, RFEM:
R? = 0.664). This was particularly evident for %GMAX,
which had a lower R?, likely due to having only one significant
independent variable. Given that %9GMAX and %RFEM may
better capture the biomechanical effects of sexual dimorphism,
it is notable that their predictive models included only femoral
or femur-to-pelvis bone metrics, suggesting a stronger reliance



on femoral sexual dimorphism. Nevertheless, conclusions re-
garding the influence of sexual dimorphism on %GMAX
remain inconclusive, as no significant sex-related differences
were observed.

V. LIMITATIONS & RECOMMENDATIONS

This study has several limitations that should be addressed
in future research. Firstly, the measurement of bone metrics
was constrained, as it relied solely on marker positions used
in MSK modeling, along with joint centers and bone segment
centers, rather than direct anatomical measurements. This
limitation may have affected the accuracy of the extracted
bone geometry. To improve precision, incorporating additional
anatomical landmarks, such as the proximal point of the ilium
or the distal point of the pubic arch, could provide better
estimates of bone metrics (e.g., pelvic height and width) and
enhance assessments of sexual dimorphism in our cohort.
This refinement could also further impact the analysis of
relationships with proportional muscle volumes, potentially
revealing new and meaningful associations through these
additional measurements, as this study has already revealed.
Secondly, the use of lean volume to derive proportional muscle
volumes posed a limitation. This approach resulted in signifi-
cantly lower proportional muscle volumes compared to those
reported by Maarleveld et al., suggesting that lean volume
does not predominantly reflect muscle volume. Similarly, using
fat percentage derived through BIA may lack the precision
needed to accurately estimate fat volume. Additionally, as-
suming uniform fat distribution could have further impacted
accuracy. Consequently, we were unable to confirm sex-related
differences in lower-extremity muscle volume distribution for
GMAX. For future research, segmenting all lower-extremity
muscles in this cohort would provide more accurate propor-
tional estimates. It would also allow for the exploration of
muscle leverage interdependencies through these bone metrics.
For instance, as femoral offset increases, the force demand
and, consequently, the strength in the hip abductors decrease.
At the same time, the proportion of RFEM therefore might
increase. Further investigation into these relationships could
provide deeper biomechanical insights. Thirdly, this study in-
cluded only sixteen young adults, limiting the generalizability
of the findings to other age groups and larger populations.
Therefore, future research should investigate if these relation-
ships persist in large cohorts. Lastly, this study did not acquire
data on muscle insertion points at the femur and pelvis. This
limitation restricted our ability to interpret moment arms as
they are highly dependent on muscle attachment sites. Future
research should incorporate muscle attachment points to draw
more accurate conclusions about the implications of sexual
dimorphism on moment arms. This would help determine
whether sex-specific variations in moment arms can explain
the observed sex-related differences in proportional muscle
volumes.
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VI. CONCLUSION

This study aimed to investigate whether sexual dimorphism
in the femur and pelvis could explain sex-related differences
in the (proportional) muscle volumes of the Gluteus Maximus
(GMAX) and Rectus Femoris (RFEM). To achieve this, an
automatic segmentation model was developed to extract the
lower-extremity skeleton and the two muscles of interest from
MRI scans of sixteen young adults. The model outperformed
existing MRI-based segmentation methods, demonstrating its
effectiveness.

A. Key Findings
1) Sexual Dimorphism in Bone Geometry:

o Femoral offset and knee width were larger in males, even
after normalization by body height. However, contrary
to conventional assumptions, femur length showed no
significant sex difference but was proportionally greater
in females when normalized.

Pelvic depth and posterior pelvic width were greater in
females, whereas common pelvic metrics such as pelvic
height and traditionally measured pelvic width did not
show significant sex differences. This raises questions
about whether the measurement methods accurately cap-
ture these anatomical features.

2) Sex-Related Differences in Proportional Muscle Vol-
umes:

o Absolute volumes for RFEM and GMAX were higher in
males, as expected, and aligned with previous literature.

e %RFEM was significantly higher in males, whereas
%GMAX did not differ significantly between sexes.

3) Relationship Between Bone Geometry and Muscle Vol-
ume:

« Femoral offset was partially associated with sex-related
differences in %RFEM. Since femoral offset varies be-
tween sexes, it may contribute to differences in hip and
knee joint reaction forces, muscle leverage, and RFEM’s
role in joint stability, particularly during gait.

While sexual dimorphism in the femur and pelvis may in-
fluence %GMAX, the lack of a significant sex difference
in %GMAX prevents definitive conclusions.

B. Final Implications

These findings suggest that sex-based differences in femoral
offset may contribute to variations in muscle function and joint
biomechanics, particularly in RFEMs role in knee and hip sta-
bility. However, further research is needed to fully understand
the biomechanical implications of sexual dimorphism in the
lower-extremity skeleton.
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a1
a2
ASIS
AIIS
CT
DSC

FSA

o
GMAX
%GMAX
HD
MSK
MRI

%RFEM

APPENDIX A
NOMENCLATURE

Pelvis angle 1
Pelvis angle 2
anterior superior iliac spine
anterior inferior iliac spine
Computed tomography
DICE Similarity Coefficient
Femur length
Femoral neck shaft angle
Femoral offset
Gluteus Maximus (volume)
proportional Gluteus Maximus volume
Hausdorff Distance
Musculoskeletal
Magnetic resonance imaging
Muscle volume
Pelvis depth
Pelvis height 1
Pelvis height 2
Pelvis width anterior
Pelvis width posterior
posterior superior iliac spine
Rectus Femoris (volume)
proportional Rectus Femoris volume
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APPENDIX B
SUBJECT DATA

Subject ID | Sex | Age | Height [cn] | Weight [kg] | Body fat percentage [%]
101 M 34 185.0 66.2 8.7
002 F 29 171.0 64.5 34.3
003 F 26 174.0 57.9 22.5
004 F 27 180.0 68.3 33.3
005 F 30 169.5 72.5 36.2
006 F 31 165.5 55.5 26.6
107 M 31 172.0 65.1 16.3
108 M 24 162.5 68.5 20.6
009 F 28 169.3 65.7 30.4
112 M 28 183.5 80.0 17.0
013 F 24 172.0 63.4 254
114 M 27 195.5 72.9 12.6
115 M 30 182.3 71.0 13.5
016 F 26 174.5 68.2 30.0
017 F 32 176.0 57.8 24.3
118 M 36 185.0 94.0 23.4

TABLE VI: Antropometric data for all the subjects included in this study
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APPENDIX C
OVERVIEW OF SEGMENTED BONES

Bone # per subject

Sacrum
Pelvis
Femur
Patella

Tibia
Fibula
Calcaneus
Talus
Navicular
Foot bones
Total

[NSTN NS 2N N R O I (O I ST (O 2 NS I S R

—
\O

TABLE VII: Overview of all bones segmented in this study

Sacrum

) o Pelvis

r

_— Femur

= Patella
/lela
— Fibula

- — Talus
— Calcaneus

[ T——Navicular

Fig. 12: A sample from the training set for nnU-Net, each color represent different segment
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APPENDIX D

EXCLUDED BONE GEOMETRICAL MEASUREMENTS

Variable [

Measurement

Reason for exclusion

Bodyweight leverarm (BLA)
Hip curvature (Hip_Curv)

Hip Triangulation (Hip_Tri)
Pelvis angle 1 (o)

Pelvis angle 2 (az2)

Pelvis tilt

TABLE VIII:

euclidian distance between pubic symphisus and hip joint center
euclidian distance between greater trochanter of the femur and PSIS

euclidian distance between hip joint center and PSIS
the angle between ASIS and PSIS from the transverse plane

angle between the center of the pelvis and the ASIS

rotation of pelvis by STAPLE in the saggittal plane

bilateral asymmetry

inconclusive results for sexual dimorphism
and no predictive value for muscle volume
no predictive value for muscle volume
accuracy of metric debatable and no predic-
tive value for muscle volume

accuracy of metric debatable and no predic-
tive value for muscle volume

accuracy of metric debatable and no predic-
tive value for muscle volume

Excluded bone metrics listed together with the reason for exclusion in the results.
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APPENDIX E
OVERVIEW AUTOMATIC PIPELINE FOR DERIVATION OF BONE GEOMETRY AND MUSCLE VOLUME
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APPENDIX F

T-TESTS FOR BILATERAL SYMMETRY ASSESSMENT

Bone metrics

Variable | Test Statistic  p-value |
Bodyweight Leverarm Paired t-test -3.568 0.003
Femoral Offset Paired t-test -2.854 0.182
Femoral Offset / Knee Width Paired t-test -1.954 0.100
Femur Length Paired t-test 1.328 0.204
Hip Curvature Paired t-test -1.995 0.065
Hip Triangulation Paired t-test 0.710 0.489
Knee Width Paired t-test -0.505 0.621
Pelvic-Femur Length Paired t-test 0.682 0.506
Pelvis Angle 1 Paired t-test -2.273 0.038
Pelvis Angle 2 Wilcoxon test 43.000 0.211
Pelvis Depth Paired t-test -1.122 0.279
Pelvis Height 1 Wilcoxon test 48.000 0.323
Pelvis Height 2 Paired t-test 0.223 0.827
Muscle volumes
Variable | Test Statistic  p-value |
GMAX Paired t-test -1.127 0.278
%GMAX | Paired t-test -1.122 0.280
RFEM Paired t-test -0.994 0.336
%RFEM | Paired t-test -0.830 0.420

TABLE IX: T-test results for assessing bilateral symmetry. If p > 0.05, variables were significantly considered bilateral
symmetrical. If Levenes test indicated homogeneity of variance (p > 0.05), a Paired t-test was applied; otherwise, a Wilcoxon

t-test was used.
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APPENDIX G
T-TEST RESULTS FOR EVALUATION OF SEX-RELATED DIFFERENCES

Anthropometrics
Variable [ Levene p-value  T-test p-value = Mean (Male) Mean (Female) Higher in ‘
BH [ecm] 0.063 0.003 180.829 172.422 Male
BW [kg] 0.251 0.001 73.957 63.756 Male
Bone metrics
Variable [ Levene p-value T-test p-value Mean (Male) Mean (Female) Higher in ‘
Bodyweight leverarm [cm/] 0.774 0.221 10.282 10.471 Female
Femur length [em] 0.061 0.286 43.037 42.074 Male
Femoral offset [cm] 0.203 0.002 7.331 6.741 Male
Femoral offset / Knee width | 0.867 0.784 0.876 0.881 Female
Hip Curvature [cm] 0.186 0.059 17.709 17.052 Male
Hip Triangulation [c¢m] 0.713 0.946 13.317 13.328 Female
Knee Width [em] 0.148 <0.001 8.361 7.659 Male
Pelvic Tilt [deg] 0.963 0.429 -11.098 -12.882 Female
Pelvis Angle 1* [deg] 0.010 0.033 20.029 22.880 Female
Pelvis Angle 2 [deg] 0.785 0.452 89.253 89.396 Female
Pelvis Depth [cm/] 0.519 0.427 15.454 15.672 Female
Pelvis Height 1 [em] 0.296 0.483 14.860 15.093 Female
Pelvis Height 2 [em] 0.626 0.630 9.601 9.699 Female
Pelvis Width Anetrior [cm] 0.471 0.449 23.042 22.247 Male
Pelvis Width Posterior [cm] | 0.444 0.046 9.061 10.362 Female
Pelvis-Femur length [cm] 0.089 0.298 50.883 49.854 Male
Muscle volumes

Variable [ Levene p-value  T-test p-value Mean (Male) Mean (Female) Higher in ‘

RFEM [cm3] 0.246 0.000 285.985 194.155 Male

GMAX [ecm3] | 0.196 0.000 990.594 756.673 Male

RFEM [%] 0.711 0.011 1.192 1.049 Male

GMAX [%] 0.646 0.727 4.153 4.086 Male

TABLE X: T-test results for testing sex-related differences for all metrics, being anthropometrics, bone metrics and muscle
volumes. The Levenes test p-value evaluates the homogeneity of variance for each variable. If p > 0.05 for the Levene’s test,
equal variance was assumed and a Student’s test was chosen over a Welch’s t-test (see * for these variables).

Bone metrics

Variable [ Levene p-value  T-test p-value Mean (Male) Mean (Female) Higher in ‘
Bodyweight leverarm | 0.833 <0.001 0.057 0.061 Female
Femur length 0.984 0.013 0.238 0.243 Female
Femoral offset 0.273 0.035 0.040 0.039 Male
Hip Curvature 0.250 0.535 0.098 0.099 Female
Hip Triangulation 0.767 0.002 0.074 0.077 Female
Knee Width 0.052 0.014 0.046 0.044 Male
Pelvis Depth* 0.009 <0.001 0.085 0.090 Female
Pelvis Height 1 0.602 <0.001 0.082 0.088 Female
Pelvis Height 2 0.087 <0.001 0.053 0.056 Female
Pelvis width anterior 0.174 0.725 0.127 0.129 Female
Pelvis width posterior | 0.622 0.017 0.050 0.060 Female
Pelvis-femur length 0.651 0.003 0.281 0.289 Female
Muscle volumes

Variable [ Levene p-value  T-test p-value Mean (Male) Mean (Female) Higher in ‘

RFEM [cm?] 0.479 <0.001 1.585 1.128 Male

GMAX [ecm?] | 0.138 <0.001 5.484 4.396 Male

TABLE XI: T-test results assessing sex-related differences in bone metrics and muscle volumes normalized by body height.
Angular metrics and ratios, being independent of height, were excluded from the analysis. If Levenes test indicated homogeneity
of variance (p > 0.05), a Students t-test was applied; otherwise, a Welchs t-test was used (* indicates these variables).
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APPENDIX H
CROSS-SECTIONAL RESULTS FOR BONE AND MUSCLE SEGMENTATION MODELS
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Fig. 14: Results for the automatic bone segmentation models illustrated in the transverse plane across different levels across
the leg. The white outlines represent the ground truth, whereas the transparent overlays visualize the predictions by the models.
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Fig. 15: Predictions of the lower leg by the bone segmentation models for sample 1 in the sagittal plane. Left: skeletonL.L047,
right: TotalSegmentator, white outlines represent the ground truth.
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APPENDIX I
TRAINING SET MODELS

B: Aug_1 (2).dem

-6 W MO A:-185.0000mm = Y G [ L: 168.0000mm

f
B: Aug_1 (2).dem B: Aug_1 (2).dem

Fig. 18: A sample of the Henson099 training set, displaying the lacking segmentation of some of 35 muscles in the lower
extremity
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APPENDIX J
SEGMENTATION MODEL TESTED ON OTHER MRI MODALITY

N - =

- 6 W MO A -221 LR N L: 167.7488mm

Fig. 19: Muscles in the MRI data from Henson et al. [24] were predicted using the BODIES_Muscles021 model. It showed
decreased accuracy due to differences in MRI modality, but true performance, measured by DSC and HD, was not meaningfully
evaluated, as the available ’ground truth’ segmentations were of poor quality. Nevertheless, for broader applicability, both the
model and dataset should likely be trained on multiple MRI modalities.
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APPENDIX K
SEGMENTATION OF LOWER BODY PER SUBJECT
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Fig. 20: Anterior view of the segmented lower extremity in_all subjects, displaying body shape, skeleton, and muscles of
interest (green: GMAX, red/brown: RFEM). Female subjects %}e illustrated on the upper half and male subjects on the lower
half.




Fig. 21: Posterior view of the segmented lower extremity in all subjects, displaying body shape, skeleton, and muscles of
interest (green: GMAX, red/brown: RFEM). Female subjects are illustrated on the upper half and male subjects on the lower
half. 32




APPENDIX L
PELVIC GEOMETRY COMPARISON

Moderate-female shape Ultra-female shape

Moderate-male shape Ultra-male shape

Fig. 22: All pelves in this study illustrated from the sagittal plane were ordered based on their shape. The "ultra-female shape"
showed a more forward-tilted pelvis with an outward and posterior pointing sacrum. On the other hand, the "ultra-male shape"
displayed a more straight-up ilium together with a curved and pointing inwards sacrum.

SASASRS

Moderate-female shape Ultra-female shape

SRR

Moderate-male shape Ultra-male shape

Fig. 23: All pelves in this study illustrated from the front view, order on there sexual dimorphism according to Fischer et al.
(7].
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APPENDIX M
MUSCLE MOMENT ARMS
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Fig. 24: Line-of-actions for RFEM from frontal view based on subjects from our dataset that should relative differences in
the predictive bone variables. Red lines indicate the line-of-action for RFEM, and in yellow, their moment arms and the dot
represent the hip joint center

Fig. 25: Moment arms for hip exorotation for GMAX based on subject from our dataset that should relative differences in
the predictive bone variables. Red lines indicate the line-of-action for GMAX, and in yellow, their moment arms and the dot
represent the hip joint center.
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