
Delft University of Technology
Master’s Thesis in Embedded Systems

DynaLight: A Dynamic Visible Light
Communication Link for Smartphones

Michail Vasilakis

DynaLight: A Dynamic Visible Light

Communication Link for Smartphones

Master’s Thesis in Embedded Systems

Embedded Software Section
Faculty of Electrical Engineering, Mathematics and Computer Science

Delft University of Technology
Mekelweg 4, 2628 CD Delft, The Netherlands

Michail Vasilakis
m.vasilakis@student.tudelft.nl

11th December 2015

mailto:m.vasilakis@student.tudelft.nl

Author
Michail Vasilakis (m.vasilakis@student.tudelft.nl)

Title
DynaLight: A Dynamic Visible Light Communication Link for Smartphones

MSc presentation
18th December 2015

Graduation Committee
Prof. Dr. K.G. Langendoen (chair) Delft University of Technology
M.A. Zuniga Zamalloa, PhD Delft University of Technology
Dr. Judith Redi Delft University of Technology

mailto:m.vasilakis@student.tudelft.nl

Abstract

Nowadays, Visible Light Communication (VLC) has attracted the atten-
tion of the scientific community due to its great potential in creating smart
communication links. Exploiting visible light modulations, could in time
enable Internet connectivity via light lamps. Recent research studies have
shown that modern smartphones have the ability to capture high frequency
light patterns and increase the applicability of VLC links, enabling smart
applications. However, creating flexible camera-based VLC links brings-
up several challenges that are introduced by the diversity of the available
devices.

Firstly, existing VLC systems offer inflexible setups that are designed to
operate at fixed distances. This fact causes problems when it comes to vary-
ing the distance between the transmitter and the receiver. This thesis in-
troduces DynaLight : an adaptive line-of-sight VLC system for smartphones
that dynamically adjusts and maximizes its channel capacity by estimating
the distance between the transmitter and the receiver.

Secondly, the wide diversity in smartphones’ hardware introduces prob-
lems when it comes to implementing a generic VLC link for market smart-
phones. In order to increase the applicability of our system, we chose to
utilize inexpensive hardware, that introduce performance limitations, such
as limited camera control. We present an image processing pipeline that
identifies and overcomes effects that are caused by off-the-shelf hardware,
and we further increase the amount of information, that can be extracted,
by 40%.

Last but not least, we develop a smartphone application that implements
our enhancements and draws attention to synchronization challenges. Our
conclusions indicate that the applicability of smartphone VLC links will be
further extended due to the rapid evolution of modern smartphones.

iv

Preface

The current Master thesis concerns the final part of my Master of Science
in Embedded Systems at Delft University of Technology. I had always been
passionate about smartphones and their capabilities to improve our every-
day lives. During the first year of my master studies, I had the chance
to participate in the Smart Phone Sensing course offered by the Embedded
Software group in TU Delft. This is when I realized my interest in smarphone
sensing, as well as in its potential to change people’s lives. I was thrilled
when I first read a paper on Visible Light Communication and realized that
this was the topic that I wanted to master. Furthermore, it is a field that
combines communication theory along with optics, smartphone sensing and
image processing which makes it challenging to work on. During these eight
months I was exposed to scientific fields that I had no previous experience
and had the opportunity to remarkably improve my scientific skills.

I would like to express my deepest gratitude to my supervisor, Marco Zuniga,
for giving me the opportunity to work on this project. During our meetings
he showed me not only how to do research and have a critical thinking, but
also how to be confident and manage my stress. With his knowledge and
experience he helped me improve my writing and presentation skills. Next,
I would like to thank Ioannis Protonotarios for assisting me with all the
hardware related issues and for being so patient with me. Many thanks also
go out to all my fellow colleagues Marco, Dimitris, Platon, Roshan, Coen
and people from“The 9th Floor” for their ideas and feedback. I would also
like to thank Katerina and Andri for their valuable comments and support
in improving the current report.

Last but not least, I would like to thank my family and especially my
parents for their unselfish love and support throughout my entire life.

Michail Vasilakis

Delft, The Netherlands
11th December 2015

v

vi

Contents

Preface v

1 Introduction 1

1.1 Motivation . 2

1.2 Contributions . 3

1.3 Thesis Organization . 3

2 Background 5

2.1 Transmitter-Receiver Alternatives 5

2.2 Rolling Shutter . 6

2.3 DynaLight’s Requirements . 8

3 Related Work 11

3.1 VLC projects using LEDs or Photodiodes 11

3.2 Camera-based VLC . 11

3.2.1 LED to Camera Communication 12

3.2.2 Screen to Camera Communication 14

3.2.3 Indoor Localization . 15

3.2.4 Summary . 17

4 Overview 19

4.1 System Components . 19

4.2 Basic Functionalities . 20

5 Transmitter 23

5.1 Modulation Technique . 23

5.2 Packet Structure and Encoding 24

5.3 Implementation Details . 24

6 Receiver 27

6.1 Camera Control . 27

6.2 Image Processing . 29

6.2.1 Transmitter Detection 29

6.2.2 Data Decoding . 31

vii

6.3 Implementation Details . 36
6.3.1 Parameter Values . 36
6.3.2 Maximum Modulation Frequency 37

7 Dynamic Link 39
7.1 Dynamic Channel Capacity 39

7.1.1 Distance and Blob Size 39
7.1.2 Packet Size Calculation 40

7.2 Smartphone Application . 42
7.2.1 Overview . 42
7.2.2 Synchronization . 43

8 Evaluation 47
8.1 Adapting to Variable Distance 47

8.1.1 Blob Size vs Distance 47
8.1.2 Number of Symbols vs Distance 49
8.1.3 DynaLight’s Adaptive Channel Capacity 50

8.2 Decoding . 52
8.2.1 Overcoming Over-exposure Effects 52
8.2.2 Influence of Ambient Light 53
8.2.3 Execution Time . 57

9 Conclusions 59
9.1 Conclusions . 59
9.2 Future Work . 60

A Transmitter Experiments 61
A.1 Android Limitations . 61
A.2 External Flash Light . 61

Appendices 61

viii

Chapter 1

Introduction

Wireless communication is considered, by any measure, the fastest growing
segment of the communication industry. During the last decades of the 20th
century, wireless communication technologies emerged and became part of
people’s every day life. The most well-known example is cellular phones
whose growth and popularity grew exponentially. Wireless communication
involves transmitting information over a distance, without utilizing cables or
any other form of electrical conductors but by exploiting radio waves. The
major advantage of radio waves is their ability to be transmitted though
short distances, such as a few meters for television control or as far as
thousands or even millions of kilometers for “deep-space” radio commu-
nications. Some example applications of radio wireless technology concern
cellular phones, WiFi, GPS units, satellite television and many more.

Optical wireless communication (OWC), is a subtype of wireless commu-
nication, in which information is transferred through light and not by any
physical medium or radio frequencies. Communication utilizing light is not a
new concept. It was back in 1880 when Alexander Graham Bell and Charles
Sumner Tainter invented and patented the photophone, a wireless telephone
that conducted audio conversations wirelessly over modulated light beams.
A similar concept was used in the late 19th century when signal lamps were
pioneered by the British Royal Navy. During that time big sign lamps were
exploited to transmit Morse codes between naval ships, without using radio
signals. The operators of the lamps were turning on and off the lamp in
order to create the known Morse codes, while an observer was decoding the
received light pattern.

Recently, transmitting data through visible light has attracted the atten-
tion of the research community. Therefore, Visible Light Communication
(VLC) became a very promising technology that can enable or facilitate
various applications. Visible light concerns frequencies between 400 and 800
THz (780375nm) in the electromagnetic spectrum, which is 10,000 times lar-
ger than the entire radio frequency spectrum [17]. VLC has become popular

1

due to the recent developments in Light-emitting diodes (LEDs), that have
enabled us to utilize them in creating light patterns. Compared to the pre-
viously mentioned sign lamps, LEDs can be computer controlled and turned
on and off at such high rates that the emitted light “seems” constant, mean-
ing that light patterns are not perceivable by humans. By utilizing light
sensors that can identify these “invisible” light patterns, high-speed VLC
links can be created by taking advantage of the properties of light. Direc-
tionality, diffusion and reflections, are some of the properties one can exploit
when it comes to creating VLC enabled applications. Thus, VLC can be
summarized as illumination plus communication.

We can create VLC links by utilizing several transmitters and receivers.
LEDs and LCD screens can be used as transmitters while LEDs, photodiodes
or cameras can be used as receivers. In this work, we focus on LED to
Camera communication.

Nowadays, LED lighting is becoming increasingly popular in both indoor
and outdoor environments, which enables creating smart applications using
VLC links. VLC research focuses on creating high-speed data links, that
can provide Internet connectivity via lamps and lead to Internet of Lights.
Furthermore, it is proved that VLC can also provide highly accurate localiz-
ation (sub-meter accuracy) compared to RF-based approaches (2-7 meters)
that facilitate in accommodating location-based services. Another interest-
ing VLC application is smart-toys, in which VLC-enabled toys and devices,
such as smartphones, interact so as to trigger sound or lighting effects, mak-
ing toys more fascinating [4]. Nevertheless, some the aforementioned ideas
are still in research level, due to the numerous challenges which have in-
spired various recent research projects. Nevertheless, pureLiFi [9] demon-
strated the first commercially available Li-Fi (similar to Wi-Fi) system in
2014, which indicates that more commercial VLC applications will emerge
in the near future.

1.1 Motivation

Building a camera-based VLC system has several challenges that vary from
data encoding schemes, modulation techniques and decoding methods, to
coverage, applicability and hardware. The currently implemented VLC sys-
tems are designed to operate at fixed distances, meaning that their paramet-
ers are selected on the design phase. Having such a inflexible setup causes
problems when it comes to varying the distance between the transmitter and
the receiver, due to the fact that several parameters have to be modified.
This fact highlights the motivation behind this project which is the need
of an adaptive camera-based VLC system, that will determine its properties
based on the distance between the transmitter and the receiver. We mainly
focus on trying to understand how distance affects the feasible channel ca-

2

pacity, in order to maximize the amount of information that the transmitter
can send with respect to distance.

Moreover, it is a well-known fact that smartphones come with different
hardware and capabilities. More specifically, modern smartphones have vari-
ations in the equipped camera sensors, the processing power, as well as, the
running operating system. These factors affect the quality, speed, flexibility
and reliability of the created link. This wide diversity introduces problems
when it comes to building a universal camera-based VLC link for market
smartphones. Some of the current systems utilize high-end smartphones to
overcome the aforementioned challenges.

In this thesis, we choose to address the above challenges using inexpensive
hardware, which in our opinion increases the applicability of VLC links and
highlights performance limitations. To sum up, the goal of this project is
to create an adaptive to distance and reliable VLC link for various types of
smartphones.

1.2 Contributions

In this work, we present DynaLight, a line of sight (LOS) camera-based VLC
system, that tries to overcome the aforementioned challenges. This thesis
delivers the following contributions.

• We present a system that is able to maximize its channel capacity
based on the transmitter-receiver distance. (Section 7.1)

• We implement a decoding pipeline that enhances image processing to
increase channel capacity by 40% and overcomes problems that are
introduced by the limited camera control of low cost smartphones.
(Section 6.2)

• We developed a smartphone application that implements a protocol
based on the above. (Section 7.2)

1.3 Thesis Organization

The rest of the thesis is organized as follows: Chapter 2, introduces VLC
systems, while Chapter 3 presents the related works that inspired this work.
Chapter 4 presents an overview of DynaLight and its building blocks. We
present a detailed description of the transmitter and receiver in Chapters 5
and 6 respectively. In Chapter 7, we present a thorough explanation of the
dynamic link. The evaluation of the implemented system can be found in
Chapter 8, followed by Chapter 9, which summarizes our conclusions and

3

ideas for future work. Finally, in the Appendix A, we give a short description
of the limitations that we encountered while experimenting with different
transmitters and the interaction with a company in order to make our effort
a product.

4

Chapter 2

Background

This background section presents the basic building blocks and concepts we
need to understand for this thesis. Section 2.1 briefly presents the types of
VLC systems with respect to the possible receivers, discussing the advant-
ages and disadvantages of each choice. Furthermore, Section 2.2 presents
the most significant camera effect that enables smartphones to decode light
patterns, the rolling shutter.

2.1 Transmitter-Receiver Alternatives

Creating a communication system involves having a transmitter and a re-
ceiver. VLC systems can exploit different light sources and light sensors,
in accordance with requirements of the environment of application. More
specifically, light sources have to be able to be turned on and off at high
frequencies, in order to create invisible (to human) light patterns. LEDs
are commonly utilized in VLC systems, due to their ability to be toggled
within a few microseconds since they are semiconductor devices. Similarly,
apart from LEDs, recent studies have shown that LCD-screens, can also be
utilized as light sources.

The light sensors that can be used as receivers are regular LEDs, photodi-
odes and cameras. Each option has different advantages and disadvantages
depending on the system’s requirements. Regular LEDs, can operate as
light sensors in reverse bias mode and convert light to current, but they
have very limited coverage. On the other hand, photodiodes are much
more sensitive than LEDs and can be very responsive to high frequency
modulations, which facilitates in creating high rate communication links.
However, both solutions offer low sensing accuracy with respect to noisy
environments where there is high (ambient) light intensity. Furthermore,
high frequency light patterns can be recognised by high-speed cameras or
smartphone cameras. Smartphone cameras, can capture many images using
the rolling shutter capturing method that is thoroughly explained in the

5

following section, which enables them to identify light patterns. However,
modern smartphones have variations in the equipped camera sensors, the
processing power, as well as, the running operating system. These factors
affect the quality, speed, flexibility and reliability of the created link. For
example, the operating system affects flexibility with respect to which cam-
era parameters can be controlled by the user, such as the image’s brightness.
Moreover, recent and high-end devices are also equipped with high quality
sensors offering high-resolution images. Those two features are of great im-
portance when it comes to detecting light patterns. Therefore, the variation
in the used hardware and camera properties makes the implementation of
universal camera-based VLC links, hard and challenging, especially when it
comes to utilizing off-the-shelf devices.

VLC systems are mainly categorized based on the previously mentioned
transmitters and receivers. In this work we focus on LED to (smartphone)
camera communication. We believe that this combination offers the highest
potential with respect to building real world VLC applications. The decision
is based on the fact that LEDs are low cost and commonly used solutions for
lighting, and that the majority of modern smartphones are equipped with
embedded Complementary Metal-Oxide Semiconductor (CMOS) cameras,
that use the rolling shutter capturing method.

2.2 Rolling Shutter

Modern smartphones are equipped with CMOS sensor cameras. This spe-
cific type of cameras uses the rolling shutter, which is an image acquisition
mechanism. In order to understand the importance of this mechanism, one
should compare it with the global shutter mechanism. The global shutter
can be found in both film-based and digital cameras. In the global shut-
ter mechanism, the whole picture is first exposed and then captured all at
once. On the other hand, in rolling shutter, the image is captured in a row-
sequential way. This means, that each frame is divided into rows forming
an array of pixels and each row is first exposed and then read by the sensor.
Once all the rows are read, they are merged together to form a single image.
The comparison between the two capture methods can be found in Figure
2.1. The speed that rows are captured at, is named rolling shutter speed and
it is relative to the exposure time of each row.

Rolling shutter causes a very interesting effect when it comes to capturing
fast moving objects. A simple example is shown in Figure 2.1. The cause of
that effect is the fact that the depicted fan is rotating faster than the rolling
shutter speed. As a result, we observe distortions, which are caused by the
fact that the object is captured in overlapping positions. This means, that
between two consecutive row exposures, the object has moved significantly.

Similarly, if an LED is flashing in a frequency that is faster than the rolling

6

Figure 2.1: Global vs Rolling shutter. In the rolling shutter the image
is captured in a row-sequential way and not at once, as in global shutter.
Distortions appear when the fan is rotating faster than the rolling shutter
speed, as can be observed in the bottom right image.

shutter speed, bands (distortions) of different light intensity appear on the
captured image as can be observed in Figure 2.2. More specifically, when a
row is exposed, while the LED is on, then the whole row of pixels will appear
as white. On the other hand, when the LED is off then we will observe a
dark row of pixels. When the duration of the LED state is longer than the
scan time of each row, the pixel rows form white or dark bands. The band’s
intensity and width depend on the transmitter’s frequency as well as the
camera’s properties. However, if the flashing frequency of the LED is very
fast then LED states might be missed as we will present in Section 6.3.2.

It can be observed from the previous descriptions that the exposure time is
the key camera property, that determines the rolling shutter speed. The im-
portance of this property will be further explained in Section 6.1, along with
other important camera properties that enable us to capture and identify

7

Figure 2.2: Band formation and LED state. The size (width) of each
band, corresponds to the duration of the LED state (on or off).

the transmitted light patterns (LED states).

Modern smartphone cameras are able to capture around 20 to 30 frames
per second which is called frame rate. As a consequence, by exploiting
the rolling shutter effect, along with capturing multiple frames per second,
the smartphone can obtain multiple encoded data (LED states). However,
modern smartphones do not offer a stable frame rate. For example, the
frame rate of Samsung Galaxy S3 fluctuates between 21 and 29 frames per
second. This phenomenon introduces synchronization problems between the
transmissions and receptions. Firstly, a fluctuating reception rate could lead
to fragmented data between more than one frame. In addition, due to the
discontinuity of the receptions there is high probability of missing data.
Thus, any camera-based visible light communication link has to take into
consideration these synchronization challenges, when it comes to building a
reliable communication link.

2.3 DynaLight’s Requirements

In this section we present the basic requirements that our system needs to
meet. This thesis presents DynaLight, a camera-based line-of-sight visible
light communication system. The system requirements, are mainly focused
on creating a flexible, reliable, and flicker free visible light communication
link for various smartphones.

Adaptive to Distance: The goal of this project is to create a flex-
ible system that has the ability operate in different distances. Distance
adaptation regards the creation of a link that can modify its properties, in
accordance with the distance between the transmitter and the receiver. This
means, that the channel capacity of the link should change with respect to
the detected distance. Our system should be able to estimate the distance
between the transmitter and the receiver and adjust the channel capacity

8

accordingly. The smaller the distance, the greater the channel capacity, due
to the fact that the transmitter is closer to the camera. In this case, the
amount of information that can be extracted increases. The system has to
be able to calculate the feasible amount of information that can transmit in
any distance.

Reliable: Reliability can be achieved in different levels. In this work, we
relate the channel reliability with overcoming the problems, introduced by
the camera-based VLC links. As has been mentioned in the previous sec-
tions, the wide diversity in the used camera hardware introduces challenges
from controlling the camera’s properties to synchronizing the transmissions
with the receptions. In addition, our system should operate in such a way
so as to avoid introducing flickering effects that can be annoying to humans.

Utilize inexpensive hardware: We aim at creating a low cost system,
that can support inexpensive and resource constrained platforms both for
the transmitter and the receiver. As a result, we prefer to avoid exploiting
high-end hardware not only for cost reasons but also for identifying possible
limitations and increase our system’s applicability. It has to be clarified
that in this project we do not use the flash LED of the phone or any other
external flashing device. More information about this decision is provided
in Appendix A.

9

10

Chapter 3

Related Work

This chapter discusses the visible light communication projects that inspired
our work. In Section 3.1, we begin by presenting some of the key prior
research works in the field of visible light communication. Then, in Section
3.2, we focus only camera-based research works. Both Sections 3.2.1 and
3.2.2, thoroughly discuss related projects that create data communication
links, utilizing LEDs or LCD screens accordingly. Moreover, Section 3.2.3,
discusses camera-based works designed for indoor localization. Finally, in
Section 3.2.4, we present a short overview of the projects that influenced
this thesis.

3.1 VLC projects using LEDs or Photodiodes

The majority of the early VLC research work is mainly focused on creating
high-speed data links, using specialized hardware [20] and photodiodes. In
these projects, RGB [20, 30] and phosphorecent white LEDs [14, 15] are
utilized. Furthermore, variations of OOK modulation schemes are used, as
well as more complicated schemes such as QAM or DMT/OFMD modu-
lation [12, 20]. Photodiodes were exploited as receivers, due to their high
bandwidth, that can support complicated modulation schemes.

In 2012, the IEEE, published a VLC standard known as 802.15.7 [27],
which specifies the hardware, modulation and channel coding for various
applications. More recent projects focus on LED to LED communication
[13, 29, 31, 32] and LED to photodiodes communication [19]. The goal of
these projects is to create efficient, low cost and high-rate VLC links.

3.2 Camera-based VLC

This section focuses on projects that use cameras as receivers for both cre-
ating data communication links and localization. All the following camera-
based related projects were published after 2012, which highlights that the

11

present thesis deals with currently open research problems and recent engin-
eering work.

3.2.1 LED to Camera Communication

LED to camera communication systems, have been investigated in several
recent works, focusing on smartphone implementations.

In [11], the authors present how a smartphone camera can be utilized as
a receiver using the rolling shutter capturing mechanism. The entire work
focuses on how to transmit data between a LED and a smartphone camera.
The main problems that are addressed in this work are, firstly realizing how
the camera sensor operates and then how to modulate data, so that they can
be captured and decoded by the receiver. The authors extensively discuss
the rolling shutter effect, which is used by the CMOS cameras and explain
the row-sequential capturing method. Then, they explain the utilized OOK
and Manchester encoding and decoding scheme, achieving a data rate of
1-3.1kbps, using 640x480 images and 20fps. However, the proposed system
introduces noticeable flickering while operating on the visible range of 40Hz.
The authors overcome the flickering by imposing a DC bias on the signal,
which decreases its dynamic range and the SNR at the receiver, but requires
a more complex driving hardware. Another drawback is that the system
operates only at close proximity (8-9cm), which reduces the link’s flexibility
and applicability. Despite the several drawbacks, the main contribution of
this work is that it provides a proof-of-concept of camera-based VLC in
mobile phones. We also take advantage of the rolling shutter effect and the
OOK and Manchester encoding. The main differences with our work are:

• Our system operates above frequencies that cause direct or indirect
flickering (>2 kHz).

• Our system is adaptive to distance and can operate from 20-120cm.

A similar study was conducted in [28], that uses undersampled frequency
shift on-off keying (UFSOOK) to overcome the flickering effect that was
presented in the previous study. However, the authors achieve a very low
data rate of 0.5 bits per frame, in extremely low SNR conditions, which is
considered very limited and not applicable.

RollingLight [22], is a very recent work (2015) in the field of LED to cam-
era communication. The authors present a line of sight to camera commu-
nication system. The main goal of this study is to overcome the diversity,
that is introduced by off-the-shelf smartphones that use the rolling shut-
ter. This diversity is caused by the heterogeneous sampling rates of the
phones, that cause difficulties in synchronizing the transmitter and the re-
ceiver. The authors extensively studied and found an unpredictable and
varying idle time gap between two consecutive frames. This phenomenon

12

can cause dynamic signal losses, which results in unreliable communication.
Moreover, the authors present the two problems that are caused by the
sampling rate diversity, which are described as mixed symbols/packets and
symbol/packets losses.

The first problem occurs when the frame duration is greater or smaller
than the packet duration as can be seen in Figure 3.1. This means that a
single frame may contain information from more than one symbols/packets.
Thus, having an unknown time gap between the frames results in not being
able to receive a complete symbol/packet.

The second problem is caused by the camera’s discontinuous receiving as
can be seen in Figure 3.2. If the gap’s length is more than the packet duration
then a packet could be entirely dropped resulting in dynamic symbol/packet
losses.

Figure 3.1: Mixed symbols problem. Due to the fluctuating frame rate
the captured frames may contain more than one symbol or packet.

Figure 3.2: Missing symbols. If the time gap between the frames is too
big there is a high chance of missing symbols or packets.

The authors overcome the first problem by adding splitter symbols between
the data symbols. They also add parity symbols to detect, but not correct,

13

errors and overcome the second problem. Both solutions are facilitated by
the fact that they utilize a very recent high resolution phone (iPhone 5s)
and a big light source of 60cm×60cm for their experiments, which assist in
achieving a high data rate and coverage (light size). This means that they
can achieve a big bandwidth that enables them to have packets that include
splitter symbols, sequence numbers and parity bits. Finally, the authors
implement a real-time iOS application that can achieve a data rate of 11.32
bytes per second.

In our project we take advantage of:

• The unsynchronized communication problem formulation.

• The band-width analysis, but we extend it and show how the camera
parameters affect the size of the detected bands.

Furthermore, our work differs in the following topics:

• We overcome the mixed packets by making sure that a complete packet
can be decoded from every captured frame.

• We try to synchronize the transmission by minimizing the effect of the
time gap jitter.

• We do not use high-end smartphones or big light sources.

Exploiting low cost hardware certainly limits the system’s performance
but proves that performance gain can be achieved by utilizing better hard-
ware.

The previously mentioned works either use OOK or BFSK for modulating
single color LEDs. Colored LEDs have also been studied. Color-shift keying
(CSK) was outlined in [27] and refers to transmitting data imperceptibly
through the variation of the color emitted by red, green, and blue light
LEDs. There are several studies such as [24] and [25] that use CSK and but
do not utilize CMOS cameras that exploit the rolling shutter.

3.2.2 Screen to Camera Communication

There are several prior works that utilize displays for delivering information
bits to cameras [16, 18, 33]. These studies focus mostly on transmitting
“static” information, similar to barcodes or QRCodes, rather than build-
ing communication links as done in LED to camera works. Nevertheless,
these systems also face the same receiver limitations, since they are using
smartphone cameras.

VRCodes [33], is the study that influenced display to camera commu-
nication. The authors present a novel active visual tag, which utilizes all

14

dimensions of color, time and space and show how digital information can
be embedded without being obstructive to human eyes. In their setup, they
utilize ordinary displays and rolling-shutter cameras similarly to our LED
to camera communication systems. However, they do not address practical
challenges, such as the signal losses that were explained in the previous
section with respect to synchronization. In COBRA [16], the authors pro-
pose information encoding into specially designed 2D color barcodes. They
use color information of pixels to improve SNR and stream them between
small-size screen and low-speed camera, where most or all the data flows
along a particular direction. As most of the prior works, they also do not
tackle information losses but simply repeat each packet twice. Finally, in
[18], the authors present Strata, a layered coding scheme for visual commu-
nication that extends the known QR codes. The study is influenced by the
hierarchical modulation from traditional RF communication, resulting in in-
formation being organized in multiple layers into the same code area. The
importance of the layered coding schemes is highlighted by the heterogeneity
in the smartphone cameras, that cause different amount of information to
be extracted with respect to distance or channel conditions.

3.2.3 Indoor Localization

Indoor localization is a field where camera-based communication can be
widely applied due to the popularity of smartphones and LED lighting. How-
ever, there are still very limited real applications utilizing VLC localization.
To the best of our knowledge, only ByteLight [2] offers shop location-based
services, using LED lighting along with sub-meter accuracy and sub-second
latency. Nevertheless, there are several research projects [21, 23, 26, 34] that
present indoor localization systems.

In Luxapose [21], the authors present a system that uses slightly-modified
commercial LED luminaries (light beacons), along with smartphone cameras
to provide accurate positioning compared to other RF-based approaches.
The authors present a new localization approach based on the promising
“angle of arrival” method. This method utilizes the projections of mul-
tiple light sources (with known positions) in the camera sensor, to estimate
the phone’s position. The aim of the authors is to achieve sub-meter ac-
curacy compared to other similar pre-existing systems. Indoor localization
systems do not need to deal with synchronization and reliability problems
as previously discussed in RollingLight, since the light sources continuously
re-transmit their location ID. Furthermore, the authors assume that the sys-
tem operates in fixed distances between the light sources and the smartphone
device.

The authors conducted several experiments with respect to the camera
parameters. In their analysis they prove that, in order to improve the SNR
and boost the contrast ratio between the bright and dark bands, the para-

15

meters that control the speed of the rolling shutter should be minimized
(i.e. exposure time). They further propose a complete image processing
pipeline for transmitter detection. The author’s utilize the transmitter de-
tection for identifying the location of the transmitters in the frame, decode
the transmitted light source ID and estimate position of the receiver.

In DynaLight we:

• Base the transmitter detection on the same pipeline, but we further
improve the amount of information that we can fit in the detected blob
by 40%.

• Implement a different decoding pipeline suitable for the used modula-
tion technique.

Furthermore, in Luxapose, the image processing and decoding is per-
formed entirely in a cloud server, which offloads the processing from the
phone, but it adds additional communication overhead, with respect to
uploading high resolution images in a server. Last but not least, the au-
thors exploit a smartphone (Nokia Lumia 1020) that offers huge resolution
(7712×5360) and extensive camera parameter control compared to Android
phones. As a consequence, the authors do not face effects caused by low
cost cameras and the limited camera control.

In DynaLight we:

• We perform the image processing locally in the smartphone.

• Do not use high-end smartphones that increases the range of market
smartphones that it can support.

In [26], the authors propose a non line of sight localization system. The
authors present a localization system but also overcome the unsynchroniza-
tion problems in a different way than RollingLight. The authors use binary
frequency shift keying and they achieve 1.25 bytes per second exploiting 720p
images at 30 fps and custom made transmitters. A sliding window approach
is presented after capturing and concatenating all the captured frames. They
also identify the discontinuities in frame receptions as discussed in Rolling-
Light, but use two Hanning windows to smooth the discontinuities in the
captured frames. We believe that this approach is impractical with respect
to real-time decoding since all the frames have to be first captured before
the beginning of the decoding. In addition, they do not mention whether
their approach overcome the frame rate diversity between different phones.
On the other hand, the authors introduce an algorithm, that is partly used
by DynaLight, for overcoming the limited camera control that is introduced
by the Android operating system. Last but not least, they study the impact
of the background noise and also how camera focus affects decoding. Our

16

system is also evaluated in different ambient light conditions and we prove
that is robust to noisy environments.

Other interesting projects include Epsilon [23] and PIXEL [34]. In the
former, the authors exploit LED lamps, as anchors, along with a custom
made light sensor that is connected to the phones audio jack. In the latter,
the authors present light-weight visible light positioning solution, that is
designed to accommodate resource constrained mobile devices, such as smart
glasses. Moreover, the authors present a color-based modulation scheme,
that handles users mobility and a fast positioning algorithm that can execute
in real-time.

3.2.4 Summary

In this section, we summarize the most important camera-based projects
that influenced this thesis. Table 3.1 summarizes the key camera-based
works that we based our system on. It can be observed that all the pro-
jects utilized different platforms, that offer different flexibility. Based on
DynaLight’s requirements that were presented in Chapter 2, we present the
related features of our project. It has to be mentioned that only DynaLight
has a dynamic data rate due to its adaptive behavior. All the design choices
will be thoroughly explained in the following chapters.

Table 3.1: An overview of most important projects discussed in
this chapter. An asterisk (?) means the content of the cell is unknown or
uncertain.

Project Platform/ Exposure Control Resolution Modulation Coverage Data Rate

CMOS for VLC [11] Android/ Low 480p
OOK

+
Manchester Encoding

8-9cm 1-3 kbps

Visual Light
Landmarks [26]

iOS/ Low 720p BFSK 1m 1.25 bytes/sec

Luxapose [21] Windows/ High 5360p
PWM

+
Manchester Encoding

2-3m *

RollingLight [22] iOS/ High 1080p FSK 160cm 11.32 bytes/sec

DynaLight Android/ Low 1080p
OOK

+
Manchester Encoding

20-120cm Dynamic *

17

18

Chapter 4

Overview

This chapter gives a short overview of the developed system. In Section
4.1, we present the main components of our system, while in Section 4.2 we
briefly discuss the system’s fundamental functionalities.

4.1 System Components

DynaLight is a VLC system designed for data communication. Therefore,
it consists of a transmitter and a receiver facing one another. Both of them
operate together so as to create an adaptive and reliable, visible light com-
munication link.

The transmitter consists of a microcontroller and a LED. The microcon-
troller is used to modulate the LED and encode information. Information is
encoded in such a way, that the average emitted light power is constant and
does not create noticeable flickering. More specifically, the LED is turned
on and off at a rate that is high enough for the human eye to notice.

On the other hand, the receiver’s side consists of the back-facing camera
of a smartphone. The phone takes advantage of the rolling shutter capturing
mechanism that was explained in Section 2.2. In order to be able to detect
the transmitter light signal, we need to tune the camera sensor so that we
can observe the white and dark distortions. As has been mentioned in the
previous sections, by lowering the exposure time we are able to control the
rolling shutter speed. Having a fast rolling shutter enables the camera to
identify the white and dark bands that follow the lighting pattern of the
transmitter, as can be seen in Figure 4.1. By continuously capturing images
and applying image processing techniques, we are able, first to identify the
light source and then decode the transmitted lighting patterns.

DynaLight has to be flexible with respect to distance and ensure reliable
transmissions. Having a single transmitter and receiver facing one another
is impractical due the fact that the transmitter side is not able to measure
their distance and adjust the transmitter amount of information accordingly.

19

(a) Auto Exposure (b) Low Exposure (c) Encoded Signal

Figure 4.1: Camera exposure settings. In both pictures the LED is
modulating at a frequency of 200 Hz. By lowering the exposure time we
are able to observe white and dark bands (distortions), that correspond to
the transmitted signal. Dark and white bands correspond to 0 and 1 bit
respectively.

Additionally, it is impossible to automatically synchronize the two compon-
ents because they are not connected. In DynaLight, both sides are equipped
with both a transmitter and a receiver as depicted in Figure 4.2 and 4.3.
With the proposed setup both sides are able to estimate their distance and
maintain synchronization. In the following section, we briefly present the
main functionalities of our system but the transmitter’s and receiver’s side
will be thoroughly explained in Chapters 5 and 6 respectively.

4.2 Basic Functionalities

In this section we present the main operations of each system component.
The basic functionalities of the transmitter refer to encoding, packet con-
struction and modulation. On the receiver side, we perform the transmitter
detection, distance estimation, image processing and decoding. The two
transmitters and two receivers facilitate in calculating of the ideal channel
capacity for each distance and for maintaining synchronization.

Encoding/Modulation: As it has been mentioned above, the trans-
mitter consists of a microcontroller that is used for creating the lighting
patterns. The data bits are first encoded then organized into packets and
then transmitted using high rate light modulations. In order to create a
flicker free system OOK plus Manchester encoding was utilized as will be
further explained in Chapter 5.

Transmitter Detection: The transmitter detection regards identifying
which areas of the captured frame contain decodable information. In Dyn-
aLight, we base the transmitter detection mechanism on the one that was

20

Figure 4.2: DynaLight’s overview. The system consists of two transmit-
ters and receivers that communicate via “invisible” light modulation. The
grey boxes highlight the sections where the main contributions of this thesis
can be found.

presented in Luxapose [21]. We further enhance the proposed mechanism
by adding an additional image processing step that increases the detected
area by 40%, meaning that we are able to decode more data. More details
about our enhancement are provided in Section 6.2.1.

Distance Estimation: Since we are creating a line-of-sight visible light
communication link, that could operate in multiple distances, the receiver
should be able to measure the distance between the two main system com-
ponents in order to adjust its channel’s capacity accordingly. The distance
estimation is based on the detected transmitter size of the previously men-
tioned operation. The bigger the detected transmitter the closer the two
components are and vise versa. The system’s design enable us to perform
the distance estimation in both sides. More details will be presented in Sec-
tion 7.1.

Image Processing/Decoding: This operation refers to all the im-
age processing techniques, that DynaLight exploits, so as to decode the
transmitted information. It has to be clarified that we did not base theses
operations on Luxapose [21], as done with transmitter detection. More in-

21

Figure 4.3: DynaLight’s setup. The red circles show the transmitters
while the green ones show the receivers.

formation about the challenges that we encountered can be found in Section
6.2.

Channel Capacity Calculation: The amount of information that the
transmitter sends is related not only to the distance of the two components
but also on the fact that we wish to avoid having the mixed symbol/packet
problem that was mentioned in Section 3.2.1. Once the distance is estim-
ated the receiver sets the appropriate amount of information to be sent to
its connected transmitter, as shown in Figure 4.2 (arrow from phone to mi-
crocontoller). More information on the channel capacity calculation can be
found in Section 7.1.2

Synchronization: As in all camera-based VLC systems, synchroniza-
tion refers to the problem of missed data due to fluctuation reception rate
that was discussed in Section 3.2.1. The system tries to minimize the syn-
chronization problem in two ways. First, we synchronize the the start of
transmissions and then we try to maintain a constant reception rate. More
information about this problem can be found in Section 7.2.2.

22

Chapter 5

Transmitter

This chapter describes the first component of the developed system which
is the transmitter (Tx). In Section 5.1, the selected modulation technique
is presented, while Section 5.2, discusses the packet structure that is used
for transmitting data and how data is encoded and transmitted. Section 5.3
presents the implementation details with respect to the selected hardware.

5.1 Modulation Technique

In order to encode data, the developed system modulates signals on the
LED transmitter in such a way that data can be accurately decoded by
the receiver, as well as not generate direct or indirect flicker (stroboscopic
effect). As it has already been discussed in Chapter 3, recent research has
shown that different modulation techniques have already been experimented
such as, OOK, PWM or BFSK.

In this work, we chose to exploit On-off keying (OOK) along with Manchester
encoding. OOK denotes the simplest form of amplitude-shift keying (ASK)
modulation in which, digital data “0” and “1” are represented with turn-
ing the LED on or off respectively. However, utilizing just OOK introduces
flickering when it comes to representing long sequences of “0” or “1”. By
combining OOK with Manchester encoding, each “0” and “1” bit is represen-
ted by a sequence of “01” and “10” symbols accordingly. As a consequence,
it is impossible to have more than two consecutive matching symbols, which
eliminates the OOK flickering. Moreover, the number of 0s and 1s is the
same regardless the encoded data. Figure 5.1 depicts the difference between
plain OOK and combining it with Manchester encoding. In the first case,
the long sequence of “0” bit will create noticeable flickering if the modu-
lation frequency is not high enough, while in the second case the symbol
proportion is more balanced.

OOK, plus Manchester encoding, is appealing for its simplicity. Never-
theless, there are cases where other transmitters can lower its robustness.

23

Figure 5.1: OOK vs Manchester encoding. Having consecutive 0s leads
to flickering which is eliminated by Manchester Encoding.

As a result, it is assumed that the system operates without other interfering
transmitters.

5.2 Packet Structure and Encoding

In the proposed communication protocol, symbols are organized into packets
consisting of a fixed preamble and a varying payload. We set the preamble
size to be 5 symbols “01110”, and by having three consecutive “1” we make
sure that it is distinguishable from any other symbol combination.

The size of each packet is determined by the fixed preamble size and
the number of symbols in the payload. Furthermore, the duration of each
packet is given by Equation 5.1, where Tsymbol is the period of each symbol
and nsymbols is the number of symbols in the payload.

Tpacket = 5 · Tsymbol + nsymbols · Tsymbol (5.1)

The payload can be of different sizes based on the distance between the
transmitter and the receiver, as we will explain in Chapter 7. As a result,
the preamble overhead varies. The more symbols in the payload, the less
overhead is introduced by the preamble. For example, having 4-symbol
payloads means that we have an overhead of 62%, while having a payload
of 16 symbols results in 15% overhead.

Our goal is to build a system that can transmit any bit sequence but
more specifically ASCII codes. Every ASCII code consists of 8 bits. Each
ASCII code is firstly transformed in to its binary representation and then to
the correspondent Manchester encoding symbol sequence. Then, depending
on the channel’s capacity, we split and construct the equivalent amount
of packets. Each packet is transmitted for a specific amount of time with
respect to the receiver’s reception rate, as it will be discussed in Chapter 7.

5.3 Implementation Details

The transmitters of our system consist of a microcontroller, the LED and a
reflector. We chose not to use the smartphone’s LED due to the limitations

24

of the Android operating system. More information can be found in Sections
A.1 and A.2 about this decision.

The LED modulation, control and data encoding is performed completely
on the microcontroller, which in our case is an Arduino MEGA ADK [1].
In order to achieve the required modulation frequencies and accuracy, we
used the microntroller’s timer interrupts. More specifically, we turn on and
off the LED based on the timer ticks using an interrupt handler. Arduino
has a system clock of 16MHz and the timer clock frequency is set by the
prescale factor. The desired output frequency for the LED is around 3 kHz
so we choose a prescaler value of 256. More information about the selected
frequency can be found in Chapter 6.

For the LED we use the XLamp MC-E White by Cree [10]. It is a multi-
chip LED, that provides high lumen output in a small package. It consists of
four individually addressable LED dies (integrated circuit). The maximum
drive current per LED die is 700mA which results in 751 lm at 9.5 W. The
size of the whole package is 7 × 9 mm and the viewing angle is 110 ◦. The
implemented transmitter circuit can be found in Figure 5.2(a). In order to
drive all four LED dies we used a constant current driver that outputs a
current of 1.5 A. The circuit uses a MOSFETs transistor IRL1004 [7] and a
NPN Switching transistor 2N3904 [8]. The circuit acts as a current feedback
loop which continuously monitors the LED current and keeps it exactly at
the set point at all times. The resistor values for R1 and R2 are 100 Ω and
0.34 Ω accordingly. R2 also has a power rating value of 5 Watts. The output
power of the LED is 5.4 Watts.

(a) Driving Circuit (b) Transmitter

Figure 5.2: Transmitter setup. The circuit outputs a current of 1.5 A to
the LED. In the right image we can also observe the diffuser lens.

Apart from the microcontroller and the actual LED, a lens was used in
order to reduce the viewing angle of the LED. Different lens were examined

25

in order to decide on the most effective one. We decided to use the diffuser
[3], which offers the brightest beam and a 20 ◦ viewing angle. The size of
the lens is 2 × 2cm. The advantages and effects of the diffuser can be found
in Chapter 8.

An additional reason for selecting the aforementioned microcontroller is,
the offered flexibility when it comes to connecting it with an Android phone.
It is equipped with a USB host interface, given by MAX3421E IC [6], which
allows the Arduino to connect and interact with any type of device, that
has a USB port. We use this interface for sending control commands to the
microcontroller, as well as the data to be transmitted, which in our case are
the ASCII codes.

26

Chapter 6

Receiver

This chapter describes the second fundamental component of the developed
system which is the receiver (Rx). In Section 6.1, all the important cam-
era parameters are discussed along with their importance in receiving the
transmitted signal. Then, in Section 6.2, a detailed description of the im-
age processing pipeline is presented, followed by Section 6.3 which includes
important implementation details and limitations.

6.1 Camera Control

As it has been mentioned several times in the previous sections, smartphones
use the rolling shutter capturing mechanism in which, the frames are cap-
tured in a row sequential way, as shown in Figure 2.2. In order to get the
depicted bands in the captured frame, there are several camera parameters
that have to be tuned appropriately.

Exposure time & ISO: The most important parameter is the expos-
ure time. Exposure time, determines the duration that each pixel collects
photons. In other words, exposure time affects the amount of light in an
image. In practice, short exposure values increase the ability to distinguish
between the dark and white bands. A closely related parameter is film speed
(ISO setting), which affects the amount of photons that are required to sat-
urate a pixel. In [21], the authors argue that for the best performance and
in order to improve the SNR, the exposure time and film speed have to be
minimized.

Scan rate & Resolution: As has been mentioned above, the frames are
captured in a row sequential way, so we can consider each individual frame as
our signal, and the pixel-rows can be regarded as the samples. The number
of rows in a frame is determined by the camera resolution. As a result, the
time to scan a new frame refers to the time that the sensor requires to scan

27

all the rows of the frame. This property is named camera scan rate and is
the rolling shutter speed. The camera scan rate can also be considered as
the sampling rate of our pixels (samples). Certainly, the scan rate depends
also on the time that is needed to scan a single row.

Each “pixel-row” is first exposed and then read. Due to the rolling shutter
effect, as shown in Figure 2.1, the time to scan a single frame is given from
Equation 6.1, where Te is the exposure time and Tr is the time to read a
single row.

Tframe = Te + Tr ·Rows (6.1)

All the previously mentioned parameters affect the width of each captured
band. The width of each band is expressed in pixels and represents how long
the light was on or off in the transmitter and as a result it affects the packet
decoding. In [22], it is proved that the width W of each band can be given
by Equation 6.2 where f is the modulation frequency of the transmitter.

W =
1

2fTr
(6.2)

Combining Equations 6.1 and 6.2, we present Equation 6.3, where we re-
late width of each band with the most important camera parameters, mean-
ing the exposure time, the scan rate and the number of rows (resolution).

W =
1

2f
Tframe−Te

Rows

(6.3)

As it can be observed in Equation 6.3, the width of each band does not
depend on the orientation of the camera, the size of the LED or the distance
between the LED and the smartphone.

Frames per second: Finally, the number of frames that a camera can
obtain per second is significantly important, when it comes to specifying the
VLC link’s data rate. Nevertheless, the actual bandwidth is also determined
by the ability to synchronize the two components. This challenge will be
further explained in Chapter 7.

Other Camera Functions

Cameras usually have additional functions that affect the captured images
such as antibanding, video stabilization, white balance and auto-focus. An-
tibanding is a function that decreases fluctuations in brightness of frames or
images, caused by a light source oscillations. Video stabilization is a family
of techniques utilized to reduce blurring caused by motion of a camera. Fur-
thermore, white balance refers to methods that correct the colour balance of

28

the lighting in an image. Finally, auto-focus concerns methods for adjusting
the camera lens so as to obtain focus on a subject.

Challenges

In practice, smartphones are limited by the operating system and do not
allow applications to modify some of the previously mentioned parameters.
The scan rate and the time to scan a single row are fixed parameters of the
camera sensor and cannot be tuned. On the other hand, exposure time, film
speed (ISO), resolution and the frames per second can be set by a developed
application. However, the value range is very limited and varies from phone
to phone. As a result, Android phones do not offer much flexibility compared
to iOS or Windows phones. Moreover, the exposure range may also be
limited by the camera sensor due to the limited hardware capabilities. More
information about the selected values for each parameter can be found in
Section 6.3

6.2 Image Processing

Once the camera sensor has been tuned appropriately (low exposure time),
and has obtained a frame with recognisable white and dark bands, the fol-
lowing steps regard, the image processing methods that are required, in
order to convert bands to useful data bits. DynaLight’s image processing
pipeline exploits methods that are offered by the OpenCV image processing
library.

Before discussing the decoding method we first need to highlight the im-
portance of the transmitter’s detection. DynaLight is a LoS system and is
designed to operate in close distances from 20 cm to 120 cm. As a result,
the transmitter light will not be spread out in the whole frame as can be
observed from Figure 6.2(a). Furthermore, we assume that the transmitter
does not have to be always in the center of the frame, as in the previously
mentioned figure. This fact gives prominence to the need of a transmitter
detection mechanism, that will identify, which part of the image contains
decodable information.

6.2.1 Transmitter Detection

As has been mentioned above, by selecting the minimum exposure settings,
the image will be brighter in the area of the transmitter plus, creating a vis-
ible “aura” around it with respect to its intensity. The greater that area is,
the more bands are visible, which results in the extraction of further useful
information. We base transmitter detection to the one that was presented
in Luxapose [21]. We further improve the proposed transmitter detection

29

method so as to take advantage of as many bands as possible.

Existing Method: We use the same transmitter detection steps that
were presented in Lucapose [21]. The basic sub-steps are: 1) blurring the
image using a 100×100 kernel, 2) pass it through a binary OTSU filter,
3) find the contour of each blob and 4) find the minimum enclosing circle
for each contour. In the first step a big kernel is utilized so as to create a
“shadowy” image. The next steps concern detecting the blob area where
the transmitter light is diffused, meaning the center and the radius of the
transmitter blob. The different steps can be found in Figure 6.1. After
experimenting with the proposed transmitter detection method, we noticed
the method underestimates the detected transmitter area. This means that
there are more bands that remain “hidden” due to the low exposure settings.
As a result, we looked for a method that could highlight all the information
that is hidden in the frame.

(a) Original (b) Blurred

(c) OTSU Filter (d) Min Enclosing Circle

Figure 6.1: Transmitter detection pipeline of Luxapose [21]. The
image is first blurred (b) and then passed by the OTSU filter (c) that cre-
ates a binary image. Finally, the minimum enclosing circle (red circle) is
calculated, which represents the detected transmitter (d).

Contrast Increase: To increase the visible bands, we add a contrast in-
crease step before the existing ones. The image processing method is called
histogram equalization (HE), and it is used for contrast adjustment using

30

the image’s histogram. Histogram equalization is mainly useful for increas-
ing the global contrast of an image. Contrary to that, adaptive histogram
equalization (AHE) is used increasing the local contrast of an image but
it over-amplifies noise. In our image processing pipeline, Contrast Limited
AHE (CLAHE) is utilized, which is used for global HE but also limits the
noise of over-amplification. The effect of contrast increase can be observed
in Figure 6.2(b). After increasing the image’s contrast, the rest of the trans-
mitter detection steps. The difference in the detected blob size can be seen
in Figure 6.2(c). We compare our blob detection pipeline with Luxapose in
Section 8.1.

(a) Original frame (b) After Constrast Increase (c) Detected blob with
(green) and without (red)
contrast increase

Figure 6.2: Impact of contrast increase. After increasing the contrast
of the image we can observe that more bands can be identified (b). In the
right image (c) the red circle represents the detected blob of Luxapose [21].
The green circle shows the improvement of the contrast increase.

6.2.2 Data Decoding

Once the transmitter is located in the image, we continue by examining
only the corresponding blob sub-region independently to decode data. In
Luxapose and RollingLight, different modulation techniques were exploited
meaning that we had to implement our own decoding pipeline. Further-
more, by utilizing different hardware, we were able to identify and overcome
additional limitation that the other works did not encountered. It has to be
clarified that we do not crop the transmitter area before processing it.

The complete decoding pipeline is depicted in Figure 6.5. It has to be
clarified that we take advantage of the same contrast increase method also
in the decoding pipeline. The additional steps are presented bellow.

Blurring: We observed that the contrast increase introduces some noise
that can be smoothed exploiting the OpenCV blurring method. This blur-
ring step is different from the aforementioned in the transmitter detection.
In this phase a very small kernel (3×3) is used, for averaging the pixel values

31

and reduce noise.

Thresholding: The current step concerns the transformation of the
image to a binary image. Thresholding, is the simplest method of image
segmentation. The most trivial way would be to select a global thresholding
value in order to distinguish between the white and dark bands. However,
the light intensity of the image is not normalized, meaning that different
areas in the image, have different intensities (Figure 6.3), which does not
facilitate in finding a single threshold value. OpenCV, offers a method for
adaptive thresholding in which the algorithm calculates the threshold for a
small regions of the image. As a consequence, we get different thresholds
for different regions of the same image, which result in better results for im-
ages with varying illumination. The result of this method is a binary image,
where dark pixels have a value of 0 and white a value of 255. The result
of this method can be observed in Figure 6.5(c). The red circle shows the
detected transmitter blob.

Avoid Over-exposure: As discussed in Section 6.1, due to the limited
exposure time control, we observe the over-exposure effect in which, white
bands appear wider and overlap other bands. This effect is found mostly
in the center area of the detected blob where the light has the maximum
intensity. We can observe this phenomenon in Figure 6.3 and compare it with
Figure 4.1, where white blob is absent. This phenomenon causes problems
when it comes to selecting which pixel values we should decode, from the
detected blob area that was mentioned in the previous section.

Figure 6.3: Over-exposure effect. The white bands in the center of the
light blob overlap due to limited exposure settings.

In Luxapose, the authors did not face over-exposure effects, so they used
the middle column of pixels (vertical radius of the detected transmitter
blob) for decoding information, as shown in Figure 6.4(a). The most easy
solution would be to use a fixed column offset to avoid the big white blob
in the previously mentioned figure. However, having a predefined offset is
impractical in different distances where the blob size is varying. This fact

32

(a) Middle Column (b) Middle Column and Off-
set

(c) Offset

Figure 6.4: Pixel selection method (over-exposure avoidance). The
first method (a) uses the pixels of the middle column as Luxapose [21]. The
other two methods use an offset in different ways, so as to avoid the white
over-exposure effect. The red vertical continuous line represents the pixel
column that each method uses for decoding.

highlights the need of an automatic mechanism that avoids the over-exposure
effect and selectes the pixels to be decoded. During the experiments, we tried
two different avoiding methods.

Recall that the expected symbol’s width can be calculated from Equation
6.3. We present a few width examples in Section 6.3. The wider expected
band is the preamble, which consists of three “1” symbols as explained in
Section 5.2. As a result, the maximum width of a white band (preamble)
follows Equation 6.4, where W is given by Equation 6.3.

Wwhite ≤ 3 ·W (6.4)

In the first method, we begin by examining the pixel values of the middle
column. As we move closer to the center we detect big white bands that
are bigger than the expected preamble, corresponding to the over-exposure
white blob. By comparing each band width with the expected one we can
identify the length of the over-exposed blob in pixels. The method selects
the pixel values that are in the middle column, but uses a column offset only
for the rows where the over-exposed blob was found as depicted in Figure
6.4(b). The offset value is equal to the size of the detected over-exposure
white blob. With this method we avoid the over-exposure effect but also use
the brightest pixel values (of the middle column).

The second method, uses a constant column offset as depicted in Figure
6.4(c). The offset is calculated as follows. We begin by examining the
middle blob column. If there is a band that is wider than the expected, we
continue by examining the previous column (one to the left). If there are
no wider bands in the examined column we select all its pixels, as shown in
previously mentioned figure. With this method we select the closest column

33

to the center of the blob radius that does not contain over-exposed bands.
We evaluate the effect of each method in Section 8.2.1. The result of this

step is an array of pixel values that need to be decoded as shown in Figure
6.5(d).

Decode: The final step regards decoding the array of pixel values as
shown in Figure 6.6. The decoding is based on the packet structure that
was described in Section 5.2.

Initially, we look for the preamble which is used to separate the different
packets. As has been mentioned above, we can identify the preambles by
checking the width of each band. Every band whose width is more than
two times the expected symbol width, is considered a preamble as shown in
Equation 6.5.

Wpreamble > 2 ·W (6.5)

We need to identify at least two preambles so that we can be sure that
a whole packet can be decoded. This issue will be further explained in
Chapter 7. Once the preambles are found, we examine the number of pixels
of each dark or white band in order to get the encoded symbol. The sym-
bol combinations can be found in Equation 6.6, and follow the Manchester
encoding.

symbol =


0, if Wdark < 1.3 ·W
1, if Wwhite < 1.5 ·W
00, if Wdark > 1.3 ·W
11, if Wwhite > 1.5 ·W

(6.6)

It has to be mentioned that, due to over-exposure effect the dark bands
tend to become shorter and that is why in the conditions of the dark bands
we used a smaller multiplier.

The result of the decoding is a binary array with the result symbols that
represent the Manchester encoding of our transmitted data, as shown in
Figure 6.6.

34

(a) Original (b) Contrast increase + Blurred

(c) Adaptive Threshold (d) Pixel values within detected blob

Figure 6.5: Image processing pipeline. First we increase the contrast of
the original image and then we blur it (b). We create a binary image by
using a adaptive threshold (c). Finally, we select the pixels to be decoded
based on the detected blob radius (red circle in (c)) and the pixel selection
method. The black “circle” is (d) is enlarged in Figure 6.6

Figure 6.6: Focus and decoding of Figure 6.5(d). We process the
pixel values to identify the preamble and payload so as to decode the data
sequence.

35

6.3 Implementation Details

In our work the Samsung Galaxy Nexus was utilized as a receiver. The
phone provides a 5 MP, as well as a 1.3 MP front-facing camera. DynaLight
uses the back-facing camera which can capture full high-definition video of
1080p with maximum of 24fps. In terms of processing power, it is equipped
with a Dual-core 1.2 GHz Cortex-A9 processor. As for the operating system,
we installed the Cyanogenmod 11 which is based on Android 4.4 KitKat.

6.3.1 Parameter Values

In the current section we present how did we calculate or set the camera’s
parameters. In order to calculate the expected width of each band we need
to know the exposure time, the camera scan rate and the camera resolution
(Equation 6.3). In Table 6.1, we summarize the available camera parameters
for the used phone.

Table 6.1: Camera parameters of Samsung Galaxy Nexus.

Parameter Value

Scan Rate 46956 rows/sec

Resolution 1920×1080

Exposure Time 1/4000s

As has been mentioned above the camera scan rate is a fixed parameter
of the camera sensor. In order to measure the camera’s scan rate we set
the transmitter at a fixed distance transmitting a square wave at a known
frequency. Then we count the number of bands on the captured frame. More
specifically, at resolution of 1920x×1080, when the transmitter is modulating
at frequency of 200Hz we observe 9 white and dark bands. By multiplying
the observed number of bands with the period of each on and off pulse
(2.5ms), we conclude that the camera needs around 23ms to scan 1080 rows.
As a result, the scan rate is 46956 rows per second.

As has been mentioned in Section 6.1, the Android operating system is not
very flexible when it comes to setting the exposure time. More specifically, it
does not provide an API so that the user can set the exposure time directly.
However, it provides methods for locking the exposure time and setting the
exposure compensation. The exposure compensation modifies the exposure
time or film speed without the user knowing the exact values. In order
to overcome this limitation, we first set the exposure compensation to the
minimum available value. Then, by pointing a bright source close to the
camera we force the exposure time to reach the lowest value. Finally, we
lock the exposure time exploiting the provided method by Android camera
API. To the best of our knowledge, only the very recent versions of the
Android (>Android 5) provide a full camera API with methods that enable

36

application to set the exposure time directly. We found out that the lowest
exposure time value for the used phone is approximately 1/4000s. Apart
from the exposure time the current phone does not allow us to modify the
film speed (ISO), meaning that we cannot know its value.

Last but not least, we disable a few parameters that we believe that could
affect our decoding. These are, the antibanding, video stabilization, white
balance and autofocus.

6.3.2 Maximum Modulation Frequency

In order to maximize the amount of information that we can send from the
transmitter side we first need to know what is the maximum modulation
frequency that our receiver can decode. Assuming that the width of each
band is one pixel and based on the Nyquist frequency, we get the theoretical
upper bound, which is half the camera’s scan rate. However, having one pixel
long bands is impractical when it comes to decoding the images. The bands
should be a few pixels long to ensure that they can be correctly decoded.
We experimented with several modulation frequencies but in the current
section we will present the effects of the modulation frequencies of 3000Hz,
3250Hz, 3500Hz and 4000Hz. We captured a single frame per frequency and
we observed the formation of the bands in the images.

As it can be seen from Figures 6.7, as the modulation frequency increases
above 3250Hz we are not able to differentiate between the white and the
dark bands. This is mainly caused by the camera’s scanning rate. Following
Equation 6.3, we can calculate that for the frequency of 4000Hz we get 6
pixels per band, which makes the bands become invisible. On the other
hand, when we modulate at a frequency of 3000Hz we get 8 pixels per band,
which makes the bands visible enough to be decoded. However, when we
have around 7 pixels per band (3250Hz and 3500Hz), then the bands start
to become blur as can be seen from Figure 6.7.

We conclude that we need more than 7 pixels so that each band can be
separated. In our system we prefer to exploit a modulation technique that
will facilitate our implemented image processing algorithms. By having a
modulation frequency of 3000 Hz (8 pixels) fulfils the requirements of not
causing flickering, as well as, having distinguishable bands. It can be also
calculated that the biggest expected band (preamble) will have a width of
24 pixels.

It has to be mentioned that the number of pixels per bands are not affected
by the distance between the transmitter and the receiver, as well as, the size
or intensity of the transmitter.

37

(a) 3000Hz=8 pixels (b) 3250Hz=7 pixels (c) 3500Hz=6.8 pixels (d) 4000Hz=6 pixels

Figure 6.7: Frequency and pixels per band. As the frequency increases
the white and dark bands get mixed up and cannot be separated. The short
bands are the symbol bands, while the bigger are the preamble bands. The
width of each band is independent of the distance between the transmitter
and the receiver.

38

Chapter 7

Dynamic Link

This chapter discusses the adaptive behavior of DynaLight. In Section 7.1,
we present our distance estimation method and how the channel capacity
calculated in accordance with the detected distance. In Section 7.2, we dis-
cuss how the implemented smartphone application operates, along with the
limitations that we encountered with respect to synchronizing transmissions.

7.1 Dynamic Channel Capacity

7.1.1 Distance and Blob Size

As it has been mentioned in the previous chapters, the aim of this project is
to create a VLC system that can maximize its channel capacity based on the
distance between the transmitter and the receiver. First, we need to identify
what is the relation between the distance and the channel capacity. It can be
seen in Figure 7.1 that the closer the receiver to light source the greater the
visible light area (“aura”) that the light creates. As a result, after applying
the blob detection method, the blob in closer distances will be noticeably
larger, meaning that we can fit more data, therefore have a greater amount
of information per frame. This fact is significantly important and defines
the link’s channel capacity.

We relate the distance of the transmitter and receiver to the detected blob
size. As the distance increases, between the transmitter and the receiver,
the received energy at each pixel drops due to the line of sight path loss. As
a result the projected transmitter area in the imager plane also decreases.
Generally, the received light intensity of a light source follows the inverse-
square law. This means that if you double the distance between the light
source and the receiver, the received intensity drops to a quarter. In our
case we are not measuring the light power of the transmitter, but the light
“area” (in pixels) that it creates and will contain the light pattern. The
measurement uses the transmitter detection method that was explained in
the previous chapter. This means that we have performed the blob detection

39

(a) 20cm (b) 100cm

Figure 7.1: Distance and blob size. The bigger the light blob, the closer
to the light source.

in several distances and saved their relation. As a result, when the receiver
measures a blob size it can correlate it with the relevant distance. More
information about the observed relation can be found in Section 8.1.

In order to maximize the amount of information in our channel we chose
to apply the blob detection when the transmitter is fully on and not when is
modulating. The difference is that when the light is modulated the average
emitted power is reduced because the light turns on and off. However,
we observed that the change in the intensity is negligible and this is mainly
caused by the addition of the preamble, which introduces larger white bands.
Finally, we see a significant increase in the detected blob size after applying
the contrast increase that was presented in Section 6.2.1, which will be
further evaluated in Section 8.1.

7.1.2 Packet Size Calculation

As it has already been discussed in Chapters 2 and 6, due to the fluctuation
of the reception rate and inter-frame gap between the frames, there is a high
probability that a packet can be contained in more than one frames or missed
completely. As a result, the packet size is a very important characteristic of
a visible light communication system. Having big packets might cause the
mixed-packet problem, meaning that a complete packet might be contained
in more than one frames. On the other hand, having very short packets
may result in having a frame containing parts of more than one packets or
underestimate the channel’s capacity. Due to the discontinuity of capturing
the frames it is difficult to estimate which part of the packet gets mixed up,
as can be seen in Figure 3.1.

DynaLight should be flexible and adapt its channel capacity to different
distances. That is why we vary the packet size based on the detected distance
between the transmitter and the receiver. Recall that in DynaLight’s setup,
both sides have a transmitter and a receiver and can calculate their distance.
First, we detect the transmitter blob size and then we calculate how many
symbols we can fit in the blob radius. In order to overcome the mixed packet

40

problem, we make sure that a whole packet can fit at least one time within
the detected blob sub-region. This means, that in every captured frame the
receiver will be able to capture and decode a complete packet.

To do so, we base our calculations assuming that within the detected blob
size we can fit at least two complete packets as shown in Equation 7.1 and
Figure 7.2.

Figure 7.2: Packet size and blob’s radius. The blob radius should fit
two complete packets to avoid mixed packets.

dblob ≥ 2 ·Wpacket (7.1)

Following the analysis in Chapters 5 and 6, we can extend Equation 5.1
to get the packet size in pixels, where Wsymbol is the number of pixels per
symbol and can be calculated using Equation 6.3.

Wpacket = 5 ·Wsymbol + nsymbols ·Wsymbol (7.2)

In the proposed system the channel capacity is calculated after detecting
the transmitter’s blob size. By combining Equations 7.1 and 7.2, we can
calculate the number of symbols we can fit in the blob radius, which is given
by equation 7.3.

nsymbols ≤
dblob − 10 ·Wsymbol

2 ·Wsymbol
(7.3)

After calculating the number of symbols per packet, we send it to trans-
mitter so that it can organize the packet construction accordingly.

It has to be mentioned that the result number of symbols of Equation
7.3 should always be even. Having an odd number of symbols per packet
introduces flickering between different packets. For example, if we altern-
ate between packets “01101” and “01100” then we will observe noticeable
flickering due to the different number of 1s in each packet, which affects the
average emitted power. By having an even number of symbols along with
Manchester encoding, avoids flickering.

The above analysis ensures that, in every captured frame and within the
detected blob, we will be able to decode a complete packet and overcome the

41

mixed packet problem. We believe that with our solution, having reliable
transmissions is affected only by the fluctuating reception rate of modern
smartphones. Once we maintain synchronization between the transmitter
and the receiver, the captured frames will contain all the transmitted data.

7.2 Smartphone Application

One of the goals of this thesis is to implement DynaLight in a smartphone
application. This means developing all the aforementioned image processing
algorithms to the smartphone. Since we are building a camera-based VLC
link we encountered the problems that were thoroughly explained in Rolling-
Light [22] and refer to synchronizing transmissions. In Section 7.2.1, we
present a short overview of the developed application. Then, in Section
7.2.2, we explain the main synchronization problems that we encountered
while building our system.

7.2.1 Overview

In order to overcome the limitations of Java with respect to memory man-
agement and performance, we developed the processing pipeline and the
decoding directly into the Android native interface as shown in Figure 7.3.
Besides the Android Software Development Kit (Android SDK), which sup-
ports Java, Android provides Native Development Kit (NDK) to support
native development in C/C++. It is generally believed that NDK program-
ming is suitable for CPU-intensive applications such as game engines, signal
processing, and physics simulation. Another benefit of implementing the
processing pipeline in the native interface, is to take advantage of the im-
plemented C++ OpenCV image processing methods.

The designed application is created following the producer-consumer mul-
tithread model as shown in Figure 7.3. The main thread captures the frames
and stores them in a blocking queue (FIFO). Then, the processing thread
processes each frame, one after the other, using the native code implement-
ation of our image processing pipeline and decoding. Finally, it combines
the decoded information to a message that is displayed in the application’s
screen.

The implemented application uses the back-facing camera of the Galaxy
Nexus phone. A preview of the implemented application can be found in
Figure 7.4. The phone can communicate with the transmitter using the USB
interface that was explained in Section 5.3.

The application has buttons for controlling the exposure time as well as
initiating communication and decoding. The two left buttons are used to
lower the exposure time of the camera sensor. Due to the limitation that
were explained in Section 6.3, we first need to manually lower the exposure

42

Figure 7.3: Implementation Structure. The image shows the structure
of the implemented application and the mapping of the most important
methods.

Figure 7.4: Application screenshot. The left buttons are used for lower-
ing the exposure time, while the right ones are used for initiating commu-
nication and debugging.

compensation (top left button), then place a bright light source in front of
the camera and then lock the exposure time (bottom left).

In the implemented application we have introduced a simple communica-
tion protocol that has to be executed before the start of the transmissions so
that both sides can estimate their distance and set the channel’s capacity,
as mentioned in Section 7.1.2. In addition, the protocol synchronizes the
first frame reception so as to maintain synchronization as will be explained
in the following section.

7.2.2 Synchronization

As has been extensively discussed in [22], in the context of camera-based
visible light communication links, synchronization regards the problem of
receiving all the transmitted packets. Smartphone cameras have different
and fluctuating frame rates, which makes synchronization between the two

43

components a major challenge when it comes to exploiting the full reception
rate of the phones. There are several techniques that can ensure that a
packet has been received by the receiver, such as acknowledgements. We
believe that by having each packet to be acknowledged by the receiver, it
adds a lot of overhead and also requires a two-way communication.

The major problem is that the captured frames are not received at fixed
time intervals. This means that between two consecutive frame receptions
there is a time gap that we call jitter. This jitter can be observed from
Figure 7.5. It can be seen that instead of receiving the frames every T (black
arrows), the reception is delayed by ∆T (red arrows), which is random. The
reception time of frame i is given by Equation 7.4, where T is the expected
reception period and ∆T is the jitter.

Figure 7.5: Packet synchronization problem. The black arrows indicate
the expected reception time of each frame. The red arrows represent the
delayed receptions due to jitter.

framei = (i− 1) · T +

i−1∑
n=1

∆Tn (7.4)

It can be seen that the jitter of each frame is the accumulative value of
the previous jitters. This effect causes packet 4 to be missed in Figure 7.5.
Having a big jitter value increases the frequency of missed packets.

To highlight the importance of the jitter values we measured the jitter val-
ues in different frame rates. It has to be mentioned that the Android phones
do not offer methods for setting the exact desired frame rate. However, they
provide methods for setting the frame range that the camera will capture
frames, such as 15-25fps. As a result, the frame rate is not guaranteed. In
order to get the desired frame rate we set the frame rate to the highest avail-
able frame rate range, but our application introduces the desired delay T

44

between the frame receptions. For example, in order to get 2fps we manually
delay each reception for 500ms. The results are summarized in Table 7.1.

Table 7.1: Jitter measurements for different fps. For each frame rate
we measured the jitter of 100 consecutive frames.

Frame Rate (fps) Mean Jitter (ms) Max Jitter (ms)

1 7 22

2 6 19

5 7.5 63

10 58 154

It can be observed that as we increase the frame rate the jitter increases.
This means that as the frame rate increases, we will experience more missed
packets. As a consequence, we need a way to reduce the packet misses in
order to receive all the transmitted packets. In other words, we need to
make the red arrows, of Figure 7.5, go as close to black ones, that indicate
the expected reception rate. For example, for a frame rate of 2fps, instead of
receiving each packet at a period of 500ms we can reduce it by X, as shown
in Equation 7.5.

delay = T −X (7.5)

The problem that still remains is selecting the value of X. We assume
that the jitter values follow a random distribution. Therefore, we choose to
calculate X as the expected value of the jitter values. Equation 7.6 shows
the calculation of the expected value for a given distribution of jitter values
vi, where pi is the probability of value i.

E[∆T] =

k∑
n=1

pn · vn (7.6)

After applying the above analysis we expect that the frame reception times
will oscillate around the value of period T . As a result, the reception time
jitter will not keep increasing in every new frame reception. Each packet is
repeated by the transmitter for a specific amount of time which is the period
T of the reception rate. Furthermore, we make sure that each frame capture
occurs approximately at the middle of the transmitter packet. Based on
that and the fact that a whole packet can be decoded from a single frame
we can estimate the channel’s data rate. For example, if the packet size is 8
symbols and the reception rate is 1fps, then the data rate is 8 symbols per
second, which corresponds to 0.5 bytes per second.

In order to synchronize the initial transmission, so that all the rest will
come “around” period T , we utilize the light sensor of the phone. The
main reason is that we want the two components to have a common time

45

reference point. The light sensor is sensitive enough to guarantee that when
the transmitter has turned on its LED, the receiver will know the timestamp
of the on operation. The whole procedure is initiated by the ”initiator” side
that turns on its LED first. The rest operations are executed as shown in
Figure 7.6.

Figure 7.6: Synchronization protocol overview. The initiator side ini-
tiates the procedure by turning on its LED. Then both sides calculate their
distance and set the channel capacity. The packets are repeated for period
T that corresponds to the frame rate period. The frames are captured
”around” the middle of each packet.

The transmissions begin right after both sides has finished calculating
the channel’s capacity by executing the transmitter detection. The first
reception is delayed in order occur “around” the middle of first packet. In
that way, we reduce the effect of the increasing jitter that causes packet
misses. In the context of this thesis, we do not evaluate the effect of the
above solution, so we cannot estimate DynaLight’s reliable data rate.

46

Chapter 8

Evaluation

In this chapter we present the evaluation of the developed system. In Sec-
tion 8.1, we present all the experiments that refer to way that DynaLight
adjusts its channel capacity based on the detected distance as explained in
Section 7.1. We continue our evaluation on the implemented decoding image
processing pipeline that was presented in Section 6.2.2. The evaluation of
the decoding regards the avoidance of the over-exposure effect, the impact
of ambient light, as well as, its real-time performance.

For evaluation we utilized smartphone application that was explained in
Section 7.2. The application was mainly used in order capture and save the
frames to be evaluated. In order to be able to repeat our experiments we
created Python scripts that execute the same image processing code as in the
smartphone. In that way we could evaluate and improve our implemented
methods offline. For example, we could capture several frames and process
them offline and get the same results as running on the smartphone device.

8.1 Adapting to Variable Distance

In this section we compare our transmitter detection method, that was
presented in Section 6.2.1, with the one that was presented in Luxapose
[21]. Recall that we improved the existing methods by adding a contrast
increase step. We show the impact on the detected blob size with respect to
the amount of information we can fit in every frame. Moreover, we evaluate
the impact of the selected diffuser lens.

8.1.1 Blob Size vs Distance

Methodology

We begin by evaluating the importance of using a diffuser lens. We used
the diffuser lens to reduce the viewing angle of the LED from 110 ◦ to 20 ◦.
This results in having a more narrow and directed light beam but also a

47

brighter light source, due to the fact that the light is diffused. We compare
the performance of the Luxapose transmitter detection in the case of using
or not the lens.

Furthermore, we evaluate our own improvement in the detection mechan-
ism that was presented in Section 6.2.1. The evaluation is done in 9 different
positions of varying distance from 20cm to 120cm. For each position, we
captured 50 frames and averaged the detected transmitter radius.

It has to be clarified that when we refer to the Luxapose, we refer to
the transmitter detection method that was presented in [21], without our
addition. In DynaLight, we use both the diffuser lens and the contrast
increase.

As has been mentioned above we perform the blob detection when the
light is turned fully on and without modulating.

Results

The results of our experiments can be found in Figure 8.1.

Observation 1 Using the diffuser lens increases the detected blob by 50% in
the close distances, while the contrast increase further increases the detected
blob by 40%.

The results of these experiments highlight the importance of using a lens.
It can be observed that light diffusion increases the brightness of the trans-
mitted light resulting in greater blob.

Furthermore, we can observe that using the contrast increase step before
performing the transmitter detection increases the detected light approxim-
ately 40% on average. Increasing the image’s contrast proves that it can
reveal information that could be “hidden” due to the low exposure settings.
Furthermore, by using both the lens and the additional image processing
step also results in being able to detect a 20% bigger blob in the distance
of 120cm. This means that our additions have increased the coverage of our
system.

Observation 2 The blob size is not proportional to the square of the dis-
tance between the transmitter and receiver.

The relation of the blob size and the distance does not follow the inverse
square law. However, the behavior is similar, meaning that it drops expo-
nentially. This is because we are not directly measuring the emitted power
from the light source. We believe that this phenomenon is caused by sev-
eral parameters of the image processing that measures the blob size. More
specifically, the used transmitter detection method blurs the image before
measuring the transmitter blob. As a result, we are not measuring the trans-
mitter’s size but the light “aura” that it creates. The created light “aura”

48

is more noticeable in the closer distances and that is why the improvement
of the contrast increase is higher. As the distance increases and due to the
low exposure time the “aura” fades away. This phenomenon in the closer
distances may also be amplified by the camera’s protective lens that may
introduce additional reflections.

Figure 8.1: Blob size vs Distance. The red and blue lines refer to the
transmitter detection method presented in Luxapose [21]. The green line
regards DynaLight, that uses both the diffuser and the contrast increase.

8.1.2 Number of Symbols vs Distance

Methodology

After showing the impact of the diffurer and contrast increase in the size
blob size we continue our evaluation on the number of symbols that can fit
in the detected blob for both DynaLight and Luxapose. The calculation of
the number of symbols is done as explained in Section 7.1.2, excluding the
preamble symbols.

For the evaluation we used the same captured frames as in the previous
experiment. After detecting the blob size we calculate the number of symbols
that can fit in the detected blob. It has to be mentioned that we perform
this evaluation using the diffuser lens in both Luxapose and DynaLight.

Results

The behavior in Figure 8.2 is similar to the previously explained figure as
expected. The increase in the number of symbols is more noticeable in the
closer distances where the detected blob is bigger. The positive observation

49

is that at the distance of 120cm we can still transmit 2 symbols per packet.
Moreover, at the distance of 90cm we can transmit 50% more data compared
to Luxapose. Recall that the number of symbols in the figure refers to the
number of symbols that we can definitely decode from a single frame, as
explained in Section 7.1.2.

However, it is noticeable that the amount of symbols does not decrease
linearly after the distance of 60cm. This is mainly caused by the fact that
the detected blob decreases but is still “large” enough to include the same
amount of symbols.

Figure 8.2: Number of symbols vs Distance. We get 40% more symbols
on average, compared to Luxapose.

8.1.3 DynaLight’s Adaptive Channel Capacity

In this section we evaluate the influence of the proposed channel capacity
adaptation that was presented in Section 7.1.2. Recall that in the state-of-
the-art systems the channel capacity is fixed. Having a dynamic channel
capacity increases the flexibility of the implemented system when it comes
to operating in different distances.

Methodology

The goal of the three evaluation experiments that we conducted is to high-
light the importance of adapting the channel capacity based on the distance
between the transmitter and the receiver. In order to achieve that, we evalu-
ate our system in 3 different distances, 20cm, 60cm and 90cm. The distances
were chosen so that we fit 16, 8 and 4 symbols accordingly (excluding the

50

preamble symbols). In the first two experiments we followed the state-of-
the-art way of using a fixed packet size of 4 and 16 symbols, that are the
optimal for the high and short distance accordingly. In the last experiment
we present how DynaLight modifies the channel capacity, dynamically, based
on the detected distance between the transmitter and the receiver. For each
distance we processed 50 frames of the same packet.

Results

Figure 8.3: Accuracy vs number of symbols in 3 distances. Dynamic
channel capacity is preferred for more efficient link exploitation.

Observation 3 Choosing a small packet size underestimates the channel
capacity but ensures that packets can be decoded in all distances.

As can be observed in Figure 8.3, by selecting a packet size of 4 symbols we
have an accurate packet detection of above 85%, in all the different positions.
This happens because the 4 symbols are the number of symbols that can fit
in the greatest evaluated distance (90cm). In all the shorter positions the
detected blob is bigger, meaning that it can fit more that 4 symbols. As a
consequence, 4 symbols per frame may offer high reliability but is not the
most efficient for all distances.

Observation 4 Choosing the biggest packet size reduces reliability.

On the other hand, when we select the greatest packet size and we increase
the distance, then the accurate transmissions are expected to drop. For

51

example in the 60cm we cannot fit more than 8 symbols, which reduces
the probability of correct reception. However, we see that very few packets
were decoded properly. This can be explained by the fact that in the 60cm
distance the detected blob is big enough to fit 8 symbols. Recall that our
calculations are based on including each packet twice in the detected blob
(Figure 7.2). As a result, there is a small chance that the 16bits are perfectly
aligned and fit the detected blob radius. Furthermore, decoding is impossible
in the highest evaluating distance because the blob size is too small to fit
the total of 16 symbols.

Observation 5 DynaLight’s channel capacity adaptation ensures efficient
channel utilization along with an accuracy above 85%.

We show that by modifying the channel capacity we can achieve an ac-
curacy above 85% in all individual distances. As we can observe from the
results, as we move away from light source the accuracy drops. We believe
that having an accuracy of 100% is impossible due to numerous factors that
influence our system. The basic reason is the image processing pipeline
that introduces noise in high distances (mostly by thresholding method).
Moreover, as we move away from light source there is a high probability
that the camera sensor will introduce additional noise. This means that
some pixels might not be saturated the same way as in the closer distances,
which may affect our decoding performance.

8.2 Decoding

In this section we evaluate the decoding pipeline that was presented in Sec-
tion 6.2.2. We begin by evaluating the which methods offers the best results
in avoiding the over-exposure effects. Then, we show how robust DynaLight
is to ambient light. Finally, we discuss its real time performance.

8.2.1 Overcoming Over-exposure Effects

Methodology

We begin by comparing the decoding methods (pixels selection) with re-
spect to the one used in Luxapose (middle column), in order to see which
method has the highest decoding accuracy. We chose to evaluate the decod-
ing method in the distance of 40cm where we can fit 8 symbols. We eval-
uate our methods using 3 different packets 1) “01010101”, 2) “01011001”
and 3) “10100101”. Packets 2 and 3 have two consecutive identical symbols
compared to packet 1. Evaluating packets 2 and 3 will highlight possible
limitations that are introduced by the over-exposure effect.

For each packet we captured and decoded 50 frames. We relate the accur-
acy of each method in terms of how many times the packet was accurately

52

decoded. If the decoded symbol sequence is different or has a different length
then we consider a false decoding.

Results

Observation 6 The over-exposure effect is more observable in the center of
the blob, therefore, we cannot accurately decode data from the middle column
of the blob.

It can be clearly seen from Figure 8.4 that the pixel selection method
used in Luxapose cannot be applied in our case. The over-exposure effect
introduces too much noise in the signal. When it comes to the second pixel
selection method, we can observe that it dramatically increases the accurate
decoding but the percentage differs between the packets. We conclude that
the middle column of the blob may contain the most bright signal but this
fact increases the over-exposure effect. This can be clearly observed in the
case of packet 3 where the two consecutive 0 symbols can not be accurately
decoded. Recall that the over-exposure effect tends to enlarge the size of the
white bands. In the case of packet 3, there are cases where the white bands
appear bigger than the expected ones, resulting in false decoding. The third
pixel selection shows that it offers the best option with an accuracy of more
than 90%. Moreover, these experiments showed the importance of having an
automatic offset selection mechanism, as in the second method. The closer
to the vertical radius column, the more over-exposure noise the signal will
experience. On the other hand, a high offset value may also lead to false
decoding, due to the fact that the farther away we go from the center of
light source, the noisy the signal can get.

8.2.2 Influence of Ambient Light

In this section we evaluate the impact of ambient light with respect to accur-
ate decoding. Since we did not have a light sensor, we created three different
experiment conditions by changing the amount of light in the experiments
room. In the first case there is no ambient light in the room. In the second
case we turned on half of the room’s ceiling lights, as depicted in Figure
8.5. In the third case, we turned on all the room’s ceiling lights and used
an additional light source (lamp) right above the VLC link, as shown in
Figure 8.6. As in the previous experiments we capture 50 frames for every
individual experiment.

Methodology

We evaluate the impact of ambient light in 40cm and 90cm. The two dis-
tances were selected based on the number of symbols that can be fitted,

53

Figure 8.4: Accuracy of different pixel selection methods using
3 different symbol combinations. Packet1= “01010101”, Packet2=
“01011001” and Packet3= “10100101”. Above the figure we show a simple
representation of each method, similar to Figure 6.4.

namely 8 and 4 accordingly (excluding preamble symbols). In the first ex-
periment we wanted to show the impact of ambient light in the least accurate
packet of the previous section, which was packet 3, believing that ambient
light will amplify the over-exposure effects. In the second experiment we
used two slightly different packets 4) “0110” and 5) “1001” (similar to pre-
vious section), that can show the impact of ambient light as well as the
over-exposure effect on the decoding.

Results

Observation 7 Ambient light does not affect our system significantly in
both short and great distances, due to low exposure settings.

As can be seen from Figures 8.7 and 8.8, there is no significant impact on
the decoding accuracy introduced by the ambient light in both cases. We
believe that this is caused by the low exposure settings that enable only very
bright light to be visible in the captured image. This observation highlights

54

Figure 8.5: Low ambient light setup. Half of the ceiling lights are on.

Figure 8.6: High ambient light setup. All of the ceiling lights are on
plus a lamp pointing above the VLC link.

the benefit of using camera sensors instead of photodiodes or LEDs, where
external light sources introduce unavoidable noise. Nevertheless, we believe
that the ambient light that we introduced is not that bright compared to
the light of the transmitter. However, having multiple concurrent transmit-
ters operating at the same light intensity will definitely affect the systems
performance with respect to introducing noise.

Finally, we observe a slight drop in the accuracy as the distance increases.
This can be observed in packets 4 and 5 that are evaluated in a higher
distance. This fact is similar to Figure 8.3, and is mostly caused by noise
that is introduced by the image processing methods.

55

Figure 8.7: Accuracy vs ambient light for Packet3 in 40cm. No
impact is observed in close distances.

Figure 8.8: Accuracy vs ambient light in 90cm. Packet4= “0110”
and Packet5= “1001”. No significant impact is observed even in the large
distance.

56

8.2.3 Execution Time

Compared to the Luxapose project, all the decoding algorithms of Dyna-
Light are executed locally in the device. We measured the real-time per-
formance of our decoding algorithm, so as to identify which are the most
time consuming methods. However, since we are not using a high-end device
we have noticed that the decoding time varies.

The average decoding time for decoding a single frame varies from 1 to 2
seconds. However, there are times that the decoding time drops to 600ms,
which may be caused by the scheduling mechanisms of the Android OS.
We further experimented with changing the scheduling priority of the pro-
cessing thread to the maximum available by the operating system. However,
increasing a thread’s priority proved to reduce the processing time of the
decoding slightly, but it introduced additional jitter to the reception of the
frames. We believe that the additional delay is caused by the fact that the
processing thread gets a similar priority with the camera’s capturing thread,
that provides the captured frames. As a result, we believe that the schedul-
ing mechanism of the operating system is sharing the CPU between the high
priority threads, including the processing thread. We believe that we can
obtain better performance by using a more powerful device with respect to
processing power.

In addition, we noticed that the OpenCV methods require lots of pro-
cessing power and memory. The most time consuming methods are the con-
trast increase and the adaptive thresholding. As a result, we believe that
there is room for improvement when it comes to improving the efficiency of
the image processing techniques.

57

58

Chapter 9

Conclusions

9.1 Conclusions

Recent research has focused on creating high-rate visible light communic-
ation links. Camera-based VLC has shown that it offers a great potential
with respect to applicability, due to the fact that LED lighting and smart-
phones are widely utilized. However, the existing VLC systems assume a
fixed distance between the transmitters and the receivers. Moreover, build-
ing a universal camera-based VLC link is not considered an easy task due
to wide diversity of the hardware capabilities of the smartphones. The most
demanding challenge is synchronizing the transmissions and the receptions.
The problem is caused by the unstable frame rate of the smartphone cam-
eras. Therefore, any camera-based communication link may suffer from
dynamic losses.

In this thesis, we highlight the need for an flexible visible light commu-
nication link that will dynamically adjust its channels capacity based on
the distance between the transmitter and the receiver. Based on that, we
present DynaLight, an adaptive VLC system for smartphones. Our system
is able to estimate the distance between the transmitter and the receiver and
modify its channel capacity. This results in an efficient channel utilization
in different distances.

Furthermore, by applying an image processing enhancement we managed
to improve the transmitter detection mechanism, that was presented in a
recent related work, by 40%, meaning that we increased the feasible channel
capacity of our link. In addition, we identified and avoided effects that are
caused by the limited camera control of low cost smartphones.

Finally, we developed a smartphone application that implements our solu-
tions. During our work we experienced the two main problems of synchron-
ization, which refer to the mixed and missed packet problems, that are intro-
duced by the fluctuating reception rate. We avoid the mixed packet problem
by making sure that from each captured frame a complete packet can be de-

59

coded. As a result, the system’s reliability depends on synchronizing the
packet’s reception. We believe that our observations and contributions will
influence other related projects that will take advantage of the potentials
that the visible light offers in creating communication links.

9.2 Future Work

In the context of this thesis we did not fully evaluate our proposed solution
for the reception synchronization. We observed that our solution has the
ability to reduce the effect of the reception jitter and enable us to further
improve the link’s data rate. By further studying the behavior of the jitter
we may be able to predict the next frame reception or better understand
the causes of reception rate fluctuation. Furthermore, the phone can con-
tinuously monitor the distribution of the jitter values, so as to recalculate
the expected values that are used to reduce the influence of the jitter in-
crease. In that way, the phone can dynamically adjust to the fluctuation of
the frame rate.

Our system is robust to ambient light and this caused by the low ex-
posure settings. We believe that utilizing more than one transmitters will
introduce errors in the decoding because the different bands will collide. We
believe that by utilizing different light colors might be a decent alternative
for separating transmissions. However, this implies that the whole image
processing pipeline has to be reconsidered and modified so as to support
“colored” VLC transmissions.

When it comes to further improvements of the current setup, we believe
that DynaLight’s performance can increase notably by utilizing a more re-
cent smartphone. Being able to execute the image processing pipeline faster
will also enable DynaLight to cope with mobility. This means that trans-
mitter detection could be executed real-time, along with the decoding, so as
to monitor if the transmitter has changed its position.

With respect to improvements to the detection and decoding process, we
believe that OpenCV methods introduce overhead that could be avoided by
implementing methods such as thresholding. A further improvement would
be to also crop the detected transmitter area and process it individually in
order to reduce the computation overhead and memory requirements.

60

Appendix A

Transmitter Experiments

A.1 Android Limitations

One of the initial goals of this project was to create an application that
could use commercial hardware to create simple VLC links. Smartphones
are already equipped with LEDs that could be used in creating VLC links.
In the first phase of this project we experimented with the phone’s flash
light to check if it can be toggled in such a high rate that could be used in
our project. We concluded that this is not an option due to the fact that the
Android operating system does not offer much flexibility when it comes to
modulating the LED in high frequencies. More specifically, we observed an
erratic behavior on the on off pattern when the LED was modulating faster
than 5-7 Hz. We believe that this is mainly caused by the Android Java
layer that does not enable real-time operations. There are several real-time
patches that could be applied to the kernel of the Android OS but it is rather
impractical and out of the scope of the current thesis. We also investigated
using native code to access the LED but to the best of our knowledge, there
is no existing API that could support such operation. Thus, utilizing the
device’s LED is not as trivial as one might consider.

A.2 External Flash Light

One of the initial motivations of the project was to create a commercial
application that will enable smartphones to create flexible visible light com-
munication links. Therefore, we created collaboration with the company
that produces the external flash Iblazr [5] (version 1). This device oper-
ates via the audio jack of the smartphone. By using stereophonic audio
signal we were able to control the behavior of the light. Nevertheless, we
could not reach more than a few hundreds of Hz which again is too limited.
We discussed with the engineers, that created the device, and came to the
conclusion that the problem was caused by the existing firmware that was

61

running on the device, since it was designed as an external flash light and
not as a VLC component. However, the new version of Iblazr extends its
capabilities in terms of connectivity and programmability. It can be con-
trolled via Bluetooth and supports firmware flash. We believe it could assist
in creating commercial multi-transmitter VLC links but is something that
further needs to be investigated.

Based on the above facts, we decided to offload the LED modulation to a
microcontroller (Arduino).

62

Bibliography

[1] Arduino MEGA ADK. http://www.arduino.cc/en/Main/

ArduinoBoardMegaADK. [Online, Accessed May-2015].
[2] ByteLight. http://www.bytelight.com/. [Online, Accessed November-2015].
[3] Diffuser Lens LM1 for Cree MC-E Datasheet. https://www.maritex.com.

pl/media/uploads/products/op/LEDIL-LM1.pdf. [Online, Accessed June-
2015].

[4] Disney Research on Visible Light Communication. http://www.

disneyresearch.com/project/visible-light-communication/. [Online,
Accessed April-2015].

[5] Iblazr. http://iblazr.com/. [Online, Accessed April-2015].
[6] MAX3421E. https://www.maximintegrated.com/en/products/

interface/controllers-expanders/MAX3421E.html. [Online, Accessed
April-2015].

[7] MOSFET IRL1004 Datasheet. http://www.irf.com/product-info/

datasheets/data/irl1004.pdf. [Online, Accessed October-2015].
[8] NPN Switching Transistor 2N3904 Datasheet. https://www.sparkfun.com/

datasheets/Components/2N3904.pdf. [Online, Accessed October-2015].
[9] pureLiFi. http://purelifi.com/. [Online, Accessed November-2015].

[10] XLamp MC-E. http://www.cree.com/LED-Components-and-Modules/

Products/XLamp/Arrays-Directional/XLamp-MCE. [Online, Accessed May-
2015].

[11] Christos Danakis, Mostafa Afgani, Gordon Povey, Ian Underwood, and Harald
Haas. Using a cmos camera sensor for visible light communication. In Globecom
Workshops (GC Wkshps), 2012 IEEE, pages 1244–1248. IEEE, 2012.

[12] Hany Elgala, Raed Mesleh, and Harald Haas. Indoor broadcasting via white
leds and ofdm. Consumer Electronics, IEEE Transactions on, 55(3):1127–
1134, 2009.

[13] Domenico Giustiniano, Nils Ole Tippenhauer, and Stefan Mangold. Low-
complexity visible light networking with led-to-led communication. In Wireless
Days (WD), 2012 IFIP, pages 1–8. IEEE, 2012.

[14] J Grubor, OC Jamett, JW Walewski, S Randel, and K-D Langer. High-
speed wireless indoor communication via visible light. ITG-Fachbericht-
Breitbandversorgung in Deutschland-Vielfalt für alle?, 2007.

[15] Jelena Grubor, Sian Chong Jeffrey Lee, Klaus-Dieter Langer, Ton Koonen,
and Joachim W Walewski. Wireless high-speed data transmission with phos-
phorescent white-light leds. ECOC 2007, 2007.

[16] Tian Hao, Ruogu Zhou, and Guoliang Xing. Cobra: color barcode streaming
for smartphone systems. In Proceedings of the 10th international conference
on Mobile systems, applications, and services, pages 85–98. ACM, 2012.

63

http://www.arduino.cc/en/Main/ArduinoBoardMegaADK
http://www.arduino.cc/en/Main/ArduinoBoardMegaADK
http://www.bytelight.com/
https://www.maritex.com.pl/media/uploads/products/op/LEDIL-LM1.pdf
https://www.maritex.com.pl/media/uploads/products/op/LEDIL-LM1.pdf
http://www.disneyresearch.com/project/visible-light-communication/
http://www.disneyresearch.com/project/visible-light-communication/
http://iblazr.com/
https://www.maximintegrated.com/en/products/interface/controllers-expanders/MAX3421E.html
https://www.maximintegrated.com/en/products/interface/controllers-expanders/MAX3421E.html
http://www.irf.com/product-info/datasheets/data/irl1004.pdf
http://www.irf.com/product-info/datasheets/data/irl1004.pdf
https://www.sparkfun.com/datasheets/Components/2N3904.pdf
https://www.sparkfun.com/datasheets/Components/2N3904.pdf
http://purelifi.com/
http://www.cree.com/LED-Components-and-Modules/Products/XLamp/Arrays-Directional/XLamp-MCE
http://www.cree.com/LED-Components-and-Modules/Products/XLamp/Arrays-Directional/XLamp-MCE

[17] Harald Haas. High-speed wireless networking using visible light. https://

spie.org/x93593.xml. [Online, Accessed November-2015].
[18] Wenjun Hu, Jingshu Mao, Zihui Huang, Yiqing Xue, Junfeng She, Kaigui

Bian, and Guobin Shen. Strata: layered coding for scalable visual communic-
ation. In Proceedings of the 20th annual international conference on Mobile
computing and networking, pages 79–90. ACM, 2014.

[19] Lennart Pieter Klaver. Design of a network stack for directional visible light
communication. ratio, 3:4, 2014.

[20] Toshihiko Komine and Masao Nakagawa. Fundamental analysis for visible-
light communication system using led lights. Consumer Electronics, IEEE
Transactions on, 50(1):100–107, 2004.

[21] Ye-Sheng Kuo, Pat Pannuto, Ko-Jen Hsiao, and Prabal Dutta. Luxapose:
Indoor positioning with mobile phones and visible light. In Proceedings of the
20th annual international conference on Mobile computing and networking,
pages 447–458. ACM, 2014.

[22] Hui-Yu Lee, Hao-Min Lin, Yu-Lin Wei, Hsin-I Wu, Hsin-Mu Tsai, and Kate
Ching-Ju Lin. Rollinglight: Enabling line-of-sight light-to-camera communic-
ations. In Proceedings of the 13th Annual International Conference on Mobile
Systems, Applications, and Services, pages 167–180. ACM, 2015.

[23] Liqun Li, Pan Hu, Chunyi Peng, Guobin Shen, and Feng Zhao. Epsilon:
A visible light based positioning system. In 11th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 14), pages 331–343.
USENIX Association, 2014.

[24] Edmundo Monteiro and Steve Hranilovic. Constellation design for color-shift
keying using interior point methods. In Globecom Workshops (GC Wkshps),
2012 IEEE, pages 1224–1228. IEEE, 2012.

[25] Edmundo Monteiro and Steve Hranilovic. Design and implementation of color-
shift keying for visible light communications. Lightwave Technology, Journal
of, 32(10):2053–2060, 2014.

[26] Niranjini Rajagopal, Patrick Lazik, and Anthony Rowe. Visual light land-
marks for mobile devices. In Proceedings of the 13th international symposium
on Information processing in sensor networks, pages 249–260. IEEE Press,
2014.

[27] Sridhar Rajagopal, Richard D Roberts, and Sang-Kyu Lim. Ieee 802.15. 7 vis-
ible light communication: modulation schemes and dimming support. Com-
munications Magazine, IEEE, 50(3):72–82, 2012.

[28] Richard D Roberts. Undersampled frequency shift on-off keying (ufsook) for
camera communications (camcom). In Wireless and Optical Communication
Conference (WOCC), 2013 22nd, pages 645–648. IEEE, 2013.

[29] Stefan Schmid, Giorgio Corbellini, Stefan Mangold, and Thomas R Gross.
Led-to-led visible light communication networks. In Proceedings of the four-
teenth ACM international symposium on Mobile ad hoc networking and com-
puting, pages 1–10. ACM, 2013.

[30] Yuichi TANAKA, Toshihiko Komine, Shinichiro Haruyama, and Masao Nak-
agawa. Indoor visible communication utilizing plural white leds as lighting.
In Personal, Indoor and Mobile Radio Communications, 2001 12th IEEE In-
ternational Symposium on, volume 2, pages F–81. IEEE, 2001.

[31] Qing Wang and Domenico Giustiniano. Communication networks of visible
light emitting diodes with intra-frame bidirectional transmission. In Proceed-
ings of the 10th ACM International on Conference on emerging Networking
Experiments and Technologies, pages 21–28. ACM, 2014.

64

https://spie.org/x93593.xml
https://spie.org/x93593.xml

[32] Qing Wang, Domenico Giustiniano, and Daniele Puccinelli. An open source
research platform for embedded visible light networking. Wireless Commu-
nications, IEEE, 22(2):94–100, 2015.

[33] Grace Woo, Andrew Lippman, and Ramesh Raskar. Vrcodes: Unobtrusive
and active visual codes for interaction by exploiting rolling shutter. In Mixed
and Augmented Reality (ISMAR), 2012 IEEE International Symposium on,
pages 59–64. IEEE, 2012.

[34] Zhice Yang, Zeyu Wang, Jiansong Zhang, Chenyu Huang, and Qian Zhang.
Wearables can afford: Light-weight indoor positioning with visible light. In
Proceedings of the 13th Annual International Conference on Mobile Systems,
Applications, and Services, pages 317–330. ACM, 2015.

65

	Preface
	Introduction
	Motivation
	Contributions
	Thesis Organization

	Background
	Transmitter-Receiver Alternatives
	Rolling Shutter
	DynaLight's Requirements

	Related Work
	VLC projects using LEDs or Photodiodes
	Camera-based VLC
	LED to Camera Communication
	Screen to Camera Communication
	Indoor Localization
	Summary

	Overview
	System Components
	Basic Functionalities

	Transmitter
	Modulation Technique
	Packet Structure and Encoding
	Implementation Details

	Receiver
	Camera Control
	Image Processing
	Transmitter Detection
	Data Decoding

	Implementation Details
	Parameter Values
	Maximum Modulation Frequency

	Dynamic Link
	Dynamic Channel Capacity
	Distance and Blob Size
	Packet Size Calculation

	Smartphone Application
	Overview
	Synchronization

	Evaluation
	Adapting to Variable Distance
	Blob Size vs Distance
	Number of Symbols vs Distance
	DynaLight's Adaptive Channel Capacity

	Decoding
	Overcoming Over-exposure Effects
	Influence of Ambient Light
	Execution Time

	Conclusions
	Conclusions
	Future Work

	Appendices
	Transmitter Experiments
	Android Limitations
	External Flash Light

