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Abstract

This thesis details the implementation and evaluation of seven machine learning classifiers for the detection of
Autism Spectrum Disorder (ASD) using resting-state functional MRI (rs-fMRI) data from the ABIDE I dataset.
Two feature representations were compared: traditional Pearson correlation features and graph-based features.
Logistic Regression (LR), Support Vector Machine (SVM), and Multi-Layer Perceptron (MLP) achieved the
highest performance on Pearson correlation features, satisfying all predefined non-functional requirements, with
average balanced accuracies up to 64.4% (SVM) and standard deviations below 2.5%. Linear Discriminant
Analysis (LDA) narrowly missed the standard deviation constraint with 0.5%.

In contrast to the Pearson correlation features, graph-based features yielded consistently lower balanced
accuracies, typically ranging from 54% to 59% across classifiers, underscoring their limited informativeness in
the current implementation. Feature importance analysis on Pearson correlation data revealed connections
between brain regions involving the inferior occipital gyrus, middle temporal pole, precuneus, and cerebellum as
consistently influential for classification.

To facilitate neuroscientific exploration, an interactive tool, NASDA (Neuroimaging Autism Spectrum Dis-
order Analyser), was developed and demonstrated to fulfil all functional and non-functional requirements for
Pearson correlation based analysis using LR as the recommended classification model.

These results highlight the dependency of classifiers performance on the quality of input features and con-
tribute to ongoing efforts to localise robust neurological biomarkers for ASD.
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1 Introduction

According to Statistic Netherlands (CBS), approximately 3% of the Dutch population reported having Autism
Spectrum Disorder (ASD) in the 2022-2024 period [1]. ASD is a complex condition that affects brain
development. People with ASD experience challenges with social interaction, communication, and may engage
in repetitive behaviours, often referred to as "stimming". The presentation of these traits vary widely, making
ASD a heterogeneous condition. Comorbid mental health issues are also highly prevalent in the ASD
population. Among adults with ASD, the pooled estimates indicated a 27% current and 42% lifetime
prevalence for anxiety disorder, and 23% current and 37% lifetime prevalence for depressive disorder [2]. These
elevated rates highlight the importance of early diagnosis to ensure that individuals with ASD can receive
proper support to improve their quality of life.

Currently, ASD diagnosis primarily relies on behavioural assessments based on criteria outlined in the
Diagnostic and Statistical Manual of Mental Disorders (DSM-5) [3]. Although this is effective in many cases, it
may fall short when symptoms overlap with other conditions. As a result, there is a growing interest in
identifying neurobiological markers of ASD using non-invasive brain imaging techniques.

A promising technique is resting state functional Magnetic Resonance Imaging (rs-fMRI), which measures brain
activity while the subject is not engaged in any specific task. From this data, one can compute functional
connectivity (FC), which is defined as the correlation between the blood-oxygen-level-dependent (BOLD) signal
time series from different brain regions. FC quantifies how strongly different areas of the brain are functionally
linked. It has been hypothesised that individuals with ASD exhibit altered patterns of FC [4], which could
potentially serve as a basis for identifying neural biomarkers capable of distinguishing between individual with
ASD and non-autistic (allistic) individuals.

To explore these potential biomarkers, our study uses machine learning methods to classify between individuals
with ASD and allistic/typical control (TC) individuals. The models are then analysed to identify which brain
regions contributed most strongly to their predictions. These regions may offer insight into the underlying
neurobiology of ASD and highlight potential biomarkers for further neuroscientific research.

A key challenge in neuroimaging-based ASD research has been the limited availability of a large-scale rs-fMRI
dataset with reliable diagnostic labels. To address this, the Autism Brain Imaging Data Exchange I (ABIDE I)
initiative was launched in 2014 [5]. ABIDE I aggregated existing rs-fMRI data from 17 international research
sites to facilitate a large-scale rs-fMRI dataset.

The various acquisition sites differ in scanner hardware, acquisition protocols, and participant demographics.
Although this initiative dramatically increased the availability of labelled rs-fMRI data for ASD research, it
also introduced a significant degree of heterogeneity. This heterogeneity poses a major challenge for machine
learning models, as it becomes difficult to determine whether the observed patterns in the data reflect true
neurodevelopmental differences related to ASD or site-specific confounding effects.

1.1 Research Goals and Scope

The aim of our part of the research is to build reliable models responsible for the classification task. From the
classification we can trace back which brain regions or connections between them were important in the
decision-making. In doing so, a potential neural biomarker can be found. The selection of these models will be
discussed in Section 3.4. The performance of the models applied will be evaluated based on accuracy,
interpretability and generalisability and are aimed to satisfy the non-functional requirements discussed in
Chapter 2.

In addition, we investigate two other methods to assist rs-fMRI based ASD research. Firstly, the contribution
of graph-based features to the model performance will be assessed in comparison to the traditional features.
Secondly, we will deliver an interactive tool to control the pipeline and visualise the regions of interest (ROIs)
in an intuitively and interpretable manner.

This research investigates both single-site and multi-site classification of ASD as both come with their own
challenges. For single-site classification, the limited data availability poses a real challenge, whereas multi-site
classification is more difficult due to the site heterogeneity.



1.2 Related Work

Machine learning applied to ASD classification using rs-fMRI has progressed steadily over the past decade.
Table 1.1 summarises key studies, focussing on dataset size, feature types, feature selection methods, classifiers,
and performance.

Table 1.1: A summary of studies on Autism Spectrum Disorder (ASD) multi-site classification using resting-state functional
MRIs (rs-fMRIs) and machine learning. Each study is characterised by the number of ASD and typical control (TC)
participants, the type of features used (functional connectivity or graph-based), feature selection methods (if any), machine
learning classifiers employed, and the reported classification accuracy. Functional connectivity features were typically
computed between brain regions defined by parcellation atlases, most commonly the Automated Anatomical Labelling
(AAL) and Craddock 200 (CC200) atlases [16], [17]. The studies span a range of approaches from traditional interpretable
models to deep learning. Deep learning approaches generally achieved higher classification accuracy, but often involve
greater computational cost and reduced interpretability. All studies used the ABIDE I dataset.

Participants Features Feature Selection Classifier Accuracy
[6] 447 ASD / 517 TC FC between 7266 ROIs None Not specified 60%
[7] 403 ASD / 468 TC FC between ROIs (3 atlases) ICA, MSDL SVC, ridge regression 66.8%
[8] 505 ASD / 530 TC FC between 200 ROIs (CC200) DAE DNN classifier 70%
[9] 505 ASD /530 TC FC between ROIs (AAL) None Ridge, LR, -SVM, k-SVM  65.4-66.2%
[10] 505 ASD / 530 TC FC between 200 ROIs (CC200) AE Single-layer perceptron 70.3%
[11] 403 ASD / 468 TC Laplacian eigenvalues and centrality ~SBS LR, LDA, KNN, SVM, NN  71.7-77.7%
[12] 506 ASD / 548 TC FC between 200 ROIs (CC200) Extra-trees 1-SVM 72.2%
[13] 505 ASD / 530 TC FC between 116 ROIs (AAL) None DNN classifier 74%
[14] 493 ASD / 530 TC  Graph features PCA Multilayer perceptron 64.4%
[15] 306 ASD / 350 TC FC between 237 ROIs CRF RF 62.5%

Abbreviations: TC: typical control; ROI: region of interest; AAL: Automated Anatomical Labeling; FC: functional connectivity;

SVM: Support Vector Machine; DAE: denoising auto encoder; DNN: deep neural network; AE: auto encoder; SBS: sequential backward
feature selection; PCA: principal component analysis; ICA: independent component analysis; MSDL: multi-subject dictionary learning; LR:
logistic regression; CRF, conditional random forest.

Early work by Nielsen et al. has shown the feasibility of using FC for ASD classification using the ABIDE I
dataset, achieving an accuracy of approximately 60% through leave-one-out cross validation. However, the
specific classifiers used in their study were not detailed [6].

Without using feature selection, Yang et al. assessed the performance of several interpretable models, including
ridge classifier, Logistic Regression (LR), linear Support Vector Machine (1-SVM), and kernel SVM (k-SVM) on
FC features derived from the AAL atlas. They obtained accuracies ranging from 65.4% to 66.2%, with their LR
model yielding the best accuracy [9].

To overcome the performance limitations of interpretable models, several studies have adopted deep learning.
Heinsfeld et al. implemented denoising auto encoders (DAEs) to learn latent representations of the full
connectivity features extracted from 200 ROIs (19900 features). These were used as input to an MLP classifier.
Their method produced an accuracy of 70% on the ABIDE I dataset. However, the reported training time for
their model was approximately 33 hours [8]. Similarly, Eslami et al. proposed their model called ASD-DiagNet,
where they applied autoencoding and used a single layer perceptron. They used a data augmentation technique
inspired by Synthetic Minority Over-sampling Technique (SMOTE) to create enough data for their model, to
prevent it from overfitting. Their proposed model achieved an accuracy of 69.4% without augmentation and an
accuracy of 70.3% with augmentation on the CC200 atlas. They reported a running time of 41 minutes for
ASD-DiagNet with augmentation, and a running time of 20 minutes without augmentation [10].

Recent work has explored graph-theoretical features. Mostafa et al. extracted Laplacian eigenvalues from 264
regions and three features by network centralities. With backward sequential feature selection, 64 features were
selected. Their highest obtained accuracy was 77.7% with the LDA model [11]. Kazeminejad and Sotero
discussed the role of anti-correlation in graph-theory based ASD classification and used graph features with a
multilayer perceptron achieving 64.4% accuracy [14].

Liu et al. used feature selection via Extra-Trees to train an I-SVM on FC features derived from the CC200
atlas, achieving 72.2% accuracy [12]. Reiter et al. examined the effect of heterogeneity on classification
performance. FC features were extracted from 237 ROIs and conditional random forests was implemented for
feature selection in combination with an RF classifier. Their approach achieved an accuracy of 62.5% on full



heterogeneity and 65% on reduced gender heterogeneity [15].

Abraham et al. evaluated ICA and MSDL and achieved 66.8% accuracy using SVMs and ridge regression [7].
These studies collectively show that interpretable models without feature selection or harmonisation typically
yield accuracies in the 60-66% range. Accuracy can be improved using deep learning or feature selection,
though often at the cost of interpretability and running time. Graph features leveraging topological metrics
show promising performance and neuroscientific relevance. Lastly, multisite heterogeneity continues to limit
generalisability, requiring harmonisation or domain adaptation strategies.

1.3 Research Questions

To structure our study, we address the following research questions:
1. Which classifiers and feature types offer the best trade-off between accuracy and interpretability?

2. How can we identify brain regions that are both consistently important in the prediction across classifiers
and experimental folds and how are these identified regions supported by established neuroscientific
findings in ASD?

3. How can we develop an intuitive interface to control the pipeline and visualise the resulting ROIs and
model performance to support further neuroscientific analysis?

4. How can we improve the generalisability of our classifiers?

5. What evaluation methods best capture meaningful classifier performance beyond average accuracy,
including site-specific, sex-based, or age-based assessments?

1.4 Thesis Outline

This thesis is organised as follows. Chapter 2 presents the programme of requirements. Chapter 3 details the
methodology, including data preprocessing, feature extraction, classification methods, evaluation strategies,
model interpretation, and lastly the graphical user interface. Chapter 4 focusses on the results from the
single-site classification experiments on Pearson correlation features. Chapter 5 addresses the multi-site
classification on Pearson correlation features, discussing harmonisation and generalisation across sites.

Chapter 6 focusses on the feature importance analysis on Pearson correlation features. Chap 7 focusses on the
results from multi-site classification on graph-based features designed by the Feature Design subgroup. Chapter
8 introduces our graphical user interface. In Chapter 9 we answer the research outlined in Section 1.3. Lastly,
Chapter 10 concludes this research with final remarks and directions for future research.



2 Programme of Requirements

Our tool will be used for neuroscientific research to find potential biomarkers. To offer reliable results, we have
defined functional and non-functional requirements for our system. The performance metrics we want to obtain
with our classifiers are based on what has been achieved in previous studies [6], [9], [14].

Functional Requirements

FR1 The system must classify between allism and autism

FR2 The system must highlight the brain regions involved in the decision-making.
FR3 The system must use the ABIDE dataset.

FR4 The system must allow users to select different features.

FR5 The system must allow users to select different classifiers.

FR6 The system must allow users to select different graph inference algorithms.

FRT7 The system must provide performance metrics.

Non-Functional Requirements

NFR1 The system must achieve a minimum accuracy of 62% before feature selection.

NFR2 The system must achieve a minimum sensitivity of 58% before feature selection.

NFR3 The system must achieve a minimum specificity of 65% before feature selection.

NFRA4 The system must achieve a minimum AUROC of 0.65 before feature selection.

NFR5 The system must achieve a minimum balanced accuracy of 62% before feature selection.

NFR6 The standard deviation (SD) of each performance metric across 5-fold stratified cross-validation must
not exceed 5 percentage points.

NFR7 The computation time of a single execution of 5-fold cross-validation should stay below 40 minutes.
NFRS8 The system must be open source.

NFR9 The system must be intuitive.



3 Methodology

In this research the Autism Brain Imaging Data Exchange I (ABIDE I) dataset is utilised for testing and
training [5]. The dataset contains 1112 subjects in total. Tables A.1 and A.2 in Appendix A contain subject
information of the ABIDE I dataset and the scanners used by the acquisition sites, respectively.

3.1 Neuroimaging Data Preprocessing

The ABIDE I dataset was preprocessed using the Configurable Pipeline for the Analysis of Connectomes
(CPAC) [18], a standardised pipeline that includes motion correction, skull stripping, intensity normalisation,
nuisance regression, band-pass filtering, and spatial normalisation. See Appendix A.1 for the complete list of
preprocessing steps.

After preprocessing and filtering (due to motion threshold, missing information, phenotypic file issues, and
quality assurance), the dataset was reduced from 1112 to 871 usable subjects. This reduction is consistent with
previous studies using ABIDE I data, which similarly report substantial loss of subjects due to

preprocessing [7], [11]. See Appendix A.2 for exact counts and exclusion rationale. Table A.3 in Appendix A
provides the demographic characteristics of the resulting cohort after preprocessing.

Our preprocessing choices were influenced by the need for consistency with the Feature Design subgroup, whose
features were derived using bandpass filtering (BPF) without global signal regression (GSR) [19]. To ensure a
fair comparison between Pearson correlation and graph-based features, we adopted the same preprocessing
pipeline. This decision was made to prevent the confounding effects that different preprocessing steps might
introduce. In this manner, we can maintain the integrity of our comparative analyses.

3.2 Feature Extraction

After preprocessing, two types of features were extracted for the classification of ASD. First, we extracted
Pearson correlation features, which serve as a baseline in this study. Second, the feature design subgroup
developed graph-based features. These two were compared to assess whether graph features provide added
discriminative power beyond conventional correlation based features.

3.2.1 Pearson Correlation Features

In Chapter 4 to Chapter 6, we will focus on the classification of ASD using Pearson correlation features. This is
a way to represent functional connectivity (FC) in rs-fMRI studies. These features are widely used due to their
simplicity and proven effectiveness in previous ASD studies [§8], [9]. We computed the Pearson correlation
between the mean blood-oxygen-level-dependent (BOLD) time series of every pair of regions of interest (ROIs).
The brain was parcellated using the Automated Anatomical Labeling (AAL) atlas, which defines 116 ROIs

[20, 16]. Pearson correlation measures the linear relationship between the time series of two brain regions. In
FC research, it is commonly assumed that if two regions are temporally coactivated, they may be functionally
connected [21]. This results in a symmetric FC matrix, from which we extracted (1;6) = 6670 unique features
per subject by taking the upper triangle (excluding the diagonal). To preserve interpretability, the features
were named based on the AAL region indices of the connected ROI pair. These indices were obtained using
nilearn’s fetch_aal_atlas() [22] and can be mapped back to anatomical labels. For example, the index 2001
corresponds to the region "Precentral L". This mapping facilitates the identification of important brain
connections during feature importance analysis, thereby supporting the system’s ability to highlight the brain
regions involved in the classification as required by FR2. A complete list of AAL index-to-label mappings is
provided in Appendix B.

3.2.2 Graph Features from Feature Design

In Chapter 7, we will focus on the classification of ASD using graph-based features provided by the Feature
Design subgroup. These features were extracted by first applying Smith Independent Component Analysis
(ICA) or group ICA to reduce the dimensionality of the rs-fMRI data. Then, based on those ICA components,
a variety of graph inference techniques were used to construct brain connectivity graphs [19]. These included
both statistical inference methods and graph signal processing (GSP)-based approaches.



The statistical methods consisted of sample covariance, Pearson correlation, partial correlation, mutual
information, and Granger causality. The GSP-based approaches included rSpecT (normalized Laplacian and
adjacency) and rLogSpecT, a variation that includes a log barrier. The exact distinction between these methods,
along with the overall feature extraction process, is detailed in the thesis of the Feature Design subgroup [19].
Most graph inference methods relied on the estimation of the sample covariance matrix as input, with the
exception of Pearson correlation, mutual information, and Granger causality. To this end, seven covariance
estimation methods were implemented: direct empirical estimation, sliding-window averaging, Ledoit-Wolf
shrinkage, graphical Lasso (Glasso), time-varying Glasso, vector autoregression (VAR(k)), and nonlinear VAR
(NVAR).

In total, we received 29 different feature matrices generated from various combinations of inference methods and
covariance estimation techniques. To systematically manage these datasets and clearly indicate the inference
configuration used to generate them, we assigned a unique identifier to each feature matrix. Each matrix has a
shape of (n x m), where n denotes the number of samples (subjects) and m the number of features, where all
features are scalars. In addition, the specific features varied per combination of ICA, graph inference, and
covariance estimation methods applied. A detailed overview of the ICA, graph inference, covariance estimation
methods, and corresponding features for each matrix is provided in Table C.1 in Appendix C.2.

3.3 Feature Preprocessing

Once the features were extracted, we performed the preprocessing steps necessary for classification. This
includes mean imputation for the missing values and feature standardisation by removing the mean and scaling
to unit variance.

3.3.1 Harmonisation

One of the key challenges in multi-site classification is the heterogeneity introduced by variations in acquisition
protocols, population demographics, and scanner hardware. This can lead to site-specific biases in the extracted
features, which in turn can lower model performance and hinder generalisability across acquisition sites [23]. To
mitigate these undesirable site effects, we explored statistical harmonisation using the NeuroHarmonize Python
package [24], which is based on ComBat, a batch effect correction tool that removes inter-site technical
variability, while preserving inter-site biological variability [25]. ComBat has also been successfully applied to
neuroimaging [26]. In our study, harmonisation was applied to the Pearson correlation features prior to
classification, in particular for the multi-site classification settings. NeuroHarmonize adjusts for site differences
by fitting a location-scale model that estimates and removes additive and multiplicative site effects [24], [27].
Previous work has demonstrated that ComBat-based harmonisation can enhance classifier performance in
related applications, such as rs-fMRI-based detection of Major Depressive Disorder (MDD) [28]. However, a
limitation of ComBat-based harmonisation is that it requires all sites present in the test set to also be observed
during training. To satisfy this assumption, we excluded the CMU site from our experiments due to its low
number of subjects, which made it likely to be omitted from training folds during cross-validation.

Harmonisation was applied exclusively to the Pearson correlation features. The graph-based features provided
by the Feature Design subgroup were not harmonised, as they were derived from a complex pipeline involving
dimensionality reduction, diverse graph inference methods, and graph-theoretic transformations. As a result,
the extracted features represent higher-level abstractions, rather than direct measurements from the raw
rs-fMRI signals. Since ComBat-based harmonisation assumes additive and multiplicative site effects in the
original input features, its application to these graph features would not be appropriate.

3.4 Classification methods

To detect ASD patterns from functional brain features, reliable classification models are needed. We will
discuss all classification methods used in this research below. Given the complexity of the underlying brain
connectivity patterns, a range of both linear and non-linear classifiers was considered. Each model was
implemented using the scikit-learn library [29], and where appropriate, tuned to optimise performance.
The following subsections detail the mathematical foundations, practical implementation, and hyperparameter
configurations of each classifier: Logistic Regression (LR), Support Vector Machines (SVM), Decision Trees



(DT), Random Forests (RF), Multi-Layer Perceptrons (MLP), Linear Discriminant Analysis (LDA), and
K-Nearest Neighbours (KNN).

For all classifiers, we let the training samples be represented as (x1,y1), (€2,¥2),- .-, (Tm, Ym ), where x; € R™
and y; € {0,1}, the vector w € R™ represent the weights and wg € R the bias of the model.

3.4.1 Logistic Regression

Logistic Regression is a linear classifier widely used in binary classification tasks, including ASD
classification [9], [L1]. In this research, regularised Logistic Regression has been applied with an L2 penalty to
prevent overfitting. The model solves the following optimisation problem [29]:

m

min > s [=pilog (9 ) — (1 = ) log (1= p (@:))] + o ol

w

1
~ 1+exp (—x?w - wo)

m
S - E Siy
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where C' is the inverse regularisation strength and s; corresponds to the weights assigned to a specific training
sample (the vector s is formed by element-wise multiplication of the class weights and sample weights). In our
model, we did not apply any class or sample weighting. All classes were assigned equal importance (class weight
set to one) and all training samples were treated equally (unit sample weights).

st. p(x;) (3.1)

This optimisation problem was solved using the limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS)
algorithm [30], which is well suited for high-dimensional problems due to its low memory usage and fast
convergence properties.

3.4.2 Support Vector Machine

Support Vector Machines are supervised learning models that aim to find the optimal separating hyperplane
between two classes in a high-dimensional feature space [31]. The optimal hyperplane is the one that maximises
the margin between the classes, defined as the distance to the nearest support vectors of said classes. The SVM
solves the following optimisation problem [29]:

1 =
min —w' w+C is i=1,....,m
R P
" . (3.2)
st yi(w d(xi) +wo) 21 —¢, i=1...,m
¢G>0, i=1,...,m

where C' acts as an inverse regularisation parameter that controls the trade-off between maximising the margin
and penalising classification errors, ¢(z;) denotes the implicit mapping to a higher-dimensional space induced
by the kernel functions, given in (3.3)—(3.6) and ¢; is the maximum distance of samples from their correct
margin boundary allowed if not all samples can be correctly separated [29].

Hyperparameter Tuning for SVM

For the SVM given by (3.2), we evaluated kernel types linear (3.3), radial basis function (RBF) (3.4),
polynomial (3.5), and sigmoid (3.6) [29] using hyperparameter tuning via a randomised grid search. Key
hyperparameters included the regularisation parameter C, the kernel-specific parameter =y, the degree d, and
the kernel coefficient r.

Linear: o(z) = (x,2) (3.3) Poly: b(z) = exp(y(z,2') +r)° (3.5)
RBF: dz) = (v <x7x’>_|_7n)d (3.4) Sigmoid: ¢(z) = tanh (y {(z,2') + 1) (3.6)

where 2’ € R™ is your test sample that gets compared to all z from the training set by the kernel function using
the "kernel trick" [32].



3.4.3 Tree Based Methods

Both Decision Tree and Random Forest were incorporated in our analysis. Decision Trees are non-parametric
models that recursively partition the feature space to learn decision boundaries.

Let @; € R™ represent the subset of training vectors at a node I, with n; samples. If for each candidate split
0 = (j, 1), consisting of a feature j and threshold ¢;, partitions the subset into the new QI(6) and Q}'="(0)
subsets, then the Decision Tree can be optimised with the optimisation problem below [29].

nleft nright .
min - G(Qu,0) = “L-H (QI™(9)) + “L—H (Q}*"(9))
0 ny ny
st Q0) ={() [2; <t} (3.7)
(0) = Qu\ QD)
0= (j,t1),
where H () is the applied Gini or Entropy function and n!°f and nlright refer to the number samples of the

resulting Q!¢ (9) and Q;ight(ﬁ) subsets, respectively. Decision Trees are highly interpretable, yet prone to
overfitting if not tuned accordingly, especially for high-dimensional problems.

Hyperparameter Tuning for Decision Tree

To prevent overfitting we tuned our tree’s hyperparameters max_depth, min_samples_split,
min_samples_leaf and the criterion. The max_depth regulated the maximum depth of the tree, the
min_samples_split and min_samples_leaf regulated the minimum number of samples required to cause a
split or leaf. The criterion refers to the H (-) applied and is tuned to either the Gini (3.8) or the entropy
(3.9) [29].

H(Qi) = Zplk(l — Dik), (3.8)
%

H(Qi) = - Zplk log(pir), (3.9)
k
where
ik = E Z I(y = k). (3.10)
K YyEQL

Random Forest

With the Random Forest model we aimed to reduce variance with a possible slight bias trade-off by introducing
randomness. The Random Forest model is an ensemble of a large number of trees that averages the predictions
to reduce overfitting. All trees were modelled to randomised sets of samples and features, to create a large
variety of trees.

In accordance with the performance constraint defined in requirement NFR'7, which states that the
computation time for a single execution of 5-fold cross-validation must not exceed 40 minutes, hyperparameter
tuning for the Random Forest model was omitted. Instead, the default parameter settings provided by
scikit-learn were employed to ensure conformance to the specified time constraint. These defaults include:
n_estimators=100, criterion=’gini’, max_depth=None, min_samples_split=2, min_samples_leaf=1,
max_features=’sqrt’.

3.4.4 Multi-Layer Perceptron

A Multi-Layer Perceptron (MLP) is a neural network capable of modelling non-linear decision boundaries. It
consists of one or more hidden layers of neurons, where each neuron performs a transformation followed by a
non-linear activation function. For our MLP in most cases, a single hidden layer was used, making it the most



simplistic form of MLP while still capable of learning non-linear patterns in the data. However, in a few rare
cases, hyperparameter tuning did result in a double hidden layer. The one-layer MLP learns the function [29]

f(x) = dg(w"z + wo) + do, (3.11)

where w € R™ and w € R represent the weights of the input and hidden layers, respectively, and wg, wy € R are
the biases added to the hidden layer and output layer, respectively. The function ¢(-) : R — R represents the
activation function, which is set either to the hyperbolic tangent (3.12) or the Rectified Linear Unit (ReLU)
function (3.13) [29].

g(z) = —— (3.12) g(z) = max(0, z) (3.13)

Hyperparameter Tuning for MLP

We tuned scikit-learn’s MLPClassifier’s number of neurons, activation function, regularisation term alpha
and initial learning rate learning_rate_init. The solver was also varied between the options sgd and adam.
For the hidden layers, the tuner compared between a layer of 50 or 100 neurons or the use of both layers
sequentially.

3.4.5 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) is a classification method derived from a probabilistic generative model.
According to [29], it models the conditional density P(x | y = k) for each class k as a multivariate Gaussian
distribution. Using Bayes’ theorem, the posterior probability of a class given a sample = € R™ is given by:

P(x|y=Fk)P(y=k)

Ply=k = 3.14

(y="k|w) e (3.14)
The prediction ¢ is made by assigning x to the class k that maximises this posterior probability. Thus:

g = arg max Ply=k|xz)= arg max Pl |y=k)Ply=k). (3.15)

For LDA, the class-conditional densities are modelled as multivariate Gaussians with the assumption that all
classes share the same covariance matrix 3 = X:

AN 1 1 Ty—1
Plx|y=Fk) = S exp <2(x — ) X (- Nk)) (3.16)
which gives
1
logP(y =k |z) = —5(.23 — ) TZ " (& — pp) +log P(y = k) + Cst, (3.17)

where the constant term Cst corresponds to the constants from the Gaussian that are neglectable for the
maximisation of the log posterior. The log posterior (3.17) is equivalent to a linear function of x, and can be
rewritten [33] as:

log P(y = k | ©) = w} x + wyo + Cst, (3.18)
where
—1 1 Tws—1
wp =X""lk, Wgo = —5/%2 pi +log Py = k).
Because of the shared covariance assumption, LDA yields linear decision surfaces and is therefore highly

interpretable. For our LDA we implemented scikit-learn’s LinearDiscriminantAnalysis with default
settings. Because the model has only few hyperparameters, no tuning was required.



3.4.6 K-Nearest Neighbours

The k-Nearest Neighbours algorithm is an instance-based learning method using majority voting, therefore
there is no general internal model. A sample is assigned the most common label among its k& nearest neighbours
from the training set, where k is a predefined integer, set to 5. Larger values of k could be used to suppress
noise but compromise strict boundaries [29].

The simplicity and interpretability of KNN make it an appealing classifier, especially when the decision
boundary is expected to be non-linear. However, its performance can degrade in high-dimensional spaces due to
the curse of dimensionality, and its classification time scales with the size of the training set.

3.5 Evaluation strategies

3.5.1 Stratified 5-fold cross validation

To evaluate the performance of the classifiers in a statistically robust and reproducible way, we used stratified
5-fold cross-validation (CV) throughout most of our experiments. In this strategy, the dataset is divided into
five folds, such that each fold maintains the same class distribution (i.e., proportion of ASD and TC) as the full
dataset. Each fold is used once as a test set, while the remaining four serve as training data. We report the
average accuracy across folds using multiple metrics: accuracy, sensitivity, specificity, balanced accuracy, and
the area under the receiver operating characteristic curve (AUROC). See Appendix D for formal definitions of
these metrics.

To establish a baseline for classifier performance, we implemented a dummy classifier using scikit-learn’s
DummyClassifier with the strategy=’stratified’ option. This classifier generates predictions that respect
the class distribution of the training set but does not make use of the input features. Comparing our models
against this baseline allows us to determine whether they have learned meaningful patterns or whether they are
merely exploiting imbalance in the dataset. Performance metrics were computed using the same
cross-validation setup and reported for overall performance only. Subgroup-specific evaluations (described
below) were not applied to the dummy classifier, as its predictions are not based on input data and would not
yield meaningful subgroup-specific insights.

To further understand the behaviour of the models across relevant subpopulations, we included
subgroup-specific evaluations:

e Per-site: evaluates how performance varies across the different acquisition locations. This may help in
identifying potential site-overfitting or domain shifts.

e Per-sex: accounts for the known sex-based differences in ASD presentation. This may help in detecting
classifier bias and evaluating fairness.

e Per-age: since neurodevelopment changes with age, we grouped participants into meaningful age bins.
Namely, 0-11, 12-18, 19-30, and 30+. We evaluated the performance within each group. These groups
reflect key stages in brain development, especially within the context of ASD. This choice was supported
by Guo et al., who showed that individuals with ASD exhibit atypical developmental trajectories of local
spontaneous brain activity across childhood (0-11), adolescence (12-18), and adulthood (19+) [34]. We
further divided the adult group into 19-30 and 30+ based on the findings by Cao et al., who demonstrated
that global topological properties of the functional connectome, specifically the local efficiency, continue
to evolve through young adulthood and shows signs of reorganisation in the early 30s [35].

As some sites and age groups contain a low number of samples, there existed a possibility that one of the two
classes (ASD or TC) was absent in a certain fold during subgroup-specific evaluation of those subgroups. If one
of the classes is absent, the performance cannot be calculated. For such cases, we recorded a NaN value and
during averaging across folds only averaged over the folds where performance metrics were calculated.

3.5.2 Leave-One-Group-Out (LOGO) cross validation

In addition to stratified CV, we used LOGO cross-validation to test the generalisation capability of the models
to unseen imaging sites. In this method, each group corresponds to an acquisition site. In each iteration, one
site is held out for testing and the other sites are used during training. This simulates a real-world scenario,
where a model trained on data from certain institutions must generalise to data from unseen sites, which
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potentially has different scanners, protocols, and/or population characteristics. This method provides a
rigorous test of generalisation, which stratified CV cannot capture.

NeuroHarmonize was not applied in LOGO as they require the test site to be present in the training set, which
by definition is not the case in this setup.

3.6 Model interpretation

Feature importance analysis was conducted to identify the brain regions most influential in the model’s
decision-making. This analysis was restricted to the multi-site classification setting, as it demonstrated greater
stability across cross-validation folds compared to single-site configurations. Specifically, the multi-site setting
was selected, because it better satisfied the stability requirement in NFR6, which mandates that the standard
deviation of performance metrics must not exceed 5 percentage points. In contrast, the single-site models
exhibited greater variability and were therefore excluded from interpretation.

Interpretation was further limited to the Logistic Regression and SVM classifiers, as these were the only models
that met the criteria NFR1, NFR2, NFR3, NFR4, NFR5, and the aforementioned NFRG6.

To identify the most influential features, we analysed the model weights learned during training by the Logistic
Regression and SVM classifiers. These weights, also called coeflicients, reflect how strongly each feature
contributes to the model’s decision. A positive weight increases the likelihood of the model predicting ASD,
while a negative weight favours the control class.

We ranked the features by the absolute value of their weights to determine importance, and retained the sign to
indicate the direction of influence. The top 20 ranked features were then visualised as brain region pairs using
nilearn for each fold in both classifiers. In addition, we visualised features that appeared in the top 20 ranking
in more than 6 of the 10 folds (5 for Logistic Regression, 5 for SVM), averaging their weights over the folds in
which they occurred.

3.7 Graphical User Interface

Lastly, we built NASDA (Neuroimaging ASD Analyser), a graphical user interface (GUI), that serves as a tool
for neuroscientists to guide them in their research on neural biomarkers. We implemented the classifiers and
connected our subsystem to the subsystems built by the Feature Design and Feature Selection subgroups. The
main structure of the GUI has been built using the tkinter [36] and Pillow [37] Python libraries. To keep the
interface modular, the full code has been subdivided in clear functions that allow multiple optional inputs. A
settings option to adjust the users path to their graph features file has been incorporated in the GUI and an
option to import your own data from a CSV file can be activated through the main source file. More on the
exact functioning of the GUI will be discussed in Chapter 8 and its documentation can be found in Appendix G.
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4 Single-Site Performance on Pearson Correlation

This chapter presents and evaluates the performance of various classifiers applied to data from ABIDE I largest
site, New York University Langone Medical Center (NYU), in recognising ASD using only Pearson correlation
rs-fMRI features. This site contained 74 ASD and 98 TC samples. We have singled out NYU, as its size made
it least likely to make the model overfit due to data constraints, and limiting the analysis to a single acquisition
site avoids inconsistencies caused by differences in scanning protocols, preprocessing, or site-specific
demographics. This dataset contained 74 ASD samples of which 13.6% female and 98 control samples of which
26.5% female.

4.1 Performance evaluation

To assess model performance, 5-fold cross-validation was conducted independently three times. In each case,
the models were both trained and evaluated on the same demographic subset: once on the full dataset including
both female and male samples (referred to as the combined dataset), once on only female samples, and once on
only male samples. For each configuration, we report the average sensitivity, specificity, area under the ROC
curve (AUROC), accuracy, and balanced accuracy. These results are shown in Tables 4.1, 4.2, and 4.3,
respectively.

4.1.1 Performance on Combined Data

The results in Table 4.1 show notable differences in performance for single-site classification on combined data
across our seven classifiers. LR and MLP performed the strongest overall, with LR achieving the highest
AUROC (74.1% £6.2%) and accuracy (71.5% +5.2%), while MLP yielded the highest sensitivity of

66.1% +5.8% compared to the LR’s sensitivity of 58.0% +11.4%. This suggests that LR maintained a more
balanced trade-off between true positive and true negative rates, whereas MLP prioritised correctly identifying
ASD cases. In comparison to the dummy classifier, DT performed worse across all evaluated metrics. In terms
of sensitivity, only LR and MLP performed better than the dummy classifier. For the remaining performance
metrics, all models, except DT, outperformed the dummy classifier.

Table 4.1: The average performance across folds on the combined data from the NYU site using Pearson corre-
lation features.

Classifier Sensitivity Specificity AUROC Accuracy Balanced Accuracy

Dummy 56.9% + 6.9% | 56.3% + 13.0% | 54.5% + 5.3% 56.5% + 7.8% 56.6% + 7.2%.
LR 58.0% £+ 11.5% | 81.8% +8.9% | 74.1% + 6.2% | 71.5% + 5.2% 69.9% + 5.7%
SVM 48.4% + 13.8% | 68.5% £ 22.7% | 62.2% £+ 16.1% | 59.8% =+ 16.9% 58.5% + 16.3%

DT 41.7% + 7.9% 52.0% + 17.5% | 48.6% £ 10.9% | 47.8% £ 10.5% 46.9% + 9.6%
RF 41.7% £ 7.9% 82.8% + 6.4% 71.9% + 7.6% 65.1% + 4.5% 62.3% £ 5.2%
MLP 66.1% + 5.8% | 69.6% + 14.4% 74.0% + 7.1% 68.1% + 9.7% 67.8% + 9.1%
LDA 44.5% + 11.6% | 76.7% + 12.9% | 69.7% + 11.5% 62.8% + 8.6% 60.6% + 8.7%
KNN 28.0% + 16.6% | 85.7% + 9.6% | 63.3% + 8.1% 61.0% + 5.4% 56.9% =+ 6.7%

Random Forest (RF) also performed well in terms of specificity (82.8% +6.4%) and AUROC (71.9% +7.6%),
indicating strong discrimination capabilities, though its relatively low sensitivity (41.7% +7.9%) implies
under-identification of ASD cases. More importantly, the substantial increase in performance when going from
Decision Tree (DT) to RF for all metrics except sensitivity suggests that our efforts to reduce variance have
been effective.

SVM and LDA yielded moderate results, with LDA offering better specificity and AUROC, while SVM had
slightly higher sensitivity, yet both classifiers obtained quite low sensitivity rates. DT and KNN performed the
worst overall, with the lowest balanced accuracies and high variability. Despite KNN reaching the highest
specificity (85.7% 49.6%), it exhibited the lowest sensitivity (28.0% +16.6%), reflecting a strong bias toward
the control class.
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These results indicate that LR and MLP offer the best overall performance on this dataset, with LR slightly
outperforming others in consistency and balanced classification, while MLP provides improved ASD detection
at the cost of increased false positives.

4.1.2 Performance on Female Data

The performance results of our classifiers on the female-only subset (10 ASD vs. 26 TC) in Table 4.2 reveal
substantial challenges in achieving consistent ASD detection for this demographic. Due to the imbalance of
female samples between the two classes, a strong bias toward the control class was expected. Although several
models achieved perfect specificity (100.0%), this was often accompanied by very low or zero sensitivity,
suggesting indeed a tendency to classify all female subjects as controls. LR, SVM, and MLP were the only
models to achieve nonzero sensitivity. Among them, MLP achieved the highest sensitivity (60.0% +41.8%) and
a strong AUROC (86.0%+ 15.2%), suggesting relatively balanced performance.

The DT, SVM, and MLP achieved a better sensitivity than the dummy classifier, whereas LR scored exactly
the same. Regarding the specificity, DT and MLP performed worse than the baseline. For the AUROC and
accuracy all models, except DT, performed better than the baseline. However, when it comes to balanced
accuracy, most models perform worse, with the exception of LR, SVM, and MLP.

Table 4.2: The average performance across folds on the female data from the NYU site using Pearson correlation

features.

Classifier Sensitivity Specificity AUROC Accuracy Balanced Accuracy

Dummy 30.0% + 27.4% | 84.7% + 16.6% | 50.7% + 16.0% 69.6% + 10.9% 57.3% + 13.0%.
LR 30.0% + 27.4% | 100.0% + 0.0% | 86.7% + 11.1% 80.4% + 8.2% 65.0% + 13.7%
SVM 50.0% + 50.0% | 100.0% + 0.0% | 83.7% + 18.7% | 86.4% + 13.5% | 75.0% + 25.0%
DT 40.0% + 22.4% | 60.7% + 32.2% | 50.3% + 19.7% 55.0% + 24.2% 50.3% + 19.7%
RF 0.0% =+ 0.0% 100.0% + 0.0% | 78.2% + 25.8% 72.1% + 1.6% 50.0% + 0.0%
MLP 60.0% + 41.8% | 77.3% + 15.3% | 86.0% =+ 15.2% 72.1% + 1.6% 68.7% =+ 13.4%
LDA 0.0% + 0.0% 100.0% + 0.0% | 82.3% + 16.7% 72.1% + 1.6% 50.0% + 0.0%
KNN 0.0% =+ 0.0% 100.0% £ 0.0% | 65.3% + 18.2% 72.1% + 1.6% 50.0% =+ 0.0%

SVM achieved the best overall accuracy (86.4% +13.5%) and balanced accuracy (75.0% +25.0%), despite high
variability. LR followed closely with a high AUROC (86.7% +11.1%) and accuracy (80.4% £8.2%), but a lower
sensitivity (30.0% +27.4%) and lower variability. Random Forest, LDA, and KNN all achieved perfect
specificity but failed to identify any ASD case, resulting in a fixed balanced accuracy of 50.0%, which means
that all test samples were classified as control. These biases might be caused by a too big bias trade-off for the
Random Forest and to a k of 5 for the KNN with only 10 samples in our minority class and could possibly be
resolved by reducing said k parameter. It’s also important to note that each of RF, LDA and KNN did not use
hyperparameter tuning because of non-functional requirement NFR'7, which might highlight the importance of
hyperparameter tuning for under-represented groups despite longer computational times.

These results highlight both the difficulty of training reliable classifiers on the relatively small female subset
and a systemic bias toward the majority (control) class in several models. MLP and SVM show potential, but
high standard deviations point to instability, likely caused by limited sample size and class imbalance.

4.1.3 Performance on Male Data

The results on the male-only subset (64 ASD vs. 72 TC) in Table 4.3 show a more balanced classifier
performance compared to the female subset, possibly due to the larger and more evenly distributed sample size.
Among the models, LR achieved the highest AUROC (71.1% +9.5%) and overall accuracy (63.3% +5.0%),
while MLP yielded the best sensitivity (67.2% £8.4%) and balanced accuracy (63.4% £7.0%), indicating a
slightly stronger ability to identify ASD cases. This makes MLP a strong candidate for male-specific
classification when prioritising recall.
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As a baseline, the dummy classifier achieved a sensitivity of 40.6%=+8.4%, specificity of 55.5%+8.1%, AUROC
of 43.9%+15.8%, accuracy of 48.6%=+7.4%, and balanced accuracy of 48.1%=+7.4%. In comparison, all models
outperformed this baseline.

Table 4.3: The average performance across folds on the male data from the NYU site using Pearson correlation

features.
Classifier Sensitivity Specificity AUROC Accuracy Balanced Accuracy
LR 57.8% + 19.2% | 67.7% £ 12.5% | 71.1% + 9.5% | 63.3% + 5.0% 62.8% + 5.4%
SVM 54.9% + 10.7% | 63.9% + 11.2% | 64.4% + 4.4% 59.6% =+ 4.3% 59.4% + 4.3%
DT 51.5% + 10.0% | 59.6% £ 9.7% 58.4% + 7.3% 55.9% + 5.0% 55.6% + 4.9%
RF 47.1% + 16.1% | 77.9% + 6.9% | 69.1% + 7.4% 63.3% £+ 7.7% 62.5% =+ 8.3%
MLP 67.2% + 8.4% | 59.7% £ 9.9% 65.4% + 7.3% 63.2% + 7.2% 63.4% £ 7.0%
LDA 51.5% + 10.0% | 69.3% =+ 8.3% 63.1% + 8.2% 61.0% £ 6.9% 60.4% + 6.9%
KNN 37.2% + 14.3% | 73.7% £+ 12.6% | 58.6% + 9.4% 56.7% £ 9.1% 55.4% + 9.5%

Random Forest achieved the highest specificity (77.9% £6.9%) and also demonstrated good AUROC

(69.1% +£7.4%), though its sensitivity (47.1% +16.1%) remained relatively low, indicating a more conservative
bias toward control predictions. SVM and LDA showed relatively similar and moderate performance across all
metrics, with slightly better balance in LDA’s specificity-sensitivity trade-off. Decision Tree and KNN were
again the lowest-performing models in terms of AUROC and balanced accuracy. In particular, KNN exhibited
the lowest sensitivity (37.2% +14.3%), despite achieving reasonably high specificity, reinforcing its tendency to
misclassify ASD cases in this context.

Overall, LR and MLP performed most consistently across metrics, with MLP offering improved sensitivity at a
minor cost to specificity. RF was more conservative but discriminative, and the remaining models showed
varying degrees of imbalance or instability.

These results also show that the male data did not seem to benefit as significantly from being separately
assessed as the female data did, except for reducing the variance a bit, quite possibly due to a more uniform,
yet different, connectivity pattern within female brains diagnosed with ASD compared to male brains.
Although it does not seem to benefit from this separation, all models outperform the baseline suggesting that
the models have learned meaningful patterns from the data and thus has predictive value, whereas that is not
always the case for the models on female-only assessment.

4.1.4 Evaluation per sex

Given known differences in the expression and detection of ASD between sexes [38], [39], an additional analysis
was performed to evaluate the performance per sex of the the classifiers trained on the combined data. Table
4.4 presents the results, offering insight into potential model biases or differential sensitivity.

Table 4.4: The average performance across folds on the combined data from the NYU site using Pearson corre-
lation features, evaluated per sex.

Female Male

SEN [%] SPE [%] AUROC [%] ACC [%] BACC [%] SEN [%] SPE [%] AUROC [%] ACC %] BACC [%]

63.3 + 41.5 95.0+£11.2 89.4+16.1 86.21+13.5 79.24+21.2 58.1+£17.0 76.6+£6.7 68.6+6.6 68.0+6.0 67.3+6.5

SVM 36.7 + 41.5 75.0+25.0 57.7+£29.9 63.4+29.5 55.84+27.3 51.4+14.7 65.3+21.4 60.4+13.7 58.3+14.3 58.4+14.2
33.3 £47.1 57.7£16.3 48.0+32.8 50.14+24.2 45.54+29.6 42.0£7.6 49.04+21.1 46.7£15.2 46.14+12.3 45.54+11.9

20.0 £ 274 93.24+10.9 70.2438.3 68.0+20.4 56.6+15.7 45.349.8 80.3+5.5 71.0+3.9 63.24+3.1 62.84+4.6

MLP 56.7 + 43.5 89.5+14.3 87.7+17.3 78.74+20.5 73.14£28.1 68.8+7.7 64.54+14.9 69.6+5.8 66.61+8.1 66.61+7.4
LDA 56.7 £ 25.3 96.4+8.1 79.7£21.7 82.2+11.6 76.5+£13.8 44.04+15.0 72.4+£14.2 66.24+9.5 58.948.2 58.249.7
KNN 36.7 + 41.5 96.41+8.1 60.8+38.6 75.6+19.0 66.5+23.0 27.8+16.2 83.8+11.2 63.9+6.9 57.2+6.5 55.8£7.0

Abbreviations: SEN: sensitivity; SPE: specificity; AUROC: Area Under the Receiver Operating Characteristic Curve; ACC: accuracy;
BACC: balanced accuracy.

The results demonstrate notable differences in classifier behaviour when evaluated separately by sex, despite
being trained on the same combined dataset. Overall, models tended to perform better on the female subgroup
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in terms of specificity and AUROC, but with considerably higher variability, especially in sensitivity. This
reflects both the limited number of female ASD samples and possibly distinct feature patterns by sex.

LR, LDA, and MLP consistently performed well on female subjects. LR achieved the highest AUROC and
accuracy, while it obtained a high specificity and sensitivity, resulting in the high balanced accuracy. MLP
offered a strong balanced across both sexes with 73.1% +28.1% and 66.6% +7.4% balanced accuracy with a
slightly drop in sensitivity (56.7% +43.5%) for women. However, standard deviations were considerably higher
in female metrics, indicating unstable predictions likely caused by the minimal female ASD representation.

In contrast, model performance on male data was more stable but generally lower in AUROC and specificity.
MLP achieved the highest sensitivity (68.8% £7.7%) and second best balanced accuracy (66.6%+7.4%) in
males, while LR performed similarly except in sensitivity (58.1%=+17.0%). Random Forest showed strong
specificity (80.3%=+5.5%) but low sensitivity (45.3%+ 9.8%), indicating a conservative classification tendency.
Decision Tree and KNN underperformed across both sexes, particularly in balanced accuracy.

These findings suggest that while some classifiers (LR and MLP) generalized well across sexes, models struggled
more with the female subgroup, possibly due to sample scarcity, leading to greater performance variations.

4.1.5 Evaluation per age

Table 4.5 reports the best-performing and worst-performing age groups. The 30+ age group is excluded in the
results, as there were only 3 subjects older than 30 in the test set.

Table 4.5: The average performance across folds on the combined data from the NYU site using Pearson corre-
lation features, evaluated per age group. Only best (left) and worst (right) performing age groups are shown.

0-11 years 19-30 years
SEN [%] SPE [%] AUROC [%] ACC [%]  BACC [%] SEN [%] SPE [%] AUROC [%]  ACC [%] BACC [%]

LR
SVM
DT
RF
MLP
LDA
KNN

81.0 £ 21.1 69.3+10.9 77.4+14.4 74.5+£12.9 75.1+£12.7 42.3+32.7 97.5+5.9 71.2+27.9 69.5+21.4 69.9+17.0
74.3 £ 25.1 71.4£8.0 72.1£15.2 70.5£12.3 72.9£10.7 29.0£41.3 78.3£33.1 57.3£32.9 53.3£30.5 53.7£32.9
42.4 £ 17.6 46.4+33.0 45.1+£19.2 43.94+19.5 44.44+20.1 58.0+£26.6 69.3£23.0 59.3+16.1 57.7£11.0 63.7+10.4
64.9 £+ 25.0 74.3£1.6 78.8+9.5 66.61+13.1 69.6+11.9 10.7£15.3 97.5+5.6 70.8+18.6 62.61+20.2 54.14+9.1

86.7 £ 21.7  56.4+20.7 77.3+12.9 71.949.7 71.5+£8.4 34.0+25.9 82.54+24.4 67.3+19.2 65.5+£22.6 58.3+15.8
74.8 £ 23.8 66.44+12.0 77.4£10.4 68.5+7.6 70.6+6.5 5.0£11.2 88.5+£16.9 65.31+25.2 54.04+22.2 46.75£11.8
44.9 £ 29.3 70.0£32.6 66.5+21.1 55.2423.1 57.5+19.4 0.0+£0.0 97.5+5.6 55.8+18.7 56.9420.7 48.9+2.8

Overall, all classifiers exhibited higher sensitivity, balanced accuracy, and AUROC in the 0-11 group than in
the 19-30 group, suggesting more distinguishable patterns between ASD and control samples in younger
subjects. On an important note, the NYU dataset contains 53 samples in the 0-11 age group, 72 samples in the
12-18 group, 42 samples in the 19-30 age group, and 5 samples in the 30+ group.

LR, SVM, MLP, and LDA showed particularly strong performance in the 0-11 group. MLP achieved the
highest sensitivity and accuracy, while LR produced the best balanced accuracy with a good AUROC. LDA
also performed well, reaching a balanced accuracy of 70.6% =+ 6.5% with relatively low variability. In contrast,
performance across all classifiers, except DT, degraded in the 19-30 group. Most notably, sensitivity dropped
substantially for LDA (5.0% £ 11.2%) and RF (10.7% =+ 15.3%), while KNN failed to detect any ASD cases.

This decline in sensitivity and balanced accuracy in older subjects may reflect increased heterogeneity in ASD
presentation with age or reduced model generalisation to adult brain connectivity patterns. These findings

underscore the potential benefit of age-specific modelling strategies, such as multitask learning to account for
the age differences, particularly for adult populations where classifier performance was consistently less reliable.

4.2 Discussion

The evaluation of classifier performance on the NYU subset of the ABIDE I dataset highlights several
important trends and challenges in ASD classification using functional connectivity features.
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4.2.1 Classifier Behavior Across Subsets

Overall, LR and MLP emerged as the most robust classifiers across all demographic settings. LR consistently
yielded high AUROC and balanced accuracy scores, demonstrating its ability to generalize well despite
variations in the data. MLP, on the other hand, exhibited stronger sensitivity, particularly in the combined and
male subsets, indicating greater potential for ASD detection at the cost of some false positives.

The Decision Tree (DT) and KNN models underperformed in nearly all settings. With KNN displaying strong
biases toward the majority (control) class. This may be attributed to an unoptimized choice of k relative to the
minority class sizes. Random Forest (RF) improved upon DT as expected, showing strong specificity and
AUROQC, validating its design to reduce variance via ensemble learning. However, its sensitivity remained
relatively low, especially in sex- and age-specific evaluations, possibly due to conservative decision boundaries.
On the contrary, DT performed better on young adults, while all other models displayed a strong decrease in
performance.

4.2.2 Sex-Specific Observations

Performance on the female subset was significantly less stable compared to the male subset, with large standard
deviations and multiple models achieving zero sensitivity. This behaviour indicates a systemic bias where
models tend to classify all female subjects as controls. However, the female samples showed much better
performance for both the specialised and generalised model compared to the males. Here, the specialised model
refers to a sex-specific model trained exclusively on data from one sex (i.e., separate models trained on
female-only and male-only data), while the generalised model is trained on the combined dataset (female and
male samples together) and evaluated separately for each sex. Contributing factors likely include the limited
number of female ASD samples and potential differences in functional connectivity patterns between sexes.
While MLP and SVM showed potential for female specialised models, the variance suggests these models
remain sensitive to the imbalance and are prone to instability. This is likely the result of our small and
unbalanced female dataset.

Evaluations on the male subset showed more consistent results across classifiers, likely due to the more
balanced representation of ASD and control samples. Both LR and MLP again demonstrated strong
performance, reinforcing their relative robustness. However, gains from analysing males separately were
marginal compared to females, implying that performance disparities stem primarily from sample scarcity
rather than fundamental differences in male brain connectivity patterns.

4.2.3 Age-Related Trends

Classifier performance was highest for the youngest age group (0-11 years) and lowest for the oldest (19-30
years), particularly in terms of sensitivity and balanced accuracy. Models such as LR, MLP, and LDA achieved
strong performance in the youngest group, while many classifiers, including RF, LDA, and KNN;, struggled to
detect any ASD in the older group. This drop may be due to increased heterogeneity in brain connectivity
patterns with age or due to insufficient representation of adult samples, reducing generalisation capabilities.

4.2.4 Implications and Limitations

The findings highlight that ASD detection performance is highly sensitive to demographic characteristics,
particularly sex and age. This suggests the potential need for demographic-specific models or preprocessing
strategies, such as balancing, resampling, or domain adaptation. Furthermore, several classifiers, especially
those not tuned, suffered disproportionately in under-represented groups, emphasising the importance of
hyperparameter tuning when data is limited or imbalanced.

The use of only Pearson correlation features from fMRI also represents a simplification, and future work could
explore whether partial correlations, dynamic connectivity measures, or multimodal integration (e.g., structural
MRI or phenotypic data) would yield more robust models. Additionally, though this chapter focused on a single
acquisition site to reduce inter-site variability, this limits the generalisability of results to other populations and
scanner protocols.

Furthermore, it is important to consider that the NYU dataset contains a relatively low number of subjects
(172) in comparison to the 6670 Pearson correlation features used, with 36 female subjects and 136 male
subjects. Training on such low numbers will highly likely risk overfitting of our classifiers. In addition, since the
number of samples is sparse in a single-site dataset, to maximise the training data it may be more appropriate
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to use 10-fold cross validation instead of 5-fold cross validation. For evaluating the female subset it may be even
better if analysis if done with Leave-One-Out cross validation.

4.2.5 Future Directions

To improve generalisation and fairness, future work could explore data augmentation or synthetic oversampling
for underrepresented subgroups, fine-grained hyperparameter tuning tailored to demographics, and
domain-aware feature selection strategies. Furthermore, implementing Leave-One-Out CV may offer new
insights, as this maximises the training data, which is highly preferable when sample size is sparse.
Additionally, we suggest investigating the use of Histogram Gradient Boosting Trees (HGBT) as an alternative
to Random Forest, Quadratic Discriminant Analysis (QDA) as a counterpart to LDA and the possibilities of
AdaBoost, an ensemble learning technique that initially assigns equal weights to all training samples and
iteratively adjusts them to focus on misclassified instances. HGBT offers higher computational speed for both
fit and prediction with lower likelihood to overfit. This increased speed could also allow for hyperparameter
tuning without failing to comply to NFR7, demanding a maximum model computation time of 40 minutes.
Introducing QDA could possibly increase sensitivity and mitigate the bias induced by LDA within minority
groups. AdaBoost would be a good addition to analyse due to its interpretable nature, low likelihood to overfit,
and great handling of unbalanced data [40].

In the next chapter, Chapter 5, we will continue with validation on multi-site data with harmonisation
techniques which may also help verify whether observed patterns persist outside the NYU cohort. In Chapter 6
we will demonstrate how developing interpretable models could aid in understanding the specific brain regions
or connections driving classification decisions.
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5 Multi-Site Performance on Pearson Correlation

In the following, we present our results in the multisite classification setting on Pearson correlation features.

5.1 Non-Harmonised versus Harmonised Classification

Table 5.1 shows the results of 5-fold cross validation for multisite classification on non-harmonised (raw) data
and multisite classification on the full harmonised dataset.
All classification models outperform the dummy baseline (DUM) on all metrics, except for RF on sensitivity
which is below the baseline (-4.6%). LR, SVM, MLP, and LDA perform really well on the raw data adhering to
the set of requirements (NFR1, NFR2, NFR3, NFR4, NFR5). DT and KNN do not conform to these

requirements.

On the harmonised data, again RF underperforms on sensitivity. For all other metrics, all classifier models

outperform the baseline.

Table 5.1: The average performance across folds on the raw combined multi-site data versus the harmonised

combined multi-site data using Pearson correlation features using Pearson correlation features.

Raw Harmonised

SEN [%] SPE [%] AUROC [%] ACC [%] BACC [%] SEN [%] SPE [%] AUROC [%] ACC %] BACC [%]
DUM 48.6 £ 4.1 54.9+5.2 47.84+2.4 52.0+4.1 51.74+4.1 48.445.5 54.0£6.5 51.743.8 51.4+2.9 51.2+2.8
LR 58.7 £ 2.7 66.1+£2.8 67.8+£3.2 62.7+1.8 62.44+1.8 60.2+£4.9 66.1+2.4 68.1+3.4 63.44+2.4 63.14+2.5
SVM 59.8 £ 4.1 69.0+4.7 68.3+£1.5 64.7+2.3 64.4+2.2 55.2+6.5 65.6+4.9 64.8+5.5 60.8+4.0 60.444.0
DT 54.4 £ 6.7 58.1£7.0 57.4+4.0 56.44+3.4 57.04+5.2 49.2419.0 59.7£15.2 56.94+2.6 54.8+2.1 54.44+2.8
RF 42.0 £ 6.5 80.1+3.1 68.1+4.4 62.6+2.9 61.1+3.2 39.8+5.5 76.51+8.7 64.5+5.6 59.54+6.3 58.1+£6.2
MLP 61.7 + 4.4 67.0£5.0 69.6+2.8 64.5+2.5 64.3+2.5 63.2+4.7 65.0+6.5 69.8+3.6 64.2+4.9 64.1+4.9
LDA 58.0 £ 5.5 68.5+£3.6 68.24+2.9 63.6+3.1 63.243.2 53.9+6.3 62.0+5.6 59.846.5 58.3+5.3 57.9+5.3
KNN 56.2 £ 9.0 61.6+4.3 62.2+4.1 59.14+2.7 58.943.1 58.5+10.4 59.8+4.6 62.0+4.1 59.243.7 59.2+4.1

Comparing the results of our classifiers on the raw data versus the harmonised data, it can be seen that for
most models the performance decreases when harmonisation is applied. Only LR and KNN seem to benefit
from harmonisation. For LR, all performance metrics increase when harmonisation is applied with the
exception of specificity. However, the specificity of LR is a bit more stable for the harmonised data than for the
raw data (-0.4%). In other models, harmonisation seems to make the performance more unstable with the
standard deviation of the sensitivity of the DT model going as high as 19.0%. Overall, it seems that the
application of harmonisation introduces instability in results, and the increase in performance is very minimal.

5.2 Evaluation per site

Given the limited advantages of harmonising the features before classification, the following results have been
obtained using the raw, non-harmonised, data. Table 5.2 presents the sites that performed best and worst in
terms of balanced accuracy during the per-site evaluation. The per-site performance for all individual sites can
be found in Section F.1.

Analysing the performance of classifiers across the 20 individual ABIDE I sites revealed substantial variability.

While some sites consistently supported accurate classification, others showed high sensitivity to model choice
and exhibit large performance inconsistencies.
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Table 5.2: The average performance across folds on raw combined data using Pearson correlation features,
evaluated per site. Only best (left: PITT) and worst (right: OHSU) performing sites are shown. PITT contained
24 ASD and 26 TC samples in total. OHSU contained 12 ASD and 13 TC samples in total.

PITT OHSU

SEN [%] SPE [%]  AUROC [%] ACC [%] BACC [%]  SEN [%] SPE [%]  AUROC [%] ACC [%]  BACC [%]
DUM 42.8+13.0 57.5+13.2 39.1+11.9 51.8+8.8 50.1£9.3 41.74+34.7 54.2+41.1 39.1+11.9 51.8+8.8 50.1+9.3
LR 63.9£29.9 91.0+12.4 82.0+20.0 76.51+18.2 77.4+17.4 37.5+28.5 20.8+25.0 32.3+37.3 32.1£23.7 29.2+25.0
SVM 58.9+16.0 84.5+15.9 77.1+£18.5 71.4+12.5 71.7+£12.2 25.0+31.9 27.1£35.6 23.3+27.9 32.1+£23.7 26.0+£22.1
DT 59.41+38.6 68.0+£12.5 61.3+29.2 60.6+£21.9 63.7+£23.2 50.0+40.8 47.9+44.3 49.7+40.5 43.5+35.4 49.0+38.2
RF 43.3+36.5 87.5+12.5 66.9+23.0 65.5+23.1 65.4+22.4 25.04+21.5 33.3+23.6 38.24+20.1 32.7+14.6 29.2+17.3
MLP 58.3+30.0 90.0+£13.7 81.1+16.8 72.5+16.6 74.2+14.8 33.3+30.4 31.2+37.5 39.6+36.9 36.9+21.8 32.3+£22.7
LDA 60.6+12.8 86.0+12.9 73.5+4.8 72.7+5.7 73.3+6.7 33.3+30.4 50.01+40.8 26.0+32.3 45.2+29.8 41.7+32.6
KNN 67.24+27.7 72.0+12.5 69.91+18.2 70.3+10.9 69.6+13.7 37.5+£47.9 35.4429.2 36.8+37.5 44.0+£28.3 36.5+£31.8

Across classifiers, LDA and LR demonstrate relatively stable performance, especially at sites like NYU, USM,
and YALE.

Most classifiers outperformed the baseline by a great margin. The RF model barely outperforms the baseline on
sensitivity by a small margin of +0.7%. LR obtained the highest balanced accuracy, going as high as 77.4%.

In contrast, the performance of our classifiers on OHSU were very low. Only DT managed to outperform the
baseline by a relatively low margin of 1.1%. On an important note, all classifiers, as well as the baseline,
displayed highly unstable performance with standard deviations sometimes reaching higher than 40%.

Notably, almost all models perform very poorly on Caltech with balanced accuracies of below 50%, but RF
scores very high on this site, with a balanced accuracy of 91.7% (£14.4%). In addition, all models performed
moderately to poorly on STANFORD, with the highest balanced accuracy being 55.0% by the LDA model.

5.3 Evaluation per sex

Table 5.3 presents the performance of the seven classifiers on combined raw multi-site data, evaluated per sex.
Remarkably, the performance of the classifiers is differently affected by the new data for male and female
analysis. Interestingly, models that initially performed poorly on female data during per-sex evaluation on
combined NYU data (SVM, DT, RF), show strong improvement on the multisite data, while models that
previously performed well in this setting (LR, LDA, MLP) exhibit moderate drops.

All models outperformed the baseline set by the dummy classifier on female data in terms of balanced accuracy,
with the lowest margin being +2.1% for our LDA model. Some models perform worse than the baseline when it
comes to sensitivity. Only MLP outperforms by a great margin on this metric. As for AUROC and specificity,
all models outperform the baseline. All in all, it seems that MLP performs the best on the female data. RF and
LR are also strong contenders.

All models outperform the baseline on the male data set by the dummy classifier by a great margin, with the
only exception of the sensitivity obtained by our RF model (-6.3%).

Table 5.3: The average performance across folds on raw combined data of all sites using Pearson correlation
features, evaluated per sex.

Female Male

SEN [%] SPE [%] AUROC [%] ACC [%] BACC [%] SEN [%] SPE [%] AUROC [%)] ACC [%] BACC [%]
DUM 48.94+12.5 56.3+11.2 44.949.6 53.7+8.4 52.6£8.5 48.5+2.9 54.44+4.4 48.14+3.9 51.6+3.4 51.443.3
LR 46.14+24.7 83.0£3.0 71.4+18.1 69.7+9.6 64.6+13.1 60.6+£3.2 62.1£2.8 66.7£2.6 61.4+1.6 61.4+1.6
SVM 50.5+£28.6 75.0£16.0 69.5+18.8 67.4+7.3 62.7£9.7 59.1+2.4 63.7£3.8 65.0£2.7 61.5+1.1 61.4+1.0
DT 54.4+£17.7 55.0£7.5 58.0£15.4 54.7+£10.2 54.7+£11.9 54.445.3 58.5+£9.5 56.943.0 56.6+3.7 56.5+3.6
RF 38.1+£16.6 92.2+6.2 74.7+8.8 72.6+8.1 65.2+9.2 42.616.1 77.41+3.0 66.6+4.3 60.7£3.0 60.0£3.0
MLP 62.81+28.6 78.7+£10.9 71.9+£16.9 73.2+14.3 70.7+16.6 61.71+3.6 64.1+4.8 68.9+1.8 62.94+1.7 62.9+1.6
LDA 46.1+14.8 75.1+12.4 69.5+13.2 65.1£10.5 60.6+10.5 59.6+5.4 66.9+4.6 67.5+1.9 63.4+2.4 63.3+2.4
KNN 52.6+£20.6 70.2+£9.4 68.0+14.5 63.5+10.4 61.44+11.4 57.1+£8.6 59.543.2 61.0+4.1 58.3+3.0 58.3+3.1

Comparing the two, LR, SVM, RF, MLP, and KNN perform better on the female subset, than on the male
subset in terms of balanced accuracy. This difference is largest in the balanced accuracy achieved by MLP,
namely a difference of 7.8%. For the other four models, this difference is not as large and usually not more than
a 3% difference is seen. Only DT and LDA perform better on male data than female data.
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5.4 Evaluation per age

Table 5.4 compares classifier performance on the raw combined multi-site dataset across two age groups:
adolescents (12-18 years), which represent the best performing group, and children (0-11 years), the worst
performing group, in terms of balanced accuracy. The complete results of all age group can be found in Table
F.11 and F.12. The metrics reveal a consistent trend of superior classification performance for adolescents
across nearly all models and evaluation criteria.

Table 5.4: The average performance across folds on raw combined data using Pearson correlation features,
evaluated per age group . Comparison between 12-18 (left) and 0-11 (right).

12-18 0-11

SEN [%]  SPE [%] AUROC [%] ACC [%] BACC [%|  SEN [%] SPE [%] AUROC [%] ACC [%] BACC [%]
DUM  45.249.9  54.5+7.8 46.543.3 50.1+7.6  49.947.7  58.3+14.1 5544124  46.5£11.5  57.0£12.6 56.9%+12.6
LR 61.146.8  69.248.6 72.943.6 65.041.2  65.141.1  57.8413.3  55.949.3  61.74£10.1  55.848.4 56.849.3
SVM  61.947.0  69.1+7.5 71.243.8 65.541.0  65.541.2 52.446.0  57.749.8 59.848.7 55.247.9 55.04£7.8
DT 49.6+11.4  60.1+6.6 55.946.6 55.344.7  54.844.4 5944227  54.74£9.2  60.7+152  56.7£13.3  57.0£13.2
RF 44.0+11.9 82.443.1 70.74+6.4 64.445.7  63.246.0  42.9+10.8  66.4+7.7  59.5+£10.2  56.3+5.0 54.745.6
MLP  65.246.4 69.1+84  73.5£4.0  66.944.1 67.1+3.9 61.9414.9 544490  64.3+10.4  57.047.2 58.246.9
LDA  60.5+7.6  68.646.1 70.0£4.8 64.645.8  64.546.0  61.3%13.5  58.7£9.9  63.6£12.6  59.248.4  60.0+8.2
KNN 60.3+10.2 66.7+£5.6 67.3+£5.4 63.3+4.2 63.5+4.3 52.7+14.2 57.0+6.1 58.61+8.9 53.6+£5.2 54.8+5.5

In the adolescent group, classifiers show balanced and relatively high sensitivity and specificity scores. MLP
achieves the highest AUROC (73.5% =+ 4.0), alongside the best sensitivity (65.2% =+ 6.4), closely followed by LR
and SVM. RF also shows strong specificity (82.4% =+ 3.1), which contributes to its solid accuracy (64.4% =+ 5.7)
despite a lower sensitivity. Overall, balanced accuracy for most classifiers in this group lies between 64-66%,
with the exception of DT (54.8% =+ 4.4), indicating reliable ASD recognition potential.

In contrast, performance in the child group (0-11 years) is generally weaker and more inconsistent, as the
standard deviation is quite high. The accuracy and balanced accuracy performance of LR on children decreased
significantly with -9.2%, and -7.3%, respectively. Almost all classifier models show a sharp decrease in balanced
accuracy, except for DT, who actually obtained a higher balanced accuracy in children. However, the standard
deviation for this metric is very high (13.2%), so its performance is not reliable.

These findings suggest that age significantly affects classification efficacy, likely due to developmental differences
in brain connectivity patterns and the increased noise or motion artifacts in younger subjects’ fMRI data.
Furthermore, younger participants are possibly underrepresented or unevenly distributed across sites, which
may exacerbate the model’s challenges in learning reliable age-specific features.

Only DT, MLP, and LDA managed to outperform the baseline in terms of sensitivity. DT outperforms the
baseline on sensitivity by a rather small margin (4+1.1%), while MLP and LDA outperform the baseline more
confidently. LR manages to come close to the sensitivity of the baseline, but falls just short (-0.5%). In terms of
accuracy, only LDA outperforms the baseline. MLP achieved the same accuracy, and was more stable. Lastly,
comparing balanced accuracy results, only DT (+0.1%), MLP (+1.3%), and LDA (+3.1%) outperform the
baseline. However, it should be noted that the performance is much more stable.

Future work may consider age-stratified preprocessing pipelines, age-adaptive models, or targeted feature
selection to improve classification robustness for varying age groups. The overall patterns underscore the
importance of demographic segmentation when evaluating ASD classification performance on multisite
neuroimaging data.

5.5 Cross-site Generalisation with LOGO CV

Table 5.5 presents the balanced accuracies obtained by each classifier for each test site on the raw combined
multisite data. Details of the other performance metrics are shown in Appendix F. The results in Table 5.5
shows considerable variation in balanced accuracy across test sites and classifiers, highlighting the difficulty of
generalising to unseen imaging sites. On average, the MLP and SVM classifiers achieved the highest mean
balanced accuracy (63.9% and 61.8%, respectively), followed closely by Logistic Regression (61.3%). In contrast,
DT, KNN, and LDA consistently underperformed, with means of 57.5%, 56.2%, and 59.7%, respectively.
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Table 5.5: Balanced accuracy obtained by each classifier for each test site during LOGO CV on Pearson correlation
features. N indicates the number of ASD and TC samples in each site, which also corresponds to the size of the
test set for that fold in LOGO CV, where each group (site) is left out once for testing.

Balanced Accuracy [%] N

LR SVM DT RF MLP LDA KNN ASD TC
CALTECH 45.0 45.0 45.0 55.0 65.0 40.0 40.0 5 10
CMU 81.7 81.7 71.7 66.7 91.7 75.0 38.3 6 5
KKI 66.1 63.7 63.7 61.3 66.1 66.1 66.1 12 21
LEUVEN 1 53.6 50.0 50.0 53.6 53.6 57.1 57.1 14 14
LEUVEN 2 51.0 52.1 57.3 55.2 50.0 56.2 74.0 12 16
MAXMUN 48.8 43.6 55.8 57.0 48.1 60.4 47.3 19 27
NYU 64.5 53.6 58.6 63.2 59.4 59.6 62.3 74 98
OHSU 44.2 35.9 56.4 63.8 52.2 39.1 43.9 12 13
OLIN 67.9 67.9 57.1 64.3 71.4 67.9 71.4 14 14
PITT 73.2 69.2 57.9 52.7 73.2 65.1 63.8 24 26
SBL 35.7 59.5 35.1 58.9 47.6 55.4 41.7 12 14
SDSU 73.4 68.1 45.1 61.8 64.5 60.2 60.2 8 19
STANFORD 56.4 56.4 63.8 67.9 56.4 48.7 36.9 12 13
TRINITY 56.2 72.8 56.9 49.7 62.8 55.7 55.6 19 25
UCLA 1 72.3 69.6 60.5 57.5 67.8 63.1 68.3 37 27
UCLA 2 70.9 70.9 85.9 66.8 65.9 70.5 66.8 11 10
UM_1 57.6 61.5 69.9 63.1 58.7 59.3 64.2 34 52
UM_2 62.6 68.3 52.0 65.9 72.2 64.5 49.3 13 21
USM 71.5 73.5 60.8 64.9 75.6 68.2 55.2 43 24
YALE 73.6 73.6 47.1 59.6 75.8 62.6 61.8 22 19
Mean=+std 61.3£11.9 61.8+11.7 57.5+£10.7 60.4+5.2 63.9+10.8 59.7+8.9 56.2+11.3

Some sites, such as CMU, OLIN, and YALE, showed relatively high generalisation performance across
classifiers. The balanced accuracy results on MAXMUN and OHSU are remarkedly low.

No single classifier consistently outperformed others across all sites. MLP and SVM tended to perform well
across a broader range of test sites, potentially reflecting greater ability to adapt to unseen distribution of sites.
Classical linear models, like Logistic Regression also yielded competitive performance, suggesting robustness
under distribution shifts. These findings reinforce the challenge of cross-site generalisation in ASD
classification. Even when trained on a large, multi-site dataset, models may struggle to generalise to sites with
different acquisition characteristics.

5.6 Discussion

This chapter presented a comprehensive evaluation of ASD classification using Pearson correlation rs-fMRI
features across multiple acquisition sites from the ABIDE I dataset. Several classifiers and evaluation protocols
were compared, including within-site validation, stratified multi-site analysis, and cross-site generalisation using
Leave-One-Group-Out (LOGO) cross-validation. The results yielded several insights into the impact of
harmonisation, demographics, and inter-site variability on classification performance.

5.6.1 Harmonisation versus Raw Multisite Training

Harmonisation via NeuroHarmonize (based on ComBat) was hypothesised to reduce site-specific biases.
However, as shown in Section 5.1, the difference between harmonised and raw data performance was minimal.
In most cases, harmonisation actually lead to a performance drop of our classifiers and there was a noticeable
increase of instability. We suspect that the harmonisation technique may have overcorrected for the site
variability and in doing so actually removed meaningful biological signals important for ASD detection.

5.6.2 Site-Specific Variability

Section 5.2 demonstrated that per-site performance varies drastically. The classifiers obtained very high
performance on PITT across all metrics. In constrast, the performance on OHSU was much lower. This may be
explained by the different scanning procedures used by the various acquisition sites. Importantly, most
acquisition sites asked their subjects to lie still with their eyes closed. In contrast, OHSU participants were
scanned with their eyes open. This may have influenced the measured functional connectivity. The low
achieved balanced accuracies on STANFORD may be explained by the slice thickness of their scanner hardware
as they used a slice thickness of 4.5mm (see Appendix A.2). Another possible reason may be age-related. The
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full ABIDE I dataset has a mean age of 16.94 years (£7.58), while the mean age in the STANFORD dataset is
equal to 9.99 years £1.63. This coincides with the low performance accuracy on the 0-11 age group.

These site-based performance disparities were further highlighted in the LOGO cross-validation results, where
classifiers trained on all-but-one sites struggled to generalise to unseen sites. Despite robust performance on
internal validation, cross-site generalisation remained limited and a key challenge for clinical translation of ASD
classification models. Sites such as USM and CMU yielded notably high balanced accuracies. Conversely,
classification performance on sites like MAXMUN was markedly low, likely due to the wide variability in the
ages of the MAXMUN subjects, ranging from 7 to 58 years. Furthermore, the mean age of the MAXMUN
dataset is 26.5+10.63 years, whereas the mean age of the full data set is around 16.94 years. In addition,
MAXMUN used various scan procedures across their subjects. Some were asked to lie still and keep their eyes
closed, whereas others were instructed to keep their eyes open and look at a picture of a night sky with

stars [41]. The use of two different scan procedures within their study as well as the wide age range might
explain the low obtained balanced accuracy across all classifiers.

5.6.3 Demographic Effects

Sex- and age-specific evaluations reveal consistent patterns in classification performance. Female samples,
despite being evaluated on the same multisite models, exhibited greater sensitivity improvements in poorly
performing classifiers (e.g., SVM, DT, RF), while models that previously excelled (LR, LDA) showed slight
declines. However, due to overall under-representation of female participants outside the NYU site,
performance gains were limited and variance remained high. This highlights the importance of sex-balanced
datasets and stratified evaluation.

Age-based comparisons revealed that adolescents (12-18 years) consistently achieved higher and more stable
classification performance across nearly all models. In contrast, younger children (0-11 years) exhibited weaker
and more variable results. Several neurodevelopmental and methodological factors likely contribute to this
disparity. First, younger participants tend to exhibit significantly greater in-scanner head motion, a
well-documented confound in pediatric fMRI studies. While the ABIDE I dataset, preprocessed using the
CPAC pipeline, incorporates comprehensive motion correction steps, outlined in Appendix A.1, these
procedures cannot fully eliminate the impact of motion. Residual motion artifacts persist even below the FD
threshold and can introduce systematic biases in functional connectivity estimates [42, 43].

Second, functional connectivity itself undergoes substantial developmental changes across childhood and
adolescence. Prior studies have shown that connectivity patterns in ASD are not static across development.
Younger individuals may display both over- and under-connectivity, while adolescents more reliably exhibit
under-connectivity [44].

In conclusion, as the brain matures, adolescents tend to exhibit more stable and distinguishable connectivity
patterns, making it easier for classifiers to identify ASD-related features. In contrast, younger children show
greater developmental variability, which makes these patterns harder to detect and learn from.

5.6.4 Classifier Comparison

Across most evaluations, MLP and SVM achieved strong and consistent performance, particularly in cross-site
tests (balanced accuracies of 63.9% and 61.8% respectively). Logistic Regression and MLP where both stable
and performed consistent across different demographics, making them appealing when inclusivity and
consistency are important, with MLP slightly more reliable for small skewed training sets. Decision Trees and
KNN were generally outperformed across all settings, showing sensitivity to noise and site variability.
Introducing Random Forest as an enhancement to Decision Trees proved successful, with Random Forest
outperforming its predecessor across all settings and demonstrating improved robustness to noise and site
variability.

5.6.5 Limitations and Future Work

While the study provides valuable insights, several limitations remain. First, the use of Pearson correlation
features may overlook more complex temporal or spectral properties of rs-fMRI data. Second, the imbalance in
sex and age distributions across sites likely biased classifier training. Third, the LOGO CV setup assumes equal
difficulty between sites, which may not be true given population sizes and demographics. Moreover, data
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augmentation strategies might be implemented to mitigate variability and improve generalisation.

Future work should explore sex- and age-specific model tuning, incorporate more expressive graph- or
network-based features, and examine techniques to explicitly address inter-site heterogeneity. One technique
worth looking into is the application of domain adaptation techniques as that may better address the site
heterogeneity of the multisite data [45].

Furthermore, as stated in our discussion on single-site classification, the same holds for the multisite setting.
With 6670 features in comparison to 871 samples, there is still a high risk of overfitting. Highlighting the need
for proper feature selection techniques and possibly dimensionality reduction. We expect that with the
integration of the feature selection methods of the Feature Selection subgroup, the performance of all developed
classifiers will increase.

5.6.6 Conclusion

In conclusion, this study highlights both the potential and the limitations of ASD classification from multi-site
rs-fMRI data. While multisite training enables reasonable within-distribution performance, generalising to
unseen sites and under-represented subgroups remains a challenge. Addressing these challenges requires
continued efforts in dataset balance, feature design, and robust validation strategies to move toward clinically
useful ASD detection tools.

Despite these challenges, our LR, SVM, and MLP models satisfied all performance-related requirements
(NFR1-NFR6) and adhered to the set threshold for the computation time in NFR7. LDA satisfied most
requirements, but failed to meet the requirements for the standard deviation in NFR6.
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6 Feature Importance and Brain Visualisation

This chapter explores which brain connectivity features were most influential in the classification of ASD versus
TC. By analysing feature importance across folds and models, we identify patterns of stable, high-ranking
connections and examine their relevance. We then visualise the most consistently important connections in the
brain, bridging model outputs with neuroscientific interpretation and contributing to the broader goal of
biomarker discovery in ASD.

6.1 Stability Across Folds and Models

Table 6.1 and 6.2 present a subset of brain connectivity features that most frequently appeared among the top
20 important features ranking across folds for both the LR and SVM models as these conform to all
requirements NFR1-NFR7. The complete list of all features identified in the top 20 ranking can be found in
Table F.17 in Appendix F.

These results highlight the stability and consistency of certain brain connectivity features across both classifiers
and validation folds. In particular, the feature fc_5301_8212, representing a connection between the left
inferior occipital gyrus (Occipital Inf L) and the right superior temporal pole (Temporal Pole Sup R),
appeared in 9 out of 10 folds (5 for LR and 4 for SVM), suggesting a highly robust and potentially biologically
meaningful connection that may play a key role in distinguishing between ASD and TC. Other features, such as
fc_6302_9160 (connecting the right precuneus and vermis 9) and £c_2002_8201 (linking the right precentral
gyrus with the right Heschl’s gyrus), also appeared in the majority of folds across both classifiers, suggesting a
pattern of shared feature relevance despite the different learning objectives of logistic regression and SVM.
Importantly, by averaging feature weights only over folds where the features appear in the top 20 ranking,
separately per classifier, we observe systematic differences in magnitudes of weights between LR and SVM (see
Table REF). For example, £c_5301_8212 has a notably larger negative average weight magnitude in LR
(approximately -0.12) compared to SVM (approximately -0.02). Although the average absolute weight
magnitudes were larger for LR than for SVM, this difference reflects the distinct optimisation objectives and
constraints of each model.

Table 6.1: Average feature weights (& standard deviation) across folds where the feature appeared in the top 20
for each classifier. The number of folds in which each feature appeared in the top 20 ranking is also shown. Only
the subset of features that appeared in the top 20 rankings in more than 6 out of 10 folds in total are shown.

LR SVM
Feature Weight (meantstd) #Folds Weight (meantstd) #Folds
fc_5301 8212 -0.117240.0123 5 -0.0198 £0.0016 4

fc_ 6302 9160 -0.107140.0075
fc 2002 8201 -0.1057+0.0070
fc_2211 2312 0.10844-0.0044 0.0180 £ 0.0007
fc 2332 9021 -0.1225+0.0087 -0.0206 £ 0.0015
fc_2201 5102 0.1137+0.0114 3 0.0189 £ 0.0022 3

Index to region mapping: 5301: left inferior occipital gyrus; 8212: right middle temporal pole; 6302: right precuneus; 9160: vermis 9;
2002: right precentral gyrus; 8201: left middle temporal gyrus; 2211: left orbital part of the middle frontal gyrus; 2312: right triangular part
of the inferior frontal gyrus; 2332: right Rolandic operculum; 9021: left lobule 3 of the cerebellum; 2201: left middle frontal gyrus; 5102:
right superior occipital gyrus.

-0.0179+0.0014
-0.0179 £ 0.0014

W W b
W W W

While a number of features appeared in the top 20 for only a single fold, suggesting some degree of cross-fold
variability, there was a notable trend: for a given fold, if a feature was ranked among the top 20 by the logistic
regression model, it was often also ranked among the top 20 by the SVM model. This indicates a relatively high
degree of agreement between models within the same data partition, even though importance rankings may
vary across different folds.

By identifying features that are both stable across models and mapped to specific anatomical regions, this
analysis contributes directly to the goal of biomarker discovery. These repeatedly high-ranking connections offer
promising targets for neuroscientific investigation into the functional architecture of ASD.
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Table 6.2: Often occurring top 20 discriminative brain connectivity features selected across folds and models.
Each checkmark indicates that the corresponding feature was among the top 20 most important features for a
given fold and model in stratified 5-fold cross-validation.

Feature name LR-F1 LR-F2 LR-F3 LR-F4 LR-F5 SVM-F1 SVM-F2 SVM-F3 SVM-F4 SVM-F5

fc 5301 8212 v v v v v v v v v
fc_6302_9160 v v v v v v v v
fe 2002 8201 v v v v v v v
fo 2211 2312 v/ v v v v v
fc_ 23329021 v v v v v v
fe_ 2201 5102 v v v v v v

Index to region mapping: 5301: left inferior occipital gyrus; 8212: right middle temporal pole; 6302: right precuneus;

9160: vermis 9; 2002: right precentral gyrus; 8201: left middle temporal gyrus; 2211: left orbital part of the middle frontal gyrus;
2312: right triangular part of the inferior frontal gyrus; 2332: right Rolandic operculum; 9021: left lobule 3 of the cerebellum;
2201: left middle frontal gyrus; 5102: right superior occipital gyrus.

Figure 6.1 provides a brain-based visualisation of the six most consistently important connectivity features
listed in Table 6.2. This figure offers an intuitive understanding of their spatial distribution and potential
involvement in ASD-related neural pathways. This visual representation serves as a crucial bridge between
statistical model output and neuroscientific interpretation, highlighting candidate connections for future
biomarker validation. Additional connectome plots for each fold and model, showing the top 20 features
weighted by their importance scores, are available in Appendix E.1 (Figures E.1-E.10). In Chapter 9, we link
the most important features found during this analysis to existing ASD research.

Top Stable Features 0.074

0.037

-0.037

-0.074

Figure 6.1: Connectome visualisation of the six most frequently occurring brain connectivity features across folds
and models. Each edge represents a functional connection between two AAL regions that appeared repeatedly
in the top 20 feature importance rankings (see Table 6.2).



7 Multi-Site Classification Performance on Graph
Features

In the following, we present and analyse the performance of our classification models on graph features. As
discussed in Section 3.2.2 we received a total of 29 datasets each containing the graph features for 871 subjects
obtained using various inference and covariance estimation methods. We present and analyse the results on the
graph features obtained with an adjacency inference method (rSpecT) with direct covariance estimation
(dataset DF6). This method obtained the best performance balance between all metrics and scored the highest
on average balanced accuracy across all models.

Unlike Pearson correlation, which captures pairwise temporal coactivation, rSpecT infers functional
connectivity by modelling brain activity as the result of a diffusion process over a graph, capturing direct
connections from the observable indirect relationships [19].

Performances on the other datasets can be seen in Appendix F.2.1 Table F.18-Table F.34.

7.1 Stratified Cross Validation

Table 7.1 presents the classification results on the graph-based features derived using the adjacency inference
method, with direct covariance estimation. This dataframe contained only edge weights as features. When it
comes to sensitivity, only DT and RF perform below the baseline, interestingly they are both tree-based
models. Every classifier performs better than the baseline on all other metrics, by a great margin. Overall, the
SVM model performs the best out of all models and outperforms the baseline by +11.2% for sensitivity, +5.8%
for specificity, +12.8% for AUROC, +8.3% for accuracy, and +8.5% for balanced accuracy. RF achieved a very
high specificity of 72.0%. However, the sensitivity of this model is very low (39.5%).

Table 7.1: Multisite classification performance on DF6.

Classifier Sensitivity Specificity AUROC Accuracy Balanced Accuracy
DUM 45.4% + 3.0% 56.0% + 5.7% 49.7% + 2.4% 51.1 + 4.0% 50.7 + 3.9%
LR 55.1% + 2.9% 60.9% =+ 4.6% 60.8% + 4.9% 58.2% + 3.6% 58.0% + 3.5%
SVM 56.6% + 6.4% | 61.8% +3.3% | 62.5% + 4.8% | 59.4% + 4.6% 59.2% + 4.7%
DT 44.2% £+ 12.7% | 64.1% £ 10.5% | 52.7% £ 2.9% 54.9% + 1.5% 54.1% + 1.9%
RF 43.7% + 7.4% | 69.6% + 3.9% | 61.2% £ 3.0% 57.6% + 3.9% 56.7% + 4.1%
MLP 54.8% + 9.6% 62.2% + 4.8% 61.5% + 7.4% 58.8% =+ 6.3% 58.5% + 6.5%
LDA 53.4% + 4.7% 59.8% + 4.0% 60.1% + 5.3% 56.8% + 3.8% 56.6% + 3.8%
KNN 48.4% + 6.0% 64.3% + 5.2% 58.6% =+ 2.6% 56.9% + 2.6% 56.3% + 2.7%

7.1.1 Evaluation per site

Table 7.2 presents the average performance of the classifiers on the best performing site (YALE) and on the

worst performing site (STANFORD) based on the mean balanced accuracy. The per-site performance for all
individual sites can be found in Appendix F.2.2. Our LR model performs exceptionally well on the
best-performing site, with a sensitivity of 81.7%, AUROC of 86.8%, and balanced accuracy of 79.2%. However
the standard deviations are very high, though LR shows a more stable sensitivity performance than most other

models. The performance on Stanford is sometimes almost twice as low as the performance on YALE. On

YALE, all of our models perform better than the baseline across all metrics. Regarding achieved sensitivity,
LR, SVM, and LDA perform exceptionally well on Yale.
On Stanford, no classifiers managed to match balanced accuracy or perform better than the baseline.
Performance on LEUVEN 2 (Table F.37) was also remarkably low, with the exception of RF who obtained a
balanced accuracy of 66.2%. Our SVM model performed really well on sites OHSU, PITT, and UCLA 2 with
their balanced accuracies all above 70%.
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Table 7.2: Comparison between the best performing site (YALE) and worst performing site (STANFORD).

YALE STANFORD

SEN [%] SPE [%]  AUROC [%] ACC [%] BACC [%]  SEN [%] SPE [%]  AUROC [%] ACC [%]  BACC [%]
DUM 46.7£7.5 32.0+£29.5 45.2+27.1 44.6+10.4 39.3+17.3 41.7+35.5 56.3+51.5 53.11+25.8 51.74+11.1 49.0+12.0
LR 81.74+20.7 76.7+32.5 86.81+19.5 74.24+19.5 79.24+17.7 39.61+31.5 37.5£25.0 49.0£27.7 41.5+18.6 38.5+21.3
SVM 70.0+21.7 52.7+39.2 73.7+18.5 59.1+18.8 61.3+26.4 39.6+31.5 50.0+£40.8 35.41+33.6 49.8+21.1 44.8+19.7
DT 40.0+38.4 86.0+21.9 78.8+11.3 57.6+18.1 63.0+11.4 47.9+44.3 31.2+37.5 50.5+12.5 47.5+14.5 39.6+12.5
RF 43.3+30.3 82.7+16.7 74.3+25.2 53.4+23.2 63.0+12.0 20.8+14.4 37.5+£25.0 45.1£25.0 31.0+7.6 29.2+10.2
MLP 68.3+41.0 72.7+30.0 78.5+25.6 64.5+24.4 70.5+£27.0 45.8+36.3 43.8+31.5 28.6+30.1 49.6+18.3 44.8+21.3
LDA 71.7+18.3 76.04+25.1 83.84+19.5 67.3£11.5 73.8+14.5 45.8+41.7 37.5£25.0 52.1+24.7 44.6+£23.7 41.7+£26.4
KNN 38.3+31.0 68.0+29.5 56.21+22.0 46.8+10.5 53.2+16.9 60.41+42.7 25.0+£28.9 51.6+23.0 49.6+18.3 42.7+22.1

7.1.2 Evaluation per sex

Table 7.3 presents the performance of the seven classifiers trained on the graph features in DF6, evaluated
separately for female and male subjects.
For the female subgroup, all classifiers underperformed in terms of sensitivity compared to the baseline.
However, specificity was improved significantly across all models, with the smallest gain seen in the LDA model
(+13.7%). AUROC performance was markedly better for all models, as the baseline AUROC was particularly

low. In terms of accuracy, all models outperformed the baseline, although margins were narrow for some (e.g.,

+1.6% for LDA). For balanced accuracy, most classifiers showed only marginal improvements over the baseline,
with MLP achieving the largest gain (+7.5%).
For the male data, all classifiers outperformed the dummy model on all metrics, although DT barely does so,
with a sensitivity only 0.9% above baseline and an AUROC improvement of just 2.2%.

Table 7.3: The average performance across folds on DF6 graph-based features, evaluated per sex.

Female Male

SEN [%] SPE [%] AUROC [%] ACC %] BACC [%] SEN [%] SPE [%] AUROC [%] ACC [%] BACC [%]
DUM  58.4+10.2 51.7£9.3 48.3+11.3 54.5£6.1 55.1£5.9 43.6+3.8 56.8+8.1 49.64+2.6 50.5£5.9 50.2%+5.7
LR 46.44+5.8 66.7+8.4 56.946.1 59.0+6.5 56.5+5.8 56.44+3.9 59.3+6.7 60.7+6.8 58.04+4.8 57.94+4.7
SVM 43.0+12.3 70.14+1.5 62.849.0 59.94+4.8 56.54+6.2 58.4+8.2 59.7+4.4 62.21+6.1 59.1+6.1 59.1+6.1
DT 41.9416.9 75.14+10.5 55.24+8.4 62.7+7.2 58.54+8.3 44.54+12.5 61.6+£10.6 51.843.4 53.44+1.7 53.0+1.9
RF 35.54+7.0 80.0+9.7 66.2+1.4 63.1+5.1 57.7+5.6 44.948.7 67.4+3.4 60.14+3.7 56.74+4.8 56.245.0
MLP 48.8+4.9 76.5£3.9 62.3+5.1 66.0+1.8 62.6+1.6 55.9+£11.1 58.6£7.1 60.6+£9.3 57.4+7.6 57.3£7.8
LDA 40.7+10.9 64.54+8.5 58.24+4.5 55.6+8.4 52.6+8.5 55.24+5.8 58.6+5.9 60.1+7.0 57.04+4.8 56.94+4.8
KNN 46.4+13.3 69.3+12.2 57.74+6.2 60.44+9.8 57.849.4 48.7+5.8 63.04+5.0 58.443.2 56.14+3.0 55.843.1

Across all classifiers, sensitivity was consistently higher for male subjects compared to female subjects. In
contrast, specificity was consistently higher for female subjects compared to male subjects across all classifiers,
with MLP, DT, and RF showing the largest gaps. For AUROC and balanced accuracy, the results varied per
classifier, but female subjects often had a slight advantage. The MLP classifier achieved the highest balanced
accuracy for female subjects (62.6%) and performed comparably on male subjects (57.3%). For both sexes, that
is approximately 7% higher than the established baselines. The DT model had particularly low AUROC and
balanced accuracy scores on male data, highlighting its weaker performance in that subgroup.

7.1.3 Evaluation per age

Table 7.4 highlights the best performing age group, 12-18 years, and the worst performing age group, 0-11
years based on their mean balanced accuracy. The complete results of all age groups can be found in Table F.45
andF.46.
The 12-18 group tends to have higher performance across all metrics. MLP, LR, and SVM show particularly
strong average performance, with an AUROC score above 65% for all. LR achieved an accuracy of 62.2% and a
balanced accuracy of 62.1%, while MLP reached the highest AUROC of 67.5%.
In contrast, the youngest age group showed notably lower performance. Most classifiers hovered around
chance-level accuracy and balanced accuracy, with high standard deviations across folds (up to 15.8% for SVM
sensitivity and 16.8% for LR AUROC). This instability may be attributed to the greater variability in early
brain development, which may obscure patterns relevant to ASD classification.
Interestingly, the DT model performed relatively well in the 0-11 group, achieving the highest balanced
accuracy (54.1%) and accuracy (56.2%) among the classifiers. This may indicate that simple, rule-based
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classifiers are better suited for capturing the patterns present in early childhood, though overall performance
remains limited. All classifiers surpassed the stratified dummy baseline (with a balanced accuracy of 46.7%),

demonstrating limited but real predictive ability.

Across all metrics, the standard deviations in the 0-11 group are nearly double compared to the 12-18 group.

Table 7.4: The average performance across folds on graph features, evaluated per age group. Comparison between
best-performing age group 12-18 (left) and worst-performing age group 0-11 (right).

12-18 0-11

SEN [%]  SPE[%] AUROC [%] ACC [%] BACC [%]  SEN [%] SPE [%]  AUROC [%] ACC [%] BACC [%]
DUM 47.1£5.0 56.2+6.6 49.3+7.1 51.8+5.3 51.6+5.3 40.2+12.8 53.1+£12.3 49.3+7.3 47.5+10.9 46.74+11.2
LR 58.7+3.0 65.4+5.4 66.3+4.0 62.2+3.0 62.1+£2.7 50.9+14.2 51.4+10.2 54.74+16.8 51.2+11.3 51.24+11.7
SVM 57.8+7.2 65.8+£6.7 65.5+£7.3 62.0+6.1 61.8+6.3 57.2+15.8 50.8+7.6 56.94+12.2 52.74+9.1 54.0+9.4
DT 43.3+12.9 64.3+11.0 52.0+4.6 54.0+3.3 53.8+3.6 40.6+14.7 67.6+11.3 58.0+5.8 56.2+5.2 54.14+5.7
RF 42.7+8.5 71.0+3.5 63.3+4.2 57.7+£4.5 56.8+5.2 47.1£13.9 58.8+11.8 55.9+9.6 52.7+8.6 53.0+8.0
MLP 58.0+£14.0 66.8+6.5 67.5+9.5 62.8+8.9 62.4+9.5 52.2+13.4 50.4+£7.0 52.6+13.2 51.4+8.0 51.3+8.9
LDA 56.6+£5.2 62.84+7.2 65.5+4.7 59.8+4.3 59.744.0 54.3+13.4 51.84+9.8 54.24+15.1 52.949.7 53.14+10.2
KNN 46.8+8.2 65.5+£7.3 60.5+5.6 56.6+4.6 56.2+5.0 53.0£10.3 55.0£8.7 54.6+8.1 53.7+8.8 54.0+8.2

7.2 Cross-site Generalisation with LOGO CV

Table 7.5 shows the balanced accuracy obtained during LOGO CV. LR shows the best generalisation capability
to unseen sites. LDA shows promising results, but struggles with LEUVEN 2 and MAXMUN. It appears that
all models struggle with correctly classifying between ASD and TC for test site LEUVEN 2.
LR, MLP, LDA, and KNN achieved very high balanced accuracies on test site OHSU. Another test site that all
models performed well on was UM 2. Almost all classifiers obtained a balanced accuracy of 70% or higher,

with the exception of MLP and KNN who obtained balanced accuracies of 64.5% and 60.3%, respectively.
Of our classifiers, KNN struggled the most with generalising to unseen sites, obtaining a mean balanced

accuracy 54.4% (£9.4%). However, on LEUVEN 2. on which all models struggled, KNN performed the best
here. All in all, LR and LDA show best generalisation capability. SVM looks very promising too, but performs

poorly on LEUVEN 1 and moderately on MAXMUN, PITT, and SBL. In addition to LEUVEN 2, the

models also have difficulty with correctly identifying ASD in test site SBL.
Almost all models perform below 50%, with the exception of LDA and RF with balanced accuracies of 54.2%
and 64.3%, respectively.

Table 7.5: Balanced Accuracy obtained by each classifier for each test site during LOGO CV on graph features.
N indicates the number of ASD and TC samples in each site, which also corresponds to the size of the test set
for that fold in LOGO CV, where each group (site) is left out once for testing.

Balanced Accuracy [%] N

LR SVM DT RF MLP LDA KNN ASD TC
CALTECH 65.0 70.0 60.0 35.0 55.0 60.0 35.0 5 10
CMU 65.0 55.0 48.3 58.3 46.7 56.7 38.3 6 5
KKI 56.5 52.4 60.1 52.4 58.3 58.3 50.0 12 21
LEUVEN_1 64.3 39.3 64.3 50.0 50.0 60.7 46.4 14 14
LEUVEN_2 42.7 58.3 50.0 53.1 44.8 45.8 59.4 12 16
MAXMUN 52.2 45.9 64.6 55.2 50.7 48.8 60.4 19 27
NYU 59.7 65.5 54.7 62.3 58.2 61.7 53.8 74 98
OHSU 72.1 56.1 59.9 52.9 84.3 71.8 72.1 12 13
OLIN 60.7 57.1 50.0 64.3 64.3 64.3 64.3 14 14
PITT 54.3 47.6 61.7 56.6 52.2 50.3 55.6 24 26
SBL 46.4 49.4 50.0 64.3 50.0 54.2 49.4 12 14
SDSU 67.1 53.0 53.6 52.0 55.6 60.9 64.5 8 19
STANFORD 56.7 64.7 56.7 55.4 64.4 60.9 56.1 12 13
TRINITY 50.4 61.6 48.1 57.6 42.4 52.4 45.1 19 25
UCLA 1 66.6 65.3 60.7 57.8 62.6 69.8 59.5 37 27
UCLA 2 56.8 61.8 52.7 71.8 61.4 56.8 65.9 11 10
UM_1 54.8 58.1 52.9 57.6 61.3 53.3 58.3 34 52
UM_2 75.1 81.3 72.3 70.3 64.5 71.2 60.3 13 21
USM 58.7 56.8 58.0 55.4 50.2 60.1 42.4 43 24
YALE 75.5 66.0 43.4 55.4 62.3 73.2 52.0 22 19
Mean=std 60.0+8.7  58.3£9.2 56.1+£6.8 56.9£7.6 57.0£9.2  59.6+£7.5 54.4+9.4
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7.3 Comparison with Pearson Correlation Features

Table 7.6 presents an overview of the balanced accuracies obtained by each feature extraction method in the
multisite setting. In general, higher performance was obtained using Pearson correlation features. However, the
training time on graph-based features was significantly faster than on Pearson correlation features due to the
difference in dimensionality (190 features versus 6670 features).

Table 7.6: Balanced Accuracy obtained by each classifier for Pearson correlation and graph features during
stratified cross-validation in the multisite setting.

Balanced Accuracy [%]

Method LR SVM DT RF MLP LDA KNN
Pearson Correlation  62.4%  64.4% 57.0% 61.1% 64.3% 63.2% 58.9%
Graph features 58.0% 59.2% 54.1% 56.7% 58.5% 56.6% 56.3%

In addition to an overall assessment, results of both feature extraction methods were evaluated per site, per sex,
and per age. Regarding the per site evaluation, both Pearson correlation and Graph-theoretical features
struggled with correctly classifying ASD on Stanford. Interestingly, while Pearson correlation classification
highly underperformed on OHSU, graph feature-based classification on OHSU showed superior performance
with LR, SVM, and KNN with balanced accuracies of 65.0% for LR and KNN, and SVM achieving a balanced
accuracy as high as 70.8%. Another site that was moderately difficult for both feature extraction methods, was
classification on KKI, with balanced accuracies ranging from 51.0% to 64.7% for Pearson correlation and 45.2%
to 69.8% for graph features. KNN with graph features performed quite good on KKI with an accuracy of 72.2%
and balanced accuracy of 69.8% balanced accuracy. However, its sensitivity was on the low side being just
45.8%. LR and SVM score high balanced accuracies on PITT for both Pearson correlation (77.4% and 71.7%,
respectively) and graph features (70.7% and 71.6%, respectively).

For per sex evaluation, MLP obtained highest balanced accuracy on the female subset for both Pearson
correlation and graph-based features. In general, the Pearson correlation features performed better than the
graph features for both male and female subsets.

For per age evaluation, both feature extraction methods obtained their best performance on the 12-18 age
group and worst performance on the 0-11 age group. In general, the graph features performed worse than
Pearson correlation features for both the 12-18 age group and the 0-11 age group. There is one performance
metric where the graph features did manage to outperform the Pearson correlation features, namely for the
sensitivity of the age group 0-11 (+4.8% for SVM, +4.2% for RF, and +0.3% for KNN).

Lastly, we compare the cross-site generalisation results of the Pearson correlation features and graph features.
Table 7.7 shows a comparison of the mean balanced accuracy achieved by each classifier during LOGO CV
using the two different feature extraction methods. Across all classifiers, the ability to generalise to unseen sites
decreased when using graph features. However, the graph features method shows slightly more stable results.
There were two instances where graph features outperformed Pearson correlation features, namely for test sites
OHSU and UM _ 2 with sharp increases in balanced accuracies on test site UM _ 2 for all models, except MLP.
For test site OHSU, balanced accuracy increased significantly in the LR, MLP, LDA, and KNN models. For test
site Caltech, LR, SVM, DT, and LDA performed significantly better on graph features with increased balanced
accuracy of +20%, +25%, +15%, and +20%, respectively. However, RF and MLP dropped significantly in
performance on this test site with -20% and -10%, respectively. KNN showed relatively little difference (-5%).

Table 7.7: Balanced accuracy obtained by each classifier for Pearson correlation and graph features during LOGO
CV.

Balanced Accuracy (meantstd) [%]

Method LR SVM DT RF MLP LDA KNN
Pearson Correlation  61.3+11.9 61.84+11.7 57.5+10.7 60.4+10.8 63.91+10.8 59.7+8.9 56.2+11.3
Graph features 60.0+£8.7 58.31+9.2 56.11+6.8 56.94+7.6 57.049.2 59.6+7.5 54.449.4
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7.4 Discussion

12 of the 29 received graph-based datasets could not be used for testing and training. These data frames
contained too many features (~96% of total features) with 0 variance across subjects, thus having no
discriminative power. These data frames were highlighted with an asterisk in Table C.1. In addition,
graph-based datasets DF9-DF14 were inferred with the rLogSpect method, but without the proper tuning of
the threshold and alpha parameter [19]. These data frames were highlighted with double asterisks in Table C.1.
We obtained our best performance using dataset DF6, generated from an adjacency inference method with
direct covariance estimation. Unfortunately, this feature dataframe only contained edge weight features. So, for
now, the graph features do not outperform or match the performance obtained with Pearson correlation
features, but we hope that the addition of other graph-based features to DF6, such as centrality features,
clustering coefficients, and Laplacian eigenvalues, will improve the classification performance significantly, as
the study in [11] reported an accuracy of 77.7% and 73.3% with their LDA and KNN model, respectively. With
the current obtained graph-based dataframes, the classifiers have failed to satisfy requirements NFR1-NFRG6.
However, with this method, they do adhere to requirement NFRT.

Due to the delayed availability of the graph-derived features, a thorough feature importance analysis could not
be performed within the current timeframe, marking it as a valuable focus for future research. The Feature
Design subgroup transformed the resting-state fMRI time series from the 116 regions of the AAL atlas into 20
canonical resting-state networks (RSNs) defined by Smith et al. [46]. Since Pearson correlation and
rSpectT-based FC rely on different assumptions about how connections between brain regions are established,
comparing their feature importance may offer valuable insight into whether the two methods agree on
important regions and connections, or whether rSpecT highlights additional connections as important in the
decision-making of the classifiers.
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8 NASDA (GUI)

The developed prototype, named NASDA (Neuroimaging Autism Spectrum Disorder Analyser), provides an
interactive graphical user interface (GUI) designed to provide user-controlled setup and execution of machine
learning pipelines on rs-fMRI data under a GNU Affero General Public License v3.0, shown in Figure 8.1.

'NASDA - o X
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° Male < 12-18
19-30
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Feature Selection Methods  Feature Types
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|
|
|
|
|
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Figure 8.1: Open-source graphical user interface prototype to control the Neuroimaging Autism Spectrum Dis-
order Analyser (NASDA) pipeline.

8.1 Purpose and Intended Audience

The NASDA prototype provides an accessible graphical user interface designed specifically for researchers and
graduate students in neuro- and computational psychiatry. Its primary objective is to improve efficiency in
exploratory ASD studies on rs-fMRI data by supporting subgroup filtering, feature selection, and model
evaluation into a single, coherent workflow.

The interface allows users to interactively test hypotheses about demographic effects, regional brain patterns,
and classifier performance. The integrated visualisation and command console promote transparency and
traceability, supporting well-organised and rigorous research.

This tool is not developed as an over-the-counter diagnostic system but rather as a research aid: it enables
domain experts to efliciently study the predictive value of graph-based and correlation-based brain features and
supports the user to form new well-grounded hypotheses.

In summary, NASDA aims to bridge the gap between theoretical algorithms and the practical neuroimaging
application, serving as an intuitive yet rigorous platform for reproducible, data-driven investigation.
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8.2 System Functionalities

The prototype is structured into five primary functional modules: Subject Selection, Classifier Selection,
Feature Configuration, Result Visualisation and Logging, and Performance Analysis and Output each described
in detail below. All features have been programmed in such a way that anyone could adjust the program easily
to their wishes for any future works. For a more in depth documentation, refer to Appendix G.

8.2.1 Subject Selection

The Subject Selection module enables dynamic subsetting of the dataset, by default ABIDE I, based on
demographic attributes. Users can independently filter the available samples by sex (options: All, Female,
Male) and age group (options: All, 011, 12-18, 19-30, 30-+). Selection triggers an immediate update of the
data partitions used for model training and evaluation. This functionality allows researchers to investigate
demographic-specific patterns in functional brain connectivity and satisfies FR3.

8.2.2 Classifier Selection

The Classifier Selection panel provides a range of supervised learning algorithms commonly employed in
neuroimaging classification tasks. Available options include: Support Vector Machine (SVM), Logistic
Regression, Random Forest, Decision Tree, Multilayer Perceptron (MLP), Linear Discriminant Analysis (LDA),
and k-Nearest Neighbour (KNN). The selected classifier is used during execution to fit models to the current
demographic subset and feature representation. With this implemented, FR5 is satisfied.

8.2.3 Feature Configuration

The Feature Configuration module offers two sub-components: Feature Selection Methods and Feature Types.
For feature selection, users may choose from methods such as cluster, Lars lasso, hsiclasso, Backwards
Sequential Feature Selection (SFS), or opt to use all available features (with None). In parallel, the Feature
Types sub-component allows the user to switch between a graph-based representation, leveraging graph signal
processing techniques, and a conventional Pearson Correlation Matrix. One can also change the analysed graph
inference method, by adjusting the Graph Path in the settings window. This modular design supports
comparative studies on how different feature extraction methods affect model performance and satisfies FR4
and FRG6.

8.2.4 Visualisation and Logging

A dedicated Brain Overview pane provides a visual summary of the current configuration overlaid on a visual
representation of the brain, highlighting regions involved in the classification. Supplementary buttons allow the
user to export the visualisation or expand it to full-screen view. Additionally, a tabbed console region logs
command executions, input parameters, real-time run status, and evaluation results. Separate tabs for error
reporting and performance summaries are included to enhance future interpretability and debugging
possibilities. These functionalities deliver on FR2 and FR1.

8.2.5 Performance Analysis and Output

The NASDA prototype provides integrated performance reporting for each classification run. Upon user
request, the system executes the selected classifier on the currently filtered dataset, producing predictions and
probabilistic estimates if supported by the model. The run() function serves as the main interface for model
fitting, prediction, and evaluation and leans into FR1.

Performance metrics, including per-class precision, recall, F1-score, accuracy, macro averages, weighted avg,
specificity, sensitivity, AUROC, and balanced accuracy are computed and displayed directly in the COMMAND
tab within the GUI. This real-time feedback allows users to immediately interpret the results of a specific
demographic or feature configuration without requiring external post-processing scripts. The console log clearly
distinguishes between overall and fold-specific results and preserves a running history for comparison across
multiple experiments. With this, the GUI satisfies FRT.
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8.3 Design Choices

The NASDA prototype was developed with explicit design decisions to balance flexibility, interpretability, and
ease of use for research-oriented rs-fMRI classification studies. The following key design choices guided the
system architecture and user interaction flow:

1.

Modular User Interface

The graphical interface divides core operations into intuitive, context-specific panels: Subjects, Classifier,
Features, and a dedicated Brain Overview canvas. This modular layout enables researchers to
systematically configure subgroup filters (e.g., by sex or age), choose from a suite of standard classifiers,
and select feature processing pipelines, all within a single workspace. Consistent radio button controls
ensure clear and mutually exclusive parameter selection, reducing configuration conflicts.

. Inline Visual Feedback

An interactive brain illustration is persistently displayed to reinforce the domain-specific focus on
neuroimaging. Overlay text dynamically updates to reflect the current target demographic, the selected
classifier, and the feature configuration, providing live updated information on the configuration settings
without requiring external documentation.

Integrated Command Console

The prototype embeds a live COMMAND tab. This console captures executed commands, logs status
messages, and prints fold-wise evaluation metrics. Researchers can inspect real-time feedback, track
experiment history, and validate intermediate results without leaving the GUI environment. This makes a
centralised and dynamically easy-to-use research workspace.

. Flexible Data Handling

The system supports on-the-fly filtering and reloading of the working dataset, driven by phenotypic
metadata such as sex and age. This design accommodates subgroup analyses, which are critical in
neurodevelopmental and clinical research contexts. For graph-based pipelines, the framework seamlessly
switches between precomputed graph features and correlation matrices.

. Extensible Backend

All analytical operations, including model training, prediction, and performance evaluation, are
modularised through dedicated functions (e.g., performCA(), runCV()). This integration promotes
maintainability and accommodates integration with hyperparameter tuning or other new novel feature
extraction methods without major refactoring of the GUI.

Overall, these design choices prioritise transparency and reproducibility, aligning with the prototype’s role and
NFRS8 and NFRY9.
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9 Discussion

In this chapter, we revisit the research questions outlined in Chapter 1 and discuss how our findings address
each.

Which classifiers and feature types offer the best trade-off between accuracy and interpretability?

Logistic Regression, SVM, and LDA applied to the Pearson correlation features offered the best trade-off
between accuracy and interpretability with accuracies of 62.7%, 64.7%, and 68.2%, and balanced accuracies of
62.4%, 64.4%, and 63.2%, respectively making them both conform to NFR1 and NFR5. While MLP achieved
similar performance with an accuracy of 64.5% and a balanced accuracy of 64.3%, it is not inherently
interpretable and can only be interpreted by post-hoc explanations.

How can we identify brain regions that are both consistently important in the prediction across
classifiers and experimental folds and how are these identified regions supported by established
neuroscientific findings in ASD?

We addressed how we identify brain regions that are both consistently important in the prediction across
classifiers and experimental folds in Section 3.6 and Section 6.1. Here, we will address how established
neuroscientific findings in ASD research support our identified regions.

Several of the most frequently identified connections in our feature importance analysis align with established
neuroscientific findings in ASD. The connection between the left inferior occipital gyrus (Occipital Inf L) and
the right middle temporal pole (Temporal Pole Mid R). The under-connectivity observed in the inferior
occipital gyrus aligns with findings from Bai et al. and Long et al., who reported similar under-connectivity of
this brain region in a no-task state [47], [48]. This region is part of the occipital complex, which is primarily
responsible for object recognition [49]. The inferior occipital gyrus has been found to be related to the visual
function of processing faces, a function that is frequently disrupted in ASD [50]. Although prior studies have
not specifically reported under-connectivity between the inferior occipital gyrus and the middle temporal pole
in ASD, Olsen et al. discuss the role of the temporal pole in face processing [51].

The right precuneus, a key region of the default mode network involved in self-referential-processing and social
processing, has been shown to exhibit abnormal connectivity in ASD [52]. Its recurrent pairing with vermis 9,
part of the cerebellum, supports emerging evidence that the cerebellum may contribute to cognitive functions
and the social brain [53], [54].

Although no direct link has been reported between the precentral gyrus and Heschl’s gyrus, the broader
primary auditory cortex, which includes Heschl’s gyrus, is frequently linked to ASD. One study revealed that
the right precentral gyrus (primary motor cortex) was less connected to the auditory cortices in ASD [55]. This
is consistent with our model’s negative feature weight for the connectivity between these regions, suggesting
reduced functional connectivity in individuals with ASD compared to TC.

These findings suggest that the features identified as most important by our models are not arbitrary, but
instead reflect neurologically meaningful altered patterns that have been observed in ASD research. By aligning
feature importance results with established literature, this analysis strengthens the interpretability and
credibility of the results and supports the potential of these connections as candidate biomarkers for further
investigation in ASD.

How can we develop an intuitive interface to control the pipeline and visualise the resulting ROIs
and model performance to support further neuroscientific analysis?

An open source GUI has been constructed to support an interactive and intuitive pipeline that can visualise
and document model performances and the ROIs involved in the classification process. The GUI has been
implemented to satisfy all functional requirements (FR1-FR7), NFR8 and NFR9, as discussed in Chapter 8.

How can we improve the generalisability of our classifiers?

To improve the generalisability of our classifiers, we focussed primarily on two strategies: harmonisation on
Pearson correlation features in the multi-site classification setting and the incorporation of graph-based features.
First, it is important to distinguish between generalisability to unseen samples within known sites, which we
assessed via stratified K-fold cross-validation, and generalisability to unseen sites. We evaluated the effect of
harmonisation using NeuroHarmonize, a ComBat-based method designed to mitigate site-specific variability.
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While harmonisation led to a modest improvement in balanced accuracy for our LR model and a rougly 2%
increase in sensitivity for the MLP and KNN classifiers, these benefits were limited. Moreover, harmonisation
introduced instability in model performance across folds. A notable limitation is that NeuroHarmonize requires
all test sites to be represented in the training data, preventing its use for true unseen-site generalisability
evaluation.

Secondly, we investigated whether graph-based features designed by the Feature Design subgroup could
enhance generalisability by capturing more robust functional connectivity patterns. However, our current
feature set was limited to only edge weights and did not include more complex graph metrics such as degree
centrality, clustering coeflicients, or Laplacian eigenvalues, which have been shown to be informative in prior
studies [11]. Consequently, we could not fully assess the potential of graph-based features, but our initial results
suggest that current edge-weight-only features do not improve generalisability and rather decrease the ability to
generalise to unseen samples and unseen sites by a noticeable margin. We anticipate that incorporating more
advanced graph features may offer improvements.

Additionally, given the high dimensionality of our feature space for Pearson correlation features (6670 features)
relative to the number of subjects (871), feature selection could be vital to reducing overfitting and boosting
performance.

To conclude, neither harmonisation nor graph features improved the generalisability of our classification
models. However, when using traditional Pearson correlation features without harmonisation, our LR, SVM,
and MLP models all met the non-functional requirements NFR1-NFR7. The LDA model also performed well,
although its sensitivity standard deviation slightly exceeded the threshold specified in NFR6.

What evaluation methods best capture meaningful classifier performance beyond average accuracy,
including site-specific, sex-based, or age-based assessments?

All per-subset evaluations offered valuable insights. Site-specific evaluation has shown us that performance
disparities seen in some sites, like Stanford and OHSU, could be explained by differences in scan parameters
and protocols.

Sex-specific evaluation revealed that different classifiers perform better depending on the subject’s sex.
Notably, our MLP model consistently achieved the highest performance across all metrics for female subjects in
the multisite setting, reaching a balanced accuracy of 70.7% using Pearson correlation features, significantly
outperforming the second-best model, which achieved 65.2%. Additionally, the MLP model showed a much
higher sensitivity on female subjects (62.8% compared to 54.4% for the runner-up). In contrast, for male
subjects, all models performed similarly, with no single model clearly outperforming the others.

Lastly, age-specific evaluation indicated that classifying ASD in the 011 years age group is substantially more
challenging than in older age groups. This difficulty may stem from greater variability in connectivity patterns
within this younger cohort, as they may exhibit both over- and under-connectivity, whereas adolescents (12-18)
tend to show more consistent under-connectivity [44]. These findings suggest that functional connectivity
features alone may have limited discriminative power for detecting ASD in young children, highlighting the
need for future research to explore alternative or complementary biomarkers tailored to this age group.

Overall, subgroup-specific evaluation methods provide a richer, more detailed understanding of classifier
performance than aggregate metrics alone, enabling targeted improvements and better interpretation in the
context of ASD classification.
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10 Conclusion and Future Work

10.1 Conclusion

This research focussed on the implementation and evaluation of a wide range of classifiers for the classification
task of Autism Spectrum Disorder (ASD) detection. Seven classifiers were implemented and subjected to
rigorous testing and evaluation on two types of input features: Pearson correlation features and graph-based
features. Among these, Logistic Regression (LR), Support Vector Machine (SVM), and Multi-Layer Perceptron
(MLP) successfully satisfied all performance-related non-functional requirements (NFR1-NFR7) when
evaluated on the Pearson correlation features. These three models obtained balanced accuracies of 62.4%,
64.4%, and 64.3%, respectively. Linear Discriminant Analysis (LDA) came close to meeting these requirements,
falling short only on NFR6 due to a standard deviation of 5.5%.

In contrast, the classifiers failed to meet the same criteria when evaluated on the graph-based features. This
performance gap can largely be attributed to the limited informativeness of the graph features, which consisted
solely of edge weights and lacked richer topological or contextual information. This outcome emphasises the
critical importance of well-designed feature representations in machine learning pipelines, as model performance
is inherently dependent on the quality of the input data.

This study is part of a larger interdisciplinary research aimed at improving the detection of ASD and
discovering reliable neurological biomarkers. In support of this broader goal, we performed an in-depth feature
importance analysis on the Pearson correlation features. This analysis identified several brain region
connections that were consistently ranked as highly important across multiple folds and both LR and SVM
classifiers. Notably, connections involving the inferior occipital gyrus, middle temporal pole, precuneus, and
cerebellum appeared repeatedly, reflecting brain areas previously implicated in ASD-related research [56]-[55].
By linking these discriminative features to established neuroscientific findings, our results not only enhance
model interpretability but also strengthen the case for these connections as potential biomarkers.

Lastly, we developed NASDA (Neuroimaging Autism Spectrum Disorder Analyser), an intuitive visual tool
aimed to support neuroscientists in rs-fMRI analyses for research into atypical connectivity patterns in
individuals with ASD. NASDA fulfilled all functional and non-functional requirements with Logistic Regression
(the recommended model) for Pearson correlation features.

10.2 Future Work

While this study has demonstrated the effectiveness of several classifiers and provided insight into meaningful
brain connectivity features for ASD classification, several promising directions remain for further exploration
and improvement.

Firstly, the graph features pipeline can be significantly enriched by incorporating more advanced graph
descriptions, such as Laplacian eigenvalues, nodal centralities, or community structure metrics, may better
capture the topological nuances of brain connectivity.

Secondly, hyperparameter tuning for KNN and LDA may improve performance. In addition, to improve the
computation speed during hyperparameter tuning, it might be worthwhile to parallelise this process. Moreover,
experimenting with ensemble methods such as AdaBoost or histogram-based gradient boosting (HGBT) may
provide performance gains and resilience to noise.

Another key aspect for future work is model interpretability and feature importance estimation. Applying
SHAP (SHapley Additive exPlanations) to the MLP and extending feature importance analysis to the refined
graph features, would provide deeper insights into which brain regions and connections drive classification
decisions.

From a methodological perspective, exploring domain adaptation and multitask learning could make models
more generalisable across sites, scanners, or demographic subgroups, addressing the known heterogeneity in
ASD presentations. Here, parallel computing could again be utilised to handle the increased computational
burden that comes with more complex models.

Lastly, future studies should consider incorporating factors such as handedness or ASD subtypes, as these may
influence connectivity patterns and contribute to a more nuanced understanding of ASD-related neural
biomarkers. Developing robust methods to address minority representation within these subgroups will be
essential to ensure that findings are comprehensive, representative, and biologically meaningful.
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A ABIDE I Dataset Details

Table A.1 and A.2 contain the subject information and scanner information of the ABIDE I dataset.

A.1 Preprocessing Pipeline (CPAC)

The ABIDE data was preprocessed using the CPAC pipeline. The steps included:
1. Slice time correction using AFNI's 3d Tshift [57].
2. Motion correct to the average image using AFNI’s 8dvolreg (two iterations).

Skull-strip using AFNI’s 3dAutomask.

- W

Global mean intensity normalization to 10,000.
5. Nuisance signal regression was applied including;:

e motion parameters: 6 head motion parameters, 6 head motion parameters one time point before, and
the 12 corresponding squared items

e top 5 principal components from the signal in the white-matter and cerebro-spinal fluid derived from
the prior tissue segmentations transformed from anatomical to functional space

e linear and quadratic trends
6. Band-pass filtering (0.01-0.1Hz)

7. Functional images were registered to anatomical space with a linear transformation and then a
white-matter boundary based transformation using FSL’s FLIRT [58, 59] and the prior white-matter
tissue segmentation from FAST [60].

8. The previous anatomical to standard space registration was applied to the functional data in order to
transform them to standard space.

A.2 Subject Exclusion

The original ABIDE I dataset consisted of 1112 subjects. After preprocessing with CPAC, 871 subjects
remained. A total of 241 subjects were excluded for the following reasons:

e Information extraction error: subjects were skipped due to an error occurring during the information
extraction from the phenotypic file.

e Missing FILE ID entries: subjects were skipped due to missing file names in the phenotypic file.

e Framewise Displacement (FD) threshold: subjects were excluded because they exceeded the FD
threshold of 0.2.

e Quality Check: subjects that did not pass the quality assessment were excluded.

The final dataset contained 871 subjects (403 ASD, 468 controls).
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Table A.3: Subject information of the preprocessed ABIDE I dataset per acquisition site.

N

Site Total ASD TC % Female Age (Mean+SD) Age range
CALTECH 15 5 10 33.33 26.79+£10.77 17.0-56.2
CMU 11 6 5 36.36 26.82+4.81 19.0-33.0
KKI 33 12 21 27.27 10.31+1.28 8.2-12.8
MAXMUN 46 19 27 8.70 26.5+10.63 7.0-58.0
NYU 172 74 98 20.93 15.3346.6 6.47-39.1
OLIN 28 14 14 17.86 17.0443.43 1024
OHSU 25 12 13 0.0 10.81£1.75 8.0-15.23
SDSU 27 8 19 22.22 14.36+1.93 8.67-17.15
SBL 26 12 14 0.0 33.77+6.6 20.0-49.0
STANFORD 25 12 13 28.0 9.99+1.63 7.53-12.94
TRINITY 44 19 25 0.0 17.03£3.5 12.0-25.66
UCLA 1 64 37 27 14.06 13.354+2.38 8.36-17.94
UCLA 2 21 11 10 9.52 12.47+1.67 9.79-16.47
LEUVEN 1 28 14 14 0.0 22.434+3.51 18.0-32.0
LEUVEN 2 28 12 16 25.0 14.174+1.48 12.1-16.9
UM 1 86 34 52 29.07 13.774+2.96 8.2-19.2
UM 2 34 13 21 5.88 16.0243.36 12.8-28.8
PITT 50 24 26 14.0 18.5£6.76 9.33-35.2
USM 67 43 24 0.0 22.5948.36 8.77-50.22
YALE 41 22 19 39.02 13.314+2.64 7.0-17.75
TOTAL 871 403 468 16.53 16.9447.58 6.47-58.0
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2001 - Precentral L,

2002 - Precentral R,

2101 - Frontal Sup_ L,

2102 - Frontal Sup R,

2111 - Frontal Sup Orb L,
2112 - Frontal Sup Orb_R,
2201 - Frontal Mid L,

2202 - Frontal Mid R,

2211 - Frontal Mid Orb_L,
2212 - Frontal Mid Orb_ R,
2301 - Frontal Inf Oper L,
2302 - Frontal Inf Oper R,
2311 - Frontal Inf Tri L,
2312 - Frontal Inf Tri R,
2321 - Frontal Inf Orb L,
2322 - Frontal Inf Orb R,
2331 - Rolandic_ Oper_ L,
2332 - Rolandic_ Oper_ R,

2401 -
Supp Motor Area L,

2402 -
Supp_Motor Area R,

2501 - Olfactory L,
2502 - Olfactory R,

2601 -
Frontal Sup Medial L,

2602 -
Frontal Sup Medial R,

2611 - Frontal Med Orb L,
2612 - Frontal Med Orb_R,
2701 - Rectus_ L,
2702 - Rectus_R,
3001 - Insula_ L,

3002 - Insula_ R,

B AAL Index to Region Mapping

4001 - Cingulum Ant L,
4002 - Cingulum_Ant R,
4011 - Cingulum Mid L,
4012 - Cingulum Mid R,
4021 - Cingulum_Post L,
4022 - Cingulum_Post R,
4101 - Hippocampus_ L,
4102 - Hippocampus_R,
4111 - ParaHippocampal L,
4112 - ParaHippocampal R,
4201 - Amygdala_ L,

4202 - Amygdala_R,

5001 - Calcarine L,

5002 - Calcarine R,

5011 - Cuneus_L,

5012 - Cuneus_R,

5021 - Lingual L,

5022 - Lingual R,

5101 - Occipital Sup L,
5102 - Occipital _Sup R,
5201 - Occipital Mid L,
5202 - Occipital Mid R,
5301 - Occipital Inf L,
5302 - Occipital Inf R,
5401 - Fusiform L,

5402 - Fusiform R,

6001 - Postcentral L,
6002 - Postcentral R,
6101 - Parietal Sup L,
6102 - Parietal Sup R,
6201 - Parietal Inf L,
6202 - Parietal Inf R,
6211 - SupraMarginal L,
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6212 - SupraMarginal R,
6221 - Angular L,

6222 - Angular R,

6301 - Precuneus L,
6302 - Precuneus R,

6401 -
Paracentral Lobule L,

6402 -
Paracentral Lobule R,

e 7001 - Caudate L,

7002 - Caudate R,

7011 - Putamen L,

7012 - Putamen R,

7021 - Pallidum L,

7022 - Pallidum R,

7101 - Thalamus L,
7102 - Thalamus R,
8101 - Heschl L,

8102 - Heschl R,

8111 - Temporal Sup L,
8112 - Temporal Sup R,

8121 -
Temporal Pole Sup L,

8122 -
Temporal Pole Sup R,

8201 - Temporal Mid L,
8202 - Temporal Mid R,

8211 -
Temporal Pole Mid L,

8212 -
Temporal Pole Mid R,

8301 - Temporal Inf L,
8302 - Temporal Inf R,
9001 - Cerebelum Crusl L,
9002 - Cerebelum Crusl R,
9011 - Cerebelum Crus2 L,
9012 - Cerebelum Crus2 R,
9021 - Cerebelum 3 L,



9022 - Cerebelum 3 R, e 9061 - Cerebelum 8 L, e 9110 - Vermis 3,

9031 - Cerebelum 4 5 L, e 9062 - Cerebelum 8 R, e 9120 - Vermis 4 5,
9032 - Cerebelum 4 5 R, e 9071 - Cerebelum 9 L, e 9130 - Vermis 6,
9041 - Cerebelum 6 L, e 9072 - Cerebelum 9 R, e 9140 - Vermis 7,
9042 - Cerebelum 6 R, e 9081 - Cerebelum 10 L, e 9150 - Vermis_ 8,
9051 - Cerebelum 7b_L, e 9082 - Cerebelum 10 R, e 9160 - Vermis_ 9,
9052 - Cerebelum 7b R, e 9100 - Vermis 1 2, e 9170 - Vermis 10
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C

List of Graph Features

C.1 Complete List of Graph Features

Node Specific Features

Degree Centrality
Eigenvector Centrality
Clustering Coeflicient
Betweenness Centrality

Closeness Centrality

Node to Node

Edge weights

Global Features

Average Clustering

Diameter

Graph energy

Spectral entropy

Mean Laplacian Eigenvalue

Max Laplacian Eigenvalue

Frobenius Norm (Laplacian Spectrum)
Algebraic Connectivity

Characteristic Path Length
Smallworldness

Modularity
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C.2 Features Included in Each Dataframe

Table C.1: An overview of the features included in each dataframe received from the feature design subgroup [19].
DF1-DF8 features were derived from 20 ICA components with Smith ICA, whereas DF9-DF29 features were

derived from 30 ICA components with group ICA.

ID Inference Cov. Estimation #ICA  alpha  threshold Features # Features
DF1 Normalized Laplacian direct 20 0.45 0.15 edge weights 190
DF2 Normalized Laplacian VAR(k) 20 0.45 0.15 edge weights 190
DF3 Normalized Laplacian  Ledoit-Wolf shrinkage 20 0.45 0.15 edge weights 190
DF4 Normalized Laplacian Glasso 20 0.45 0.15 edge weights 190
DF5 Normalized Laplacian direct 20 0.0001 0.25 edge weights 190
DF6 Adjacency direct 20 0.0001 0.10 edge weights 190
DF7 rLogSpecT VAR(k) 20 15 0.2 edge weights 190
DF8 rLogSpecT direct 20 15 0.2 edge weights 190
DF9** rLogSpecT sliding window 30 N/S 0.05 All, except edge weights 130
DF10** rLogSpecT VAR(k) 30 N/S 0.05 All, except edge weights 130
DF11** rLogSpecT direct 30 N/S 0.05 All, except edge weights 130
DF12** rLogSpecT Glasso 30 N/S 0.05 All, except edge weights 130
DF13** rLogSpecT Ledoit-Wolf shrinkage 30 N/S 0.05 All, except edge weights 130
DF14** rLogSpecT NVAR 30 N/S 0.05 All, except edge weights 130
DF15 Sample covariance NVAR 30 N/A 0.05 All, except edge weights 130
DF16* Sample covariance direct 30 N/A 0.05 All, except edge weights 130
DF17* Sample covariance Glasso 30 N/A 0.05 All, except edge weights 130
DF18* Sample covariance Ledoit-Wolf shrinkage 30 N/A 0.05 All, except edge weights 130
DF19* Sample covariance VAR(k) 30 N/A 0.05 All, except edge weights 130
DF20* Sample covariance sliding window 30 N/A 0.05 All, except edge weights 130
DF21* Partial correlation direct 30 N/A 0.05 All, except edge weights 130
DF22 Partial correlation NVAR 30 N/A 0.05 All, except edge weights 130
DF23* Partial correlation Glasso 30 N/A 0.05 All, except edge weights 130
DF24%* Partial correlation Ledoit-Wolf shrinkage 30 N/A 0.05 All, except edge weights 130
DF25* Partial correlation VAR(k) 30 N/A 0.05 All, except edge weights 130
DF26* Partial correlation sliding window 30 N/A 0.05 All, except edge weights 130
DF27 Mutual information N/A 30 N/A 0.05 All graph features 5651
DF28* Pearson correlation N/A 30 N/A 0.05 All graph features 5657
DF29* Granger causality N/A 30 N/A 0.05 All graph features 5651

* These dataframes contained too many zero variance features (~ 96%) and could not be tested because of this.
** These dataframes contained features extracted from graphs inferred without the proper tuning of parameters of the rLogSpecT method.

435 edge weights (between 30 ICA components) and 130 remaining features.

N/A: not applicable; N/S: not specified.
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D Formulas of the Performance Metrics

D.1 Confusion Matrix Terms

o TP: True Positives (correctly predicted ASD)

e TN: True Negatives (correctly predicted control)

FP: False Positives (control predicted as ASD)

FN: False Negatives (ASD predicted as control)

D.2 Accuracy

B TP +TN
ey = TP Y TN+ FP 1+ FN
D.3 Sensitivity
tivity = ——
SENSINIVITY = TP+FN
D.4 Specificity
ficity — — TN
spectjicity = 7TN—|—FP
D.5 Balanced Accuracy
balanced = Ir + TN 1( itivity +  ficity)
n accur = — = — nsitivt eCcl J1Cl
aLance ccuracy D) TP+FN TN—|—FP 2 SENSIIVILY Spec ciy

D.6 AUROC

1
AUROC = i(sensitivity + speci ficity)

D.7 Precision

Tecision = L
b “TP+FP
D.8 Recall
recall = L
TP+ FN
D.9 F1l-score
precision - recall 2TP

1- =2- -
fl-score precision +recall  2T'P+ FP + FN
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E Additional Figures

E.1 Connectome plots
Top 20 Most Important Connections (Signed) 0.13

0.066

-0.066

-0.13
Figure E.1: Connectome visualisation for logistic regression, fold 1. Top 20 most important features are shown,

weighted by importance score.

Top 20 Most Important Connections (Signed) 0.13

-0.067

-0.13

Figure E.2: Connectome visualisation for logistic regression, fold 2. Top 20 most important features are shown,
weighted by importance score.
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Top 20 Most Important Connections (Signed) 0.13

0.067

-0.067

-0.13

Figure E.3: Connectome visualisation for logistic regression, fold 3. Top 20 most important features are shown,
weighted by importance score.

Top 20 Most Important Connections (Signed) 0.13

5
N °
-0.065
0.13

Figure E.4: Connectome visualisation for logistic regression, fold 4. Top 20 most important features are shown,
weighted by importance score.

Top 20 Most Important Connections (Signed) 0.12

-0.058

-0.12

Figure E.5: Connectome visualisation for logistic regression, fold 5. Top 20 most important features are shown,
weighted by importance score.
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Top 20 Most Important Connections (Signed) 0.022

0.011

-0.011

-0.022

Figure E.6: Connectome visualisation for SVM, fold 1. Top 20 most important features are shown, weighted by
importance score.

Top 20 Most Important Connections (Signed) 0.023

0.011

-0.011

-0.023

Figure E.7: Connectome visualisation for SVM, fold 2. Top 20 most important features are shown, weighted by
importance score.

Top 20 Most Important Connections (Signed) 0.023

0.011

-0.011

-0.023

Figure E.8: Connectome visualisation for SVM, fold 3. Top 20 most important features are shown, weighted by
importance score.
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Top 20 Most Important Connections (Signed) 0.021

0.01

-0.021

Figure E.9: Connectome visualisation for SVM, fold 4. Top 20 most important features are shown, weighted by
importance score.

Top 20 Most Important Connections (Signed) 0.02

-0.0098

-0.02

Figure E.10: Connectome visualisation for SVM, fold 5. Top 20 most important features are shown, weighted by
importance score.
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F  Additional Tables

F.1 Multi-Site Classification on Pearson Correlation Features

F.1.1 Per-site Performances

Table F.1: The average performance across folds on raw combined data, evaluated per site. Comparison between
CALTECH (left) and KKI (right).

CALTECH KKI

SEN [%] SPE [%]  AUROC [%] ACC [%] BACC [%]  SEN [%] SPE [%]  AUROC [%] ACC [%] BACC [%]
LR 33.3+£57.7 60.01+52.9 56.7+40.4 55.6+9.6 46.7+£5.8 48.0+50.2 58.3+37.3 51.9+36.3 50.0+£13.8 53.24+17.6
SVM 33.3+57.7 60.0£52.9 56.7+£40.4 55.61+9.6 46.7+£5.8 56.0+£51.8 55.0+38.9 58.64+40.5 51.9+13.6 55.5+17.0
DT 50.0+50.0 43.3+40.4 38.3+46.5 44.4+41.9 46.7+45.1 47.3+39.2 65.0+22.4 72.5+25.3 55.4+21.0 56.2425.3
RF 83.31+28.9 100.0+0.0 100.0+0.0 91.7+14.4 91.74+14.4 32.0+46.0 88.3+11.2 60.6+31.2 68.81+20.6 60.24+25.9
MLP 33.3+£57.7 60.0+£52.9 68.3+38.8 55.6+9.6 46.7+5.8 65.3+40.9 58.3+40.8 52.84+39.6 59.6+23.6 61.84+24.1
LDA 66.7+£57.7 60.01+52.9 68.3+38.8 61.1+19.2 63.3+23.1 72.7+30.0 56.71+38.4 70.3+28.1 59.9+19.6 64.7+17.1
KNN 50.0+£50.0 36.71+32.1 40.0£17.3 50.0+0.0 43.3+11.5 48.7+36.6 53.31+36.1 52.14+35.5 48.5+28.5 51.04+31.3

Table F.2: The average performance across folds on raw combined data, evaluated per site. Comparison between
LEUVEN 1 (left) and LEUVEN _ 2 (right).

LEUVEN 1 LEUVEN _2
SEN [%] SPE [%]  AUROC [%] ACC [%]  BACC [%] SEN [%] SPE [%]  AUROC [%] ACC [%]  BACC [%]
LR 35.7+38.0  76.74£22.4  70.0£19.2  54.8+13.5  56.2416.6  60.0+41.8  65.3240.9 78.34+18.3 69.9421.5  62.7426.4

SVM 37.31+44.4 76.7£22.4 64.31+26.3 54.84+22.1 57.0£23.2 60.0£41.8 75.3+23.3 80.8+18.5 73.2+22.1 67.7£25.8
DT 84.3+£15.1 66.71+20.4 67.7+10.2 71.2+10.5 75.5+12.1 15.0+£22.4 52.0+37.5 37.61+29.0 34.64+24.3 33.54+26.8
RF 5.0£11.2 100.0+0.0 59.8436.0 56.94+17.5 52.54+5.6 15.0£33.5 100.0+0.0 79.3£21.8 67.04+10.4 57.5+16.8
MLP 46.3£38.5 81.7£17.1 69.3+£25.0 64.3+22.6 64.0£25.7 50.0+£50.0 76.7+£22.4 86.0+14.2 71.0£17.9 63.3£20.9
LDA 37.0£43.0 56.7+36.5 53.01+28.2 51.94+10.2 46.8+17.8 35.0+33.5 54.7+44.1 53.7£15.3 50.6+22.1 44.8+21.1
KNN 10.7£15.3 83.3+23.6 50.7+18.5 48.1+14.3 47.0+17.6 50.0£0.0 86.74+29.8 74.84£22.8 70.5+18.4 68.3+14.9

Table F.3: The average performance across folds on raw combined data, evaluated per site. Comparison between
MAX MUN (left) and NYU (right).

MAX_ MUN NYU

SEN [%] SPE [%]  AUROC [%] ACC [%]  BACC [%] SEN [%] SPE [%] AUROC [%] ACC [%] BACC [%]
LR 41.7420.4  54.5+23.1 61.4+18.6  48.3+17.0  48.1+13.6 6544194 7244118 7474107  69.0+13.8 68.9+114.3
SVM  41.7420.4  62.4+20.6 59.7+16.4 53.4+17.9  52.0£15.8  62.1+14.6  65.8£12.6 69.7+6.8 63.9+9.2 63.949.4
DT 48.3+38.4  61.5+24.6 50.5+18.9 59.1+11.8  54.9£14.6  65.3+15.0 58.2£13.9  65.9+10.2  60.6+£10.4  61.849.8
RF 21.7421.7  59.8+36.1 53.3+20.1 48.8+19.6  40.748.5  43.5+12.4  82.4+5.4  72.0£12.0 65.449.4  63.0£8.6

MLP 55.0£29.8 63.5+22.1 64.8+14.2 57.0£12.2 59.31+9.1 68.94+13.8 63.6+10.3 75.3+11.1 66.0+4.4 66.3+4.8
LDA 48.3+29.1 78.1+£25.6 68.5+29.8 65.8+18.9 63.2+20.8 65.1+6.6 72.4+6.5 75.9+£3.2 69.7+4.9 68.8+4.1
KNN 40.0+25.3 46.91+15.4 43.94+13.1 44.9+11.2 43.4+11.9 44.04+25.1 67.5+17.9 64.61+10.6 58.84+9.7 55.7+12.5

Table F.4: The average performance across folds on raw combined data, evaluated per site. Comparison between
OHSU (left) and OLIN (right).

OHSU OLIN

SEN [%] SPE [%] AUROC [%] ACC [%] BACC [%]  SEN [%] SPE [%]  AUROC [%] ACC [%]  BACC [%]
LR 37.5428.5  20.8425.0  32.3437.3 3214237 2024250  68.7+18.8  66.7£23.6  78.2+13.6 63.048.3 67.747.8
SVM  25.0431.9  27.1435.6  23.3227.9 3214237  26.0422.1  68.7+18.8  56.7£14.9  72.0+15.9 60.147.0 62.745.6
DT 50.0+40.8 47.9444.3 49.7+40.5 43.5+35.4 49.0+38.2 75.3+23.3 63.3+24.7 65.0+9.1 68.4+10.8 69.3+13.5
RF 25.0421.5  33.3£23.6  38.2420.1  32.7+14.6  20.2417.3  68.7+18.8  73.3+27.9  81.6+19.0  67.0£10.9  71.0+6.2

MLP 33.3+30.4 31.2437.5 39.6+36.9 36.94+21.8 32.3+22.7 75.3£23.3 63.3+24.7 81.8+13.7 66.8+15.6 69.3+13.5
LDA 33.3+30.4 50.0+£40.8 26.01+32.3 45.24+29.3 41.7+32.6 62.04+24.7 70.04£29.8 72.0£15.9 65.84+12.4 66.0+13.8
KNN 37.54+47.9 35.4429.2 36.84+37.5 44.0+28.3 36.5+31.8 85.3+20.2 56.74+27.9 69.84+30.2 68.14+22.5 71.0£20.7
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Table F.5: The average performance across folds on raw combined data, evaluated per site. Comparison between
PITT (left) and SBL (right).

PITT SBL
SEN [%] SPE [%]  AUROC [%] ACC [%] BACC [%]  SEN [%] SPE [%]  AUROC [%] ACC [%]  BACC [%]
LR 63.9429.9  91.04£12.4  82.0£20.0 76.5+18.2 77.4+17.4  47.5+41.1  66.7423.6 55.8421.9 52.8+11.1  57.1£12.0
SVM  58.9416.0  84.5+15.9 77.1418.5 71.4+12.5  71.74£12.2  52.5+41.1  70.8425.0 55.0422.7  57.3+15.0 61.7+13.5
DT 59.4438.6  68.0+12.5 61.3429.2 60.6£21.9  63.7+23.2  25.0428.9  64.6£17.2 45.3£18.7  45.5+£19.3  44.8+15.7
RF 43.3436.5  87.5+12.5 66.9423.0 65.54£23.1  65.4+22.4 5.0410.0  85.4+17.2  55.8+42.8 46.4+4.8 45.2+6.0
MLP  58.3430.0  90.0+13.7  81.1+16.8 72.5416.6  74.2+14.8  47.5+41.1  72.9420.8  61.7+25.8 57.0£18.6  60.2+18.3
LDA  60.6£12.8  86.0+12.9 73.54+4.8 72.745.7 73.346.7  42.5+43.5  66.7+23.6  66.5+14.0  50.5+11.5  54.6+14.0
KNN  67.2427.7  72.0+12.5 69.9+18.2 70.3+10.9  69.6£13.7  42.5+43.5  70.8434.4  48.0428.7 5224224  56.7423.2
Table F.6: The average performance across folds on raw combined data, evaluated per site. Comparison between
SDSU (left) and STANFORD (right).
SDSU STANFORD
SEN [%] SPE [%]  AUROC [%] ACC [%] BACC [%]  SEN [%] SPE [%]  AUROC [%] ACC [%]  BACC [%]
LR 33.3+£47.1  78.3+15.8 70.3427.7  64.3424.0  55.8430.2  55.8430.2  25.0428.9  64.0427.4  46.1+17.3  40.4£16.0
SVM  33.3447.1  78.3+15.8 61.9443.2 64.34£24.0  55.8430.2  55.8430.2  50.0£40.8  64.0£27.4  52.4+10.1 52.949.5
DT 33.34£23.6  61.7+43.3 51.4440.7  50.4435.9  47.5+33.3  53.3+19.4  37.5447.9  38.1427.0 40.7+17.8  45.4424.2
RF 45.8441.7 95.0£10.0 88.3+14.5 78.3+14.9 70.4+21.1  43.3+41.6  62.5+47.9  40.54+30.9 56.5£12.0  52.9+9.5
MLP  33.3447.1 65.0+3.3 67.8428.2 55.7+16.5  49.2424.4  60.8+28.3  31.2437.5 46.2+32.5 53.9419.8  46.04£20.2
LDA  41.7428.9  65.0427.4  52.5+14.5 57.6+18.5  53.34£21.9  72.5+32.0  37.5+£47.9 59.6+33.8  63.4+30.9 55.0+33.2
KNN  45.8441.7 48.3+17.5 4294352  48.9+24.8  47.14£28.8  64.2+26.3  25.0450.0  49.3+15.4 47.64£21.7  44.6+19.9
Table F.7: The average performance across folds on raw combined data, evaluated per site. Comparison between
TRINITY (left) and UCLA 1 (right).
TRINITY UCLA 1
SEN [%] SPE [%]  AUROC [%] ACC [%]  BACC [%] SEN [%] SPE [%] AUROC [%] ACC [%]  BACC [%]
LR 67.3£38.0  59.1+£24.5  80.7+£25.0  53.0+16.6  63.2+14.7 70.3+18.9 68.3+25.7  74.8+19.1 66.2420.8  69.3+19.9
SVM  74.0433.2  64.1427.7  80.34+27.4 59.2421.4  69.0+14.7  63.3+19.3  73.3£26.7  74.74£16.4  66.7£20.3  68.3+19.2
DT 43.0433.0  76.4+35.7  62.8+24.1 51.7418.5  59.748.7  49.3424.9  69.14£25.2  57.9+21.5 54.8418.6  59.2418.5
RF 66.3+23.3  71.6420.6 70.0421.8  63.2414.9  69.0+£14.8  33.7418.5  88.8+11.0 62.5+7.7 57.5+10.4  61.2£11.5
MLP  71.3427.8  61.9422.9 79.8422.6 58.0£11.5  66.6+15.0  60.0442.4  80.6£18.6  75.4+17.4  69.8418.2  70.3+20.7
LDA  58.0426.6  64.4+23.6 74.0424.5 54.845.3  61.2412.4  52.3%29.5  67.3:23.4  64.0£29.2 59.2423.0  59.8+23.8
KNN  67.0424.2  45.1+£32.1 58.1415.2 48.1+13.6  56.0£20.6 59.349.2  93.54+9.3  86.2415.0 74.0412.2  76.41+9.0

Table F.8: The average performance across folds on raw combined data, evaluated per site. Comparison between

UCLA 2 (left) and UM _ 1 (right).

UCLA 2 UM 1

SEN [%] SPE [%]  AUROC [%] ACC [%]  BACC [%] SEN [%] SPE [%]  AUROC [%] ACC [%]  BACC [%]
LR 73.3+43.5  40.0+£41.8 76.74+43.5 59.6+£36.7  56.7£37.0  50.4+£29.9  62.6£12.0  64.8£16.2 55.6+£14.9  56.5£12.9
SVM  73.3443.5  45.0+44.7 73.3+43.5 62.5+38.3  59.2438.9  57.1+16.6  55.1+£11.2 61.7+£17.7  55.9+11.2  56.1£10.7
DT 60.0+43.5  65.0£41.8 60.0+45.4 62.3+42.7  62.5£42.5  50.3+18.2  50.8+16.2 50.14+11.2 51.0+5.6 50.5+2.3
RF 53.3+£36.1 80.0+44.7 68.3+43.5 63.8+38.3 66.7+38.6 47.1+£18.1 70.1+£11.8 65.6+9.6 60.6+£9.2 58.6+11.0
MLP  70.0444.7  50.04£50.0  66.7+42.5 61.0+43.7  60.0£45.4  64.7+33.6 71.249.3 69.3+19.2  65.4+13.4  67.9+£13.6
LDA  73.3+43.5 50.04£50.0  78.3+43.9  63.6:37.8  61.7£38.9  56.7+29.9 81.5£10.7  69.1£23.6  70.4+17.6 69.1+15.3
KNN  50.0437.3 85.04£22.4  75.8+30.7  66.3+23.9 67.5£27.1 64.7+24.0 59.8£14.3  68.1+15.1 60.8+15.8  62.3+14.4

54



Table F.9: The average performance across folds on raw combined data, evaluated per site. Comparison between
UM 2 (left) and USM (right).

UM_ 2 UsM
SEN [%] SPE [%]  AUROC [%]  ACC[%]  BACC [%]  SEN [%] SPE [%]  AUROC [%] ACC [%] BACC [%]
LR 54.248.3 7044247  68.1+182  63.6+£17.8  62.3+15.9  84.2416.8  50.3+33.2 68.248.4 72.844.7  67.3+10.4
SVM  62.54+25.0  76.7+29.1 69.8421.3  69.9423.7  69.64£23.7  71.8+19.2  57.0440.0 69.349.9  67.8£10.9  64.4+15.0
DT 54.2+36.3  62.5426.3  53.8422.2 59.8+7.1 58.3+8.1 72.4426.9  51.2:421.1 68.0+£15.8  65.2+11.6  61.845.0
RF 31.2423.9  95.0+10.0  68.8423.5  68.3+11.2  63.1+13.7  69.8426.3 61.0428.3 73.5+11.6  66.7+8.1 65.443.6
MLP  62.5425.0  90.0420.0  75.2+20.4 77.6+18.3 76.2+18.4  80.2+14.3  42.34£288  67.84185  67.6+10.0 61.3+12.8
LDA 5834289  75.4+17.5 7474175 68.3+11.2  66.9+12.0  74.94154  60.8+17.4  71.3+14.0  70.0414.7 67.8+14.1
KNN  47.9417.2  57.1437.0  56.2+23.5  53.1428.3  52.5£26.3 86.8+12.4  41.2428.9  72.1+14.8  71.1+11.3  64.0£15.3
Table F.10: The average performance across folds on raw combined data, evaluated on YALE.
YALE
SEN [%] SPE [%]  AUROC [%] ACC %] BACC [%]
LR 61.0+£19.2  79.0420.1  67.9422.3  70.8+12.9  70.0+£15.6
SVM  49.3430.3  74.3+15.3  67.9424.1  65.5£10.6 61.8+17.0
DT 37.0+17.8  63.7425.3  55.9+11.8  50.7+13.9  50.3+£14.3
RF 51.349.6  93.0£11.0  84.3+12.2  71.6+8.3 72.246.2
MLP  66.0418.9  65.3+14.6 79.6+9.8 68.149.7  65.7+12.3
LDA  59.3421.5  77.3£20.9  71.3+19.3  69.5+14.3  68.3£16.5
KNN  34.7427.2  84.3+15.1 62.9+8.7  63.2414.4  59.5+12.6
F.1.2 Per-age Performances
Table F.11: The average performance across folds on raw combined data, evaluated per age group. Comparison
between 0-11 (left) and 12-18 (right).
0-11 12-18
SEN [%] SPE [%] AUROC [%] ACC [%] BACC [%] SEN [%] SPE[%] AUROC [%] ACC [%] BACC [%]
LR 57.8+13.3  55.949.3  61.7+10.1 55.848.4  56.849.3  61.146.8  69.248.6 72.943.6 65.041.2  65.1+1.1
SVM  52.446.0  57.7+9.8 59.8+8.7 55.247.9  55.04£7.8  61.947.0  69.1+7.5 71.243.8 65.5£1.0  65.5+1.2
DT 59.4422.7  54.7+9.2  60.7£15.2  56.74£13.3  57.0£13.2 49.6+11.4  60.1£6.6 55.946.6 55.3+4.7  54.8+4.4
RF 42.9410.8  66.4+7.7  59.5+10.2 56.3+5.0  54.74£5.6  44.0411.9 82.4+3.1 70.746.4 64.445.7  63.246.0
MLP  61.9414.9  54.449.0  64.3+10.4  57.047.2  58.2+6.9  65.246.4 69.1£84  73.5+4.0  66.9+4.1 67.1+3.9
LDA  61.3+13.5  587+9.9  63.6£12.6  59.248.4  60.0+8.2  60.5+7.6  68.6+6.1 70.0+4.8 64.645.8  64.5+6.0
KNN  52.7414.2  57.046.1 58.6+8.9 53.6+5.2  54.845.5  60.3110.2  66.7+5.6 67.3+5.4 63.344.2  63.5+4.3
Table F.12: The average performance across folds on raw combined data, evaluated per age group. Comparison
between 19-30 (left) and 30+ (right).
19-30 30+
SEN [%] SPE [%] AUROC [%] ACC [%] BACC [%] SEN [%] SPE [%]  AUROC [%] ACC [%] BACC [%]
LR 55.949.2  69.84£10.6  64.9+5.6 64.047.6  62.846.9  57.0+11.0  62.5£16.4  61.3£13.0 58.545.2  59.7+4.9
SVM  54.8411.4  66.846.6 62.1+2.8 61.646.1  60.845.7  57.0+11.0  66.5£18.0  62.1£12.6 59.944.3  61.7+4.5
DT  61.0414.6 58.1+13.2 58.9+9.2  59.5+11.2  59.5+10.9  48.0£18.2  51.2+18.8 51.1+9.2  48.8+12.3  49.6+12.5
RF 36.747.9  83.946.1  68.5410.4  64.544.8  60.3+5.0  35.5+20.6 81.3+11.9  68.14£25.4  56.8+11.1  58.4+11.1
MLP  57.749.9  72.749.5 68.2+5.6 66.248.1  65.247.7  55.5425.5  73.3£22.1 72.0410.4  62.1+4.3  64.4+5.2
LDA  53.8+5.6  74.8410.4  67.3+9.2 66.4+7.0  64.3+5.9  51.0+£14.3  73.3422.1  72.6+11.0  59.947.9  62.2+7.3
KNN  49.3+16.1  56.8+6.3 55.6+6.5 54.144.7  53.046.3  61.5+15.4  58.3+39.1 68.7418.1  59.1£19.7  59.9+19.3
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F.1.3 LOGO CV on Pearson Correlation

Table F.13: Sensitivity obtained by each classifier for each test site during LOGO CV on Pearson correlation
features.

Sensitivity [%] N

LR SVM DT RF MLP LDA KNN ASD TC
CALTECH 40.0 40.0 20.0 20.0 60.0 20.0 40.0 5 10
CMU 83.3 83.3 83.3 33.3 83.3 50.0 16.7 6 5
KKI 75.0 75.0 41.7 41.7 75.0 75.0 75.0 12 21
LEUVEN 1 14.3 7.1 42.9 7.1 21.4 28.6 21.4 14 14
LEUVEN_2 58.3 66.7 58.3 16.7 50.0 50.0 66.7 12 16
MAXMUN 42.1 31.6 26.3 47.4 36.8 57.9 31.6 19 27
NYU 77.0 100.0 62.2 58.1 81.1 70.3 71.6 74 98
OHSU 50.0 33.3 66.7 58.3 58.3 16.7 41.7 12 13
OLIN 78.6 78.6 42.9 64.3 85.7 71.4 85.7 14 14
PITT 54.2 50.0 54.2 20.8 54.2 41.7 58.3 24 26
SBL 0.0 33.3 41.7 25.0 16.7 25.0 33.3 12 14
SDSU 62.5 62.5 37.5 50.0 50.0 62.5 62.5 8 19
STANFORD 66.7 66.7 58.3 66.7 66.7 66.7 58.3 12 13
TRINITY 68.4 73.7 57.9 47.4 73.7 47.4 63.2 19 25
UCLA 1 59.5 54.1 43.2 29.7 54.1 59.5 51.4 37 27
UCLA 2 81.8 81.8 81.8 63.6 81.8 90.9 63.6 11 10
UM 1 44.1 50.0 70.6 58.8 55.9 64.7 76.5 34 52
UM_2 53.8 46.2 23.1 46.2 53.8 38.5 46.2 13 21
USM 72.1 72.1 46.5 46.5 72.1 69.8 39.5 43 24
YALE 68.2 68.2 36.4 45.5 72.7 40.9 50.0 22 19
Mean=+std 57.5+£21.1 58.7+£21.8 49.84+17.3 42.44+17.1 60.2+18.9 52.4+£19.5 52.7+£18.3

Table F.14: Specificity obtained by each classifier for each test site during LOGO CV on Pearson Correlation
features.

Specificity [%] N

LR SVM DT RF MLP LDA KNN ASD TC
CALTECH 50.0 50.0 70.0 90.0 70.0 60.0 40.0 5 10
CMU 80.0 80.0 60.0 100.0 100.0 100.0 60.0 6 5
KKI 57.1 52.4 85.7 81.0 57.1 57.1 57.1 12 21
LEUVEN_1 92.9 92.9 57.1 100.0 85.7 85.7 92.9 14 14
LEUVEN_2 43.8 37.5 56.2 93.8 50.0 62.5 81.2 12 16
MAXMUN 55.6 55.6 85.2 66.7 59.3 63.0 63.0 19 27
NYU 52.0 7.1 55.1 68.4 37.8 49.0 53.1 74 98
OHSU 38.5 38.5 46.2 69.2 46.2 61.5 46.2 12 13
OLIN 57.1 57.1 71.4 64.3 57.1 64.3 57.1 14 14
PITT 92.3 88.5 61.5 84.6 92.3 88.5 69.2 24 26
SBL 71.4 85.7 28.6 92.9 78.6 85.7 50.0 12 14
SDSU 84.2 73.7 52.6 73.7 78.9 57.9 57.9 8 19
STANFORD 46.2 46.2 69.2 69.2 46.2 30.8 15.4 12 13
TRINITY 44.0 72.0 56.0 52.0 52.0 64.0 48.0 19 25
UCLA_1 85.2 85.2 77.8 85.2 81.5 66.7 85.2 37 27
UCLA_2 60.0 60.0 90.0 70.0 50.0 50.0 70.0 11 10
UM 1 71.2 73.1 69.2 67.3 61.5 53.8 51.9 34 52
UM_2 71.4 90.5 81.0 85.7 90.5 90.5 52.4 13 21
USM 70.8 75.0 75.0 83.3 79.2 66.7 70.8 43 24
YALE 78.9 78.9 57.9 73.7 78.9 84.2 73.7 22 19
Mean=+std 65.1£16.5 65.04+21.5 65.3+14.7 78.5+£12.7 67.6+17.6 67.1£16.6 59.8+16.9
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Table F.15: Auroc obtained by each classifier for each test site during LOGO CV on Pearson Correlation features.

AUROC [%] N

LR SVM DT RF MLP LDA KNN ASD TC
CALTECH 44.0 46.0 53.0 62.0 58.0 58.0 40.0 5 10
CMU 93.3 93.3 71.7 93.3 86.7 86.7 48.3 6 5
KKI 62.3 68.3 64.3 71.8 70.6 69.8 55.2 12 21
LEUVEN 1 59.2 69.9 57.4 64.3 67.9 49.0 54.3 14 14
LEUVEN 2 55.2 56.2 53.9 65.6 60.9 62.0 73.2 12 16
MAXMUN 52.8 42.7 59.0 54.4 48.0 56.3 42.8 19 27
NYU 71.4 68.5 58.9 69.1 71.1 70.9 65.8 74 98
OHSU 46.2 38.5 70.8 52.9 48.7 48.1 39.4 12 13
OLIN 75.5 73.5 60.5 67.1 80.6 74.0 71.4 14 14
PITT 76.1 75.6 57.0 65.5 71.2 67.3 60.1 24 26
SBL 57.1 73.2 31.0 65.2 60.1 57.7 44.9 12 14
SDSU 73.0 78.0 42.4 67.8 75.0 60.5 59.9 8 19
STANFORD 62.2 62.8 73.7 63.5 63.5 48.7 49.7 12 13
TRINITY 62.3 70.1 61.8 52.9 68.6 62.7 61.3 19 25
UCLA_l 74.7 74.8 60.6 68.7 70.4 65.0 80.4 37 27
UCLA_2 78.2 78.2 88.6 71.8 82.7 75.5 81.4 11 10
UM _1 71.3 71.5 69.9 74.2 63.3 69.4 70.1 34 52
UM_2 71.1 72.9 56.8 68.5 78.4 83.5 54.6 13 21
USM 75.2 75.1 66.4 76.4 79.2 72.6 59.6 43 24
YALE 82.8 82.3 51.0 67.8 78.5 77.8 66.0 22 19
Mean=+std 67.2+12.2 68.6+13.2 60.44+11.8 67.1+£8.7 69.2+10.4 65.8+10.8 58.9+12.2

Table F.16: Accuracy obtained by each classifier for each test site during LOGO CV on Pearson correlation
features.

Accuracy [%] N

LR SVM DT RF MLP LDA KNN ASD TC
CALTECH 46.7 46.7 53.3 66.7 66.7 46.7 40.0 5 10
CMU 81.8 81.8 72.7 63.6 90.9 72.7 36.4 6 5
KKI 63.6 60.6 69.7 66.7 63.6 63.6 63.6 12 21
LEUVEN 1 53.6 50.0 50.0 53.6 53.6 57.1 57.1 14 14
LEUVEN 2 50.0 50.0 57.1 60.7 50.0 57.1 75.0 12 16
MAXMUN 50.0 45.7 60.9 58.7 50.0 60.9 50.0 19 27
NYU 62.8 47.1 58.1 64.0 56.4 58.1 61.0 74 98
OHSU 44.0 36.0 56.0 64.0 52.0 40.0 44.0 12 13
OLIN 67.9 67.9 57.1 64.3 71.4 67.9 71.4 14 14
PITT 74.0 70.0 58.0 54.0 74.0 66.0 64.0 24 26
SBL 38.5 61.5 34.6 61.5 50.0 57.7 42.3 12 14
SDSU 77.8 70.4 48.1 66.7 70.4 59.3 59.3 8 19
STANFORD 56.0 56.0 64.0 68.0 56.0 48.0 36.0 12 13
TRINITY 54.5 72.7 56.8 50.0 61.4 56.8 54.5 19 25
UCLA 1 70.3 67.2 57.8 53.1 65.6 62.5 65.6 37 27
UCLA_2 71.4 71.4 85.7 66.7 66.7 71.4 66.7 11 10
UM_1 60.5 64.0 69.8 64.0 59.3 58.1 61.6 34 52
UM_2 64.7 73.5 58.8 70.6 76.5 70.6 50.0 13 21
USM 71.6 73.1 56.7 59.7 74.6 68.7 50.7 43 24
YALE 73.2 73.2 46.3 58.5 75.6 61.0 61.0 22 19
Mean=std 61.6+11.8 61.9£12.1 58.64+10.4 61.7£5.5 64.2£10.8 60.2+8.2 55.5+11.2

Table F.17: Top discriminative brain connectivity features selected across folds and models. Each checkmark
indicates that the coresponding feature was among the top 20 most important features for a given fold and model.

Feature name LR-F1 LR-F2 LR-F3 LR-F4 LR-F5 SVM-F1 SVM-F2 SVM-F3 SVM-F4 SVM-F5

fc_5301_8212  / v v v v v v v v
fc 2501 3001 v v

fc 2102 8301 v v

fe 2501 4002 v v v v

fo 2211 2312 v v v v v v

fe 2112 5002 v

fo 8111 9002 v v

fc 5101 6201 v v

fo 4112 6212 v v v v

Continued on next page.
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Table F.17 (continued from previous page)

Feature name

LR-F1

LR-F2 LR-F3 LR-F4 LR-F5 SVM-F1

SVM-F2

SVM-F3 SVM-F4 SVM-F5

fc_8101_9071
fe_ 20028201
fc 64029021
fe_ 2501 9081
fc_6302_9160
fe_ 4022 9081
fe 23119032
fc_5302_ 5401
fc 2501 2702
fo 2211 5402
fe_ 5202 9130
fe 5202 5402
fc_ 90329120
fc_ 60019140
fo 41118212
fe_ 23329021
fc_5401_9072
fc_2001_6002
fc_7001 7002
fc_ 90419100
fe_2402 3001
fe 7021 8111
fc 51018102
fc 6002 8122
fo 4102 8122
fe_8201 9052
fe_ 20025011
fe_ 9021 9032
fc_2201_5102
fc 25029072
fo 2321 5022
fe_ 23124101
fc_3001_9002
fe_4022 9051
fe 71028302
fc 64029032
fe_2701_7011
fc_3002_9130
fo 4101 4112
fc_7002_8101
fc 41025012
fe_ 9061 9130
fe_ 2212 5011
fe_ 2502 6211
fe_4022 5101
fc 26028201
fe 23022502
fe 5021 6212
fe_2112_5001
fo 41119140
fo 2702 4112
fo 4202 7022
fe_7021_7101
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NS NS N
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Continued on next page.
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Table F.17 (continued from previous page)

Feature name LR-F1 LR-F2 LR-F3 LR-F4 LR-F5 SVM-F1 SVM-F2 SVM-F3 SVM-F4 SVM-F5

fc_2312_2322
fc_5201 7001
fc_ 90329072
fe_ 3002 5301
fe_ 4022 6101
fe_ 40129002
fe_ 2502 9022
fe_4202 8101
fe 40127102
fe_8111_9001
fo_8211_ 9061
fe_7001_7011
fe 71017102
fc 70127021
fe_ 3001 8302
fe_ 6201 9062
fo 6222 9140
fc_ 63029041
fo 4002 8212
fe 2601 7021
fe_9052 9081
fe_ 5401 5402
fe_ 90529140
fe_ 21012301

SNSSNSNSSNANNS
NS SN

ASANEN
<
NANENENEN
ANENENEN

AN

F.2 Multi-Site Classification on Graph Features

F.2.1 Average Performances of All Received Dataframes

Table F.18: Multisite classification performance on DF1.

Classifier Sensitivity Specificity AUROC Accuracy Balanced Accuracy
LR 45.9% + 4.7% 55.3% + 3.3% | 52.5% + 3.6% | 51.0% =+ 2.3% 50.6% + 2.3%
SVM 47.1% + 4.6% | 55.5% + 4.4% 49.9% + 4.6% 51.7% + 3.3% 51.3% + 3.3%
DT 35.5% £ 22.1% | 61.6% + 23.6% | 49.3% + 3.4% 49.5% + 3.5% 48.5% + 2.7%
RF 32.5% + 5.5% | 67.1% + 6.1% | 51.3% + 3.5% 51.1% + 3.3% 49.8% + 3.3%
MLP 44.9% + 3.4% | 55.1% + 11.7% | 50.5% + 4.5% 50.4% + 5.2% 50.0% + 4.6%
LDA 46.9% + 5.3% 56.0% =+ 3.4% 52.4% + 3.3% | 51.8% + 3.0% 51.4% + 3.1%
KNN 33.0% £ 10.6% | 66.7% £+ 7.7% 48.6% + 6.6% 51.1% + 5.3% 49.8% + 5.5%

Table F.19: Multisite classification performance on DF2.

Classifier Sensitivity Specificity AUROC Accuracy Balanced Accuracy
LR 45.7% + 6.2% | 54.1% + 7.9% 51.2% + 4.0% 50.2% + 5.0% 49.9% + 4.9%
SVM 45.2% + 8.7% 52.4% + 8.3% 50.3% + 4.5% 49.0% + 6.3% 48.8% + 6.3%
DT 45.4% + 8.5% 55.3% + 9.9% 49.6% + 3.6% 50.7% + 3.2% 50.4% + 2.9%
RF 34.0% + 5.4% | 65.4% + 4.2% | 50.5% + 3.3% 50.9% + 2.4% 49.7% + 2.5%
MLP 44.0% + 8.6% 62.4% + 2.6% | 53.0% + 2.5% | 53.8% + 3.1% 53.2% + 3.5%
LDA 44.2% + 4.5% 53.6% + 6.9% 50.2% + 3.7% 49.2% + 4.6% 48.9% + 4.4%
KNN 39.7% + 12.2% | 58.2% + 12.7% | 49.3% + 2.1% 49.6% + 1.3% 49.0% =+ 0.8%
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Table F.20: Multisite classification performance on DF3.

Classifier Sensitivity Specificity AUROC Accuracy Balanced Accuracy
LR 45.9% + 4.7% 55.3% + 3.8% | 52.5% + 3.6% 51.0% + 2.3% 50.6% + 2.3%
SVM 47.1% + 4.6% | 55.5% + 4.4% 50.0% + 4.6% 51.7% + 3.3% 51.3% + 3.3%
DT 39.5% + 23.1% | 57.9% + 25.7% 50.2% =+ 3.9% 49.4% £ 4.4% 48.7% + 3.4%
RF 33.5% + 3.6% | 69.0% + 6.2% | 51.4% + 3.0% 52.6% + 2.9% 51.2% + 2.7%
MLP 44.7% + 6.8% 55.8% =+ 8.4% 50.8% =+ 5.7% 50.6% + 7.3% 50.2% + 7.3%
LDA 46.9% + 5.3% 56.0% + 3.4% 52.4% + 3.3% 51.8% + 3.0% 51.4% + 3.1%
KNN 33.0% + 10.6% | 66.7% + 7.7% 48.6% + 6.6% 51.1% + 5.3% 49.8% + 5.5%
Table F.21: Multisite classification performance on DF4.
Classifier Sensitivity Specificity AUROC Accuracy Balanced Accuracy
LR 45.0% + 8.4% 55.7% + 4.1% | 51.5% + 3.9% | 50.7% + 2.7% 50.3% + 3.0%
SVM 46.2% + 9.3% | 54.0% + 6.1% 50.5% + 4.6% 50.4% + 3.9% 50.1% + 4.1%
DT 41.7% + 13.8% | 61.5% + 18.3% 51.3% £ 5.7% | 52.2% + 6.7% 51.6% + 6.2%
RF 34.1% + 6.2% | 65.0% + 5.4% | 51.0% + 4.5% 50.6% + 2.5% 49.6% + 2.6%
MLP 37.6% + 8.9% 62.5% + 12.4% 50.3% + 3.4% 50.9% + 4.9% 50.1% + 4.5%
LDA 43.2% + 8.0% 54.8% =+ 5.0% 50.9% =+ 3.7% 49.4% £ 3.2% 49.0% =+ 3.3%
KNN 34.6% + 10.5% | 62.8% + 10.5% | 47.6% + 3.0% 49.6% + 1.7% 418.7% + 1.5%
Table F.22: Multisite classification performance on DF5.
Classifier Sensitivity Specificity AUROC Accuracy Balanced Accuracy
LR 54.8% + 2.6% 63.7% + 1.7% 63.2% + 4.5% 59.6% + 1.5% 59.3% + 1.5%
SVM 51.1% + 5.1% 61.1% + 3.5% 60.0% + 5.0% 56.5% + 3.2% 56.1% + 3.3%
DT 38.0% + 7.9% 66.5% + 7.2% 55.2% + 2.7% 53.3% + 2.6% 52.2% + 2.6%
RF 39.5% + 4.0% | 72.0% + 3.8% | 58.8% + 1.8% 57.0% + 2.8% 55.7% + 2.8%
MLP 55.4% + 5.2% 65.2% + 5.0% 63.4% + 3.8% 60.6% + 3.6% 60.3% + 3.6%
LDA 57.6% =+ 3.6% 63.9% + 2.6% 64.2% + 4.4% | 61.0% + 1.6% 60.7% + 1.7%
KNN 48.4% + 5.3% 57.9% + 5.6% 55.2% + 2.3% 53.5% + 2.4% 53.1% + 2.3%
Table F.23: Multisite classification performance on DF6.

Classifier Sensitivity Specificity AUROC Accuracy Balanced Accuracy
LR 55.1% + 2.9% 60.9% =+ 4.6% 60.8% + 4.9% 58.2% + 3.6% 58.0% + 3.5%
SVM 56.6% + 6.4% | 61.8% + 3.3% | 62.5% + 4.8% | 59.4% + 4.6% 59.2% + 4.7%
DT 44.2% + 12.7% | 64.1% + 10.5% | 52.7% + 2.9% 54.9% + 1.5% 54.1% + 1.9%
RF 43.7% + 17.4% | 69.6% + 3.9% | 61.2% + 3.0% 57.6% + 3.9% 56.7% + 4.1%
MLP 54.8% + 9.6% 62.2% + 4.8% 61.5% + 7.4% 58.8% + 6.3% 58.5% + 6.5%
LDA 53.4% + 4.7% 59.8% + 4.0% 60.1% =+ 5.3% 56.8% =+ 3.8% 56.6% + 3.8%
KNN 48.4% + 6.0% 64.3% + 5.2% 58.6% + 2.6% 56.9% + 2.6% 56.3% + 2.7%
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Table F.24: Multisite classification performance on DF7.

Classifier

Sensitivity

Specificity

AUROC

Accuracy

Balanced Accuracy

LR

31.0% + 7.4%

73.1% + 4.3%

53.5% + 3.6%

53.6% £ 2.7%

52.1% + 3.0%

SVM

31.5% + 8.2%

75.2% + 3.7%

53.9% + 3.0%

55.0% + 2.9%

53.9% + 3.0%

DT

33.5% =+ 5.4%

68.4% + 6.1%

51.7% + 4.7%

52.2% + 3.2%

50.9% + 3.2%

RF

31.5% + 4.2%

64.3% + 6.3%

16.5% £ 5.9%

49.1% + 4.0%

47.9% + 4.0%

MLP

34.0% + 14.9%

65.4% + 15.8%

49.8% + 1.4%

50.9% + 1.6%

49.7% + 0.6%

LDA

31.5% + 4.2%

71.6% + 6.8%

52.6% + 4.6%

53.0% + 4.1%

51.6% + 4.0%

KNN

51.4% + 5.8%

16.2% + 5.0%

47.9% + 5.1%

18.6% £ 4.5%

18.8% + 1.5%

Table F.25: Multisite classification performance on DF8.

Classifier

Sensitivity

Specificity

AUROC

Accuracy

Balanced Accuracy

LR

44.2% + 2.9%

56.2% + 2.0%

51.3% =+ 3.0%

50.6% + 2.2%

50.2% + 2.2%

SVM

45.9% + 2.9%

54.5% + 2.8%

194% £ 1.2%

50.5% + 2.4%

50.2% + 2.4%

DT

51.6% + 23.8%

15.7% £ 24.6%

50.5% =+ 3.3%

181% + 2.6%

50.5% =+ 3.3%

RF

30.8% + 2.3%

74.1% + 2.8%

52.0% + 2.0%

54.1% + 1.4%

52.5% + 1.4%

MLP

42.7% + 6.2%

58.1% =+ 6.3%

51.3% + 3.7%

51.0% + 3.9%

50.4% + 3.9%

LDA

45.4% + 3.1%

56.6% + 4.8%

51.0% + 2.9%

51.4% + 3.5%

51.0% + 3.4%

KNN

53.9% + 7.0%

48.7% + 7.4%

52.0% + 4.0%

51.1% + 4.1%

51.3% + 4.1%

Table F.26: Multisite classification performance on DF9.

Classifier

Sensitivity

Specificity

AUROC

Accuracy

Balanced Accuracy

LR

43.2% + 7.3%

58.8% =+ 8.1%

50.4% + 4.5%

51.5% + 5.9%

51.0% =+ 5.9%

SVM

42.4% + 6.5%

59.8% =+ 5.5%

50.7% + 3.8%

51.8% + 4.1%

51.1% + 4.2%

DT

53.1% + 13.3%

48.7% + 14.6%

52.7% + 4.6%

50.7% £ 4.7%

50.9% + 4.4%

RF

33.3% + 3.5%

68.4% + 4.2%

50.4% + 2.8%

52.1% + 2.8%

50.8% + 2.7%

MLP

43.4% + 8.7%

53.6% £ 8.7%

184% £ 3.1%

48.9% =+ 2.8%

18.5% + 2.7%

LDA

44.7% + 7.2%

58.6% =+ 5.2%

49.9% + 3.5%

52.1% + 3.5%

51.6% + 3.7%

KNN

44.7% + 5.4%

56.0% + 6.0%

51.2% + 4.3%

50.7% £ 4.7%

50.3% + 4.7%

Table F.27: Multisite classification performance on DF10.

Classifier

Sensitivity

Specificity

AUROC

Accuracy

Balanced Accuracy

LR

39.4% £ 7.1%

57.7% + 7.2%

47.0% + 3.0%

19.3% = 1.8%

18.6% = 1.8%

SVM

40.7% + 6.8%

60.2% + 6.8%

49.6% + 3.5%

51.2% =+ 3.4%

50.5% + 3.4%

DT

43.7% + 7.3%

54.5% + 6.0%

49.6% + 4.6%

49.5% + 3.1%

49.1% + 3.2%

RF

34.2% £ 6.8%

69.9% + 3.3%

51.8% + 3.2%

53.4% =+ 3.3%

52.0% =+ 3.5%

MLP

46.7% + 7.8%

61.3% + 4.5%

54.1% + 4.5%

54.5% + 2.2%

54.0% + 2.5%

LDA

42.9% + 6.7%

56.0% + 7.3%

16.5% £ 3.7%

49.9% + 2.6%

49.4% + 2.4%

KNN

40.2% + 5.2%

57.1% + 4.6%

48.3% + 3.0%

79.3% + 3.1%

18.6% £ 3.2%
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Table F.28: Multisite classification performance on DF11.

Classifier

Sensitivity

Specificity

AUROC

Accuracy

Balanced Accuracy

LR

43.7% + 4.4%

59.4% + 9.5%

55.3% + 7.4%

52.1% =+ 6.3%

51.5% + 6.1%

SVM

41.4% + 1.9%

62.4% + 6.8%

15.8% + 7.0%

52.7% + 3.7%

51.9% + 3.5%

DT

42.7% + 4.4%

60.1% + 7.6%

50.4% =+ 2.4%

52.0% =+ 2.4%

51.4% + 2.1%

RF

31.5% + 5.6%

66.9% + 7.5%

50.6% + 3.4%

50.5% + 2.9%

49.2% + 2.7%

MLP

40.6% + 14.7%

59.2% + 10.7%

51.5% + 7.8%

50.6% =+ 6.2%

49.9% + 6.4%

LDA

44.4% + 4.6%

57.7% + 5.3%

51.3% + 6.0%

51.5% + 4.2%

51.1% + 4.2%

KNN

10.9% + 6.9%

56.6% + 4.9%

49.1% + 4.5%

194% £ 3.5%

18.8% + 3.6%

Table F.29: Multisite classification performance on DF12.

Classifier

Sensitivity

Specificity

AUROC

Accuracy

Balanced Accuracy

LR

40.5% + 6.9%

61.3% + 7.3%

50.6% + 1.7%

51.7% + 2.6%

50.9% + 2.5%

SVM

41.3% + 7.6%

62.2% + 6.0%

49.4% + 2.5%

52.5% + 3.3%

51.8% + 3.3%

DT

43.6% £ 5.0%

52.0% + 5.5%

16.9% + 3.6%

18.1% + 3.3%

17.8% + 3.3%

RF

29.9% + 14%

66.9% + 3.6%

49.4% + 1.9%

49.8% + 2.3%

48.4% + 2.5%

MLP

42.3% + 14.9%

56.2% + 11.8%

48.2% + 4.9%

49.8% + 4.4%

49.3% + 4.6%

LDA

40.5% + 4.5%

55.8% £ 4.9%

47.3% + 2.8%

48.7% + 1.8%

48.1% + 1.7%

KNN

39.2% + 4.4%

60.9% + 6.5%

49.3% + 3.2%

50.8% + 5.4%

50.0% + 5.3%

Table F.30: Multisite classification performance on DF13.

Classifier

Sensitivity

Specificity

AUROC

Accuracy

Balanced Accuracy

LR

39.7% + 3.8%

59.8% + 4.1%

49.4% + 4.0%

50.5% + 2.9%

49.8% + 2.9%

SVM

38.0% + 2.9%

57.9% + 2.5%

51.6% + 4.1%

48.7% + 1.7%

47.9% + 1.8%

DT

48.9% + 8.0%

50.9% + 9.2%

51.0% £ 3.7%

49.9% + 2.5%

49.9% =+ 2.3%

RF

30.0% + 2.9%

68.6% + 4.4%

48.7% £ 3.1%

50.7% + 2.5%

49.3% + 2.4%

MLP

39.9% + 7.3%

58.7% + 12.3%

49.4% + 4.6%

50.1% =+ 5.2%

49.3% + 4.7%

LDA

40.7% + 3.7%

53.9% =+ 2.4%

17.5% + 3.2%

17.8% + 2.0%

17.3% + 2.0%

KNN

35.0% + 5.2%

59.6% + 4.2%

48.2% + 2.1%

48.2% + 2.9%

17.3% + 2.9%

Table F.31: Multisite classification performance on DF14.

Classifier

Sensitivity

Specificity

AUROC

Accuracy

Balanced Accuracy

LR

39.0% + 6.5%

61.9% + 7.7%

52.0% + 4.0%

51.3% + 3.5%

50.4% + 3.3%

SVM

37.5% + 5.0%

62.8% + 9.3%

47.5% + 2.4%

51.0% + 4.8%

50.1% + 4.5%

DT

38.9% + 20.4%

63.4% + 22.6%

52.1% + 3.7%

52.1% + 4.2%

51.2% + 3.4%

RF

32.0% + 2.4%

63.8% + 6.4%

15.8% £ 3.0%

191% = 7.0%

17.9% + 3.8%

MLP

50.7% + 10.8%

56.8% =+ 8.3%

52.2% + 4.6%

53.9% + 4.0%

53.7% + 4.2%

LDA

45.2% + 6.1%

58.7% £ 6.1%

50.9% + 3.0%

52.4% + 4.1%

51.9% + 4.0%

KNN

47.9% £ 5.7%

52.7% + 8.4%

51.0% + 5.7%

50.5% + 5.6%

50.3% =+ 5.5%
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Table F.32: Multisite classification performance on DF15.

Classifier

Sensitivity

Specificity

AUROC

Accuracy

Balanced Accuracy

LR

33.4% + 7.3%

66.5% + 8.9%

51.8% =+ 3.3%

51.2% =+ 3.0%

50.0% + 2.7%

SVM

13.2% + 2.3%

87.2% + 3.7%

49.9% + 1.8%

52.9% + 1.3%

50.2% + 1.1%

DT

38.1% =+ 6.3%

58.5% + 9.6%

181% + 6.8%

19.0% £ 5.1%

18.3% + 4.8%

RF

43.6% + 8.2%

64.2% + 6.3%

55.5% + 3.4%

54.6% + 2.5%

53.9% + 2.7%

MLP

42.7% + 11.2%

57.8% + 13.1%

51.0% =+ 3.7%

50.8% + 4.6%

50.3% + 3.7%

LDA

33.7% + 5.9%

67.3% + 6.1%

51.2% + 3.6%

51.7% + 2.9%

50.5% + 2.9%

KNN

47.4% + 12.1%

57.6% + 4.0%

52.6% + 5.9%

52.9% + 5.4%

52.5% + 5.8%

Table F.33: Multisite classification performance on DF22.

Classifier

Sensitivity

Specificity

AUROC

Accuracy

Balanced Accuracy

LR

36.4% + 7.1%

62.3% + 4.1%

52.2% + 3.6%

50.3% + 2.6%

52.2% + 3.6%

SVM

28.2% + 1.1%

76.8% + 5.9%

18.9% £ 3.9%

54.3% + 5.2%

52.5% =+ 5.3%

DT

39.2% + 12.9%

64.7% + 9.4%

50.9% =+ 6.6%

52.9% + 5.4%

52.0% + 5.6%

RF

39.7% + 9.4%

66.1% =+ 5.8%

54.1% + 4.6%

53.9% =+ 2.4%

52.9% + 2.7%

MLP

34.8% + 14.6%

70.4% + 13.5%

52.4% + 5.4%

53.9% + 4.2%

52.6% + 4.2%

LDA

41.4% + 6.8%

56.6% + 8.1%

49.9% + 4.0%

49.6% + 4.0%

49.0% + 4.2%

KNN

39.5% + 6.7%

57.1% + 4.6%

49.2% + 5.2%

18.9% £ 3.9%

18.3% = 1.0%

Table F.34: Multisite classification performance on DF27.

Classifier

Sensitivity

Specificity

AUROC

Accuracy

Balanced Accuracy

LR

45.2% + 3.3%

57.9% + 4.4%

53.7% + 2.6%

52.0% + 2.5%

51.5% + 2.4%

SVM

47.2% + 4.2%

55.3% £+ 0.7%

53.7% + 2.1%

51.5% + 1.8%

51.2% + 1.9%

DT

46.4% + 8.7%

54.3% + 3.5%

51.1% + 3.9%

50.6% + 4.4%

50.3% + 4.7%

RF

23.1% + 5.3%

76.5% + 3.6%

51.8% =+ 5.5%

51.8% + 3.4%

49.8% + 3.4%

MLP

46.1% + 4.9%

60.1% + 8.1%

55.6% + 4.2%

53.6% + 3.1%

53.1% + 2.8%

LDA

45.9% + 4.0%

52.6% £ 4.3%

79.9% + 3.1%

19.5% € 2.6%

19.2% + 2.5%

KNN

40.7% £+ 7.7%

60.9% =+ 8.6%

50.3% + 3.8%

51.5% + 2.8%

50.8% + 2.7%

F.2.2 Per-site Performances

Table F.35: The average performance across folds on DF6 graph features, evaluated on CALTECH and CMU.

CALTECH CcCMU

SEN [%] SPE [%]  AUROC [%] ACC [%] BACC [%]  SEN [%] SPE [%]  AUROC [%] ACC [%] BACC [%]
LR 66.7+£57.7 80.0+34.6 66.7+£57.7 77.8438.5 73.31+46.2 33.3+£47.1 100.0+0.0 91.7£11.8 65.0+£21.2 66.71+23.6
SVM 66.71£57.7 86.71+23.1 73.31+46.2 83.31+28.9 76.71+40.4 66.7147.1 100.0+0.0 91.7£11.8 80.01+28.3 83.31+23.6
DT 100.0+0.0 83.31+28.9 91.7+14.4 88.91+19.2 91.7+14.4 50.0+70.7 75.0+35.4 70.84+29.5 65.0+21.2 62.5+17.7
RF 33.3+57.7 86.71+23.1 93.3+11.5 61.1+9.6 60.0+£17.3 16.7+23.6 75.0+35.4 83.3+23.6 45.0+7.1 45.8+5.9
MLP 33.3+£57.7 63.3+32.1 50.0+£50.0 55.61+38.5 48.3+44.8 33.3+47.1 100.0+0.0 100.0+0.0 65.0+21.2 66.71+23.6
LDA 66.7+£57.7 70.0+26.5 50.0£50.0 72.2425.5 68.3+35.5 16.7+23.6 100.0+0.0 83.3+£23.6 55.0+7.1 58.3+11.8
KNN 0.0+0.0 80.0+£34.6 61.7+£46.5 50.0+16.7 40.0£17.3 50.0£70.7 75.0+£35.4 75.0+35.4 60.0+£56.6 62.5+53.0
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Table F.36

: The average performance across folds on DF6 graph features, evaluated on KKI and LEUVEN 1.

KKI LEUVEN 1
SEN [%] SPE [%]  AUROC [%] ACC [%] BACC [%|  SEN [%] SPE [%]  AUROC [%] ACC [%]  BACC [%]
LR 64.6+41.0  42.9423.8 59.44+16.9 48.6+2.8 53.849.2  38.3+27.4  68.3+20.7  49.7430.7  55.1£17.3  53.3+16.5
SVM  64.6441.0  42.9+17.3  72.3+14.4  49.0412.0  53.8+16.4  26.7425.3  68.3+£20.7  53.9420.0  484+13.8  47.5£13.0
DT 45.8+41.7  44.6+24.4  41.7+£13.6 43.4+19.4 4524204 53.3+36.1 78.3+£21.7  51.9+17.7  68.0+13.1 65.8+11.2
RF 70.8421.0  54.2411.7  66.1+18.5 60.1+10.6  62.5412.7  16.7+23.6  73.3+43.5 49.2433.6  45.6428.5  45.0429.8
MLP  70.8434.4  49.2+20.6 59.64+28.5 55.647.9  60.0£10.8  15.0422.4  65.0+£41.8 43.3+39.7  41.2428.9  40.0+27.1
LDA  64.6441.0  54.2+11.7  67.54+244  55.9410.4  59.4£15.6  31.7432.5 56.7+9.1 45.6+30.5  46.0+18.6  44.2+18.1
KNN  45.8441.7 93.8412.5  65.4427.6  72.2+19.2  69.8421.3  33.3k31.2  73.3£25.3 49.7432.3 54.14£21.9  53.3+20.9
Table F.37: The average performance across folds on DF6 graph features, evaluated on LEUVEN 2 and
MAX MUN.
LEUVEN 2 MAX_ MUN
SEN [%] SPE [%]  AUROC [%] ACC [%] BACC [%]  SEN [%] SPE [%]  AUROC [%] ACC [%]  BACC [%]
LR 37.54£47.9  48.8+16.5 42.14£16.5 50.045.8  43.1+16.0  58.6426.2  44.0426.1 48.8436.7  55.6+15.9  51.3421.4
SVM  50.0457.7  48.8+16.5 57.9419.6 56.2£13.8  49.4+22.9  52.9432.7  46.0£36.5 4624384  49.4+32.7  49.4434.4
DT 66.7+47.1  31.2434.2 40.0+32.4  47.6+28.4  49.04£32.7  46.2+40.3  69.0£19.5 59.5+£14.8  48.7+21.8  57.6+20.1
RF 62.5+47.9  70.0424.5  73.8420.6  68.2+26.8 66.2428.4  44.5+24.0  59.0436.8  47.4+28.6 52.1423.8  51.8426.5
MLP 0.04+0.0 77.5+£20.6  46.7420.5 50.6+16.2  38.8410.3  55.2425.9  46.0427.0  45.2:£30.0 53.7+12.2  50.6420.7
LDA  37.5447.9  60.0£14.1 42.1+16.5 57.1+10.1  48.8419.3  48.6+12.2  52.0437.0  44.4£30.4  54.0+17.3  50.3+22.1
KNN  45.8441.7  43.8+14.9 59.8+18.9  46.4+12.4  44.8419.4  72.6+18.1  49.0438.8 51.3+31.7  63.7+£12.1 60.8+19.6
Table F.38: The average performance across folds on DF6 graph features, evaluated on NYU and OHSU.
NYU OHSU
SEN [%] SPE [%] AUROC [%] ACC [%]  BACC [%] SEN [%] SPE [%]  AUROC [%] ACC [%]  BACC [%]
LR 48.748.4  65.0+8.0 62.54+12.3 58.346.1 56.9+45.8  71.7+29.8  58.3+37.3  60.8437.0 66.7+27.0  65.0431.3
SVM  57.248.1 64.9+11.3  65.3+9.4 62.1+8.9 61.1+8.1 63.3+21.7  78.3421.7  68.3+£12.4  69.3+11.8 70.8+14.4
DT 36.4+10.9  78.146.2 54.947.2 59.8+4.6 57.243.9  60.0£41.8  56.7+43.5 45.4+16.0 57.7+19.4  58.3+11.8
RF 40.1£19.9 83.6+£6.9  66.3£13.9  65.2+£11.7 61.8413.3  68.3£32.5  43.3+36.5  40.4+12.6 51.349.6  55.8+17.6
MLP  52.8417.3  69.3+4.9 62.6£11.7 62.5+£7.9 61.0£9.0  53.3+36.1  46.7427.4  45.0431.9 56.0£13.4  50.0+20.4
LDA  49.0413.5  64.2+8.2 61.0413.4 57.944.5 56.6£5.3  58.3+37.3  58.3437.3  62.5424.7  66.7420.4  58.3+27.5
KNN  40.4427.1  75.3+5.7 59.54+13.2 60.5+10.6  57.8412.7  58.3+37.3  71.7£31.0  71.7+16.6  63.7+15.0  65.0421.8
Table F.39: The average performance across folds on DF6 graph features, evaluated on OLIN and PITT.
OLIN PITT
SEN [%] SPE [%]  AUROC [%] ACC [%] BACC [%]  SEN [%] SPE [%]  AUROC [%] ACC [%]  BACC [%]
LR 44.2430.2  58.3428.9 58.9430.9  49.3+17.6  51.2420.6  67.6+29.2  73.9425.4  74.8415.4  70.6+17.1  70.7417.1
SVM  69.2421.7  64.6£29.2 60.1£10.7  64.6£10.5  66.9+11.8  64.0438.2  79.1£16.0 70.7+5.3 69.4+10.0  71.64+12.1
DT 39.2+28.3  50.0+£40.8 48.1+34.8 4444342  44.6£342  23.3+155  86.3£19.2 49.149.7 60.1£13.0  54.8+10.0
RF 45.4+17.5  68.8+23.9 65.8421.0 55.6£20.8  57.1+19.3  25.4418.0  79.8+14.0 58.7+25.5 56.2+12.7  52.6£15.2
MLP  69.2421.7  45.848.3 55.549.9 57.6+11.9  57.5411.9  53.3+36.4  82.3+17.7 7274244  67.2423.0  67.8422.5
LDA  37.9431.2  58.3+28.9 63.3+16.7  45.1+13.7  48.1£16.2  64.7+29.4  57.2425.8 70.14+18.6 57.546.3 61.0+6.0
KNN  88.8413.1 79.2+25.0 82.8+14.5 83.3+13.6 84.0+£14.5  39.1+23.0  73.2:22.1 61.1+7.1 61.2+11.8  56.249.4
Table F.40: The average performance across folds on DF6 graph features, evaluated on SBL and SDSU.
SBL SDSU
SEN [%] SPE [%]  AUROC [%| ACC %]  BACC [%| SEN [%] SPE [%]  AUROC [%] ACC %]  BACC [%]
LR 60.0+£43.5  46.2+40.3 48.1436.4 50.04£32.8  53.1+33.6  16.7428.9  68.3£16.1 64.2:+23.2 48.1+17.0  42.5418.9
SVM  70.0444.7  61.9442.2  77.0423.4 69.4+19.6 66.0+21.0 25.0425.0  76.7+£25.2 69.2+6.3 57.4+8.5 50.8+1.4
DT 63.3+41.5  39.5438.7  46.9+17.2  47.2415.0  51.4415.9 0.04£0.0  91.7+14.4  16.7+19.1 57.448.5 45.8+7.2
RF 50.0447.1  64.8441.0  60.3£26.4 52.5+13.0  57.4£14.9  25.0425.0  83.3£28.9  39.6423.7 61.149.6 54.2+7.2
MLP  73.3443.5  29.0+£29.8 61.9+28.4 52.54+18.1  51.2416.6  41.7+38.2  83.3£28.9  68.3+£27.0  68.5+30.6 62.51+33.1
LDA  60.0443.5  46.2+40.3 51.0437.9 50.04£32.8  53.1+33.6  25.0425.0  68.3+16.1 60.0421.4  51.94£17.0  46.7+19.4
KNN  83.3423.6  48.6£50.1 61.7+26.1 63.3+21.7  66.04£25.4 25.0+25.0 91.7+14.4 72.1+£18.8  66.7+16.7  58.3+19.1
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Table F.41: The average performance across folds on DF6 graph features, evaluated on STANFORD and TRIN-

ITY.
STANFORD TRINITY
SEN [%] SPE [%] AUROC [%] ACC [%] BACC [%]  SEN [%] SPE [%]  AUROC [%] ACC [%] BACC [%]
LR 39.6431.5  37.5£25.0  49.0427.7  41.5+18.6  38.5+21.3  41.0427.0  68.3420.7  44.8434.3  59.3+16.4  54.7+19.8
SVM  39.6431.5  50.0+40.8  35.4433.6  49.8421.1  44.8419.7  37.0438.0  36.7£13.9  34.2436.4  40.8+18.8  36.8+18.0
DT 47.9444.3  31.2437.5  50.5412.5  47.5414.5  39.6+12.5 60.0+23.5  35.0419.0  53.248.2 42.048.7  47.5+12.0
RF 20.84+14.4  37.5+25.0  45.1425.0  31.0£7.6  29.2410.2  45.0428.3  58.3£30.0  50.3+30.9  52.3421.1  51.7424.9
MLP  45.8436.3  43.8431.5  28.6+30.1  49.6+18.3 44.8421.3  38.0437.5 76.7+34.6  48.2+429.6  63.1+10.1  57.345.3
LDA  45.8441.7 37.54£25.0  52.1424.7  44.6423.7 41.7426.4  37.0428.6  65.0£22.4  43.5430.4  55.5+18.9  51.0+21.3
KNN  60.44+42.7 25.0+28.9  51.6423.0  49.6£18.3  42.7422.1  32.0421.7  53.3£13.9  39.7424.7  46.8410.1  42.7+13.5
Table F.42: The average performance across folds on DF6 graph features, evaluated on UCLA 1 and UCLA 2.
UCLA 1 UCLA_2
SEN [%] SPE [%] AUROC [%] ACC [%] BACC [%]  SEN [%] SPE [%]  AUROC [%] ACC [%] BACC [%]
LR 65.049.1  57.7+24.4 59.249.5 59.143.9  61.348.9  90.0+14.1  45.84+29.5 70.845.9  65.3+13.7  67.9421.8
SVM  67.2410.8  54.9+429.3  55.0411.0  59.547.9 61.1+12.1 90.0+14.1 58.3+11.8 87.5+17.7 70.845.9 74.2+13.0
DT 35.3+16.0  66.8419.5  47.1+16.4  48.0£12.9 51.0417.1  50.0470.7  37.54£53.0  50.8422.4  29.245.9  43.8+8.8
RF 51.4+19.2  65.0427.4  63.0£17.2  55.9410.7 58.2414.4  80.0+28.3  54.2429.5 72.147.7  58.3+11.8  67.140.6
MLP  56.749.1  50.9433.0  55.7+19.4  52.3+9.7  53.8414.9 90.0+14.1 45.8+29.5  75.8+13.0  65.3+13.7  67.9421.8
LDA  68.3+12.4  50.8431.2  582410.7  58.0+10.2 59.6+13.5  80.0+28.3  45.8429.5 683424  59.7421.6  62.94+28.9
KNN 5224122  49.5428.7  64.349.7 541472  50.9413.2  70.0442.4  54.2429.5 73.349.4 52.843.9  62.146.5
Table F.43: The average performance across folds on DF6 graph features, evaluated on UM _1 and UM _ 2.
UM 1 UM _2
SEN [%] SPE [%] AUROC [%] ACC [%] BACC [%] SEN [%] SPE[%] AUROC [%] ACC[%] BACC [%]
LR 44.0419.9  67.8412.8  61.0418.0  59.2414.6  55.9+14.9  42.7+39.3 86.0414.2  60.0+38.1 71.446.9  64.3+14.1
SVM 5254114  67.8415.0  63.2414.7  61.9+11.1  60.2410.3  36.0+37.0  82.7420.5  78.0+21.8  66.2+21.4  59.3+24.8
DT 54.8433.2  70.4+26.8  60.8+21.7  67.7+16.0  62.6+16.8  38.7442.5  60.7429.1  52.7434.3  53.3422.8  49.7+24.8
RF 48.0415.3  69.3422.7  72.9+417.8  61.5+£15.0  58.6+14.0  34.7+40.9 56.0433.9  58.9435.8  48.0+£33.1  45.3+34.5
MLP  73.3429.5  62.8420.7  71.4+17.5  65.7419.7 68.1£20.9 29.3+40.4 85.3+16.4  63.1+17.6  66.1+17.3  57.3£21.0
LDA  42.3420.5  67.8+11.4  59.1+17.8  58.2+14.2  55.0414.5 42.7+39.3 89.3+9.8  71.1421.1  73.646.8 66.0+14.9
KNN  58.0424.4  60.8+17.5  63.5+15.4 58.847.8 59.449.8  40.0443.5 58.0+17.1  54.9430.8  52.34£25.7  49.0+29.3
Table F.44: The average performance across folds on DF6 graph features, evaluated on USM and YALE.
UsM YALE
SEN [%] SPE [%]  AUROC [%| ACC %]  BACC [%|  SEN [%] SPE [%]  AUROC [%] ACC [%]  BACC [%]
LR 71.0413.6  49.7430.7  68.5+11.4  62.1£10.1  60.3+10.8  81.7+20.7 76.7432.5  86.8+19.5  74.2+19.5 79.2+17.7
SVM  73.8412.6  39.7410.8  66.4+16.2  62.0410.1  56.74£8.1  70.0421.7  52.7439.2  73.74185  59.1+18.8  61.3426.4
DT  50.3+16.8  44.3+21.9  44.2+14.9 48.7+8.2 47.346.4  40.0438.4  86.0+21.9  78.8+11.3  57.6+18.1  63.0+11.4
RF 58.8416.0  52.0+420.9  54.14+16.5 56.444.8 55.4+7.3  43.3430.3  82.7+16.7 7434252  53.44232  63.0+12.0
MLP  67.2424.6  38.0+13.9 6424125  55.7+10.1  52.649.0  68.3+41.0  72.7430.0  78.5425.6  64.5+24.4  70.5+27.0
LDA  74.3+9.4  49.7+23.0  70.8+8.3  64.2+10.3 62.0410.4 71.7+18.3  76.0£25.1  83.8419.5  67.3+11.5  73.8+14.5
KNN  44.2411.6 54.7420.4  44.5+19.5  49.0414.7  49.4+15.3  38.3431.0  68.0429.5  56.2422.0  46.8+10.5  53.2416.9
F.2.3 Per-age Performances
Table F.45: The average performance across folds on DF6 graph features, evaluated by age group 0-11 and 12-18.
0-11 12-18
SEN [%] SPE [%]  AUROC [%] ACC [%] BACC [%] SEN [%]  SPE[%| AUROC [%] ACC [%] BACC [%]
LR 50.9414.2  51.4£10.2  54.7416.8  51.2+11.3 51.2411.7 58.7+£3.0  65.445.4 66.3+4.0 62.243.0  62.14£2.7
SVM  57.2415.8  50.8+7.6 56.9412.2  52.749.1  54.049.4  57.847.2  65.846.7 65.54+7.3 62.046.1  61.846.3
DT 40.6+14.7 67.6+11.3  58.045.8  56.245.2 54.145.7  43.3+12.9 64.3+11.0  52.044.6 54.043.3  53.843.6
RF 47.1413.9  58.84+11.8 55.949.6 52.7+8.6  53.048.0  42.7485  71.043.5 63.3+4.2 57.744.5  56.8+5.2
MLP  52.2413.4  50.4+£7.0 52.6+13.2  51.448.0  51.348.9  58.0414.0 66.846.5  67.549.5  62.848.9 62.449.5
LDA 5434134  51.849.8 54.2415.1  52.949.7  53.1410.2  56.6+5.2  62.847.2 65.54+4.7 59.844.3  59.744.0
KNN  53.0410.3  55.048.7 54.648.1 53.748.8  54.0+48.2  46.848.2  65.54+7.3 60.545.6 56.644.6  56.245.0
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Table F.46: The average performance across folds on DF6 graph-based features, evaluated by age group 19-30

and 30+.
19-30 30+

SEN [%] SPE [%]  AUROC [%] ACC [%] BACC [%]  SEN [%] SPE [%]  AUROC [%] ACC [%]  BACC [%]
LR 51.7£6.5 61.1+6.4 56.7£9.1 57.2+5.4 56.41+6.0 50.3+19.6 54.8+29.6 54.4+28.6 51.8+18.1 52.6+20.6
SVM 53.44+14.6 61.0+£9.8 58.9+10.7 58.4+7.4 57.2+8.9 55.9429.8 72.7+18.6 69.5+17.7 63.8+21.1 64.3+18.6
DT 43.2+20.2 62.5+14.5 46.71+9.6 54.8+2.8 52.945.8 54.14+14.0 72.8427.1 63.41+18.2 58.44+12.8 63.4+16.8
RF 42.9+3.9 75.6+10.3 62.0+4.2 61.7+4.6 59.2+4.4 44.3+18.5 65.2+10.7 58.4+8.4 54.14+12.8 54.74+9.8
MLP 46.3+14.6 61.8+4.4 54.4+10.0 55.7+£6.7 54.01+8.2 51.5+27.8 64.0+£24.9 58.7+27.3 57.8+24.9 57.7+£25.4
LDA 47.5+10.4 61.2+9.7 56.2+9.4 55.7+8.7 54.41+9.6 43.7+18.3 57.8+27.4 52.7+30.6 50.6+17.7 50.8+20.6
KNN 42.2+15.9 69.0£8.5 54.24+11.5 58.5+8.2 55.61+9.2 59.61+15.2 67.8+£19.0 63.0£7.2 63.81+9.0 63.7+£11.8

F.2.4 LOGO CV on Graph features

Table F.47: Sensitivity obtained by each classifier for each test site during LOGO CV on graph features.

Sensitivity [%] N

LR SVM DT RF MLP LDA KNN ASD TC
CALTECH 60.0 60.0 40.0 0.0 60.0 60.0 20.0 5 10
CMU 50.0 50.0 16.7 16.7 33.3 33.3 16.7 6 5
KKI 75.0 66.7 58.3 66.7 83.3 83.3 33.3 12 21
LEUVEN_1 28.6 21.4 85.7 21.4 14.3 21.4 21.4 14 14
LEUVEN_2 16.7 41.7 50.0 25.0 33.3 16.7 75.0 12 16
MAXMUN 52.6 47.4 73.7 47.4 42.1 42.1 57.9 19 27
NYU 45.9 51.4 25.7 45.9 41.9 54.1 39.2 74 98
OHSU 75.0 58.3 58.3 75.0 91.7 66.7 75.0 12 13
OLIN 64.3 50.0 71.4 64.3 64.3 64.3 71.4 14 14
PITT 62.5 37.5 54.2 20.8 58.3 58.3 45.8 24 26
SBL 50.0 41.7 50.0 50.0 50.0 58.3 41.7 12 14
SDSU 50.0 37.5 12.5 25.0 37.5 37.5 50.0 8 19
STANFORD 75.0 83.3 75.0 41.7 75.0 83.3 58.3 12 13
TRINITY 36.8 63.2 84.2 63.2 36.8 36.8 42.1 19 25
UCLA 1 70.3 67.6 62.2 37.8 62.2 73.0 48.6 37 27
UCLA 2 63.6 63.6 45.5 63.6 72.7 63.6 81.8 11 10
UM_1 44.1 47.1 50.0 44.1 70.6 41.2 58.8 34 52
UM_2 69.2 76.9 92.3 69.2 38.5 61.5 53.8 13 21
USM 67.4 51.2 53.5 44.2 83.7 74.4 34.9 43 24
YALE 77.3 63.6 50.0 31.8 77.3 72.7 40.9 22 19
Mean=+std 56.7£16.2 54.0+£14.3 55.54£21.0 42.74£19.9 56.3£20.5 55.1£18.8 48.3+18.1

Table F.48: Specificity obtained by each classifier for each test site during LOGO CV on graph features.

Specificity [%] N

LR SVM DT RF MLP LDA KNN ASD TC
CALTECH 70.0 80.0 80.0 70.0 50.0 60.0 50.0 5 10
CMU 80.0 60.0 80.0 100.0 60.0 80.0 60.0 6 5
KKI 38.1 38.1 61.9 38.1 33.3 33.3 66.7 12 21
LEUVEN_1 100.0 57.1 42.9 78.6 85.7 100.0 71.4 14 14
LEUVEN_2 68.8 75.0 50.0 81.2 56.2 75.0 43.8 12 16
MAXMUN 51.9 44.4 55.6 63.0 59.3 55.6 63.0 19 27
NYU 73.5 79.6 83.7 78.6 74.5 69.4 68.4 74 98
OHSU 69.2 53.8 61.5 30.8 76.9 76.9 69.2 12 13
OLIN 57.1 64.3 28.6 64.3 64.3 64.3 57.1 14 14
PITT 46.2 57.7 69.2 92.3 46.2 42.3 65.4 24 26
SBL 42.9 57.1 50.0 78.6 50.0 50.0 57.1 12 14
SDSU 84.2 68.4 94.7 78.9 73.7 84.2 78.9 8 19
STANFORD 38.5 46.2 38.5 69.2 53.8 38.5 53.8 12 13
TRINITY 64.0 60.0 12.0 52.0 48.0 68.0 48.0 19 25
UCLA 1 63.0 63.0 59.3 77.8 63.0 66.7 70.4 37 27
UCLA 2 50.0 60.0 60.0 80.0 50.0 50.0 50.0 11 10
UM_1 65.4 69.2 55.8 71.2 51.9 65.4 57.7 34 52
UM_2 81.0 85.7 52.4 71.4 90.5 81.0 66.7 13 21
USM 50.0 62.5 62.5 66.7 16.7 45.8 50.0 43 24
YALE 73.7 68.4 36.8 78.9 47.4 73.7 63.2 22 19
Mean=+tstd 63.4£16.1 62.5+£11.8 56.8+£19.2 71.1£15.8 57.6+£16.9 64.0£16.7 60.5£9.1
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Table F.49: Auroc obtained by each classifier for each test site during LOGO CV on graph features.

AUROC [%] N

LR SVM DT RF MLP LDA KNN ASD TC
CALTECH 58.0 62.0 63.0 57.0 58.0 50.0 27.0 5 10
CMU 63.3 60.0 66.7 51.7 73.3 70.0 55.0 6 5
KKI 63.9 66.3 66.9 53.6 58.3 65.1 54.4 12 21
LEUVEN 1 58.7 37.8 67.9 61.7 52.0 56.1 48.0 14 14
LEUVEN 2 51.0 67.2 52.6 50.5 55.2 52.6 58.1 12 16
MAXMUN 46.2 45.7 68.7 56.3 52.0 46.0 61.0 19 27
NYU 66.6 68.8 60.6 65.3 61.2 67.6 56.8 74 98
OHSU 82.1 50.6 64.4 48.4 86.5 78.2 73.1 12 13
OLIN 67.9 63.5 49.0 70.7 66.3 65.3 66.3 14 14
PITT 61.9 52.6 56.4 69.1 54.6 58.3 56.1 24 26
SBL 51.2 55.4 62.5 62.5 47.6 54.2 48.2 12 14
SDSU 67.1 67.1 56.9 66.1 70.4 69.7 67.1 8 19
STANFORD 67.3 59.6 57.1 59.0 64.7 64.1 56.4 12 13
TRINITY 53.9 57.5 49.4 49.6 39.4 52.4 39.5 19 25
UCLA_l 67.9 69.3 63.1 64.1 67.4 67.5 61.3 37 27
UCLA_2 65.5 69.1 53.2 7.7 66.4 55.5 70.9 11 10
UM 1 57.5 59.3 56.5 64.5 64.6 55.6 63.8 34 52
UM_2 82.1 86.1 73.3 72.7 75.8 84.2 63.9 13 21
USM 70.3 58.7 57.3 53.2 54.2 69.2 40.3 43 24
YALE 75.6 75.1 42.9 66.5 68.7 71.5 51.6 22 19
Mean=+std 63.9+9.3 61.6+10.3 59.4+7.5 61.0£8.1 61.8+10.5 62.74+9.7 55.9+11.0

Table F.50: Accuracy obtained by each classifier for each test site during LOGO CV on graph features.

Accuracy [%] N

LR SVM DT RF MLP LDA KNN ASD TC
CALTECH 66.7 73.3 66.7 46.7 53.3 60.0 40.0 5 10
CMU 63.6 54.5 45.5 54.5 45.5 54.5 36.4 6 5
KKI 51.5 48.5 60.6 48.5 51.5 51.5 54.5 12 21
LEUVEN 1 64.3 39.3 64.3 50.0 50.0 60.7 46.4 14 14
LEUVEN 2 46.4 60.7 50.0 57.1 46.4 50.0 57.1 12 16
MAXMUN 52.2 45.7 63.0 56.5 52.2 50.0 60.9 19 27
NYU 61.6 67.4 58.7 64.5 60.5 62.8 55.8 74 98
OHSU 72.0 56.0 60.0 52.0 84.0 72.0 72.0 12 13
OLIN 60.7 57.1 50.0 64.3 64.3 64.3 64.3 14 14
PITT 54.0 48.0 62.0 58.0 52.0 50.0 56.0 24 26
SBL 46.2 50.0 50.0 65.4 50.0 53.8 50.0 12 14
SDSU 74.1 59.3 70.4 63.0 63.0 70.4 70.4 8 19
STANFORD 56.0 64.0 56.0 56.0 64.0 60.0 56.0 12 13
TRINITY 52.3 61.4 43.2 56.8 43.2 54.5 45.5 19 25
UCLA 1 67.2 65.6 60.9 54.7 62.5 70.3 57.8 37 27
UCLA_2 57.1 61.9 52.4 71.4 61.9 57.1 66.7 11 10
UM 1 57.0 60.5 53.5 60.5 59.3 55.8 58.1 34 52
UM_2 76.5 82.4 67.6 70.6 70.6 73.5 61.8 13 21
USM 61.2 55.2 56.7 52.2 59.7 64.2 40.3 43 24
YALE 75.6 65.9 43.9 53.7 63.4 73.2 51.2 22 19
Mean=std 60.8+9.0  58.8+£9.7 56.8+7.8 57.8+6.7 57.9£9.4 60.4+7.9 55.1£9.6
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G NASDA Prototype Documentation

G.1 Overview

The Neuroimaging Autism Signal Detection Application (NASDA) prototype is a modular graphical user
interface (GUI) designed to assist in exploring pattern recognition of neuroimaging-derived features. It is
designed to enable non-specialist users and research scientists to rapidly adjust, run, and inspect multiple
classification scenarios without requiring manual scripting.

The prototype integrates subgroup selection, classifier choice, feature selection, and direct performance
monitoring into a single visual workspace. All operations are implemented in Python using Tkinter [36] for the
GUI framework, scikit-learn [29] for classification routines, and nilearn [22| for neuroimaging data handling.

G.2 Layout and Components

The NASDA prototype GUI is organized to maximize transparency, reproducibility, and flexible experiment
configuration. Its modular design supports immediate visual feedback and reliable user control. Each panel
with its functions is described below.

e Toolbar: A persistent strip at the top of the window providing global project controls.

— Open: Load a new dataset in a new window.

— Save: A placeholder button that can be linked to saving current configurations to a dedicated
project file for later use.

— Run: Execute the entire classification and evaluation workflow, respecting the current settings and
filters.

— Settings: Open a dedicated window to adjust advanced runtime parameters. The settings panel
currently supports a user-editable text entry, that specifies and stores the custom file path for the
graph-based feature file.

e Subjects Panel: Enable dynamic dataset subsetting based on demographic metadata.

— Sex Filters: Radio buttons for All, Female, or Male. Changing this filter triggers an update of the
analysed dataset.
— Age Group Filters: Radio buttons for All, 0-11, 12-18, 19-30, and 30+. Used in tandem with the
sex filter for refined subgroup analyses.
e Classifier Panel: Specify the applied classification model.
— Available options: SVM, Logistic Regression, Random Forest, Decision Tree, Multilayer
Perceptron, Linear Discriminant Analysis, and k-Nearest Neighbour.

— Selection is mutually exclusive, managed via radio buttons.

Features Panel: Configure both the feature space and the feature selection procedure.
— Feature Selection Methods: Choices include None, Cluster, Lars Lasso, HSIC Lasso, and
Backwards Sequential Feature Selection (SFS).

— Feature Type: Toggle between Graph-based signal features or Pearson correlation matrices.
Switching this option dynamically reloads the input data representation to match the selected
modality.

e Overview Visualisation: A dedicated graphical panel to display a stylised brain schematic with
overlaid text summarizing:

— Active demographic filters (sex and age group),
— Selected classifier,

— Selected feature method,
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— Chosen feature type and data source.

Two utility buttons are included in this visualisation plane: one exports the panel as a PNG image, and
the other enlarges the view for closer inspection.

Tabbed Console: A multi-tab control for interactive workflow management, inspection, and debugging.
— Command Tab: A live Python interpreter shell embedded directly in the GUI, allowing direct data
inspection, and method calls. All script output is shown in real-time.
— Error Log: Collects Python errors, exceptions, and tracebacks for efficient troubleshooting.

— Data Fitting Tab: Displays current status of the cross-validation procedure, including fold
progression and split summaries.

— Performance Tab: Presents detailed performance metrics such as accuracy, sensitivity, specificity,
AUROC, confusion matrices, and per-fold statistics.

— Help Function: A built-in help() command prints an indexed summary of all recognized
commands, classifier descriptions, and usage instructions.

Available Runtime Functions:
In addition to graphical controls, the console supports direct execution of defined helper functions:

This

run(): Executes the full pipeline using the current filters, classifier, and feature settings.
settings(): Opens a dedicated window to adjust advanced runtime parameters.
runanalysis(stats): Simulates an analysis for demonstration and debugging purposes.
log(’message’): Prints a custom user message to the console area.
export_overview_to_png(): Saves the current overview visualisation as an external image file.

help(): Outputs an updated list of available commands, classifiers, and recommended usage.

comprehensive configuration, including persistent user-editable file paths and context-aware dataset

reloading, reinforces NASDA’s aim of providing a reliable yet flexible neuroimaging pipeline accessible to both
novice users and research engineers.

G.3 Typical Workflow

1.

Load or configure dataset: By default, the prototype loads the ABIDE I dataset; future versions could
support user-uploaded CSVs or integrated nilearn data fetchers.

. Define subgroup(s): Select desired demographic filters (sex, age group). This dynamically re-filters the

dataset.

Choose classifier and features: Pick one classifier and desired feature selection method(s). The GUI
automatically updates internal parameters.

Run analysis: Click the Run button or use the embedded command line to execute the pipeline. The
backend performs stratified cross-validation, applies feature selection, if specified, fits the model, and
prints the performance metrics.

. Inspect results: Performance metrics (accuracy, recall, AUROC, confusion matrix) are streamed live to

the console. Logs can be saved for reporting. The command can give further insights with standard
python commands, such as print (y.size).
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G.4 Limitations

The prototype is not a clinical diagnostic tool. It assumes that users understand cross-validation principles and
feature selection biases. It should be employed strictly for hypothesis exploration and preliminary testing before

formal statistical validation.

G.5 System Requirements

e Python 3.10+ with Tkinter, scikit-learn, nilearn, Pandas, and Pillow.
e Windows desktop environment with standard display resolution.

o Sufficient RAM for handling full correlation matrices.
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H Python Codes

All codes used in this research can be found on: https://github.com/cxwchen/AutismDetection.
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