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Summary

In this thesis the beta log-gas probability density function is discussed. It
is shown that there is a strong link between this density function and Ja-
cobi matrices. A change of variables exercise shows that the distribution of
eigenvalues is exactly like the quadratic beta log-gas. The change of variables
gives the normalization constant for the quadratic beta log-gas. Finally, it
is made likely that the Jacobi matrix adheres to Wigners semicircle law, and
that the beta log-gas is limited by the semicircle distribution.

ii



1 The beta log-gas

In this section, we will discuss the beta log-gas, a probablity density function,
and some of its physical properties. In sections 3 and 4 we will look at
random Jacobi matrices and show that the distribution of eigenvalues is
linked to the beta log-gas. In section 5 we will link these notions by finding
the normalization constant, and making it likely that the beta log-gas is
limited by the semicircle distribution for sufficiently large n.

1.1 Definition and physical interpretation

Definition 1.1. Let x = (x1, x2, . . . , xn) ∈ Rn, let β ≥ 0, let V (x) be a
function on R, then the joint density function

pVn,β(x) =
1

ZVβ,n

∏
i<j

|xi − xj |β
n∏
k=1

e−βnV (xk) (1)

is called the beta log-gas, where ZVβ,n is the normalisation constant.

We can also write this as

pVn,β(x) =
1

ZVβ,n
exp{−βHV

n (x)},

where

HV
n (x) = n

n∑
k=1

V (xk)−
∑
i<j

log|xi − xj |.

This second expression gives a physical interpretation of the beta log-gas.
In statistical mechanics any system (in this case Rn, the space of configura-
tions of n particles) is defined by an energy function H (in this case HV

n ).
The probability or probability density of a configuration is proportional to
exp{−βH(x)}, where β is a tunable parameter. At β = 0 all configurations
are equally likely, while as β → +∞, the probability concentrates on config-
urations with the lowest possible energy. Its reciprocal 1/β is what is called
temperature in physics.

In this specific case, we can first look at the simpler probability den-
sity exp{−

∑n
k=1 V (xk)}, which corresponds to n independent variables with

density eV (x). Physically it describes n non-interacting charges in an electric
potential well given by V (that is, a particle at x has energy V (x)) so that
the total energy is just V (x1) + · · ·+ V (xn).
Similarly, the beta log-gas has the physical interpretation of n unit charges
in an electric potential V and with interaction energy log(1/|x − y|). The
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total energy is then given by HV
n .

We expect the interaction energy log(1/|x− y|) to blow up to +∞ when
x and y get close. Configurations where x and y are close are thus highly
unlikely, which indicates that under this probability distribution tend to
stay away from each other. This repulsion is an important feature of the
beta log-gas.

Mathematically speaking, we are very interested in what this probability
density represents. What does its density function look like? Within what
interval, if any, can we expect the values of x to lie? How can we determine
the normalization constant? The dependent variables of the beta log-gas
make it hard to answer these questions.
In this report we will link the beta log-gas to the eigenvalues of a random
Jacobi matrix to find a formula for the normalization constant. We will also
make it likely that the beta log-gas is limited by the semicircle distribution
as n grows large.
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2 Tridiagonal Matrices

In this section, we will introduce Jacobi matrices. We will show that it’s
eigenvalues are distinct and strictly interlace with the eigenvalues of its
principal submatrix. This all follows from a very strong recursion for the
characteristic polynomial. We will introduce auxiliary variables to complete
a change of variables from the entries of a Jacobi matrix to its eigenval-
ues (and the auxiliary variables). The key point is finding the Jacobian
determinant of this transformation.

2.1 Definition

Definition 2.1. Let n be a positive integer. Let a1, . . . , an be real numbers
and let b1, . . . , bn−1 be strictly positive real numbers. Then

T = Tn(a, b) =



a1 b1 0 0 0 0

b1 a2 b2
. . . 0 0

0 b2
. . .

. . .
. . . 0

0
. . .

. . .
. . . bn−2 0

0 0
. . . bn−2 an−1 bn−1

0 0 0 0 bn−1 an


(2)

is the Jacobi matrix associated with a = (a1, . . . , an) and b = (b1, . . . , bn−1).

Note that we could assume that b1, . . . , bn−1 are all real numbers, but
that this is synonymous with the assumption made in the definition.
In fact, we can assume that bn 6= 0 for all n, because otherwise the matrix
would break into a direct sum of two matrices, in which case we could regard
the eigenvalues of the separate matrices.
Now imagine that b1, . . . , bn−1 are real numbers with bk 6= 0 for k = 1, . . . , n−
1. Regard diagonal matrix D = diag(ε1, ε2, . . . , εn), with εi = ±1. Then
DTn(a, b)D−1 = Tn(a, c), where ck = εkεk+1bk. It is clear how we can pick
values for εi so that all ck are positive.
As eigenvalues don’t change under conjugation it follows that we might as
well start by assuming that all bk are positive.

The question we will answer in this section is as follows: If aks and bks are
random variables with some joint distribution, what will be the distribution
of eigenvalues of Tn(a, b)?

2.2 The characteristic polynomial

Let Tn = Tn(a, b) be a Jacobi matrix. Let Tk denote the top-left k × k
principal submatrix of Tn. Let ϕk denote the characteristic polynomial of
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Tk, i.e., ϕk(z) = det(zI − Tk). Let λ
(k)
j , 1 ≤ j ≤ k, denote the zeroes of ϕk,

or in other words, the eigenvalues of Tk.
If we expand along the last row, we get the recursion:

ϕk(z) = (z − ak)ϕk−1(z)− b2k−1ϕk−2(z), (3)

which is also valid for k = 1 and k = 0 provided we set ϕ0 = 1 and
ϕ−1 = 0 (and b0 = 0).

Proposition 2.1. Let Tn(a, b) be a Jacobi matrix. Then the eigenvalues of
Tn are distinct.

Proof. The eigenvalue equations Tnv = λv are as follows:

(a1 − λ)v1 + b1v2 = 0,

bi−1vi−1 + (ai − λ)vi + bivi+1 = 0, 2 ≤ i ≤ n− 1,

bn−1vn−1 + (an − λ)vn = 0.

Notice that if v1 = 0, then every vk = 0 by the equations above. So we know
that v1 6= 0. Now let v1 6= 0, then v2 is determined by the first equation,
and every vk, k = 3, . . . , n, is determined by the middle set of equations
above (key here is that no bk can be zero). Let λ be an eigenvalue of Tn.
We have found the nullspace of Tn − λI is one-dimensional at most. We
know that every eigenvalue has at least one eigenvector, so the nullspace of
Tn − λI must be at least one-dimensional. In other words, there is exactly
one vector v that satisfies the eigenvalue equation (Tn − λI)v = 0. Thus
every eigenvalue of Tn has exactly one eigenvector, so it follows that the
eigenvalues of Tn are distinct. �

Proposition 2.2. Let Tn(a, b) be a Jacobi matrix. Define
ψk(z) = 1∏k

i=1 bi
ϕk(z) for 0 ≤ k ≤ n− 1. Let λ be an eigenvalue of Tn. Then

v = (ψ0(λ), ψ1(λ), . . . , ψn−1(λ))T

is the eigenvector associated with λ.

Proof. Let v = (ψ0(λ), ψ1(λ), . . . , ψn−1(λ))T . We get the following eigen-
value equations Tnv = λv.

λψ0(λ) = a1ψ0(λ) + b1ψ1(λ),

λψi(λ) = biψi−1(λ) + ai+1ψi(λ) + bi+1ψi+1(λ), i = 1, . . . , n− 2,

λψn−1(λ) = bn−1ψn−2(λ) + anψn−1(λ)

4



We want to show that φk, k = 0, . . . , n− 1, indeed satisfy these equations.
For the first equation we find

λϕ0(λ) = a1ϕ0(λ) +
b1
b1
ϕ1(λ),

λ = a1 + λ− a1,

λ = λ.

For the middle equations we find

λ∏i
j=1 bj

ϕi(λ) =
bi∏i−1
j=1 bj

ϕi−1(λ) +
ai+1∏i
j=1 bj

ϕi(λ) +
bi+1∏i+1
j=1 bj

ϕi+1(λ),

=
bi∏i−1
j=1 bj

ϕi−1(λ) +
ai+1∏i
j=1 bj

ϕi(λ) +
1∏i
j=1 bj

ϕi+1(λ).

Now we use the fact that

1∏i
j=1 bj

ϕi+1(λ) =
λ− ai+1∏i

j=1 bj
ϕi(λ)− b2i∏i

j=1 bj
ϕi−1(λ),

=
λ− ai+1∏i

j=1 bj
ϕi(λ)− bi∏i−1

j=1 bj
ϕi−1(λ)

Thus the middle equations become

λ∏i
j=1 bj

ϕi(λ) =
λ∏i
j=1 bj

ϕi(λ).

Then for the final equation, we get

λ∏n−1
i=1 bi

ϕn−1(λ) =
bn−1∏n−2
i=1 bi

ϕn−2(λ) +
an∏n−1
i=1 bi

ϕn−1(λ),

λ∏n−1
i=1 bi

ϕn−1(λ) =
b2n−1∏n−1
i=1 bi

ϕn−2(λ) +
an∏n−1
i=1 bi

ϕn−1(λ),

λϕn−1(λ) = b2n−1ϕn−2(λ) + anϕn−1(λ).

This is just another way to write the recurrence for the characteristic
polynomial, so this must be true! We find that v satisfies the eigenvalue
equations. This completes the proof. �

Proposition 2.3. Let Tk(a, b), k ≥ 2, be a Jacobi matrix. Let Tk−1 de-
note its principal submatrix. Then the eigenvalues of Tk and Tk−1 strictly
interlace. That is

λ
(k)
1 < λ

(k−1)
1 < λ

(k)
2 < · · · < λ

(k−1)
k−1 < λ

(k)
k .

5



Proof. Let k ≥ 2. We will show that the eigenvalues of Tk and Tk−1 strictly
interlace. We will give a proof by induction on k. Note that for any k, the
eigenvalues of Tk are the same as the zeroes of ϕk(z).

First let k = 2. We have ϕ1(z) = z − a1. Thus ϕ1(z) has a zero at

z = a1. In other words, λ
(1)
1 = a1.

ϕ2(z) = (z−a1)(z−a2)−b21. Since b21 > 0, it is clear that the zeroes of ϕ2(z)
occur once for z > max{a1, a2} and once for z < min{a1, a2}, for the term
(z − a1)(z − a2) will always be negative for min{a1, a2} < z < max{a1, a2}.
Thus we find that λ

(2)
1 < λ

(1)
1 < λ

(2)
2 , so the eigenvalues of T2 and T1 strictly

interlace.

Now fix k > 2. Assume that the eigenvalues of Tk−1 and Tk−2 strictly
interlace. From the interlacing of the zeroes of ϕk−1(z) and ϕk−2(z) we know
that ϕk−2(z) 6= 0 at the zeroes of ϕk−1(z). By recurrence (3) we know that
ϕk(z) and ϕk−2(z) have opposite sign at the zeroes of ϕk−1(z), as b2k > 0.
Because the zeroes of ϕk−2(z) strictly interlace with the zeroes of ϕk−1(z),
its sign changes in between every two consecutive zeroes of ϕk−1(z), so the
same must apply for ϕk(z). This means we have found n−2 zeroes of ϕk(z)
that are strictly in between the zeroes of ϕk−1(z). It remains to find a zero

that is larger than λ
(k−1)
k−1 and a zero that is smaller than λ

(k−1)
1 .

We know that ϕk−2(z) =
∏k−2
j=1(λ

(k−2)
j −z) = (−1)k−2zk−2 +[. . . ], where

[. . . ] contains terms with lower powers of z. Similarly, we can see that

ϕk(z) =
∏k
j=1(λ

(k)
j − z) = (−1)kzk + [. . . ], where [. . . ] contains terms with

lower powers of z. Note that ϕk−2(z) does not change its sign for z ≤ λ(k−1)
1

or for z ≥ λ
(k−1)
k−1 . At z = λ

(k−1)
1 and at z = λ

(k−1)
k−1 ϕk(z) has the opposite

sign. However, as z → ±∞, it becomes clear that ϕk−2(z) and ϕk(z) must
have the same sign, so it follows that we find the two zeroes we were looking
for. Thus the eigenvalues of Tk and Tk−1 strictly interlace.
This concludes the proof. �

2.3 Auxiliary variables

We want to do a change of variables to find the eigenvalues of Tn. Note that
Tn has 2n− 1 variables, but there are only n eigenvalues. We shall have to
find another n − 1 auxiliary variables to complete the change of variables
exercise.

We can write Tn = λ1v1v
T
1 + λ2v2v

T
2 + · · · + λnvnv

T
n = QDQT , the

spectral decomposition of Tn, where v1, . . . , vn is some choice of orthonor-
mal eigenvectors of Tn. D is the diagonal matrix with the eigenvalues on
the diagonal, and Q is the orthogonal matrix containing the corresponding
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eigenvectors.
Now for any integer m ≥ 1 we can see that Tmn = QDmQT = λm1 v1v

T
1 +

λm2 v2v
T
2 + · · ·+ λmn vnv

T
n . We find the following equality:

〈Tmn e1, e1〉 =
n∑
k=1

λmk pk, where pk = |〈vk, e1〉|2. (4)

This states that the first element of the m-th power of Tn depends only
on the eigenvalues and the squares of exactly the first element of each eigen-
vector (note that the pks, k = 1, . . . , n, are just the squares of the first-row
entries of Q. Since we have orthonormal eigenvectors, it is evident that
p1 + p2 + · · ·+ pn = 1. Therefore, we may take p = (p1, p2, . . . , pn−1) as the
auxiliary variables.

We will now highlight a particular case of equality (4), as we will need
it in section 4. Let λk, k = 1, . . . , n, denote the eigenvalues of Tn. Then
the eigenvalues of zIn − Tn are z − λk. Note that the eigenvectors do not
change, as zIn−Tn = QzInQ

T −QDQT = Q(zIn−D)QT . We can take the
inverse of this matrix. We know from linear algebra that the eigenvalues of
(zIn−Tn)−1 are 1

z−λk . Note that again the eigenvectors remain unchanged,

as (zIn − Tn)−1 = Q(zIn −D)−1QT . We find the identity

(
(zIn − Tn)−1

)
1,1

=
n∑
k=1

pk
z − λk

.

The only caveat is that z can not be equal to any eigenvalue of Tn, as a
matrix is invertible if and only if its determinant is not equal to zero, which
is the case for exactly those z which are not eigenvalues of Tn.

2.4 The Jacobian determinant

To complete the change of variables, we need to find the Jacobian determi-
nant of the transformation that maps (a, b) to (λ, p). This is the key point.
We will first look more precisely at the spaces involved.

The set of all n × n Jacobi matrices is naturally identified, via the pa-
rameters (a, b), by In := Rn × Rn−1

+ , where R+ = (0,∞).

Next, define

∆n = {p ∈ Rn−1 : p1 + p2 + · · ·+ pn−1 < 1, pi > 0}, and

Rn↑ = {x ∈ Rn : x1 < x2 < · · · < xn}.

The set of all probability measure on R whose support has exactly n
point is naturally identified withMn := Rn↑ ×∆n by identifying

∑n
k=1 pkδλk
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with (λ, p).

It should be noted that In is not strictly a matrix space and Mn is
not strictly a measure space, however, for any element of In there is clearly
exactly one associated Jacobi matrix, and for any element of Mn there is
exactly one associated measure of the form

∑n
k=1 pkδλk .

Note: from now on, when we write pn, it is to be regarded this as the
short form of 1 − (p1 + p2 + · · · + pn−1). Now we have all the neccesary
ingredients to pose the following theorem.

Theorem 2.4. Fix n ≥ 1, and let G : In 7→ Mn be defined as G(T ) = νT .
Then

1. G is a bijection from In onto Mn.

2. If T = Tn(a, b) and νT =
∑n

k=1 pkδλk , then

n−1∏
k=1

b
2(n−k)
k =

n∏
k=1

pk ·
∏
i<j

|λi − λj |2 (5)

3. The Jacobian determinant of G−1 is equal to (up to a sign that depends
on the ordering of variables)

JG−1(λ, p) =

n∏
k=1

pk ·
∏
i<j
|λi − λj |4

2n−1
n−1∏
k=1

b
4(n−k)−1
k

=

n−1∏
k=1

bk

2n−1
n∏
k=1

pk

(6)

The proof of this theorem is far from trivial and is central to this project.
We will prove it in section 4, but first we will discuss some of its conse-
quences.
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3 A class of random Jacobi matrices

In this section we will use the Jacobian determinant found in section 3 to
determine the distribution of eigenvalues of a Jacobi matrix with a specific
joint distribution for (a, b). We will also find the associated normalization
constant.

3.1 The distribution of eigenvalues

Let N(µ, σ2) be the normal distribution with mean µ and variance σ2.
Let χ2

m, m > 0, be the sum of squares of m independent standard normal
variables. It is the same as the Gamma(m2 , 2) distribution with shape m

2
and scale 2. The density is

1

Γ(m2 )2m
e−

x
2 xm−1 for x > 0. (7)

Theorem 3.1. Let aks be independent N(0, 2) random variables and let
b2ks be independent χ2

β(n−k) variables also independent of the aks. Then the

eigenvalues of the Jacobi matrix Tn(a, b) have density

1

Z
′′
β,n

exp

{
−1

4

n∑
k=1

λ2
k

}∏
i<j

|λi − λj |β (8)

with respect to the Lebesgue measure on Rn↑ . Z
′′
β,n is the normalization con-

stant.

The density (8) is called the beta Hermite ensemble.

Proof. If (a, b) has joint density f(a, b) with respect to the Lebesgue measure
on Rn × Rn−1

+ , then by the change of variable formula, the density of (λ, p)
with respect to the Lebesgue measure on Rn↑ ×∆n is given by

g(λ, p) = f(a, b)JG−1(λ, p) = f(a, b)

n−1∏
k=1

bk

2n−1
n∏
k=1

pk

.

On the right, (a, b) is written as a short form for the image of (λ, p) under
the bijection from Mn to In.

Let ak ∼ N(0, 2) and b2k ∼ χ2
β(n−k) i.i.d., then we find the following joint

distribution for a and b:

f(a, b) =
1

Zβ,n

n∏
k=1

e−
1
4
a2k

n−1∏
k=1

e−
1
2
b2kb

β(n−k)−1
k .
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Here β > 0 and Zβ,n is the normalizing constant. We can rewrite this to
get

f(a, b) =
1

Zβ,n
exp

{
−1

4

[
n∑
k=1

a2
k + 2

n−1∑
k−1

b2k

]}
n−1∏
k=1

b
β(n−k)−1
k .

Now it becomes clear why we chose these specific distributions for a and

b. The factor
n−1∏
k=1

b
β(n−k)−1
k partly cancels the similar factor in the Jacobian

determinant, and the remaining expression can be written in terms of (λ, p)
by (5). The exponent can be written nicely in terms of the eigenvalues:

n∑
k=1

a2
k + 2

n−1∑
k−1

b2k = tr(T 2) =

n∑
k=1

λ2
k.

Thus, we arrive at

g(λ, p) =
1

Z
′
β,n

exp

{
−1

4

n∑
k=1

λ2
k

}∏
i<j

|λi − λj |β
n∏
k=1

p
β
2
−1

k .

Here, Z
′
β,n is the normalization constant so that g is a probability density.

It is clear that under g(λ, p), the vector λ is independent of the vector
p. The density of λ is proportional to

exp

{
−1

4

n∑
k=1

λ2
k

}∏
i<j

|λi − λj |β.

This concludes the proof. �

It should be noted that the density of p is proportional to
∏n
k=1 p

β
2
−1

k for
p ∈ ∆n. The latter is the well known Dirichlet distribution with parameters
n and (β2 , . . . ,

β
2 ).

3.2 The normalization constant

Proposition 3.2. Let aks be independent N(0, 2) random variables and let
b2ks be independent χ2

β(n−k) variables also independent of the aks.
Then the normalization constant for the distribution of eigenvalues of Jacobi
matrix Tn(a, b) is

Z
′′
β,n = π

n
2 2n+ 1

4
βn(n−1)

∏n
k=1 Γ(1

2βk)

Γ(β2 )n
. (9)
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Proof. Let ak ∼ N(0, 2) and b2k ∼ χ2
β(n−k) i.i.d., then we find the following

joint distribution for a and b:

f(a, b) =

n∏
k=1

1√
4π
e−

1
4
a2k

n−1∏
k=1

2bk
1

2
1
2
β(n−k)Γ(1

2β(n− k))
b
β(n−k)−2
k e−

1
2
b2k ,

=
1

(4π)
n
2

1∏n−1
k=1 2

1
2
β(n−k)−1Γ(1

2β(n− k))
h(a, b),

=
1

2nπ
n
2 2

1
4
βn(n−1)−(n−1)∏n−1

k=1 Γ(1
2β(n− k))

h(a, b),

=
1

π
n
2 21+ 1

4
βn(n−1)∏n−1

k=1 Γ(1
2βk)

h(a, b).

Here h(a, b) =
n∏
k=1

e−
1
4
a2k

n−1∏
k=1

b
β(n−k)−1
k e−

1
2
b2k .

Now we can do the transformation to g(λ, p).

g(λ, p) = f(a, b)

n−1∏
k=1

bk

2n−1
n∏
k=1

pk

,

=
1

π
n
2 2n+ 1

4
βn(n−1)∏n−1

k=1 Γ(1
2βk)

h
′
(λ, p).

Where h
′
(λ, p) = exp

{
−1

4

n∑
k=1

λ2
k

} ∏
i<j
|λi − λj |β ·

n∏
k=1

p
β
2
−1

k .

Now we have found the normalization constant for the joint distribution
of λ and p. We know that p is proportional to the Dirichlet distribution with
parameters n and (β2 , . . . ,

β
2 ), for which we know the normalization constant!

It is ∏n
k=1 Γ(β2 )

Γ(
∑n

k=1
β
2 )

=
Γ(β2 )n

Γ(β2n)

We can divide this out of the normalization constant for the joint distribution
to find the following distribution (including explicit nomalization constant)
for λ:

1

π
n
2 2n+ 1

4
βn(n−1)

∏n
k=1 Γ( 1

2
βk)

Γ(β
2

)n

h
′
(λ, p).

This is the desired result. �

11



4 Proving the theorem

We will now prove Theorem 2.4, then we will have all the results stated
in the previous two sections. Embedded in the proof is a deep connection
between Jacobi matrices, probability measures and orthogonal polynomials.

Proof of Theorem 2.4. Let n ≥ 1 and let G : In → Mn be defined as
G(T ) = νT . We will now prove all three statements in the proof separately.

Proof of 2. Let Tn = Tn(a, b) be a Jacobi matrix and let νT =
∑n

k=1 pkδλk .
We will show that

n−1∏
k=1

b
2(n−k)
k =

n∏
k=1

pk ·
∏
i<j

|λi − λj |2.

Remember the recursion (3):

ϕk(z) = (z − ak)ϕk−1(z)− b2k−1ϕk−2(z)

which is also valid for k = 1 and k = 0 provided we set ϕ0 = 1 and ϕ−1 = 0.
Here ϕk(z) denotes the characteristic polynomial of the k× k principal sub-
matrix of Tn. Respectively, ϕ̃k(z) denotes the characteristic polynomial of
the bottom-right k × k principal submatrix of Tn.

By Proposition 2.3, we know that the eigenvalues of Tk are distinct and
strictly interlace with those of Tk−1.

Now put z = λ
(k−1)
j in (3) and multiply over j ≤ k − 1 to get

k−1∏
j=1

ϕk(λ
(k−1)
j ) = (−1)k−1b

2(k−1)
k−1

k−1∏
j=1

ϕk−2(λ
(k−1)
j ).

Now, for any two monic polynomials P (z) =
∏p
j=1(z − αj) and Q(z) =∏q

j=1(z − βj), we know that

q∏
j=1

P (βj) = ±
p∏
j=1

Q(αj),

since both are equal (up to sign) to
∏
i

∏
j(αi − βj). Use this for ϕk and

ϕk−1, to get

k∏
j=1

ϕk−1(λ
(k)
j ) = ±b2(k−1)

k−1

k−1∏
j=1

ϕk−2(λ
(k−1)
j ).

12



Take a product over k and telescope to get (we write λj for λ
(n)
j )

n∏
j=1

ϕn−1(λj) = ±
n−1∏
j=1

b2jj .

Clearly this can be done in reverse for the ϕ̃ks to get

n∏
j=1

ϕ̃n−1(λj) = ±
n−1∏
j=1

b
2(n−j)
j . (10)

The spectral measure is related to ϕ̃n−1 as follows.

n∑
k=1

pk
z − λk

=
(
(zIn − Tn)−1

)
1,1

=
ϕ̃n−1(z)

ϕn(z)
.

The equality on the left follows from a note we made in section 2, remem-
ber that this is just a specific case of identity (4). ϕn(z) is the determinant
of the matrix zIn − Tn. Note that ϕ̃n−1(z) is the cofactor corresponding to
the top-left element of Tn, so the equality on the right follow from the inverse
matrix formula A−1 = 1

det(A)adj(A), which we know from linear algebra.

Now we multipy by (z − λj) to get

(z − λj)
n∑
k=1

pk
z − λk

=
(z − λj)ϕ̃n−1(z)

ϕn(z)
,

so that

pj +
∑
k 6=j

pk(z − λj)
z − λk

=
(z − λj)ϕ̃n−1(z)

ϕn(z)
.

Note that ϕ‘
n(λj) = lim

z→λj

ϕn(λj+(z−λj))−ϕn(λj)
z−λj = lim

z→λj

ϕn(z)
z−λj . Now let z → λj

and we find

pj =
ϕ̃n−1(λj)

ϕ‘
n(λj)

.

Take the product over j and use (10) to get

n∏
j=1

ϕ̃n−1(λj) =

n∏
j=1

pj

n∏
j=1

ϕ‘
n(λj),

n∏
j=1

b
2(n−j)
j = ±

n∏
j=1

pj

n∏
j=1

ϕ‘
n(λj) =

n∏
j=1

pj
∏
i<j

|λi − λj |2

since ϕ‘
n =

∏
i 6=j(λj − λi). In the end, both sides are positive, so we did not

have to follow the sign. This proves the second part of the theorem. �
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Proof of 1. We will show that G is a bijection from In onto Mn.

Note that on the way of proving 2. we have proven a part of 1. already.
Let T ∈ In, then we have noted the distinctness of eigenvalues. Further, we

know that pj =
ϕ̃n−1(λj)

ϕ‘
n(λj)

, which cannot be zero because of the strict inter-

lacing of eigenvalues of Tn and T̃n−1. Thus, νT belongs to Mn. This shows
that G maps In into Mn.

Proposition 4.1. Let ν ∈ Mn. Let H(ν) = Tn(a, b). Then G ◦ H is the
identity map from Mn into itself.

Proof. Let ν =
∑n

j=1 pjδλj ∈ Mn. Observe that L2(ν) has dimension ex-

actly equal to n and that 1, x, . . . , xn−1 are linearly independent in L2(ν)

(Remember, L2(ν) is the space of all functions f for which
(∫
Mn
|f |2dν

)1/2
<

∞. This has dimension n because there are exactly n points in Mn).

Therefore, we may apply Gram-Schmidt procedure to get ψ0, . . . , ψn−1,
where ψj is a polynomial of degree j. We fix some k and expand xψk(x) in
this orthonormal basis to write (note that there is no ψn)

xψk(x) = ck,k+1ψk+1(x) + · · ·+ ck,0ψ0(x) for k ≤ n− 2,

xψn−1(x) = cn,n−1ψn−1(x) + · · ·+ cn,0ψ0(x).

Note that with Gramm-Schmidt we can pick ψj such that they all have
strictly positive leading coefficients. This means that both xψk(x) and
ψk+1(x) have strictly positive leading coefficients, so it follows that ck,k+1

must be strictly positive for k ≤ n−2. Further, observe that 〈xψk(x), ψj(x)〉
= 〈ψk(x), xψj(x)〉 which is zero if j < k − 1 as ψk is orthogonal to all poly-
nomials of degree lower that k. That leaves

ck,k+1 =

∫
xψk(x)ψk+1(x)dν(x), ck.k =

∫
xψ2

k(x)dν(x).

From this it is clear that ck,k+1 = ck+1,k for k ≤ n − 1. Now set
ak = ck−1,k−1, 1 ≤ k ≤ n and bk = ck−1,k, 1 ≤ k ≤ n − 1. We have al-
ready shown that bk > 0 for all k ≤ n− 1. Remember, H(ν) = Tn(a, b), so
H maps Mn into In.

With all this, the recursions can now be written as

xψ0(x) = a1ψ0(x) + b1ψ1(x),

xψk(x) = bkψk−1(x) + ak+1ψk(x) + bk+1ψk+1(x), for 2 ≤ k ≤ n− 2,

xψn−1(x) = bn−1ψn−2(x) + anψn−1(x).

14



These equalities are in L2(ν), meaning that it holds for x ∈ {λ1, . . . , λn}.
In short, the above equation are saying that Tn has eigenvalues λj with
eigenvector

vj =
√
pj(ψ0(λj), . . . , ψn−1(λj))

T .

We have introduced the factor
√
pj because then the rows of the matrix

[v1 v2 . . . vn] become orthonormal. As ψ0 = 1, we get |vj(1)|2 = pj and
hence the spectral measure at e1 is

∑n
j=1 pjδλj = ν. Thus, G ◦ H is the

identity map from Mn into itself. In particular, G maps In onto Mn. �

The proof will be complete if we show that G is bijective. Because G◦H
is the identity map fromMn into itself, it is bijective, so it follows that G is
surjective. There are many ways to show that G is injective. We will refer
to the equations (11) in the next part of the proof, from which it is clear
that if we know (λ, p), then we can recover (a unique set of) a1, b1, a2, b2, . . . .
This completes te proof that G is a bijection mapping In into Mn. �

Proof of part 3. We will show that

JG−1(λ, p) =

n∏
k=1

pk ·
∏
i<j
|λi − λj |4

2n−1
n−1∏
k=1

b
4(n−k)−1
k

=

n−1∏
k=1

bk

2n−1
n∏
k=1

pk

.

Let Tn = Tn(a, b) ∈ In correspond to ν =
∑n

j=1 pjδλj ∈Mn.

Proposition 4.2. Let Tn(a, b) be a Jacobi matrix. Let (a, b) be ordered as
(a1, b1, a2, . . . , bn−1, an). Then the (1, 1) entry of Tmn contains exactly one
term containing (a, b)m.
In fact, if (a, b)m = ai for some i ∈ {1, . . . , n}, then that term is ai

∏i−1
j=1 b

2
j .

If (a, b)m = bi for some i ∈ {1, . . . , n− 1}, then that term is
∏i
j=1 b

2
i .

Proof. Note that Tn is tridiagonal. Let A be any n×n matrix. A has exactly
2n − 1 diagonals (from botom-left to top-right). When we multiply A by
Tn (either on the left or the right), the elements of each diagonal will only
appear in the same diagonal and the two adjacent diagonals in the resulting
matrix. Key here are the many zeroes of Tn.

If we regard Tn, we see that all the individual ak and bk appear only
on exactly one bottom-left to top-right diagonal. Now take any power Tmn ,
m = 1, . . . , 2n − 2, then the individual ak and bk will appear exactly one
diagonal closer to the top-left corner in Tm+1

n than in Tmn (we are interested
in the top-left entry of every power of Tn). As such, every power of Tn has
exactly one ak or bk in its top-left entry that did not appear in the top-left
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entry of any lower power of Tn.

Now it remains for us to show that for each power of Tn, the term with
the ’new’ ak or bk in the top-left entry is exactly such as shown in the propo-
sition.

Without loss of generality, we can assume that we do left-side multipli-
cation when we calculate Tm+1

n = TnT
m
n , m = 1, . . . , 2n − 2. This means

that the top-left entry of Tm+1
n is b1 times the (2, 1) entry of Tmn . Similarly,

the (2, 1) entry of Tmn is b1 times the (2, 2) entry of Tm−1
n .

We will now create a ’path’ that all the ak and bk take to get to the
top-left entry of some power of Tn.
Let C be any n×n matrix. Let i ∈ {2, . . . , n}. Ci,i denote the (i, i) entry of
C. The (i− 1, i) entry of TnC contains the term bi−1Ci,i. The (i− 1, i− 1)
entry of T 2

nC contains the term b2i−1Ci,i. We can repeat this process to find

that the (1, 1) entry of T 2i−2
n C contains the term b2i−1b

2
i−2 . . . b

2
1Ci,i. From

our earlier work we know that this must be the only term in the (1, 1) entry
to contain Ci,i.

Let i ∈ {1, . . . , n}. ai is the (i, i) entry of Tn. Thus the only term in the
(1, 1) entry of T 2i−1

n that contains ai is ai
∏i−1
j=1 b

2
j .

Let i ∈ {1, . . . , n−1}. bi is the (i+ 1, i) entry of Tn. Thus, the (i, i) entry of
T 2
n contains the term b2i . Thus the only term in the (1, 1) entry of T 2i

n that
contains bi is

∏i
j=1 b

2
i . �

We write the identities (Tmn )1,1 =
∑n

j=1 pjλ
m
j for m = 1, 2, . . . , 2n− 1.

n∑
j=1

pjλj = (Tn)1,1 = a1

n∑
j=1

pjλ
2
j = (T 2

n)1,1 = b21 + [. . . ]

n∑
j=1

pjλ
3
j = (T 3

n)1,1 = a2b
2
1

n∑
j=1

pjλ
4
j = (T 4

n)1,1 = b22b
2
1 + [. . . ] (11)

n∑
j=1

pjλ
5
j = (T 5

n)1,1 = a3b
2
2b

2
1

n∑
j=1

pjλ
6
j = (T 6

n)1,1 = b23b
2
2b

2
1 + [. . . ]

Here the[. . . ] include many terms, but all the ak, bk that appear there
have appeared in previous equations. For example, (T 2)1,1 = a2

1 + b21 and
as a1 appeared in the first equation, we have brushed it under [. . . ] as they
will not matter.

Now, let u = (u1, . . . , u2n−1) where uj = (T jn)1,1. The right hand sides
of the above equation express u as F (a, b) while the left hand sides express
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u as H(λ, p). We find the Jacobian determinants of F and H as follows.

Jacobian determinant of F: We will now make use of Proposition 4.2
about F we found earlier. If we order (a, b) as (a1, b1, a2, b2, . . . , bn−1, an), it
is easy to see that the derivative matrix of u with respect to (a, b) becomes
a triangular matrix. This follows from the fact that the ak and bk appear in
the equations of F exactly in the same order as we ordered (a, b). Thus, the
determinant of the derivative matrix is simply the product of its diagonal
entries. We also know all the terms of the ’new’ ak and bk that appear in
each equation. So the determinant is as follows

JF (a, b) = 2n−1
n−1∏
k=1

b
4(n−)−1
k . (12)

Jacobian determinant of H: We order (λ, p) as (λ1, . . . , λn, p1, . . . , pn−1).
This gives the derivative matrix of H to be

p1 . . . pn λ1 − λn . . . λn−1 − λn
2p1λ1 . . . 2pnλn λ2

1 − λ2
n . . . λ2

n−1 − λ2
n

...
...

...
...

...
...

(2n− 1)p1λ
2n−2
1 . . . (2n− 1)pnλ

2n−2
n λ2n−1

1 − λ2n−1
n . . . λ2n−1

n−1 − λ2n−1
n


Proposition 4.3. Let Tn be a Jacobi matrix. Let H(λ, p) denote the left-side
equations of (11). Let (λ, p) be ordered as (λ1, . . . , λn, p1, . . . , pn−1. Then
JH(λ, p), the derivative matrix of H, has determinant

JH(λ, p) = ±|∆(λ)|4
n∏
i=1

pi. (13)

Proof. Let Ci denote the ith column of this matrix. Since we want to find
the determinant of this matrix, we can factor out the pi from the Ci (re-
member, we can do this in a determinant). The resulting determinant is
clearly a polynomial in λ1, . . . , λn. It must also be symmetric in λks, as we
can choose to order of the eigenvalues any way we want. Note that we have
already found the factor

∏n
i=1 pi.

Let h := λ1− λn → 0, then we can find at least four zeroes in the deter-
minant by combining columns of the determinant. It is clear that Cn+1 and
C1 − Cn will both become columns of zeroes as λ1 → λn (remember that
λi1 − λin = (λ1 − λn)(λi−1

1 + λi−2
1 λn + λi−3

1 λ2
n + · · ·+ λ1λ

i−1
n + λi−1

n )). Note
that the first element of C1 − Cn is zero.

We can also check that C ′ = Cn+1 − h(C1 + Cn)/2 has two zeroes as
λ1 → λn. Note that the first two elements of C ′ are zero. For the i-th
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element (i > 2) of this column we can do the following calculation

C ′i = λi1 − λin −
1

2
(λ1 − λn)(iλi−1

1 + iλi−1
n ),

= (λ1 − λn)

(
[λi−1

1 + λi−2
1 λn + · · ·+ λ1λ

i−1
n + λi−1

n ]− i

2
[λi−1

1 + λi−1
n ]

)
.

Let λ1 → λn, then clearly the first term becomes zero. The second term
becomes iλi−1

n − i
2(2λn), which is also zero.

Now, in the determinant, put the first column to be C1 − Cn, put the
n-th column to be Cn+1 − h(C1 +Cn)/2 and put the n+ 1-th column to be
Cn+1. Now if we expand the determinant along these three columns in any
order, we will get a polynomial with at least a four fold zero when λ1 → λn.
Thus for fixed λk, k ≥ 2, the polynomial in λ1 had (at least) a four fold zero
at λn. By symmetry, the determinant has a factor ∆(λ)4 =

∏
i<j(λi− λj)4.

Note that ∆(λ)4 is a polynomial of degree 4(n − 1) in λ1. Notice that
in the matrix, λ1 only appears in columns 1 and n + 1. We are looking
for the maximum possible degree of λ1 in the determinant. If we expand
the determinant along row 2n − 1, the maximum degree it can have is
(2n − 2) + (2n − 2) = 4(n − 1) (the first element of row 2n − 1 multi-
plied by the n-th element of row 2n− 2 of the remaining subdeterminant),
or otherwise (2n − 1) + (2n − 3) = 4(n − 1) (the n + 1-th element of row
2n− 1 multiplied by the first element of row 2n− 2 of the remaining subde-
terminant).

So the determinant and ∆(λ)4 have the same degree in λ1. Further, the
leading coefficient of λ4n−4

1 is the same in ∆(λ)4 and in the determinant
above. We can see this fact as follows. In ∆(λ)4, the leading coefficient is∏
i<j(λi − λj)4, 2 ≤ i ≤ n.

In the determinant, we can develop by the last row, and subsequently
by the last row of the remaining determinant. As we are interested in the
coefficitent of λ4n−4

1 , we only need to check two terms. These are the first
element of the last row multiplied by the n+ 1-th element of the second to
last row, and the opposite. The first is (2n − 1)λ4n−4

1 , and the second is
−(2n − 2)λ4n−4

1 . Note that the signs of these terms are always the same,
regardless of whether n is even or odd. Because these two terms have the
exact same sub-determinant (that is, one where the last two rows and the
first and n+ 1-th column are taken out) we can combine these terms to get
that the coefficient of λ4n−4

1 is 1 times whatever polynomial follows from the
sub-determinant.
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Now notice that this sub-determinant looks exactly like the original, the
only difference is that n is exactly one smaller than before, and λ1 does not
appear. Therefore, we can do the same thing as before for λ2, which only
appears in the first and n-th column of the sub-determinant. For fixed λi,
3 ≤ i ≤ n we can find a polynomial in λ2 that has a four fold zero at every

other λi, 3 ≤ i ≤ n. We also find that the coefficient of λ
4(n−2)
2 is 1 times

the polynomial from the sub-sub-determinant.

We can see that through induction, we can keep doing this until we have

calculated the full determinant. In other words, the coefficient of λ
4(n−1)
1

in the determinant is exactly
∏
i<j(λi − λj)4, 2 ≤ i ≤ n. Therefore, the

determinant must be the same as ∆(λ)4.

Therefore, we get the Jacobian determinant (with all pi factored back
in)

JH(λ, p) = ±|∆(λ)|4
n∏
i=1

pi.

�

From (12) and (13) we deduce that

|JG−1(λ, p)| = JH(λ, p)

JF (a, b)
=

n∏
i=1

pi
∏
i<j
|λi − λj |4

2n−1
n−1∏
k=1

b
4(n−k)−1
k

.

This proves the first equality in (6), the second equality follows from (5). �

That completes the proof of Theorem 2.4. �
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5 The beta log-gas and the distribution of eigen-
values

We have found the density function (8) for the eigenvalues of a specific
Jacobi matrix. Remember the beta log-gas density function (1). If we take

V (x) = x2

4 , the density is

pVn,β(x) =
1

ZVβ,n

∏
i<j

|xi − xj |β
n∏
k=1

e−βn
x2k
4 . (14)

This density is refered to as the quadratic beta log-gas, which can also be
written as

pVn,β(x) =
1

ZVβ,n
exp

−β
n

4

n∑
k=1

x2
k −

∑
i<j

log|xi − xj |

 .

This looks very close to the density function of the eigenvalues we found
earlier. In fact, by theorem 3.1, this is exactly the distribution of eigenvalues
of the matrix 1√

βn
Tn, where Tn is the Jacobi matrix of size n with ak ∼

N(0, 2) and b2k ∼ χ2
β(n−k).

5.1 The Metha integral

The normalization constant of the quadratic beta log-gas can be found
through an identity conjectured by Metha in de 60s:∫

Rn

∏
i<j

|xi − xj |β
n∏
k=1

e−
1
2
x2kdx = (2π)

n
2

n∏
k=1

Γ(1 + βk
2 )

Γ(1 + β
2 )
. (15)

Proof of identity (15). It is far from trivial to prove this identity, as the
integral on the left is very hard to work out. Luckily, the random matrix
approach has given us a much easier proof of this identity.
In equation (8), put λk =

√
2xk to get

1

Z
′′
β,n

2
n
2 2

1
4
βn(n−1)exp

{
−1

2

n∑
k=1

x2
k

}∏
i<j

|xi − xj |β.

Remember that we know the value of Z
′′
β,n, so from all this we find that∫

Rn↑

∏
i<j

|xi − xj |β
n∏
k=1

e−
1
2
x2kdx = (2π)

n
2

∏n
k=1 Γ(1

2βk)

Γ(β2 )n
.
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We can now use the fact that nΓ(n) = Γ(1+n) to see that Γ(n) = 1
nΓ(1+n).

We find ∫
Rn↑

∏
i<j

|xi − xj |β
n∏
k=1

e−
1
2
x2kdx = (2π)

n
2

n∏
k=1

1
1
2
βk

Γ(1 + 1
2βk)

1
1
2
β

Γ(1 + β
2 )

=
1

n!
(2π)

n
2

n∏
k=1

Γ(1 + βk
2 )

Γ(1 + β
2 )
.

Remember that Rn↑ is simply Rn with the constraint that its elements are
ordered. If we then extend the integral to Rn, the result will be n! times the
result on the right. This gives us exactly what we want, and proves identity
(15). �

5.2 Wigner’s semicircle law

We would like to get an idea of the distribution of eigenvalues in the limit
(that is, what if n→∞?). Sadly, we will not be able to prove anything about
this, but I would like to show a result by Wigner, known as the semicircle
law (Krishnapur (2003, p. 17)).

Theorem 5.1 (Wigner’s Semicircle Law). Let A = (a)ij be a Hermitian
N ×N matrix, such that

• The two sets {aij |1 ≤ i < j ≤ N} ∈ C and {aii|1 ≤ i ≤ N} ∈ R are
sets of independent identically distributed random variables.

• E(aij) = 0 for all i and j (E denotes the expectation).

• E(a2
ij) =

{
1 i 6= j
2 i = j.

If N is large enough, then the distribution of eigenvalues of A/
√
N approx-

imates the semicircle distribution 1
2π

√
4− x2.

This is a more general result than what we discussed in this report. It
is unclear if the exact assumptions of this theorem are met by the Jacobi
matrix Tn, but if we assume they are, then the theorem implies that the
eigenvalues will tend to the semicircle distribution as n → ∞. Because of
the relation between the quadratic beta log-gas and the eigenvalues of Tn,
we would expect the quadratic beta log-gas to tend to the semicircle distri-
bution as n grows large. We will try to make this likely through numeric
processes.
The semicircle distribution as described in the theorem has values on the
interval [−2, 2], so we expect the eigenvalues of the scaled matrix to fall
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within this interval.

Below are the results of a script in python that creates a large matrix
Tn, with ak ∼ N(0, 2) and b2k ∼ χ2

β(n−k), where the script ’picks’ the values
of each ak and bk according to their distribution. It then calculates the
eigenvalues of this matrix and shows them in a (normalized) histogram, along
with a red line showing the probability density function of the semicircle
distribution. Figure 1 shows the results for n = 3000 and various values
of β, however, since we scale the matrix with

√
β, we expect that this will

not make a difference. Indeed, in the figures we can see that the histogram
is very close to the semicircle distribution for all values of β, this makes
it likely that the beta log-gas approximates the semicircle distribution as
n→∞.

Figure 1: Histograms
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6 Conclusion and Discussion

We saw that the dependent variables of the beta log-gas make it difficult
to analyse. However, the Jacobi matrix approach allowed us to make some
progress.
Finding the Jacobian determinant for the transformation of the elements of
the Jacobi matrix to its eigenvalues was key in determining the distribution
of eigenvalues for Jacobi matrices.
In the end we found that if we choose the right distribution for the elements
of the Jacobi matrix, the distribution of eigenvalues is a specific case of the
beta log-gas known as the quadratic beta log-gas. This helped us find the
normalization constant (and prove a nice identity), and make it likely that
the quadratic beta log-gas is limited by the semicircle distribution. Proving
that this is the case would be a good direction for future research.

Other extensions for this research could include finding a limiting dis-
tribution for the beta log-gas in general, and providing a proof for Wigners
semicircle law.
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