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ABSTRACT 
Automated fault detection and diagnostics (FDD) can support building energy performance 
and predictive maintenance by leveraging the vast amounts of data generated by modern 
building management systems. Diagnostic Bayesian Networks (DBN) offer a particularly 
promising approach due to their robustness, flexibility and scalability. However, FDD 
applications in whole building systems are rare, as they require the integration of different 
building subsystems, with their own potential faults and symptoms, which increases 
complexity and makes the resulting DBNs system-specific. In order to overcome these 
limitations, the 4S3F (four symptoms and three faults) method offers a simplified, adaptable 
framework for FDD implementation across building systems.  
 
In this paper, we implement the 4S3F methodology to a whole-building HVAC system in a 
case study office building located in the Netherlands. Our methodology uses generic, 
aggregated representations of individual subsystems within the building, such that FDD 
methods for specific subcomponents can later be incorporated where available. We first define 
aggregated building system groups (boiler group, chiller group, hydronic groups, ventilation 
groups, and end user groups) and subsequently define generic faults that can be detected with 
the existing sensor infrastructure. This simplified system representation is then used to define 
a DBN to isolate the most probable system-level faults that lead to building-level symptoms. 
By focusing on the whole building system, this work aims to provide the groundwork to 
incorporate occupant feedback and behavior in FDD.  
 
KEYWORDS 
Fault Detection and Diagnosis, Diagnostic Bayesian Networks, Whole building HVAC 
 
INTRODUCTION 
Modern building management systems (BMS) generate vast amounts of data from a large 
number of sensors deployed throughout the heating, ventilation and air conditioning (HVAC) 
system. Despite this wealth of information, however, buildings continue to waste energy due 
to malfunctioning components and inadequate controls, with estimates ranging from 10–20% 
(Taal et al. 2018) to  up to 40% (Schein et al. 2006). Automated fault detection and diagnosis 
(FDD) offer a promising solution to this problem by leveraging these vast datasets to detect 
faults with physical systems, diagnose their causes and potentially provide prognostic 
maintenance for degrading systems (Katipamula and Brambley 2005).  
 
The literature shows a variety of FDD methods applied to systems at various scales, including 
HVAC-level energy efficiency, chillers, air handling units, and sensors (Wang et al. 2022). 
However, most research focuses on a few individual components, with air handling units 
(AHU), chillers, sensors, vapor compression systems, and variable refrigerant flow systems 
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accounting for more than 80% of published literature in the field (Chen J et al. 2022). This is 
due to the fact that chillers and AHUs are the energy-using components that are most likely to 
cause serious and costly problems (Mirnaghi and Haghighat 2020).  
 
On the other hand, real-world HVAC systems are complex and consist of a number of 
subsystems that need to be operated and controlled simultaneously. FDD methods focusing on 
single components might thus neglect the interdependencies between different components, 
leading to inadequate fault diagnosis in practice (Verbert et al. 2017). For example, the impacts 
of a fault occurring in one subsystem may propagate to other subsystems, leading to false 
alarms in the FDDs for those other subsystems (Chen Y et al. 2022). Furthermore, focusing 
solely on components ignores the role building occupants play both as potential causes for 
faulty system behavior, as well as their feedback as potential symptoms of inadequate building 
performance. An integrated approach to HVAC system FDD is therefore necessary (Taal et al. 
2018).  
 
Among FDD methods, Diagnostic Bayesian Networks (DBN) are particularly well-suited for 
whole building HVAC system FDD due to their robustness, flexibility and scalability. 
Compared to other methods, they can address a number of different and potentially 
simultaneous faults (Chen J et al 2022), which are desirable characteristics for large, integrated 
building systems. However, their application to whole building systems has so far been limited. 
Verbert et al. (2017) proposed a multi-model approach accounting for both HVAC subsystem 
interdependencies and changing modes of operation and demonstrated it through two simulated 
faults. Taal and Itard (2020) developed a whole-building DBN for a case study building in the 
Netherlands using the four symptoms three faults (4S3F) method and demonstrated their 
methodology by analyzing their method’s capabilities of detecting various symptoms. Chen Y. 
et al. (2022) developed a discrete Bayesian Network (DisBN) approach for diagnosing and 
isolating cross-level faults in a VAV HVAC system, focusing on nine different cross-system 
faults affecting the chiller and AHU systems. 
 
This paper introduces a DBN for a whole building HVAC system using the 4S3F method 
introduced by Taal et al. (2018). Our methodology uses generic representations of individual 
subsystems within the building, such that the DBN can determine which subcomponents need 
to be further investigated by operators or by its own FDD methods where available. We first 
define aggregated building system groups (boiler group, chiller group, hydronic groups, 
ventilation groups, and end user groups) and subsequently define generic faults that can be 
detected with the existing sensor infrastructure. This simplified system representation is then 
used to define a DBN to isolate the most probable system-level faults that lead to building-
level symptoms. The methodology is then tested through the analysis of historical data and the 
symptoms and faults detected by the system under different operating modes.  
 
METHODOLOGY 
In this paper, a DBN for a whole HVAC system for a case study building in Delft, Netherlands. 
The methodology used is loosely based on the four symptoms three faults (4S3F) approach 
proposed by Taal et al. (2018). Setting up a DBN model based on the 4S3F framework involves 
the following steps (Wang et al. 2022). First the systems and subsystems to be considered need 
to be selected. For this, Taal and Itard (2020) identify three system levels: the whole HVAC 
system; aggregated systems (generator, distributor and emitter); and subsystems consisting of 
trade components. Subsequently, the list of all possible symptoms that can be detected is 
compiled from P&IDs or other documentation. The list of all possible faults leading to those 
symptoms is then also derived from the P&IDs. Once all possible faults and symptoms are 
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identified, their relationships are translated to a DBN, with which the probability of each fault 
occurring can be estimated at every time step based on the collected evidence of the symptoms 
occurring. Subsequently, a building operator can make decisions to repair or adjust operation 
to remove the fault. 
 
A DBN for a whole building system can quickly become impractically large if all possible 
faults and symptoms are considered. In order to solve this problem, Chen Y et al. (2022) focus 
on some specific “cross-level” faults, which would cause fault symptoms across different 
components or subsystems. Verbert et al. (2017) and Taal and Itard (2020), on the other hand, 
used aggregated system definitions (e.g., AHU, boiler, chiller) that each contains a number of 
sub-components. In this paper, we take the latter approach, under the assumption that sub-
components will each have their dedicated FDD approaches for further investigation of the root 
cause of a symptom once the fault at the component level is identified.  
 

 
Figure 1. Simplified schematic representing the main aggregated systems in the building, along 
with the existing temperature (TT), pressure (PT), moisture (MT) and CO2 sensors in the case 
study building. 
 
The resulting aggregated diagram for the case study building in the Netherlands is shown in 
Fig. 1. The case study is a seven-floor office building equipped with two boilers, one chiller 
and two AHUs, only one of which has a heating coil. Three distribution groups supply hot 
water to the radiators in three zones: East, West and Atrium. Cooling is delivered by a chiller 
to the AHUs, which both supply all three zones. The ventilation is controlled by CO2 sensors 
in each room, and Temperature sensors have been installed across the majority of floors within 
each zone, enabling precise monitoring and analysis of thermal conditions.  
 
In developing the DBN, the list of all possible faults was defined first, similar to Verbert et al. 
(2017). The HVAC systems are equipped with temperature, pressure and moisture sensors, but 
there are no flow rate sensors in the systems. Due to this, no Energy Performance or Balance 
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symptoms can be established for the case study building (Wang et al. 2022). Component faults 
were defined based on the aggregated system definitions in Fig. 1, leading to generic faults 
such as “AHU 201 fault”.  Control faults were defined based on the documentation for the 
building automation systems. Symptoms were defined by assessing which sensors downstream 
from any given faulty piece of equipment would be affected by the fault. For example, a generic 
“AHU 202 fault” might lead to temperature and/or pressure symptoms on the supply side, 
temperature and/or CO2 symptoms in the zones, and return temperature and/or pressure 
symptoms in the AHUs and distribution groups.  
 
Even for aggregated building systems as implemented in this case study, the resulting DBN is 
complex, as shown in Fig. 2. Each aggregated group includes a corresponding control system 
(except for the air distribution group). The zone groups include room level manual controls, 
namely the ability of occupants to adjust the radiators and to open the windows. These are 
included in order to allow the incorporation of occupant behaviors into the diagnosis method 
later on. Every sensor used for symptom detection is also connected to a potential sensor bias 
fault. The list of symptoms considered in this DBN is summarized in Table 1. 
 

 
Figure 2. DBN for the case study HVAC system. Sensor fault edges are shown as dotted lines 
to improve readability. Nodes including the subscript i imply that there are actually three nodes: 
East, West, and Atrium. Subscript j implies two nodes: East and West. Subscript x replaces the 
name of every sensor used as a symptom. 
 
Having defined the DBN structure and relationships between fault and symptom nodes, the 
only remaining task is to assign prior probabilities to the fault nodes and conditional probability 
tables to the relationships between faults and symptoms. This is, however, the most difficult 
task for complex systems, and studies have shown that it is unreliable to directly generate the 
conditional probabilities for each state of the evidence node when there are more than four fault 
nodes (Chen Y et al. 2022). In order to reduce the number of parameters that have to be 
estimated, we use Noisy-OR gate nodes as done by other works in the literature (Taal and Itard 
2020, Chen Y et al. 2022, Wang et al. 2024). For demonstration purposes, all prior and 
conditional probabilities were assumed based on expert knowledge as follows: component fault 
probability 2%; control fault probability 5%; sensor fault probability 2%; conditional 
probability (probability that fault is absent if symptom is present) 5%; and LEAK probability 
5%.  The sensitivity analysis carried out by Taal and Itard (2020) showed that the results of the 
diagnosis were adequate even if different prior and conditional probabilities were assumed. 
Nevertheless, the probabilities assumed for this whole building DBN may later be adjusted 
based on measured data and on-site experiments. 
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Table 1. List of symptoms defined for the DBN. 
Variable  Symptom description Faulty state definition 
Tb,sup Boiler supply temperature !𝑇!,#$% −	𝑇!,#&'! > 𝜀( 
Tb,set Boiler setpoint temperature !𝑇!,#&' −	𝑇!,#&',)*+)! > 𝜀( 
Tb,ret Boiler return temperature !𝑇!,#$% −	𝑇!,,&'! > 𝜀- 
Pb,ret Boiler return pressure 𝑃!,,&' ≤ 𝜀. 
Tc,sup Chiller supply temperature !𝑇),#$% −	𝑇),#&'! > 𝜀/ 
Tc,ret Chiller return temperature !𝑇),#&' −	𝑇),#&',)*+! > 𝜀/ 
ΔTc Chiller sensor bias (chiller off) !𝑇),#$% −	𝑇),,&'! > 𝜀/ 
Pc,ret Chiller return pressure 𝑃!,,&' ≤ 𝜀0 
Tdist,i,sup Hydronic group i supply temp. !𝑇12#',2,#$% −	𝑇12#',2,#&'! > 𝜀( 
Tdist,i,ret Hydronic group i return temp. !𝑇12#',2,#$% −	𝑇12#',2,,&'! > 𝜀- 
Tn,sup AHU n supply temperature !𝑇3,#$% −	𝑇3,#&'! > 𝜀/ 
Tn,set AHU n setpoint temperature !𝑇3,#$% −	𝑇3,#&',)*+)! > 𝜀/ 
Tn,ret AHU n return temperature !𝑇3,,&' −	𝑇453&,2,623! > 𝜀/ 
Pn,sup/set AHU n supply/return pressure 𝑃3,#$%/,&' ≤ 𝜀3 
Ti,min Zone i minimum temperature 𝑇2,623 <	𝜀8 
𝑇9*   Zone i temperature comfort range 𝑇9* ∈ [𝜀:, 𝜀;] 
𝐶𝑂292222222  Zone i CO2 sensor bias 𝐶𝑂292222222 ∈ [𝜀<, 𝜀(=] 
CO2i,max Zone i maximum room CO2 𝐶𝑂22,6*> > 𝜀(( 
RHn,sup AHU n relative humidity (comfort 

range) 
𝑅𝐻3,#$%2222222222 ∈ [𝜀(/, 𝜀(-] 

ε1=3K, ε2=1K, ε9=360 ppm, ε10=3000 ppm (Taal and Itard, 2020); ε3=20K (installation 
plans); ε4=90kPa, ε5=40kPa, ε6=11°C, ε11=1200 ppm, ε201=185 Pa, ε202=177 Pa (control 
documents); ε7=19°C/22°C, ε8=25°C/27°C [winter/summer], ε12=30%, ε13=70% (building 
report). 

 
RESULTS 
In order to test the proposed DBN, BMS data for a two-year period (2022-2023) was used to 
detect symptoms in the whole building system. The frequency of detection for every symptom 
considered over this time period is shown in Fig. 3. Three different symptom detection 
timescales were considered: sub-hourly detection (i.e., all samples in the dataset were used), 
hourly and yearly. Furthermore, two hourly detection cases were considered. In one, whether 
a symptom was present or not in a given hour was estimated based on the mode of all symptoms 
detected during an hour. In the other case, thresholds were used: symptoms were only 
considered present if they were detected for two timesteps in a row, at least three times during 
that hour. The latter method was also used for daily detection. The detection results show that 
on a daily basis, a much larger share of the samples was faulty, which is expectable since many 
systems are off for much of the day, and therefore no symptoms can be detected for a large 
number of timesteps. 
 
The most common symptom was CO2 measurements being outside of the acceptable range. 
This is due to a number of sensors on all building zones that appear to need recalibration, as 
they are constantly below the CO2 concentration for outdoor air. In order to avoid excessive 
computational expense, CO2 and room temperature symptoms were aggregated by zones, 
therefore even if just a few room CO2 sensors need calibration, the symptom for the entire zone 
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will be detected. Building operators would subsequently need to explore which sensors are 
actually faulty.  
 

 
Figure 3. Symptom detection frequency over two years for four detection timescales. 
 
A number of discrepancies between the building system documentation and the actual 
operation were also found. For example, while the nominal values for the chiller supply and 
return temperatures were listed as 6–7°C and 13°C, respectively, the mean and median values 
for the measured temperatures were 11°C and 14°C, respectively. Similarly, AHU setpoint 
curves appear to have been modified over time, as shown in Fig. 4, possibly in order to reduce 
the heating demand in winter. These discrepancies led to a large share of samples being detected 
as symptoms, in spite of these being the expected operating conditions at the time of the 
measurement. Therefore, a procedure was developed in order to first assign the current AHU 
setpoint curve for a given basis and then use this adjusted curve for symptom detection. While 
setpoint symptoms are rarely encountered, AHU supply temperature symptoms remain 
common. For chillers, new nominal supply and return temperatures of 11°C and 14°C were 
assumed, however, supply temperature symptoms remain common. On the other hand, a chiller 
supply and return temperature difference greater than 1°C while the chiller is off (symptom 
DTc) is detected very often, meaning that there might be biased or faulty temperature sensors 
in the chiller. The AHUs have no humidity control, so supply air relative humidity symptoms 
are also often detected. 
 

 
Figure 4. Comparison between the AHU setpoint temperatures in the BMS records and the 
setpoint curves according to the control documents. The daily setpoint curves used during 
symptom detection are shown in gray. 
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The final step in the FDD process is the diagnosis of the faults leading to the symptoms 
observed. For demonstrative purposes, we present here the results of fault detection on an 
hourly basis, which is a timescale short enough for building operators to take action in real-
time applications, but also long enough to minimize transient effects. A summer week in 2023 
was selected as an example. A posterior probability threshold of 15% was selected as done by 
Chen Y et al. (2022). The posterior probabilities calculated by the DBN for the week in question 
are shown in Fig. 5. Only faults for which the maximum posterior probability during this week 
exceeded 0.5% are shown. As discussed for the symptom detection step, the CO2 sensors are 
consistently detected as faulty, further stressing the need for further investigation of the precise 
sensors that need to be calibrated again. A number of chiller-related symptoms are also detected. 
This once again relates to the incorrect supply temperatures observed during system operation, 
but also to the excessively high temperature difference between supply and return side when 
the chiller is not operational. Therefore, during chiller operation incorrect controls are 
diagnosed by the DBN as the most likely cause for discrepancy, while the return temperature 
sensor is detected as possibly faulty when the cooling systems are off. 
 

 
Figure 5. Posterior probabilities of selected faults for the first week of July 2023. Only faults 
with a posterior probability of at least 0.5% for any timestep are shown. 
 
DISCUSSION AND FUTURE WORK 
The DBN presented here represents a first step towards a whole building implementation of 
FDD. The demonstrative results presented seem to indicate that the network is able to detect 
the most likely faulty components at building scale, which warrant further inspection from 
building operators. These include both likely component degradation faults (CO2 and chiller 
return temperature sensors) and operational faults likely caused by inadequate documentation 
of the operational strategy of the building (chiller setpoint temperatures). This underlines the 
need for further investigation into the actual operation of the case study building, while at the 
same time presenting an example of the construction of FDDs is strongly influenced by the 
system being investigated and the challenge of transferability. 
 
A key aspect of the development of this DBN was the incorporation of zone-level effects and 
comfort symptoms in the diagnosis. A data collection campaign is currently being developed 
in order to collect air quality data through sensors and occupant feedback through a smartphone 
application in order to expand the DBN to account for end users’ behaviors as potential faults 
in the building system and occupant feedback as possible symptoms of malfunctioning systems. 
While the incorporation of building occupants as a source of additional information in FDD 
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has been proposed before (Taal and Itard 2020), no such implementation can be found in the 
literature. This paper therefore represents an initial step towards FDD methods that can support 
both building system performance and occupant comfort. 
 
CONCLUSION AND IMPLICATIONS 
A methodology to develop a DBN for a whole HVAC system was presented. The methodology 
is loosely based on the 4S3F method and focuses on cross-level fault diagnosis, accounting for 
all systems in the buildings as well as the three building zones that are served by those systems. 
The DBN’s symptom detection capabilities were shown, which showed the building’s CO2 
sensors and chiller as the most problematic systems in the building. During fault detection for 
a sample week in the year, the CO2 sensors were again found to be faulty, and both the chiller 
controls as well as the chiller temperature sensors were detected as possibly faulty. Due to the 
incorporation of building zones and comfort-related symptoms in the DBN, ongoing work is 
being carried out to include occupant feedback and behavior as potential symptoms and faults 
in the building system. 
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