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Abstract The process of mutation has been studied
extensively in the field of biology and it has been shown
that it is one of the major factors that aid the process of
evolution. Inspired by this a novel genetic algorithm
(GA) is presented here. Various mutation operators
such as small mutation, gene mutation and chromosome
mutation have been applied in this genetic algorithm. In
order to facilitate the implementation of the above-men-
tioned mutation operators a modified way of represent-
ing the variables has been presented. It resembles the
way genetic information is coded in living beings. Differ-
ent mutation operators pose a challenge as regards the
determination of the optimal rate of mutation. This
problem is overcome by using adaptive mutation oper-
ators. The main purpose behind this approach was to
improve the efficiency of GAs and to find widely dis-
tributed Pareto-optimal solutions. This algorithm was
tested on some benchmark test functions and compared
with other GAs. It was observed that the introduction
of these mutations do improve the genetic algorithms in
terms of convergence and the quality of the solutions.
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1 Introduction

A large number of search and optimization techniques
exist for optimization problems. Researchers and scien-
tists in diverse fields, such as economics, political sci-
ence, psychology, linguistics, immunology, biology and
computer science, need an efficient tool to tackle the
optimization problems. The complexity of the problem
increases as the number of objectives increase because
the objectives considered are often contradictory to one
another. Such complex optimization problems have a
large number of feasible solutions. However, only a
few solutions among them are desirable. Genetic algo-
rithms (GAs) go a long way in solving such problems.
Genetic algorithms originated from the studies of cellu-
lar automata conducted by Holland and his colleagues.
Since the idea of genetic algorithms was introduced by
Holland in the early 1970s (Holland 1975), GAs have
been applied to several optimization problems. GAs are
utilised by many researchers who deal with optimiza-
tion problems because they are not limited by restrictive
assumptions about search space which concern continu-
ity, existence of derivatives or uni-modality. Recently,
Coello et al. (2002) gave a comprehensive account of
GAs and their application to various multi-objective
optimisation problems.

Genetic algorithms (GAs) are randomised, parallel-
search algorithms that model the principles of natural
selection that leads to evolution. Over time, natural
selection in nature has produced a wide range of robust
structures (life forms) that perform a broad range of
functions efficiently. The success of natural selection
provides proof of the viability to use an evolutionary
process as a model for design. Like natural selection,
GAs is a robust search method requiring little
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information to search effectively in large and poorly
understood search spaces. Bagley’s (1967) work intro-
duced the words genetic algorithms to the scientific liter-
ature and Holland’s (1975) work: adaptation in natural
and artificial systems, laid the first theoretical founda-
tion. Since then there has been many attempts to under-
stand their nature and characteristic to design a more
improved GA and to use it effectively in many appli-
cations. A large number of researchers have provided
contributions towards the development of genetic algo-
rithms and as a result of this a variety of genetic algo-
rithms have come into existence. The main focus of
the research work here was to develop GAs that are
robust and are able to find well spread solutions for
multi-objective optimization problems. One of the pio-
neering works in this area was that of Goldberg (1989).
Goldberg suggested the use of non-dominated sorting
together with a niching mechanism. This resulted in an
overwhelming enthusiasm on multi-objective evolution-
ary algorithms (MOEAs). Initial MOEAs, such as the
multi-objective genetic algorithm (MOGA) (Fonseca
and Fleming 1993), the non-dominated sorting genetic
algorithm (NSGA) (Srinivas and Deb 1994) and the
niched pareto genetic algorithm (NPGA) (Horn et al.
1994), were directly based on the suggestions of
Goldberg (1989) and consisted of two primary steps:
(1) the fitness of a solution was determined using its
dominance within the population and (2) the diversity
among solutions was preserved using a niching strat-
egy. The above mentioned three genetic algorithms show
that these steps can be implemented in different ways
resulting in a variety of MOEAs that can then be con-
ceived from the suggestions of Goldberg. The elitism
operator was absent in these MOEAs which resulted in
their poor performance. Hence the focus of later work
was mostly concentrated on how elitism could be intro-
duced in a MOEA. As a result of this a number of
advanced algorithms emerged such as the strength pa-
reto evolutionary algorithm (SPEA) (Zitzler and Thiele
1999), the pareto archived genetic algorithm (PAES)
(Knowles and Corne 2000) and the non-dominated sort-
ing genetic algorithm II (NSGA-II) (Deb et al. 2000),
among others. In further attempts to improve the quality
of the solutions and to obtain well spread solutions of the
Pareto Front, algorithms with dynamic population size
were developed by Tan et al. (2001). Adaptive mutation
rates were implemented to further accelerate the search
for optima and to enhance the ability to locate optima
accurately. A detailed explanation and a review of vari-
ous state-of-the-art evolutionary algorithms for solving
multi-objective optimization problems are given by
Coello et al. (2002).

Besides these excellent approaches to improve the
performance of genetic algorithms, the impact of the
mutation operator has been investigated by Aguirre
and Tanaka (2005). In this work Aguirre et al. inves-
tigated the impact of selection, drift and mutation oper-
ators on the performance of evolutionary algorithms.
The certain mutation operators: viz. duplication, seg-
regation and transposition, were studied by Goldberg
(1989). Similarly, Brizuela and Aceves (2003) performed
experimental analysis of the genetic operators for a
multi-objective GA applied to the Flowshop problem.
Furthermore, Chan et al. (2005) used the concept of
jumping genes and applied it to multi-objective resource
management in wideband CDMA systems. In the
jumping gene GA the transposition mutation operator
was used to improve the performance of the GA.

Most genetic algorithms still use an elementary form
of point mutation. Research in evolutionary biology has
shown that mutation is one of the primary sources of
diversity in nature. In our work different types of muta-
tions are applied to the genetic algorithms to increase
diversity in the solutions and to improve the conver-
gence. In Sect. 2 a brief discussion is given on the evo-
lution from a biological perspective. Section 3 considers
the definition of a multi-objective optimization prob-
lem. The general structure of the GAs is discussed in
Sect. 4. The different types of mutation that are imple-
mented in our algorithms are discussed in Sect. 5. The
structure of the non-dominated sorting biologically moti-
vated genetic algorithm (NBGA), proposed by the
authors, is given in Sect. 6. Section 7 gives an overview
of the performance parameters that are used to evaluate
the NBGA. The test functions on which the NBGA is
evaluated and the results of the performance parame-
ters for these test functions, along with the comparison
with the other Gas, are given in Sect. 8. The importance
of the proposed mutation types is stressed in Sect. 9.
Finally, the conclusions are drawn in Sect. 10.

2 Biological perspective of evolution

In general evolution is defined as any process of change
occurring with time. In terms of life sciences evolution
is a change in gene frequency in a population. The genes
are the fundamental physical and functional units of
heredity. Genes are made up of DNA, many genes con-
stitute a chromosome and each organism in turn has
many chromosomes. For example, humans have 46 chro-
mosomes.
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Fig. 1 Mechanisms of evolution

The mechanisms of evolution are: natural selection,
mutation, recombination, genetic drift and gene flow, as
depicted in Fig. 1.

Natural selection is the principle mechanism that
causes evolution. Natural selection was expressed as a
general law by Darwin and Huxely (1859), as quoted
below:

1. “IF there are organisms that reproduce, and,
2. IF offspring inherit traits from their progenitor,

and,
3. IF there is variability of traits, and,
4. IF the environment cannot support all members of

a growing population,
5. THEN those members of the population with infe-

rior traits will die out, and,
6. THEN those members with better traits will

thrive.”

Natural selection can be subdivided into two types:

1. Ecological selection
2. Sexual selection.

Ecological selection takes place in situations where
inheritance of specific traits is solely determined by ecol-
ogy. Sexual selection is the theory that states that com-
petition for mates, between individuals of the same sex,
drives the evolution of certain traits.

Natural selection occurs only when the individuals of
a population have diverse characteristics. Natural selec-
tion ceases to operate when the population does no
longer have any genetic variation. For evolution to con-
tinue, mechanisms that increase the genetic diversity are
necessary. Mutation, recombination and gene flow are
the mechanisms that increase the diversity in the popu-
lation so that evolution can proceed onwards.

Genetic drift is the mechanism that acts in conjunc-
tion with natural selection and changes the character-
istics of the species over a period of time. This is a
stochastic process and is caused by random sampling
in the reproduction of offspring. Like natural selec-
tion, genetic drift changes the frequencies of alleles but
decreases the genetic variations.

Gene flow is the transfer of genes from one popula-
tion to another. Migration into or out-of a population
may be responsible for a significant change in the gene
pool frequency. Addition of new genetic material is facil-
itated by immigration whereas emigration results in the
removal of genetic material.

Recombination is the process by which the combina-
tion of genes in an organism’s offspring differs from that
of its parents. Recombination results in a shuffling of
the genes. Recombination is a mechanism of evolution
because it adds new alleles to the gene pool.

Mutations are permanent changes to the genetic mate-
rial of a cell. The process of mutation introduces new
genetic variations and this facilitates the process of evo-
lution. Most biologists believe that adaptation occurs
through the accumulation of many mutations that in
themselves only have small effects. Neutral mutations
do not have an impact on the organism’s chance of sur-
vival but they accumulate over time and might result in,
what is known as, punctuated equilibrium.

In essence, Genetic algorithms have all the features of
these evolution mechanisms. If the greater details of all
the mechanisms of biological evolution are understood
and implemented in genetic algorithms then the effi-
ciency of GAs will increase many fold. In the genetic
algorithm presented here the concept of mutation is
extended, based on the mutation idea as perceived in
the biological field (explained elaborately in Sect. 5).
Besides that, the expression of variables as binary strings
is also modified to resemble the genetic makeup of a
living being. The implementation of some of these evo-
lutionary biology and genetic concepts in the algorithm
developed here, has shown improvement in terms of
convergence and quality of the solutions.

3 Multi-objective optimization problem

The multi-objective optimization problem is defined as

optimize f = {
f1(�x), . . . , fm(�x)

}

subject to g(�x) ≤ 0

h(�x) = 0

where �x = (x1, x2, . . . , xn) ∈ X

g(�x) = (
g1(�x), g2(�x), . . . , gp(�x)

)

f(�x) = (
f1(�x), f2(�x), . . . , fq(�x)

)

(1)

where x is the n-component decision vector, X is the
decision space and f is the objective space which is a set
of m objective vectors. The inequality constraint space
is represented by g(�x), which is a set of p functions.
h(�x) is the equality constraint space, which is a set of q
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functions. In multi-objective optimization problems the
situation may arise where it is required to minimize all
the functions in the objective space, maximize all the
functions or minimize some and maximize the others. In
order to maintain the uniformity, all the functions in the
objective space are converted to either their maximized
or minimized form using the following identity:

max f (�x) = −min(−f (�x)) (2)

Hence, without loss of generality, it can be stated that
all functions in the objective space in the above defi-
nition are to be minimised. In practical engineering
problems the objective functions have different physi-
cal dimensions and are non commensurable. Therefore,
multi-objective optimization has to look for the best
compromise among these objectives in cases such as
these. For the problem to be truly of the multi-objective
type the pair of objective functions (fi, fj) should be con-
flicting in nature. In this situation the notion of Pareto
dominance and Pareto optimality can be used to find the
solution set.

Pareto Dominance For any two decision vectors

�x = (x1, . . . , xn) ∈ X

and

�y = (y1, . . . , yn) ∈ X

�x is said to dominate �y iff �x is partially less than �y, i.e.

∀i ∈ {1, . . . , n}, xi ≤ ui ∧ ∃i ∈ {1, . . . , n} : xi < yi (3)

Pareto optimality A solution xu ∈ X is said to be
Pareto optimal iff there is no xv ∈ X for which �v =
f(xv) = (v1, . . . , vn) dominates �u = f(xu) = (u1, . . . , un).

Non-dominated sets and fronts Let A ⊆ Xf . The func-
tion p(A) gives the set of non-dominated decision vec-
tors in A:

p(A) = {
a ∈ A|a is nondominated regarding A

}

The set p(A) is the non-dominated set regarding A, the
corresponding set of objective vectors f (p(A)) is the
non-dominated front regarding A. The set Xp = p(Xf )

is called the Pareto-optimal set and the set Yp = (Xp) is
denoted as the Pareto-optimal front.

4 Genetic algorithms

A genetic algorithm is a heuristic technique to find solu-
tions for difficult optimization problems. GAs use the
principles of evolutionary biology. The GAs begin with
random initialisation of the population. The transition
from one generation of population to the next takes
place by application of the genetic operators: selection,

crossover and mutation. The selection operator selects
chromosomes in the population for reproduction. The
fitter the chromosomes, the more number of times it
is likely to be selected for reproduction. The crossover
operator randomly chooses a locus and exchanges the
sub sequences before, and after, that locus between two
chromosomes to create two offspring. For example, the
strings 10001000 and 11111111 could be crossed over at
the fourth locus to yield the two offspring: 100001111
and 11111000. The crossover operator roughly mimics
biological recombination between two single chromo-
somes. The mutation operator randomly flips some of the
bits in a chromosome. For example the string 11110011
may be mutated in its fifth position to yield 11100011.
Mutation can occur at each bit position in a string with
some probability. The pseudo code and flowchart of a
simple genetic algorithm are shown in Figs. 2 and 3,
respectively.

The genetic algorithms (GAs) have the following
features:

• GAs operate with a population of possible solutions
instead of single individuals. Thus the search is car-
ried out in a parallel form.

• GAs are able to find optimal or sub-optimal solu-
tions in complex and large search spaces. The GAs
can be modified to solve multi-objective optimisa-
tion problems.

• GAs examine many possible solutions simulta-
neously, hence they have a high probability to con-
verge to a global optimum.

In order to apply the genetic algorithms for the solu-
tion of multi-objective optimization problems the sim-
ple genetic algorithms need to be modified. To achieve
this, the fitness of the solutions is determined using
Pareto optimality, described in the previous section.
Figure 4, taken from Srinivas and Deb (1994), shows the

Population Initialisation

Evaluate the objective function

Do (while termination criterion satisfied)

Selection (based on the objective function value)

Crossover

Mutation

Evaluate the objective functions

Loop

Fig. 2 Pseudo code of simple genetic algorithm
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Generation of
initial population

Calculation of
fitness function

Termination
criteria met Results

New generation

Selection
crossover
mutation

no

yes

Fig. 3 Flow chart of simple genetic algorithm

general flow chart of this approach. The detailed working
principle of the algorithm is given in Deb (2001). Elitism
is used to improve the quality of the solutions. Elitism
provides a means to reduce genetic drift by ensuring
that the best chromosome is allowed to pass on, or copy,
their traits to the next generation. Genetic drift is a
mechanism of evolution that acts in concert with natural
selection to change the characteristics of species over a
long period of time. It acts on the population: altering the
frequency of alleles as well as the predominance of traits
amongst members of a population and thereby changes
the diversity of the population. Genetic drift is used to
explain/measure stochastic changes in gene frequency
through random sampling of the finite population. Some
genes of chromosomes may turn out to be more impor-
tant to the final solution than others. When the chro-
mosomes, which represent decision variables that have
a reduced “salience” to the final solution, do not experi-
ence sufficient selection pressure then the genetic drift
may be stalled. In order to avoid this it is important to

Start

Initialize
population

gen = 0

front = 1

Is
population
classified

?

reproduction
according to

dummy fitness

crossover

mutation

Gen = gen+1

Is
gen<maxgen

?

Stop

Identify
Nondominated

individuals

Assign
dummy fitness

Sharing in
current front

Front = front +1

No

Yes

Yes

No

Fig. 4 Flow chart of NSGA

maintain adequate selection pressure, as demanded by
the application. In other words, the arrest of genetic drift
reflects the failure to exert adequate selection pressure,
applied by increasing the tournament size or by some
form of elitism. Since elitism can increase the selection
pressure, by preventing the loss of low “salience” genes
of chromosomes due to deficient selection pressure, it
improves the performance with regard to the optimal-
ity and convergence of GAs in many cases. However,
the degree of elitism should be adjusted properly and
carefully because high selection pressure may lead to
premature convergence.

Elitism was an important parameter that resulted in
improvements in the solutions but an important aspect
of evolution, namely mutation, was neither investigated
in detail nor was different types of mutation, existing in
nature, implemented in genetic algorithms. In the next
section a discussion of different types of mutation exist-
ing in nature and a way to implement them in binary
coded genetic algorithms are discussed.
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5 Types of mutation

Mutations are permanent changes to the genetic mate-
rial of an organism, which are transferred from one
generation to the next. The importance of mutations
in the evolution process was investigated by Nei (1986)
and Li (1993). Molecular studies have shown that muta-
tions include not only nucleotide substitutions but also
important processes as gene duplication and recombi-
nation. Mutations are considered the driving force of
evolution, where less favourable ones are removed by
the process of selection and the favourable ones tend
to propagate from generation to generation, thereby
improving the fitness of individuals in the population.
The various types of mutation can be broadly put into
three categories namely:

• Point mutations
• Large mutations
• Chromosomal mutations

Each of the above mutations can be further sub-
divided into various classes. Figure 5 gives an over view
of the possible mutations. These mutations have been
implemented in the NBGA and a brief description of
each of these mutations is given below. The way in
which the variables are encoded in NBGA is investi-
gated before discussing the implementation of the muta-
tions in detail. For the sake of simplicity a function with
only two variables, f (x, y) is considered. The variables x
and y are real valued and are bounded between upper
and lower limits. For ease of implementation these vari-
ables are represented as binary strings. The binary string
for each variable is called a chromosome and each chro-
mosome in turn consists of subsequent strings known as
genes. The chromosomes of both the variables x and y
are known as the chromosomal genome (Fig. 6).

Point Mutation Large Mutation

Mutation

Chromosomal Mutation

Substitution

Inversion

Deletion

Inversion

Rearrangement

Duplication

Transposition

Retro Transposition

Fig. 5 Classification of types of mutation

Chromosome 2

00 11 1 1 1 1 1 1
Gene1 

000 0
Gene 2

0 1 0 0
Gene 3

1 1 1 1 1 1 1
Gene 1

0000
Gene 2

0
Gene 3

1 01 0
Gene 4

Chromosome 1

Chromosomal Genome

Fig. 6 Representation of variables in NBGA

As can be seen from Fig. 6 the variable x consists of
three genes: gene 1 is a binary string of length 6, gene 2
is a binary string of length 5 and gene 3 is a binary
string of length 4. Together these three genes constitute
chromosome 1. Similarly, the variable y consists of four
genes: gene 1 is of length 6, gene 2 of length 5, gene 3
of length 4 and gene 4 of length 4, and together they
constitute chromosome 2 for variable y. The combina-
tion of these chromosomes constitutes the chromosomal
genome. Having outlined the structure of how the vari-
ables are encoded in the NBGA, the explanation of the
various mutations and their equivalent in the NBGA
are discussed below. The chromosomal genome in Fig. 6
is taken as the reference for the discussion of mutations
below.

1 Point mutation These are changes in the single
DNA nucleotides. A point mutation may consist of the
deletion of a nucleotide, the insertion of additional nucle-
otide or the substitution of one nucleotide for another.
The deletion type point mutation is shown in Fig. 7a.
In this case a bit from gene1 of chromosome 1 has been
deleted. This type of mutation is very common. Figure 7b
shows the case for insertion mutation. In this case a bit
has been added to the binary string (marked in bold) of
gene 2 from chromosome 2. In Fig. 7c the substitution

Chromosomal Genome after insertion mutation

Chromosome 2

Gene 1 Gene 2 Gene 3 Gene 1 Gene 2 Gene 3 Gene 4

Chromosome 1

111 0

1 1 1 1 1 1 1 1 1 1 1 1 1 111 10 0 0 0 0 0 0 0 0 0 0 0 1 0 1 00 0

1
Gene 1

1 1 1 1000 0
Gene 2

0 0
Gene 3

0 1111
Gene 1

1 000 0
Gene 2

111 0
Gene 3

1 01 0
Gene 4

Chromosomal Genome after point mutation

Chromosome 1 Chromosome 2

(a)

(b)

(c)

Chromosomal Genome after substitution mutation

Chromosome 2

1 1 1 1 1 1111 0 0 0 0 010111 00
Gene 1

0 0000
Gene 2 Gene 3 Gene 1 Gene 2

1 10 0 1 0 1 0
Gene 3 Gene 4

Chromosome 1

Fig. 7 a: Deletion type point mutation. b: Insertion type point
mutation. c: Substitution type point mutation
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mutation is shown. In substitution mutation a bit in
gene3 from chromosome 2 is flipped (marked bold). Tra-
ditionally this type of mutation has been implemented
in most of the genetic algorithms.

2 Large mutation These mutations involve a whole
gene at a time. Various types of large mutation that
are implemented in the NBGA are: deletion, inversion,
insertion and gene duplication. Gene duplication can be
categorised into transposition and retro transposition.
Figure 8a shows the deletion type of large mutation. In
this case gene 3 from chromosome 1 is deleted (chro-
mosomal genome in Fig. 6 is used as reference). The
inversion mutation is illustrated in Fig. 8b. The string
in gene 1 of chromosome 2 is inverted backwards. In
Fig. 8c a gene is inserted into chromosome 1, indicat-
ing that insertion mutation has occurred. Sometimes
a whole gene is duplicated and then inserted at ran-
dom in the chromosomal genome, such a mutation is
known as transposition duplication. Figure 8d shows the
transposition type of mutation. Gene 3 from chromo-
some 1 is copied and positions itself next to gene 3.
The transposition mutation has been implemented in
the jumping gene GA (Chan et al. 2005). However the

Chromosomal Genome after inversion mutation

Chromosome 2

11 0 0 1 1
Gene 1

1 000 0
Gene 2

0111
Gene 3

0 0 0 0 0 01 1 1 11111
Gene 1 Gene 2

0
Gene 3

0101
Gene 4

Chromosome 1

Chromosomal Genome after insertion mutation

Chromosome 2

1 0 0 1 1 1
Gene 1

0 0 1 0 0
Gene 2

1 1 1 0
Gene 3

1 0 0 1 1 1
Gene 1

0 0 1 0 0
Gene 2

1 1 1 0
Gene 3

1 0 1 0
Gene 4

Chromosome 1

1 1
Gene 4

Chromosomal Genome after transposition mutation

Chromosome 2

1 0 0 1 1 1
Gene 1

0 0 1 0 0
Gene 2

1 1 1 0
Gene 3

1 0 0 1 1 1
Gene 1

0 0 1 0 0
Gene 2

1 1 1 0
Gene 3

1 0 1 0
Gene 4

Chromosome 1

1 1 1 0
Gene 4

Chromosomal Genome after retro transposition mutation

Chromosome2

1 0 0 1 1 1
Gene1

0 0 1 0 0
Gene 3

1 1 1 0
Gene2

1 0 0 1 1 1
Gene 1

0 0 1 0 0
Gene 2

1 1 1 0
Gene 3

1 0 1 0
Gene 4

Chromosome 1

Chromosomal Genome after deletion mutation

Chromosome 2

0 1111 0
Gene 1

00 10 0 1 1 11 10 0 0 0 0 01 0101110
Gene 2 Gene 1 Gene 2 Gene 3 Gene 4

Chromosome 1

(a)

(b)

(c)

(d)

(e)

Fig. 8 a: Deletion type of mutation. b: Inversion type of mutation.
c: Insertion type of mutation. d: Transposition type of mutation.
e: Retro transposition type of mutation

Chromosomal Genome after Chromosomal Mutation

Chromosome 2

1 0 0 1 1 1
Gene 1

0 0 1 0 0
Gene 3 

1 1 1 0
Gene 2

1 0 0 1 1 1
Gene 4

0 0 1 0 0
Gene 3

1 1 1 0
Gene2 

1 0 1 0
Gene 1

Chromosome 1

Fig. 9 Chromosomal mutation

difference between the two approaches is that in the
NBGA an attempt is made to mimic the biological pro-
cess of transposition mutation by representing the mem-
bers of the population as a set of two chromosomes
with different number of genes rather than a continuous
binary string. Retro transposition is similar to transpo-
sition except that a gene is copied and repositioned in a
new position and deleted from its original location. This
situation is shown in Fig. 8e. In this case gene 2 from
chromosome 1 is removed from its original position and
replaced at the end.

3 Chromosomal mutation These are very large scale
mutations and involve whole chromosomes or a piece
of them and can alter many genes at a time in that chro-
mosome. They are an important source of new genetic
material. Figure 9 shows a chromosomal mutation where
the gene sequence in chromosome 2 has been inverted.

These are the mutation operators that are used in our
genetic algorithm: NBGA. The next section discusses
the structure of the NBGA in detail.

6 Non-dominated sorting biologically motivated
genetic algorithm (NBGA)

The NBGA designed by the authors implements Pareto
ranking. For diversity preservation the crowding dis-
tance, as proposed by Deb et al. (2000), is used besides
the mutation operators described in the previous sec-
tion. The algorithm of the NBGA is as follows:

1. Randomly initialise the population

(a) For i = 1 to Members in population
(b) Initialise the population (binary string)
(c) Initialise the rate of point mutation (binary

string)
(d) Initialise the rate of large mutation (binary

string)
(e) Initialise the rate of chromosome mutation

(binary string)

2. Decode the population
3. Evaluate the objective functions
4. Classify the population into Pareto Fronts (Deb

et al. 2000)
5. Assign the dummy fitness values (Deb et al. 2000)
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6. Select the parents using tournament selection
7. Perform multipoint crossover

(a) Perform the crossover of the chromosomes
pertaining to the variables

(b) Cross of the binary string representing rate
of mutations

8. Perform point mutation
9. Perform large mutation

10. Perform Chromosomal Mutation
11. Combine the offspring and parent population.
12. If termination criteria satisfied then stop

else go to step 3.

The NBGA differs from NSAG-II on the following
accounts:

1. The method in which the variables are represented
as binary strings (Sect. 4, Fig. 6). This method of rep-
resentation of variables helps in the implementation
of the proposed mutation operators.

2. The mutation operators implemented in the NBGA
are different from the point mutation used in
NSGA-II.

Based on the above mentioned features this algo-
rithm has been named: NBGA. This algorithm uses the
principle of non-dominated sorting as used by NSGA-II
and the representation of the variables is similar to that
of biological systems.

In the next section the performance parameters for
the NBGA are discussed.

7 Performance parameters for NBGA

An important issue in multi-objective optimization is
the quantitative performance comparison of the differ-
ent algorithms. The most popular comparison methods
are based on unary quality measures, i.e., the measure
assigns a number to each approximation set that reflects
a certain quality aspect. Usually a combination of them
is used, e.g. Van Veldhuizen and Lamont (2000). Other
methods are based on binary quality measures, which
assign numbers to pairs of approximation sets, e.g.
Zitzler and Thiele (1998). A comprehensive study on
different performance measurement indices is given in
Zitzler et al. (2003), Knowles et al. (2006), and Knowles
and Corne (2002).

Four performance parameters are considered in order
to analyse the performance of the NBGA for the test
functions. These performance parameters are:

1 Generational distance The concept of generational
distance was proposed by Van Veldhuizen and Lamont
(1998). The purpose of this parameter is to estimate
how far the Pareto front, obtained by a genetic algo-
rithm, is from the actual Pareto front. Mathematically
this parameter is defined as

GD =

√∑p
i=1 d2

i

p
(4)

where p is the number of points in the Pareto front
obtained by the algorithm and di is the Euclidean dis-
tance between each solution point in the obtained Pareto
front and the actual Pareto front for the problem under
consideration. If the value of GD is zero then this indi-
cates that all the points obtained by the algorithm lie
on the true Pareto front. Any other value of GD will
indicate how far the obtained Pareto front is from the
actual one.

2 Spacing This factor indicates the spread of the
solutions obtained. This metric was proposed by Schott
(1995) and is defined as

S �
√

1
p − 1

∑p

i=1
(d̄ − di)2 (5)

where di= minj(|f i
1−f j

1| + |f i
2−f j

2|) and i, j = 1, 2, . . . , p,

d̄ is the mean of all di, and p is the number of non-dom-
inated vectors found so far. If this value is zero then all
the points in the obtained Pareto front are equidistantly
placed.

3 Error ratio This factor was proposed by Van Veld-
huizen and Lamont (1998) to determine (in percentage)
the number of solutions in the obtained Pareto front that
are not members of the true Pareto front. The mathe-
matical definition of this factor is

e =
∑p

i=1 ei

p
(6)

where p is the number of points in the obtained Pareto
front and ei = 0 if the point I is a member of the true
Pareto front, else ei = 1. If e = 0 then all the points of
the obtained Pareto front lie on the true Pareto front.

4 The two set coverage (SC) This measurement index
was proposed by Zitzler and Thiele (1998) to determine
the relative coverage comparison of two sets. For two
sets X ′ and X ′′, SC is defined as the mapping of the
order pair (X ′, X ′′) to the interval [0, 1] as

SC(X ′, X ′′) �
∣
∣
∣
{

a′′ ∈ X ′′; ∃a′ ∈ X ′ : a′ ≺− a′′}
∣
∣
∣/

∣
∣
∣X ′′

∣
∣
∣ (7)



Improved genetic algorithm inspired by biological evolution 931

Two set coverage is a binary performance measure
index.

Using the above performance parameters the NBGA
proposed by the authors in this paper was evaluated on
some of the standard test functions for the sake of com-
parison. The NBGA was run 30 times on each of the
test functions and the average values of the three para-
meters are reported here. The parameters of the NBGA
used for the analysis in this paper are as follows:
Number of generations = 50
Number of individuals = 100
Crossover probability = 80%

Single point crossover was used.
The mutation rate was fixed between 0 and 10%.

Since each type of mutation was represented as a binary
string and subjected to cross-over the mutation rate for
each individual changed during each generation.

These mutation rates were chosen after experimen-
tation with different mutation rates.

8 Comparison of NBGA with other genetic algorithms

In this section the NBGA proposed by the authors is
compared with other well known genetic algorithms,
namely: non-dominated sorting genetic algorithm II
(Deb et al. 2000), Micro-genetic algorithm for multi-
objective optimization (Coello 1993) and Pareto
archived evolution strategy (Darwin and Huxely 1859)
which is an algorithm based on evolutionary strategy.
The performance parameters considered for compari-
son are generational distance (GD), spacing (SP) and
error ratio (ER). These parameters are discussed in
Sect. 7. The setting of NBGA is the same as discussed
in Sect. 7. The NBGA was run 30 times for each test
function and the average value of the performance para-
meters is reported.

Test function 1
This test function was proposed by Kursawe (1991).

Mathematically this function is defined as

minf1(�x) =
n−1∑

i=1

(
−10 exp

(
−0.2

√
x2

i + x2
i+1

))

minf2(�x) =
n∑

i=1

(
|xi|0.8 + 5 sin(xi)

3
)

(8)

where −5 ≤ x1, x2, x3 ≤ 5
The result of this test function is shown in Fig. 10 and

the values of the performance parameters are shown
in Table 1. The values of the performance parameters
for non-dominated sorting genetic algorithm II, Pareto
archived evolution strategy and micro-genetic algorithm
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Fig. 10 Pareto Front produced by the NBGA and actual front
for test function 1

Table 1 Result of error ratio, generational distance, spacing and
two set coverage measure for test function 1

Error ratio NBGA NSGA II Micro GA PAES

Best 0.10 0.06 0.18 0.1
Worst 0.33 1.01 0.36 0.68
Average 0.17 0.56 0.27 0.27
Median 0.163 0.495 0.245 0.245
Standard

deviation 0.05721 0.38452 0.05395 0.10489

Generational
distance NBGA NSGA II Micro GA PAES

Best 0.00694 0.006905 0.006803 0.0147
Worst 0.10448 0.103095 0.010344 0.1572
Average 0.05 0.029255 0.008456 0.5491
Median 0.048 0.017357 0.008489 0.0494
Standard

deviation 0.02916 0.02717 0.00099 0.03074

Spacing NBGA NSGA II Micro GA PAES

Best 0.03676 0.01842 0.07169 0.06411
Worst 0.10974 0.06571 0.20313 0.34096
Average 0.08622 0.03614 0.12890 0.19753
Median 0.08950 0.03609 0.12666 0.18663
Standard

deviation 0.02173 0.01098 0.02993 0.06411

SC NBGA Micro GA NSGA-II PAES

NBGA 0.00 0.98 0.42 0.75
Micro GA 0.02 0.00 0.42 0.72
NSGA-II 0.04 0.04 0.00 0.68
PAES 0.03 0.03 0.17 0.00

for multi-objective optimization are taken from Coello
et al. (1993). As in Coello et al. the fitness function was
evaluated 12,000 times for the sake of comparison.

The NBGA is able to cover the entire Pareto Front.
From Table 1 it can be seen that the NBGA performs
better than the other three algorithms in terms of error
ratio. For the generational distance performance
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parameter only micro GA performs better than the
NBGA. The NSGA II performs better than the NBGA
for spacing performance metric. The better performance
of the NSGA-II compared to the NBGA for spacing
performance metric and generational distance does not
necessarily indicate that the NBGA performs worse
compared to the NSGA-II. The spacing metric gauges
how evenly the points in the Pareto Set, obtained by
a GA, are distributed in the objective space (Knowles
and Corne 2002) and it is quite possible that the True
Pareto front has non-uniform distribution of points, i.e.,
the True Pareto Front might have higher concentration
of solutions at some sections and lower concentration
in other. Similarly, the generational distance metric has
certain disadvantages. According to this metric it is bet-
ter to find one solution close to the Pareto front than
to find a set of solutions in which many solutions are
on the true Pareto front and one solution is a small
distance away from the true Pareto Front. Thus eval-
uation of the performance of any GA, based on spac-
ing metric and generational distance parameter, may
lead to erroneous conclusions. Hence, to compare two
GAs the two set convergence metric is more suited.
From Table 1 (two set coverage measure) it can be seen
that SC(NBGA, MicroGA) = 0.98 and SC(MicroGA,
NBGA) = 0.02, since SC(NBGA, MicroGA) > SC
(MicroGA, NBGA), hence, the NBGA is relatively bet-
ter than the MicroGA. Similarly, SC(NBGA,
NSGA-II) = 0.98 and SC(NSGA - II, NBGA) = 0.04,
i.e., SC(NBGA, NSGA-II) > SC(NSGA-II, NBGA)

hence, it can be concluded that the NBGA again per-
forms relatively better than the NSGHA-II. The anal-
ysis of the two set coverage measurement between the
NBGA and the PAES gives SC(NBGA, PAES) = 0.75
and SC(PAES, NBGA) = 0.03, since SC(NBGA,
PAES) > SC(PAES, NBGA), so the NBGA is relatively
better than the PAES. From this analysis of the results of
the two set coverage measurement it can be concluded
that the NBGA performs better for this test function, as
compared to the other comparison algorithms.

Test function 2
This test function was proposed by Kita et al. (1996).

Mathematical definition of this problem is as follows

max F = (
f1(x, y), f2(x, y)

)
(9)

where

f1(x, y) = −x2 + y, f2(x, y) = 1
2

x + y + 1

subject to

0 ≥ 1
6

x + y − 13
2

, 0 ≥ 1
2

x + y − 15
2

, 0 ≥ 5x + y − 30
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Fig. 11 Pareto Front produced by the NBGA and actual front
for test function 2

Table 2 Results of error ratio, generational distance, spacing and
two set coverage measure for test function 2

Error ratio NBGA NSGA II Micro GA PAES

Best 0.05405 0.75 0.734694 0.93
Worst 0.18 0.99 1.01639 1.01
Average 0.05 0.8965 0.927706 0.993
Median 0.042 0.92 0.936365 1.01
Standard

deviation 0.04282 0.06714 0.06874 0.02536

Generational
distance NBGA NSGA II Micro GA PAES

Best 0.04808 0.003885 0.00513 0.0113
Worst 0.11628 0.678449 0.912065 0.9192
Average 0.07 0.084239 0.150763 0.1932
Median 0.066 0.011187 0.089753 0.0333
Standard

deviation 0.02125 0.16524 0.21656 0.24965

Spacing NBGA NSGA II Micro GA PAES

Best 0.00319 0.00103 0.06561 0.00667
Worst 0.01714 1.48868 1.64386 0.43287
Average 0.00992 0.09849 0.31502 0.11010
Median 0.01045 0.02717 0.12977 0.08200
Standard

deviation 0.00416 0.32738 0.42174 0.09960

SC NBGA Micro GA NSGA-II PAES

NBGA 0.00 0.73 0.63 0.64
Micro GA 0.12 0.00 0.26 0.37
NSGA-II 0.21 0.08 0.00 1.00
PAES 0.21 0.21 0.00 0.00

and x, y ≥ 0. The range used in this case is 0 ≤ x, y ≤ 7
Kita et al. (1996). The results are shown in Fig. 11 and
Table 2. The values of the performance parameters for
the NBGA II, the PAES and the MicroGA are taken
from Coello et al. (2004). As in Coello et al. the fit-
ness function was evaluated 5,000 times for the sake of
comparison.
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From Table 2 it can be seen that SC(NBGA,
MicroGA) = 0.73 and SC(MicroGA,NBGA) = 0.12,
since SC(NBGA,MicroGA) > SC(MicroGA,NBGA),
hence, the NBGA is relatively better than the MicroGA.
Similarly, SC(NBGA,NSGA-II) = 0.63 and SC(NSGA-
II,NBGA) = 0.21, i.e., SC(NBGA,NSGA-II) >

SC(NSGA-II,NBGA) hence, it can be concluded that
the NBGA again performs relatively better than the
NSGA-II. The analysis of the two set coverage measure-
ment between the NBGA and the PAES gives
SC(NBGA,PAES) = 0.64 and SC(PAES,NBGA) = 0.21,
since SC(NBGA,PAES) > SC(PAES,NBGA), so the
NBGA is relatively better than the PAES. From this
analysis of the results of the two set coverage mea-
surement it can be concluded that the NBGA performs
better for this test function as compared to the other
comparison algorithms. The performance of the NBGA,
based on error ratio, generational distance and spacing
metric, is better than the MicroGA, the NSGA-II and
the PAES (Table 2).

Test function 3
This test function was proposed by Deb (1999).

Mathematically this function is represented as

min f1(x1, x2) = x1

min f2(x1, x2) = g(x1, x2) · h(x1, x2)
(10)

where

g(x1, x2) = 11 + x2
2 − 10 cos(2πx2)

h(x1, x2) =

⎧
⎪⎪⎨

⎪⎪⎩

1 −
√

f1(x1, x2)

g(x1, x2)
, if f1(x1, x2) ≤ g(x1, x2)

0, otherwise

⎫
⎪⎪⎬

⎪⎪⎭

and 0 ≤ x1 ≤ 1, −30 ≤ x2 ≤ 30.
The result of this test function is shown in Fig. 12.

The values of the performance parameters are given in
Table 3. The values of the performance parameters for
the NBGA II, the PAES and the MicroGA are taken
from Coello et al. (2004). As in Coello et al. the fit-
ness function was evaluated 5,000 times for the sake of
comparison.

From the above figure it can be seen that the NBGA
was able to cover the entire Pareto front. From Table 3
it can be seen that in terms of error ratio the NBGA
performs better than other comparison algorithms. In
terms of generational distance the NSGA-II performs
better than the other algorithms (Table 3). Based on
spacing performance index the NBGA performs better
than other algorithms (Table 3). Hence based on the
unary performance metric, the NBGA performs better
than other algorithms in terms of error ratio and spac-
ing. The NSGA-II has better performance in terms of
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Fig. 12 Pareto Front produced by the NBGA and actual front
for test function 3

Table 3 Results of error ratio, generational distance, spacing and
two set coverage measure for test function 3

Error ratio NBGA NSGA II Micro GA PAES

Best 0.0070067 0 0.02 0.06
Worst 0.0186447 1.01 1.04545 1.01
Average 0.0113304 0.35 0.2568 0.4485
Median 0.0112476 0.2 0.19 0.24
Standard

deviation 0.0035859 0.39615 0.25646 0.38199

Generational
distance NBGA NSGA II Micro GA PAES

Best 0.008621 0.000133 8.74 × 10−5 0.000114
Worst 0.073171 0.163146 0.811403 1.99851
Average 0.03 0.023046 0.047049 0.163484
Median 0.028 0.000418 0.000236 0.058896
Standard

deviation 0.02072 0.04543 0.18116 0.44130

Spacing NBGA NSGA II Micro GA PAES

Best 0.00035 0.00021 0.00760 0.00916
Worst 0.00170 0.01023 5.56270 19.88640
Average 0.00087 0.00369 0.34166 1.11462
Median 0.00075 0.00209 0.29950 0.01876
Standard

deviation 0.00037 0.00337 1.24756 4.43459

SC NBGA Micro GA NSGA-II PAES

NBGA 0.00 1.00 0.49 1
Micro GA 0.00 0.00 0.00 0.36
NSGA-II 0.50 1.00 0.00 0.29
PAES 0 0.00 0.00 0.00

generational distance. From Table 1 (two set coverage
measure) it can be seen that SC(NBGA,MicroGA) = 1
and SC(MicroGA,NBGA) = 0, since SC(NBGA,
MicroGA) > SC(MicroGA,NBGA), hence, the NBGA
is relatively better than the MicroGA. Similarly,
SC(NBGA,NSGA-II) = 0.49 and SC(NSGA-II,
NBGA) = 0.18, i.e., SC(NBGA,NSGA-II) >

SC(NSGA-II,NBGA) hence it can be concluded that
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the NBGA performs relatively better than the NSGA-II.
The analysis of the two set coverage measurement
between the NBGA and the PAES gives SC(NBGA,
PAES) = 1 and SC(PAES,NBGA) = 0, since SC(NBGA,
PAES) > SC(PAES,NBGA), so the NBGA is relatively
better than the PAES. From this analysis of the results of
two set coverage measure it can be concluded that the
NBGA performs better for this test function as com-
pared to the other comparison algorithms.

Test function 4
This test function was proposed by Deb (1999). The

mathematical form of this test function is

min f1(x1, x2) = x1

min f2(x1, x2) = g(x2)

x1

(11)

where

g(x2) = 2 − exp

{

−
(

x2 − 0.2
0.004

)2
}

− 0.8 exp

{

−
(

x2 − 0.6
0.4

)2
}

and 0.1 ≤ x1 ≤ 1.0, 0.1 ≤ x2 ≤ 0.1.
The result of this test function is shown in Fig. 13

and the values of the performance metric are given in
Table 4. The values of the performance parameters for
the NBGA II, the PAES and the MicroGA are taken
from Coello et al. (2004). As in Coello et al. the fit-
ness function was evaluated 10,000 times for the sake of
comparison.

Figure 13 and Table 4 (error ratio, generational dis-
tance and spacing) show that the NBGA was able to
cover the entire Pareto front and its performance was
better than the other three algorithms in terms of all
the performance parameters. From Table 4 (two set
coverage measure) it can be seen that SC(NBGA,
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Fig. 13 Pareto Front produced by the NBGA and actual front
for test function 4

Table 4 Results of error ratio, generational distance, spacing and
two set coverage measure for test function 4

Error ratio NBGA NSGA II Micro GA PAES

Best 0.036251 0.02 0.08 0.02
Worst 0.14 1.01 1.01 1.01
Average 0.06 0.4145 0.252 0.489
Median 0.060 0.115 0.16 0.28
Standard

deviation 0.02584 0.45939 0.23158 0.43812

Generational
distance NBGA NSGA II Micro GA PAES

Best 0.00806 0.0007 0.00047 0.00045
Worst 0.02718 0.20847 0.1835 0.22167
Average 0.01274 0.04424 0.04347 0.19476
Median 0.016 0.00086 0.05004 0.07036
Standard

deviation 0.00768 0.07368 0.04821 0.20469

Spacing NBGA NSGA II Micro GA PAES

Best 0.00031 0.02609 0.03027 0.04784
Worst 0.08113 0.06142 0.81764 0.66468
Average 0.08185 0.03745 0.21358 0.19477
Median 0.05368 0.03553 0.06301 0.07037
Standard

deviation 0.08426 0.00924 0.25059 0.20469

SC NBGA Micro GA NSGA-II PAES

NBGA 0.00 1.00 0.75 0.62
Micro GA 0.00 0.00 0.04 0.46
NSGA-II 0.20 0.06 0.00 0.43
PAES 0.15 0.00 0.01 0.00

MicroGA) = 1 and SC(MicroGA,NBGA) = 0, since
SC(NBGA,MicroGA) > SC(MicroGA,NBGA), hence,
the NBGA is relatively better than the MicroGA. Sim-
ilarly, SC(NBGA,NSGA-II) = 0.75 and SC(NSGA-II,
NBGA) = 0.2, i.e., SC(NBGA,NSGA-II) > SC(NSGA-
II,NBGA) hence, it can be concluded that the NBGA
again performs relatively better than the NBGA. The
analysis of two set coverage measure between the
NBGA and the PAES gives SC(NBGA,PAES) = 0.62
and SC(PAES,NBGA) = 0.15, since SC(NBGA,
PAES) > SC(PAES,NBGA), so the NBGA is relatively
better than the PAES. From this analysis of the results of
the two set coverage measurement it can be concluded
that the NBGA performs better for this test function as
compared to the other comparison algorithms.

9 Performance of NBGA on multivariable test
functions

Zitzler and Deb (2000a) have identified several features
that may cause difficulties for multi-objective GAs in:
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(1) converging to the Pareto optimal front and (2) main-
taining diversity within the population. Concerning the
first issue, multimodality, deception, and isolated optima
are well known problem areas in single-objective evo-
lutionary optimization. The second issue is important in
order to achieve a well distributed non-dominated front.
However, certain characteristics of the Pareto optimal
front may prevent a GA from finding diverse Pareto
optimal solutions: convexity or non-convexity, discrete-
ness, and non-uniformity. For each of the six problem
features mentioned, a corresponding test function is
constructed, following the guidelines in Zitzler and Deb
(2000a).

In the following analysis the population size was 200
and 100 iterations were performed; other parameters
remain the same as discussed in Sect. 8.

Test Function 5
The test function is described mathematically as

Zitzler et al. (2000b):

min f1(x1, x2) = x1

min f2(x1, x2) = g(�x)h(f1, g)
(12)

where

g(x) = 1 + 9
m∑

i=2

xi/(m − 1)

h(f1, g) = 1 − √
f1/g

and

m = 30 and xi ∈ [0, 1]
The result of this test function is shown in Fig. 14 and the
values of the performance metric are given in Table 5.

In terms of error ratio (Table 5), Generation distance
(Table 5) and spacing (Table 5), the NBGA performs
better than the other algorithms. From Table 5 (two
set coverage measure) it can be seen that SC(NBGA,
MicroGA) = 0.44 and SC(MicroGA,NBGA) = 0.06,
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Fig. 14 Pareto Front produced by the NBGA and actual front
for multivariable test function 5

Table 5 Results of error ratio, generational distance, spacing and
two set coverage measure for test function 5

Error ratio NBGA NSGA II Micro GA PAES

Best 0.0047 0.0093 0.0102 0.0111
Worst 0.0367 0.0732 0.0804 0.0877
Average 0.0147 0.0293 0.0322 0.0351
Median 0.0121 0.0241 0.0265 0.0289
Standard

deviation 0.0103 0.0206 0.0226 0.0247

Generation dist NBGA NSGA II Micro GA PAES

Best 0.0051 0.0101 0.0101 0.0102
Worst 0.0758 0.1513 0.1506 0.1521
Average 0.0367 0.0734 0.0730 0.0738
Median 0.0334 0.0667 0.0664 0.0670
Standard

deviation 0.0200 0.0400 0.0398 0.0402

Spacing NBGA NSGA II Micro GA PAES

Best 0.00064 0.00128 0.00141 0.00154
Worst 0.00126 0.00251 0.00276 0.00301
Average 0.00083 0.00165 0.00182 0.00198
Median 0.00079 0.00157 0.00173 0.00188
Standard

deviation 0.00017 0.00034 0.00038 0.00041

SC NBGA Micro GA NSGA-II PAES

NBGA 0.00 0.44 0.99 1.00
Micro GA 0.06 0.00 0.98 1.00
NSGA-II 0.02 0.02 0.00 0.39
PAES 0.00 0.05 0.63 0.00

since SC(NBGA,MicroGA) > SC(MicroGA,NBGA),
hence the NBGA is relatively better than the MicroGA.
Similarly, SC(NBGA,NSGA-II) = 0.99 and SC(NSGA-
II,NBGA) = 0.02, i.e., SC(NBGA,NSGA-II) >

SC(NSGA-II,NBGA) hence, it can be concluded that
the NSGII again performs relatively better than the
NBGA. The analysis of the two set coverage measure-
ment between the NBGA and the PAES gives
SC(NBGA,PAES) = 1 and SC(PAES,NBGA) = 0, since
SC(NBGA,PAES) > SC(PAES,NBGA), so the NBGA
is relatively better than the PAES. From this analysis
of the results of the two set coverage measurement it
can be concluded that the NBGA performs better for
this test function as compared to the other comparison
algorithms.

Test function 6
The test function is described mathematically as

Zitzler et al. (2000b):

min f1(x1, x2) = x1

min f2(x1, x2) = g(�x)h(f1, g)
(13)
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Fig. 15 Pareto Front produced by the NBGA and actual front
for multivariable test function 6

where

g(x) = 1 + 9
m∑

i=2

xi/(m − 1)

h(f1, g) = 1 − (f1/g)2

and

m = 30 and xi ∈ [0, 1]
The result of this test function is shown in Fig. 15 and the
values of the performance metric are given in Table 6.

In terms of error ratio (Table 6) the NBGA performs
better than the other algorithms. The MicroGA per-
forms best in terms of generation distance (Table 6)
and in terms of spacing (Table 6), the NBGA performs
better than the other algorithms. From Table 6 (two
set coverage measure) it can be seen that SC(NBGA,
MicroGA) = 0.68 and SC(MicroGA,NBGA) = 0.5,
since SC(NBGA,MicroGA) > SC(MicroGA,NBGA),
hence the NBGA is relatively better than the MicroGA.
Similarly, SC(NBGA,NSGA-II) = 0.73 and SC(NSGA-
II,NBGA) = 0.42, i.e., SC(NBGA,NSGA-II) >

SC(NSGA-II,NBGA) hence, it can be concluded that
the NSGII again performs relatively better than the
NBGA. The analysis of the two set coverage measure-
ment between the NBGA and the PAES gives
SC(NBGA,PAES) = 0.91 and SC(PAES,NBGA) =
0.37, since SC(NBGA,PAES) > SC(PAES,NBGA), so
the NBGA is relatively better than the PAES. From
this analysis of the results of the two set coverage mea-
surement it can be concluded that the NBGA performs
better for this test function as compared to the other
comparison algorithms.

Test function 7
The test function is described as Zitzler et al. (2000b):

min f1(x1, x2) = x1

min f2(x1, x2) = g(�x)h(f1, g)
(14)

Table 6 Results of error ratio, generational distance, spacing and
two set coverage measure for test function 6

Error ratio NBGA NSGA II Micro GA PAES

Best 0.00178 0.00196 0.00196 0.00194
Worst 0.02913 0.03204 0.03201 0.03178
Average 0.01182 0.01300 0.01298 0.01289
Median 0.00943 0.01037 0.01036 0.01029
Standard

deviation 0.00807 0.00887 0.00886 0.00880

Generational
distance NBGA NSGA II Micro GA PAES

Best 0.00503 0.30130 0.30063 0.29722
Worst 0.30435 0.30130 0.30063 0.29722
Average 0.03003 0.02973 0.02966 0.02933
Median 0.00559 0.00553 0.00552 0.00546
Standard

deviation 0.07599 0.07523 0.07507 0.07422

Spacing NBGA NSGA II Micro GA PAES

Best 0.00011 0.00012 0.00014 0.00026
Worst 0.00533 0.00586 0.00644 0.01228
Average 0.00100 0.00110 0.00121 0.00230
Median 0.00056 0.00062 0.00068 0.00130
Standard

deviation 0.00141 0.00155 0.00170 0.00324

SC NBGA Micro GA NSGA-II PAES

NBGA 0.0 0.68 0.73 0.91
Micro GA 0.5 0.0 0.5 0.5
NSGA-II 0.42 0.41 0.0 0.5
PAES 0.037 0.32 0.42 0.0

where

g(x) = 1 + 9
m∑

i=2

xi/(m − 1)

h(f1, g) = 1 − √
f1/g − (f1/g) sin(10π f1)

and

m = 30 and xi ∈ [0, 1]
The result of this test function is shown in Fig. 16 and the
values of the performance metric are given in Table 7.

In terms of error ratio (Table 7), generation distance
(Table 7) and spacing (Table 7), the NBGA performs
better than the other algorithms. From Table 7 (two
set coverage measure) it can be seen that SC(NBGA,
MicroGA) = 0.68 and SC(MicroGA,NBGA) = 0.28,
since SC(NBGA,MicroGA) > SC(MicroGA,NBGA),
hence the NBGA is relatively better than the Micro-GA.
Similarly, SC(NBGA,NSGA-II) = 0.66 and SC(NSGA-
II,NBGA) = 0.29, i.e., SC(NBGA,NSGA-II) >

SC(NSGA-II,NBGA) hence, it can be concluded that
the NSGII again performs relatively better than the
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Fig. 16 Pareto Front produced by the NBGA and actual front
for multivariable test function 7

Table 7 Results of error ratio, generational distance of error
ratio, spacing of error ratio and two set coverage measure for test
function 7

Error ratio NBGA NSGA II Micro GA PAES

Best 0.00178 0.00196 0.00195 0.00196
Worst 0.02777 0.03052 0.03039 0.03048
Average 0.01263 0.01388 0.01382 0.01386
Median 0.00994 0.01092 0.01088 0.01091
Standard

deviation 0.00660 0.00726 0.00723 0.00725

Generational
distance NBGA NSGA II Micro GA PAES

Best 0.00503 0.00552 0.00603 0.00660
Worst 0.30435 0.33403 0.36498 0.40003
Average 0.05602 0.06149 0.06718 0.07363
Median 0.02764 0.03034 0.03315 0.03633
Standard

deviation 0.08309 0.09120 0.09964 0.10921

Spacing NBGA NSGA II Micro GA PAES

Best 0.00012 0.00014 0.00015 0.00016
Worst 0.05134 0.05630 0.06128 0.06695
Average 0.01521 0.01668 0.01816 0.01984
Median 0.01524 0.01672 0.01820 0.01988
Standard

deviation 0.01478 0.01620 0.01764 0.01927

SC NBGA Micro GA NSGA-II PAES

NBGA 0 0.68 0.66 0.68
Micro GA 0.28 0 0.65 0.66
NSGA-II 0.29 0.28 0 0.65
PAES 0.26 0.289 0.28 0

NBGA. The analysis of the two set coverage measure-
ment between the NBGA and the PAES gives
SC(NBGA,PAES) = 0.68 and SC(PAES,NBGA) =
0.26, since SC(NBGA,PAES) > SC(PAES,NBGA), so
the NBGA is relatively better than the PAES. From this
analysis of the results of two set coverage measure it
can be concluded that the NBGA performs better for

this test function as compared to the other comparison
algorithms.

10 Experimental evidence of importance of mutations
in performance of NBGA

These experiments were designed to compare the per-
formance of the NBGA, proposed in this paper, with
and without different types of mutations (point muta-
tion, Large mutation and chromosome mutation). In
this work the four test functions, discussed in the pre-
vious section, have been used together with the three
performance parameters: error ratio, generational dis-
tance and spacing. The following eight experiments were
performed:

(a) With mutation In this case the NBGA was run with
all the types of mutations and the performance
parameters for the test functions, defined in Sect. 7,
were considered.

(b) Without mutation The NBGA was run without
point mutation, large mutation and chromosome
mutation. The performance parameters for the test
functions defined in Sect. 7 were considered.

(c) Without point mutation The NBGA was run with-
out Point mutation and other mutations (large and
chromosome mutation) were engaged. The perfor-
mance parameters for the test functions defined in
Sect. 7 were considered.

(d) Without large mutation The NBGA was run with-
out Large mutation and other mutations (point and
chromosome mutation) were engaged. The perfor-
mance parameters for the test functions defined in
Sect. 7 were considered.

(e) Without chromosome mutation The NBGA was run
without Chromosome mutation and other muta-
tions (point and large mutation) were engaged.
The performance parameters for the test functions
defined in Sect. 7 were considered.

(f) Without point and large mutation The NBGA was
run without point and large mutation and chro-
mosome mutation was engaged. The performance
parameters for the test functions defined in Sect. 7
were considered.

(g) Without point and chromosome mutation The
NBGA was run without point and chromosome
mutation and large mutation was engaged. The
performance parameters for the test functions
defined in Sect. 7 were considered.

(h) Without chromosome and large mutation The
NBGA was run without Chromosome and Large
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mutation and point mutation was engaged. The
performance parameters for the test functions
defined in Sect. 7 were considered.

Table 8 Experimental values of performance parameters for test
function 1 with all mutation, without chromosome mutation, with-
out large mutation, without small mutation, without large and
chromosome mutation, without small and chromosome mutation,
without small and large mutation and without any mutation

Error ratio Generational Spacing
distance

With all mutation
Best 0.0061284 0.0110497 0.01786
Worst 0.0250286 0.1348315 0.04249
Average 0.0152484 0.06 0.03495
Median 0.0143543 0.0569337 0.03637
Standard deviation 0.0061901 0.0338507 0.00707

Without chromosome
mutation

Best 0.076973 0.018541 0.086829
Worst 0.314360 0.226247 0.206617
Average 0.191520 0.098847 0.169921
Median 0.180290 0.095535 0.176864
Standard deviation 0.077748 0.056801 0.034391

Without large mutation
Best 0.081447 0.009259 0.060763
Worst 0.388474 0.088710 0.157557
Average 0.197284 0.044053 0.113201
Median 0.178941 0.040239 0.113094
Standard deviation 0.100128 0.025787 0.032612

Without small mutation
Best 0.123981 0.021429 0.123981
Worst 0.238703 0.147059 0.238703
Average 0.172170 0.059345 0.172170
Median 0.163728 0.044263 0.163728
Standard deviation 0.040283 0.044126 0.040283

Without large and
chromosome mutation

Best 0.107453 0.024000 0.087042
Worst 0.505248 0.131148 0.409273
Average 0.223468 0.085236 0.181019
Median 0.188319 0.093639 0.152547
Standard deviation 0.115602 0.038825 0.093643

Without small and
chromosome mutation

Best 0.105169 0.014358 0.10517
Worst 0.310676 0.093023 0.31068
Average 0.196150 0.038681 0.19615
Median 0.190054 0.033333 0.19005
Standard deviation 0.062143 0.031107 0.06214

Without small and
large mutation

Best 0.056609 0.018634 0.056609
Worst 0.467372 0.142857 0.467372
Average 0.176223 0.066027 0.176223
Median 0.148774 0.056141 0.148774
Standard deviation 0.125256 0.041151 0.125256

Without any mutation
Best 0.162712 0.000000 0.100152
Worst 0.384013 0.107692 0.236367
Average 0.220684 0.058129 0.135835
Median 0.197426 0.046750 0.121519
Standard deviation 0.065886 0.039763 0.040554

Experiment result
These experiments were designed to establish

whether the mutation operators implemented in the

Table 9 Experimental values of performance parameters for test
function 2 with all mutation, without chromosome mutation, with-
out large mutation, without small mutation, without large and
chromosome mutation, without small and chromosome mutation,
without small and large mutation and without any mutation

Error ratio Generational Spacing
distance

With all mutation
Best 0.001042 0.020348 0.000963
Worst 0.058807 0.163800 0.054376
Average 0.012415 0.101232 0.011479
Median 0.006169 0.110466 0.005704
Standard deviation 0.017342 0.040208 0.016036

Without chromosome
mutation

Best 0.087042 0.043478 0.007137
Worst 0.402788 0.350000 0.402788
Average 0.181019 0.216307 0.085032
Median 0.152547 0.236037 0.042253
Standard deviation 0.118782 0.085914 0.118782

Without large mutation
Best 0.064145 0.073171 0.011158
Worst 0.554539 0.354430 0.128159
Average 0.315458 0.275865 0.048853
Median 0.359667 0.318223 0.041975
Standard deviation 0.177693 0.089896 0.032078

Without small mutation
Best 0.087042 0.225806 0.021045
Worst 1.069168 0.636364 1.069168
Average 0.181019 0.454252 0.237581
Median 0.152547 0.386364 0.061069
Standard deviation 0.377243 0.168480 0.377243

Without large and
chromosome mutation

Best 0.114225 0.017271 0.012622
Worst 1.297382 0.771350 0.335019
Average 0.360635 0.446554 0.104474
Median 0.221646 0.509777 0.084343
Standard deviation 0.356276 0.219659 0.094380

Without small and
chromosome mutation

Best 0.012430 0.066667 0.012430
Worst 1.335841 0.400000 1.335841
Average 0.192754 0.213556 0.192754
Median 0.029238 0.213821 0.029238
Standard deviation 0.412924 0.103887 0.412924

Without small and
large mutation

Best 0.010803 0.093220 0.008672
Worst 0.229761 0.325581 0.184448
Average 0.059341 0.202101 0.047638
Median 0.038890 0.226061 0.031220
Standard deviation 0.065954 0.097568 0.052947

Without any mutation
Best 0.056318 0.057471 0.005632
Worst 0.338023 0.277228 0.338023
Average 0.129815 0.123162 0.069713
Median 0.088712 0.122200 0.041063
Standard deviation 0.092002 0.062070 0.099446
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NBGA played a significant role, or not. The results of
the experiments are summarised here.

Table 10 Experimental values of performance parameters for
test function 3 with all mutation, without chromosome mutation,
without large mutation, without small mutation, without large and
chromosome mutation, without small and chromosome mutation,
small and large mutation and without any mutation

Error ratio Generational Spacing
distance

With all mutation
Best 0.005542 0.010155 0.011519
Worst 0.028164 0.046329 0.018156
Average 0.010171 0.028615 0.013965
Median 0.006356 0.030161 0.013573
Standard deviation 0.007376 0.011354 0.002165

Without chromosome
mutation

Best 0.044169 0.034014 0.027184
Worst 0.224457 0.155172 0.042846
Average 0.081062 0.095841 0.032954
Median 0.050652 0.101019 0.032030
Standard deviation 0.058788 0.038029 0.005109

Without large mutation
Best 0.044691 0.015504 0.035335
Worst 0.093148 0.258065 0.241645
Average 0.061268 0.135715 0.061325
Median 0.062464 0.142857 0.039453
Standard deviation 0.014012 0.073680 0.063617

Without small mutation
Best 0.011229 0.015038 0.000828
Worst 0.299241 0.080000 0.715964
Average 0.067761 0.040471 0.151429
Median 0.017965 0.037282 0.006117
Standard deviation 0.096177 0.019762 0.298000

Without large and
chromosome mutation

Best 0.008474 0.008000 0.000730
Worst 0.145713 0.148515 0.001378
Average 0.041155 0.045651 0.001106
Median 0.018487 0.035344 0.001107
Standard deviation 0.055232 0.042118 0.000246

Without small and
chromosome mutation

Best 0.007849 0.028986 0.000711
Worst 0.187073 0.241379 0.075598
Average 0.030406 0.076117 0.012564
Median 0.011690 0.067886 0.001123
Standard deviation 0.055333 0.061065 0.023720

Without small and
large mutation

Best 0.009351 0.018018 0.000943
Worst 0.273262 0.225806 0.153115
Average 0.066809 0.051788 0.023786
Median 0.030422 0.035057 0.001238
Standard deviation 0.08847 0.061907 0.050960

Without any mutation
Best 0.008934 0.010101 0.001147
Worst 0.811530 0.368421 0.725834
Average 0.120845 0.098136 0.085323
Median 0.048608 0.057144 0.002334
Standard deviation 0.245662 0.115493 0.227382

1. Test Function 1 The results for the first test function
defined in Sect. 8 are summarised in Table 8.

Table 11 Experimental values of performance parameters for
test function 4 with all mutation, without chromosome mutation,
without large mutation, without small mutation, without large and
chromosome mutation, without small and chromosome mutation,
without small and large mutation and without any mutation

Error ratio Generational Spacing
distance

With all mutation
Best 0.002816 0.011472 0.002360
Worst 0.224425 0.231899 0.198270
Average 0.055564 0.058757 0.044591
Median 0.018163 0.032950 0.007018
Standard deviation 0.089515 0.068470 0.069140

Without chromosome
mutation

Best 0.010183 0.026549 0.001259
Worst 0.811530 0.536679 0.105783
Average 0.200921 0.135981 0.020499
Median 0.065679 0.076255 0.003657
Standard deviation 0.323691 0.158458 0.037089

Without large mutation
Best 0.048314 0.0265487 0.00126
Worst 0.3171449 0.5366789 0.10578
Average 0.1324197 0.1359808 0.02050
Median 0.0728534 0.0762553 0.00366
Standard deviation 0.10806 0.15846 0.03709

Without small mutation
Best 0.048028 0.075188 0.001871
Worst 0.350790 0.183007 0.203832
Average 0.101910 0.141991 0.101278
Median 0.070038 0.150971 0.120175
Standard deviation 0.091231 0.036893 0.076806

Without large and
chromosome mutation

Best 0.038025 0.025641 0.002566
Worst 0.80086 0.165680 0.206318
Average 0.134931 0.124859 0.081911
Median 0.053114 0.152178 0.068889
Standard deviation 0.23569 0.053692 0.084912

Without small and
chromosome mutation

Best 0.045403 0.027972 0.003666
Worst 0.421778 0.164706 0.158907
Average 0.122842 0.131472 0.101494
Median 0.088802 0.155154 0.128731
Standard deviation 0.112174 0.054880 0.059716

Without small and
large mutation

Best 0.038670 0.034884 0.001479
Worst 0.287102 0.192308 0.177334
Average 0.143837 0.123554 0.050430
Median 0.076175 0.154696 0.003440
Standard deviation 0.108723 0.061616 0.077186

Without any mutation
Best 0.041263 0.036364 0.004254
Worst 0.297187 0.194444 0.194298
Average 0.156210 0.157713 0.073749
Median 0.144896 0.164394 0.028736
Standard deviation 0.099514 0.047936 0.079097
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From the above table it is clear that the best perfor-
mance of the NBGA is obtained when all the mutation
types are activated.

2. Test Function 2 The results for the second test func-
tion are summarised in Table 9. From the table below
it is evident that the performance of the NBGA is best
when all mutation operators are engaged.

3. Test Function 3 The results for the third test func-
tion are summarised in Table 10.

From the above table it can be seen that the NBGA
performs best with all the types of mutation operators.

4. Test Function 4
The results for his test function are summarised in

Table 11.
From Table 11 it is evident that when the NBGA

is run with all the mutation operators best results are
obtained.

From the results of this section it is evident that the
performance of the NBGA is best, for all the test func-
tions, when all the mutation operators are used.

11 Conclusions and future work

In this work the concept of mutation was introduced
in genetic algorithms. These mutations are well stud-
ied in the field of evolutionary biology. Also in evo-
lutionary biology, it is gradually being established that
mutations are one of the prime sources of diversity in
nature. A simplified implementation of these mutations
is done in the NBGA proposed by here. The perfor-
mance of the NBGA on various test functions was bet-
ter than the other genetic algorithms. Furthermore, the
influence of these mutation operators was validated by
a series of experiments. These experiments prove that
mutations improve the performance of the NBGA. The
future direction of work will be to investigate the impact
of the rate of mutation and the rate of reproduction on
the performance of the NBGA. Furthermore, the study
regarding impact of mass extinction on the performance
of the NBGA will also be of interest.
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