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Most studies on the perception of style have used whole
scenes/entire paintings; in our study, we isolated a
single motif (an apple) to reduce or even eliminate the
influence of composition, iconography, and other
contextual information. In this article, we empirically
address two fundamental questions of the existence
(Experiment 1) and description (Experiment 2) of style.
We chose 48 cut-outs of mostly Western European
paintings (15th to 21st century) that showed apples. In
Experiment 1, 415 unique participants completed online
triplet similarity tasks. Multidimensional scaling (MDS)
reached a nonrandom three-dimensional (3D)
embedding, showing that participants are able to judge
stylistic differences in a systematic way. We also found a
strong correlation between creation year and
embedding, both a linear correlation with Dimension 2,
and a rotational correlation in the first two dimensions.
To interpret the embedding further, in Experiment 2, we
fitted three color statistics and nine attribute ratings
(glossiness, three-dimensionality, convincingness, brush
coarseness, etc.) to the 3D perceptual style space.
Results showed that Dimension 1 is associated with
spatial attributes (Smoothness, Brushstroke coarseness)
and Convincingness, Dimension 2 is related to Hue, and
Dimension 3 is related to Chroma. The results suggest
that texture and color are two important variables for
style perception. By isolating the motifs, we could
exclude higher levels of information such as composition
and context. Interestingly, the results reinforce previous
findings using whole scenes, suggesting that style can
already be perceived in sometimes very small fragments
of paintings.

Introduction

In his book Principles of Art History, Heinrich
Wölfflin referred to an anecdote in which four German
painters from the Romantic period tried to paint a
particular scenery all “firmly resolved not to deviate
from nature by a hair’s breadth” (Wölfflin, 2012). The
resulting landscapes, however, differed considerably
in style. Wöllflin ascribed this fact to differences in
personality and vision of the artists. He also remarked
that despite the differences, we would easily see the
similarities between them and recognize them as
products of a particular period: the first half of the
19th century. For Wölfflin, such collective differences
between the pictorial production of different periods
were ultimately rooted in differences in artistic
vision or perception. To capture the differences
between 16th- and 17th-century painters, Wölfflin
came up with five visual principles: (1) linear versus
painterly, (2) closed versus open form, (3) planar
versus recessional, (4) multiplicity versus unity, and
(5) absolute versus relative clarity. Despite their
widespread use both within and beyond art history,
such as in perception research (Goude & Derefeldt,
1981; O’Hare, 1979) and computer vision (Cetinic,
Lipic, & Grgic, 2020; Elgammal, Liu, Kim, Elhoseiny,
& Mazzone, 2018), it can be seen that these principles
have their limitations and are specifically conceived to
model the contrast between Renaissance and Baroque
art.
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To understand the matter of style, we need a broader
definition that is both testable and can generate novel
insights. Gombrich (1968) seems to offer this broader
definition:

Style is a distinctive, and therefore recognizable, way in
which an act is performed or an artifact made.

This is clearly a general description but at the same
time specifically emphasizes the role of the beholder
(“recognizable”). If there are no differences to be
perceived, there is no style. This fundamental aspect
of style (its existence) precedes descriptions or models
of style such as those of Wölfflin. In this article, we
empirically address these two fundamental questions
of the existence (Experiment 1) and description
(Experiment 2) of style in the context of visual
perception.

Style measurements
To empirically investigate the perception of style,

one ideally refrains from any explicit terminology. A
disadvantage of a Wölfflinian approach is the top-down
usage of terms describing style differences, instead
of a bottom-up approach that does not make use
of such terms. The invention of multidimensional
scaling (MDS) methods (see Mead, 1992, for a review)
offered such an opportunity: Instead of relying on
explicit adjectives, attributes, or descriptions, the
MDS approach only relies on perceived differences
(or “distances”), from which a space is constructed.
This space is a low-dimensional representation of the
theoretical high-dimensional space where each element
would have its own dimension. This representation can
be concisely referred to as “embedding” and sometimes,
when appropriate, as “perceptual space.” Indeed,
after substantial methodological progress was made
in the 1960s (e.g., Shepard, 1962; Kruskal, 1964b),
this approach became popular in style perception
studies. Berlyne and Ogilvie (1974), for example,
conducted a series of similarity judgments and attribute
rating experiments on 52 paintings covering 14th-
to mid-20th-century (Western) art. Observers were
instructed to indicate “how similar or different the
two pictures of each pair were” using a 7-point scale.
The authors concluded that a three-dimensional
(3D) space would be the most reasonable solution to
explain their data, the first dimension being aligned
with creation year. Interestingly, the authors had
difficulty explaining the second and third dimension,
and only very tentatively suggested an influence of
line and surface quality. Importantly, they found
reasonable interrater reliability, meaning that observers
agreed quite well on perceived style. Referring back to
Gombrich’s definition, the study by Berlyne and Ogilvie
(1974) showed enough “distinctiveness” between the
painting styles as demonstrated by interrater reliability

and a style space of three dimensions with reasonable
stress value (<0.2).

In addition to accessing perceptual spaces and
interpreting them by means of explicit attribute ratings,
similarity judgments data have also been used for
classification schemes (Graham, Hughes, Leder, &
Rockmore, 2012). Here, the similarity data can be
utilized for identifying latent stylistic dimensions in an
unsupervised model or for training classification models
in a supervised manner (Hughes, Graham, Jacobsen, &
Rockmore, 2011).

Other studies focus more on feature statistics, such as
color histogram statistics (Rao, Srihari, & Zhang, 1999)
or pixel information at the level of the brushstroke.
Sablatnig, Kammerer, and Zolda (1998), for example,
used a combination of face recognition and brushstroke
analysis to classify paintings into different categories.
However, it can often be unclear whether the algorithms
are measuring what is represented (i.e., depicted scenes)
or the medium (i.e., paint on the canvas). We will come
back to this issue in the General discussion.

Style descriptions
Various attempts have been made to quantify which

visual features describe style. For example, Berlyne and
Ogilvie (1974) asked observers in further experiments
to rate the paintings on various affective, descriptive,
artistic, and stylistic scales. Especially interesting were
the four scales of texture, lines, colors, and shapes. These
scales are somewhat related to Wölfflin’s principles.
They were mostly significantly describing the style
space. Marković and Radonjić (2008) investigated the
role of implicit and explicit features in style perception.
In their terminology, implicit refers mostly to subjective
impressions such as aesthetic and affective judgments
while explicit refers to more “objective” features such
as form, color, and space. Interestingly, they found that
the MDS configurations of 24 paintings could mostly
be explained by explicit features. The general approach
of using attribute ratings to explain stylistic differences
in paintings was also used in other studies. O’Hare
(1976) used a mixture of implicit (e.g., like–dislike,
interesting–uninteresting, peacefulness–disturbed) and
explicit (e.g., dark–bright, soft–sharp, few–many colors)
features. He found significant correlations between the
first MDS dimension and “realism” and between the
second MDS dimension and “clarity” and “symmetry.”
These findings were rather robust as a follow-up study
confirmed (O’Hare, 1979).

While attribute ratings have been used to explain style
embeddings, they have also been used to predict style
categories: Ruth and Kolehmainen (1974) performed
a factor analysis on attributes in relation to existing
style labels. This approach thus assumes a fixed style
structure that is different from the bottom-up approach
of creating style embeddings like those using MDS.
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An interesting different approach to looking for style
features is manipulating hypothesized features of
style: Gardner (1974) altered texture and color by
various image manipulations. Masking impaired style
recognition, making it difficult to match artworks from
the same artist.

From another perspective, Wallraven et al. (2009)
proposed that humans use three levels of information
for style perception: high-level background information:
knowledge about specific historical events, knowledge
about artists and art periods in general; mid-level
content information: specific objects or scenes that
are depicted, type of painting or subject (landscape
painting, portrait, etc.); and low-level pictorial
information: technique, thickness of brush strokes,
type of painting material (oil, acrylic, etc.), color
composition of the scene. They conducted three
experiments to perform categorizing tasks. The results
showed humans definitely need high-level information
(old vs. new, perspective flat vs. open, etc.) to make
style categorization judgments, although mid-level
information (content, realistic vs. abstract, etc.) and
low-level information (brush stroke, colors, etc.) were
also used by some participants. Siefkes and Arielli
(2018) also suggested that high-level information is
important for style perception. It was argued that
humans need knowledge about culture, history, or art
categories to be able to perceive stylistic differences.

Computational studies
Besides behavioral research where the emphasis is

on the human ability to perceive stylistic similarities
of artworks, other studies have taken a computational
approach. Graham, Friedenberg, Rockmore, and Field
(2010), for example, related feature statistics to the axes
of the MDS spaces reached from similarity judgments.
Evidently, there have been major breakthroughs in
so-called style transfer that started with Gatys, Ecker,
and Bethge (2016), but this class of algorithms is
not used to predict style differences and categories.
Elgammal et al. (2018) used 20 style labels to train
three deep convolutional neural networks (CNNs) on
the WikiArt dataset. These CNNs achieved subspaces
with fewer than 10 dimensions that explained 95%
of the variance using principal component analysis
(PCA) (Jolliffe, 2002), with the first two dimensions
cumulatively explaining between 60% and 74%.Without
having creation years or artists as input training data,
the two-dimensional (2D) embeddings clearly showed
a smooth temporal transition between styles, in a
clockwise U-shape structure. The angular coordinates
have a Pearson correlation coefficient of 0.69 with time,
again suggesting creation year can be related to the style
space. Furthermore, for 1,000 paintings, they collected
art historians’ ratings of the Wölfflin principles and
found correlations within the first five PCA dimensions.

These ratings were then used by Cetinic et al. (2020)
to do the reverse: train a network estimating the five
principles, applying this to the original WikiArt dataset
and look for patterns. They found an ascending trend of
all five principles between the 15th and 17th centuries,
corresponding to style change from Renaissance to
Baroque.

Our contributions
The variety of paintings used in previous studies was

often rather large. For example, the selection in Berlyne
and Ogilvie (1974) contained still-lifes, portraits, biblical
scenes, and abstract paintings. This makes it clear that
style can refer to different levels (Wallraven et al., 2009)
but that high-level background and mid-level content
information were perhaps too dominant in their study,
thus overruling potential low-level information. We
hypothesize that the essence of style as defined by
Gombrich will emerge more clearly when the subject
matter is held constant, as in Wölfflin’s anecdote.

In an attempt to limit the influence of subject
matter, O’Hare (1976) conducted an experiment with
12 landscape paintings. A 2D space was found where
the realistic–unrealistic scale was connected to the first
dimension and the clear–indefinite scale was connected
to both first and second dimensions. Besides, we can
observe an increase of creation year along the first
dimension. Another attempt by Ruth and Kolehmainen
(1974) used only paintings with similar content, “people
surrounded by nature in each painting.” Yet in both
artwork selections, the variety of subject matter is
still rather large: People and landscapes can both
vary tremendously in comparison to having artists
depict exactly the same scene. Also, other elements
in the scene (e.g., means of transport or dress) can
provide time-related information, which corresponds
to mid-level information proposed by Wallraven et al.
(2009).

It is impossible to find a selection of paintings
of the exact same subject matter, but we can isolate
painting cut-outs of objects that are repeatedly depicted
throughout art history. Ideally, the chosen motif does
not undergo stylistic changes itself, which excludes
humanmade objects such as clothing. The ideal motif
is therefore something natural. A particular natural
motif that is omnipresent throughout art history is
an apple. Despite some texture and color differences,
apples are relatively similar, especially concerning their
shape and size. Isolating apples from their context from
a wide variety of paintings and periods allows for an
unprecedented control for subject matter and thus
offers a unique window on the perception of style.

Second, attributes used to explain or create style
embeddings often refer to the pictorial plane (e.g.,
brushstroke) and/or implicit features (e.g., aesthetic
preference), usually ignoring features of pictorial
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representation. This may be due to the variation
of subject matter, but it is undeniable that ways of
depicting space and material are important aspects
of style. Using square cut-outs of single objects
will allow us to ask questions about object-specific
properties (e.g., smoothness of depicted apple
skin), regardless of the composition of the whole
painting.

In most of the studies discussed above (e.g., Berlyne,
& Ogilvie, 1974; O’Hare, 1976; Elgammal et al., 2018),
creation year could be identified in the measurements
on style differences and even related to the perceived
realism of the painted scenes (O’Hare, 1976). But
at the same time, it could be concluded that this is
confined to paintings of whole scenes only. So, as a
third contribution, we looked into whether the time a
painting was created can also be revealed in observers’
style perceptions when both high-level background
information and mid-level content information have
been removed as much as possible.

Our fourth contribution is methodological. Many
studies based on human judgments used pairwise
similarity ratings. Both O’Hare (1976) and Linde
(1975) have noted that pairwise similarity rating can
be sensitive to individual differences: Scale range
can vary considerably between observers and also
depends on the preceding trials. Instead, we used
triplet comparison to quantify style similarities.
This has various potential advantages, one of which
makes it possible to scale up the experiment across
various participants. This would also allow for human
judgments being used in computational scenarios. The
computational style studies reviewed above are all based
on existing style labels (e.g., from WikiArt) and not on
perceived style differences. Although the number of
paintings we investigated in the present study is still
relatively small compared to computational studies,
a methodological advancement is needed that could
use human intelligence to form a lens through which
artistic style is quantified, instead of the often-used
computational lens.

In the present study, we address the issues outlined
above. In the first experiment, we choose 48 apple
cut-outs from paintings covering 1487 to 2017,
reducing variability in content matter (Contributions
1 and 3). We used triplet judgments in combination
with the method of Landmark MDS (De Silva, &
Tenenbaum, 2004) where a subset of cut-outs (the
so-called landmarks) is first used to create the initial
MDS embedding and then used to fit the remaining
nonlandmark cut-outs into this space. By doing so, we
reduced number of trials dramatically (Contribution
4). In the second experiment, we performed multiple
linear regression on a number of attributes, including
some object-related features as opposed to the
features about pictorial plane or implicit features
(Contribution 2).

Experiment 1: Similarity triplet
ranking

Method

Participants
The online experiments were conducted through

Amazon Mechanical Turk (AMT), a crowdsourcing
website for requesters (researchers in our case) to
publish human intelligence tasks (HITs) online and hire
crowd-workers (participants) to perform these HITs. In
total, 415 unique participants completed Experiment 1
(98.8% were from North America, random sample).

All participants agreed with the informed consent
before the actual experiment started and received
compensation via AMT. The experiment was conducted
in agreement with the Declaration of Helsinki and
approved by the Human Research Ethics Committee
of the Delft University of Technology. All data were
collected anonymously.

Stimuli
Forty-eight digital images of apple painting cut-outs

were used as stimuli. All cut-outs were square cut-outs
of high-resolution digital images retrieved from the
“Materials in Painting Database” (Van Zuijlen, Lin,
Bala, Pont, & Wijntjes, 2021) or online museum
repositories. Most of them were oil paintings except
for one or two that could have been painted in acrylic.
Figure 1 shows an example of an original painting (on
the right) and the square cut-out of an apple (on the
left).

The creation years of the original paintings varied
from 1487 to 2019. The selection covered artists
from northern European countries (i.e., Netherlands,
Germany) to southern European countries (i.e.,

Figure 1. An example of a square cut-out of apple from an oil
painting. Jean Siméon Chardin’s Still Life With a White Mug
(1764), downloaded from the online repository of National
Gallery of Art (nga.gov).
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Journal of Vision (2023) 23(6):2, 1–17 Zhao, Stumpel, de Ridder, & Wijntjes 5

Spain, Italy), and also paintings from France and
North America.

Most square cut-out digital images have a resolution
no less than 400 by 400 pixels and were set at 400 by
400 pixels in the online experiments. All images were
embedded with an sRGB ICC color profile, so that
browsers could display colors properly (Ashe, 2014).

Triplet comparison
To create a multidimensional embedding for a large

set of images while distributing the judgments among
many participants, we opted for a triplet comparison
task over the pairwise similarity rating task. Apart from
the before-mentioned advantages of this method, the
disadvantage of using triplets instead of pairs is that
the number of trials to create a (dis)similarity matrix
increases enormously. For n stimuli, a pairwise method
requires n(n − 1)/2 trials while a triplet method requires
n(n − 1)(n − 2)/6 trials. In our case, with 48 stimuli, it
would be 1,128 unique trials for the pairwise method
versus 17,296 unique trials for the triplet method. To
reduce the number of triplets to be evaluated, we used
the method of Landmark MDS (LMDS).

LMDS
The original purpose of LMDS (De Silva &

Tenenbaum, 2004) was to reduce computing power
by using only a portion of the data to reach a final
MDS solution without losing accuracy. In the current
study, we used the method to reduce the number of
trials. With LMDS, the first step is to select a subset of
l stimuli as landmarks, either randomly or manually,
and collect data and run a classical MDS analysis on
those landmarks, that is, all l(l − 1)(l − 2)/6 triplets are
being involved. The next step is to fit the remaining
data points (n nonlandmarks) into the MDS space of
landmarks, using distances between nonlandmarks and
landmarks. For the first step, the lower half of an l
× l full-distance matrix is required to run the MDS
analysis. For the second step, only distances between
nonlandmarks and landmarks are required. Thus,
conventional MDS would require an (l + n) × (l + n)
matrix, while for LMDS, only an (l + n) × l matrix is
required to reach the final solution.

In the current study, 16 apple paintings were carefully
chosen as landmarks, so that they represent various
periods, and systematically distributed from north to
south Europe (as shown in Figure 2, upper part with
light orange background). We deliberately included two
identical stimuli to verify this method. Paul Cézanne’s
Apples (1778–1879) was used both as landmark and as
nonlandmark. There were 16 landmarks (Ls) and 32
nonlandmarks (NLs). To generate the MDS space with
the Ls, 16 × 15 × 14/6 = 560 triplets were needed. To
fit the NLs in this space, each of the 32 NLs had to

be paired with all unique pairs of Ls, that is, 32 × (16
× 15/2) = 3,840 triplets. In total, we presented 4,400
unique triplets, compared to 17,296 triplets without
LMDS, a reduction of about 75%. We split trials into
40 experimental blocks, consisting of 110 trials with an
average of 10 repetitions. At least 8 unique participants
completed each of 40 subgroups (11 max, average =
10.38).

Procedure
Before the actual experiment, each participant would

first read the consent form and instructions for the
experiment. They could only proceed if they gave
their consent by clicking “continue” after reading the
consent form. Then they were presented the following
instructions:

STYLE: is the way things are done. People can have different
driving styles, dancing styles etc. We are interested in paint-
ing styles. The aim of this experiment is to measure how hu-
mans perceive style differences. In paintings, style can show
itself in various ways: the use of colors, shadows, lines, brush-
work, light, shading, ordering, etc. But we preferably do not
specify this exactly. In every trial, you will be shown three im-
ages of apples taken from larger paintings. You have to select
the two that are most similar in style.

Then they went through five practice trials, to
familiarize our interface and operation. In each trial,
three stimuli were presented side by side (as shown in
Figure 3). Participants were asked to place the most
stylistically similar two stimuli in the rectangle box on
the left. They could use the right arrow key on their
keyboards to toggle the position of the three cut-outs,
until the most similar pair was in the left rectangle box.
They could press the enter key to confirm their choice
and go to the next trial.

Data analysis
Before data analysis, we validated the data of

individual participants on the basis of two criteria.
We measured how much their answer deviated from
the initial random setting (criterion at >15% change).
Second, we used a minimum medium trial time of 1
second, a threshold used in a similar study one of
the authors conducted before (Van Zuijlen, Pont, &
Wijntjes, 2020). About 20% of the participants did not
meet the selection criteria, and hence their data were
removed for analysis, although these participants were
reimbursed irrespective of this selection.

The data analysis consisted of two steps: First,
a nonmetric MDS on the landmark stimuli was
performed, and second, we fitted the other data to the
LMDS configuration.
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Figure 2. All 48 stimuli. The 16 landmarks are located in the upper part with light orange background, sorted by creation year.
Thirty-two nonlandmarks are located in the lower part with white background, also sorted by creation year.

MDS on landmarks
The raw output of each participant consisted of 110

triplets. For landmark-only triplets, an output triplet
(from left to right; see Figures 3A, B, C) meant the
participant indicated the pair of Image A and Image B
was the most similar pair. We created the (dis)similarity
matrix using a frequency based method. For a pair
A–B, the similarity score was calculated as follows (this
is across the results from all participants encountering
the pairs A–B): s/t, where s = amount of triplets where
A and B were grouped together (the first two elements
were AB or BA) and t = amount of triplets containing

both A and B. The corresponding dissimilarity score
was 1 − s/t.

With a dissimilarity matrix of 16 landmarks,
nonmetric multidimensional scaling (NMDS) analysis
was then performed with the metaMDS function
from the vegan package (v2.5-6) in R (Oksanen et al.,
2019). NMDS represents similarity data into a new
configuration with the lowest possible dimensions. The
best fit is achieved while the distances of landmarks are
maintained as closely as possible. Compared to metric
MDS, NMDS handles perceptual data better, since it
arranges points to maximize rank-order correlation

Downloaded from jov.arvojournals.org on 06/12/2023
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Figure 3. Interface for Experiment 1. In each trial, participants were presented with three square cut-outs of apples. Participants could
use the RIGHT arrow key to toggle the order of the three cut-outs (as the left icon indicated), until the most similar pair in their
opinion were in the rectangle box frame on the left. Then they could press ENTER to confirm and proceed to the next trial. On the
bottom left, participants could see how many trials they still had to finish.

Figure 4. (A) Scree plot of MDS configuration of landmarks. (B) Three-dimensional configuration of only landmarks (gray dashed cubes
are nonlandmarks fitted in the space later).

between real-world distance and ordination space
distance (Shepard, 1962).

Nonlandmarks into LMDS configuration
We fitted nonlandmarks into the MDS space from

the previous step using a brute-force procedure. The
domain of the search extended twice the size spanned
by the MDS locations and was split up in 60 evenly
spaced sample points in each dimension. At each of
these sampling points, fiducial triplet answers were
generated on the basis of the MDS data and were
compared to the participants’ triplets. Simulated triplets
were thus compared with real triplets from participants’
answers. The cost function simply consisted of counting
congruent triplets. To increase robustness, we took the
average of the top 0.1% of this congruency score (227
in the current study).

Results

First, we determine the dimensionality of the
landmark space by calculating the stress value as
defined by Kruskal (1964a). The stress for one-
dimensional to six-dimensional configurations is shown
in Figure 4A. There is no obvious “elbow” shape, a
commonly used criterion to determine dimensionality.
Another common criterion is to choose the dimensions
where the stress value is below 0.2 (Kruskal, 1964a).
The first dimension that has a stress value below 0.2
is two. However, as the landmark set is only a subset
of the image set, we decided to continue the analysis
with three dimensions, as to not discard any potentially
interesting patterns. As will be shown later, subsequent
analyzes supported this choice.
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Figure 5. Three-dimensional space of style perception with 48 apple stimuli. Forty-eight boxes represented 48 stimuli. Each six faces
of a box show the same apple image, so that it is visible from any viewing angle. The red arrow represents the vector of creation year
fitted in the space.

Next, the 32 nonlandmark samples were fitted to
the MDS space (Figure 4B, gray cubes). The cost
function is the congruency between the actual answers
and the answers constructed from the (to be fitted)
configuration. We followed this brute-force fitting
procedure for both the 2D and 3D configurations.
The congruency values for both 2D and 3D solutions
were well above chance level. There was a small
but significant increase in congruency for the 3D
embedding: (t(31) = −5.32, p < 0.001) reflecting
an increase in congruency for 27 out of the 32
nonlandmark points. This supported the choice for
using the 3D embedding for further analysis.

Figure 5 shows the overall 3D embedding. As can
be seen, the distribution is relatively homogeneous
except for Dimension 2, where the distribution seems
denser in the lower part. The two same stimuli for

verification purposes locate very close to each other
in the embedding, confirming the reliability of the
landmark method. In addition, it seems that modern
apples are on top of the space (along Dimension
2), while older apples are located lower. To further
investigate this “historical dimension,” we performed a
multiple linear regression for the creation year. With the
set of coordinates and creation year for each stimulus
as independent and dependent variables, respectively,
the orientation of the vector indicates the direction that
yielded the best regression, while the length indicates
strength of the regression (R2). The red arrow in
Figure 5 indicates this property vector.

Statistical analysis revealed a significant overall
fit (R2

ad justed = 0.47, F(3, 44) = 15.05, p < 0.001).
Dimension 2 received the most weight distribution of
the fit and is the only significantly associated dimension
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Figure 6. (A) Correlation between creation year and Dimension 2 in MDS space. (B) The first two dimensions with color-coded
creation year and indication of a potential rotational correlation. (C) Correlation between creation year and rotation angle phi.

with creation year. Figure 6A shows the positive
relation between creation year and Dimension 2 (r =
0.69, p < 0.001). To further explore the temporal aspect
of the embedding, we plotted creation years in the first
two dimensions in Figure 6B. This plot seems to suggest
a rather clustered pattern with potentially a rotational
correlation. Coincidentally, the data are distributed
such that directly calculating the angle between the data
points and the positive x-axis (Dimension 1) seemed
to capture this trend (i.e., large negative angle and
old creation year in lower left quadrant, intermediate
angles and creation years in right quadrants, and large
positive angle with new creation year in the upper
left quadrant). This was confirmed by calculating the
correlation between angle φ and creation year (r = 0.70,
p < 0.001).

What can further be tentatively observed is that
apples with coarse and visible brushstrokes are on the
right side (along Dimension 1), while apples with fine
and even invisible brushstrokes are on the left side.
In addition, the greenish apples seem to be at the
top of the distribution (along Dimension 2) with the
reddish/yellowish ones at the bottom.

Discussion

We found a nonrandom style embedding of a
stimulus set where we held subject matter constant
while using the LMDS approach. This suggests that
even when high-level background information and
mid-level content information have been removed by
presenting a single object (apple) only, participants
can still consistently perceive style differences.
Apparently, there are object properties that make these
judgments possible. This will be investigated further in
Experiment 2 by assessing object-related attributes like
smoothness and glossiness.

The dimensionality of the MDS analysis was based
on 16 landmarks. As we mentioned in Results, it showed
relatively low stress values for dimensions higher than
2 and there was no obvious elbow shape. So, additional
criteria were needed. One of these criteria came from

the fit of the nonlandmarks in the style space. For
the majority of the nonlandmarks (27 out of 32), the
data fitted better in the 3D embedding, which made us
decide to continue our analysis with the 3D embedding,
although stress levels suggested the 2D embedding to be
already sufficient.

We fitted the creation year to the 3D embedding, and
Dimension 2 resulted in a substantial correlation, r =
0.69 (Figure 6A). In addition, looking at the positions
of the 48 cut-outs in Figure 5, the Dim1–Dim2 plane,
a rotational pattern can be discerned, as demonstrated
in Figure 6B. This rotational component can also be
associated with creation year and yielded a somewhat
higher correlation, r = 0.70 (Figure 6C). Interestingly,
the half-hidden red circle in the third quadrant in
Figure 6B represents a modern painting from 2019
amid a set of much older paintings. If we consider this
painting as a continuation of the modern cluster from
the second quadrant, in other words, if we add 360
degrees to the same data point in Figure 6C (the single
point in the top left corner), the rotational correlation
will even increase to r = 0.78. This rotational pattern
is particularly interesting because a similar pattern
was found by Elgammal et al. (2018), even though
their embedding resulted from computational methods
and very different experimental parameters. They used
paintings of varying subject matter analyzed by a
PCA on a CNN layer resulting from training on style
labels, while we reached the embedding using human
similarity judgment data. As our study and Elgammal
et al. (2018) are so different, our finding strengthens
the possibility that a cyclical pattern is present in the
history of European art during the past six centuries.

Looking at the embedding, some other observations
can be made. Along Dimension 1, there appears to
be a transition of brushstroke coarseness, from fine
brushstrokes on the left to coarse brushstrokes on
the right side. Brushstroke coarseness can be one of
the possible features describing the embedding. As
Figure 6B suggests, the least coarse brushstrokes
belong to the modern paintings, while the coarsest ones
belong to the impressionists’ paintings from the 19th
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century. This trend in brushstroke coarseness can be
one of the possible features describing the embedding
and could have been used by participants as a way
to differentiate styles. Another observation is a color
gradient in the Dim1–Dim2 plane, from green apples
on the top left, to yellow and red apples at the bottom.
This gradient suggests that color could also have been
used to differentiate styles. These two suggestions will
be investigated in Experiment 2.

In summary, while the results clearly show a robust
style space, we have yet to analyze it further. As we
tentatively concluded, there appears to be a trend in
Dimension 1 that relates to brushstroke coarseness
and a trend in Dimension 2 related to hue, which
might imply that Dimension 3 could be associated with
color saturation and/or brightness. To quantify these
latent trends, we conducted a second experiment where
we used both perceptual attribute ratings and color
measurements.

Experiment 2: Explaining the
embedding

Marković and Radonjić (2008) made a distinction
between explicit and implicit features. Implicit features
refer to subjective impressions (such as how pleasant
a painting appears) while explicit features describe
“physical properties” of the painting (such as form,
color). We chose to define a number of explicit features
that potentially contribute to style perception of the
apple cut-outs from Experiment 1. Besides subjective
rating data, we measured color statistics to account for
the possible contribution of color.

Method

Perceptual attributes
The nine visual attributes that we used were

Glossiness, Smoothness, Three-dimensionality,
Convincingness, Shadow contrast, Colorfulness,

Brightness, Brushstroke coarseness, and Contrast
between apple and background. Glossiness and
Smoothness are typical object-specific features of
apples while the other features refer more to how the
apple has been depicted. Some of these have been used
previously by, for example, Marković and Radonjić
(2008), who used semantic differentials: Three-
dimensionality as voluminosity–flat, Convincingness
as realistic–abstract, Colorfulness as multicolored–
unicolored, Brightness as light–dark, and Brushstroke
coarseness as strong brushstrokes–soft brushstrokes.
In addition, Convincingness (or realism in different
terms) was used in several previous studies (Berlyne
& Ogilvie, 1974; Ruth & Kolehmainen, 1974; O’Hare
& Gordon, 1977; Chatterjee, Widick, Sternschein,
Smith, & Bromberger, 2010); brushstroke coarseness
(or clear–indefinite in different terms) was also used
in several previous studies (Skager, Schultz, & Klein,
1966; Berlyne & Ogilvie, 1974; O’Hare, 1976; Hasenfus,
Martindale, & Birnbaum, 1983; Chatterjee et al.,
2010). As contrast was concluded to be connected
with perceived glossiness (Marlow & Anderson, 2013;
Di Cicco, Wijntjes, & Pont, 2019), we also included
Shadow contrast and Contrast between apple and
background in our study.

In the online experiment, each attribute scale was
defined by two contrasting concepts, listed in Table 1
as left and right labels at either end of the continuous
rating scale. No additional information was provided
about the attributes to be assessed.

Participants
In total, 224 unique participants recruited from

AMT completed Experiment 2 (95.1% were from North
America). Each of the nine attributes was rated by 30
unique participants, with 270 responses in total. Forty
participants rated more than one attribute.

Stimuli and procedure
The same 48 stimuli as in Experiment 1 were used

in Experiment 2 (as shown in Figure 2). Before the
actual experiment started, each participant would

Attributes Left label Right label

Glossiness matte glossy
Smoothness rough smooth
Three-dimensionality flat three-dimensional
Convincingness unrealistic realistic
Shadow contrast low high
Colorfulness monochrome colorful
Brightness dark bright
Brushstroke coarseness fine coarse
Contrast between apple and background low high

Table 1. Keywords of rating scales for attributes rating.
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Figure 7. Experiment 2 interface for Glossiness. In each trial,
participants were presented with a single cut-out. They could
move the mouse horizontally to adjust the rating slider from
matte to glossy. With a mouse click, they proceeded to the next
trial.

first read the consent form and instructions for the
experiment. They could only proceed if they gave
their consent by clicking “continue” after reading the
consent form. Then they went through 15 practice
trials, to familiarize with the interface and operation.
One stimulus was displayed in each trial (as shown in
Figure 7). Participants were asked to rate a certain
attribute on a continuous scale with six markers and
numerical feedback ranging between 0% and 100%.
Each stimulus rating was repeated three times in a fully
randomized set, resulting in 144 trials for each HIT.

Color measurements
In addition to the subjective ratings, we also

computed color data from the apple images. To do
so, we masked each apple image with a circular mask
with a width of 75% of the image. In this way, colors

almost certainly came from the apple and not from
its surrounding. Colors were converted to CIELCh
color space using the polar coordinates C* (chroma or
relative saturation), Hue (hue angle), and L* (lightness).
Chroma was defined as

√
a∗2 + b∗2 and thus related to

saturation, while Hue was defined by the hue angle, that
is, tan −1(b/a), values normalized between 0 and 1.

Results

Rating agreement
For each attribute, we first performed validity

checks based on average trial time and correlation
with other participants. Data from participants who
spent on average less than 1 second per trial were
omitted (but were financially compensated). This
threshold was based on similar experiments one of the
authors conducted before (Van Zuijlen et al., 2020)
and inspection of the time distribution in the current
experiment. After the exclusion of the participants who
spent less than 1 second, between 19 to 23 participants
remained per attribute. After initial inspection, we
found that a number of these participants seemed to
misinterpret the polarity of the rating (i.e., had large
but negative correlations with the group mean). Because
the number of these cases could vary per attribute and
thus result in unequal group sizes if we used “negative
correlation” as a criterion, we decided to choose the top
15 participants.

As recommended by Martinez, Funk, and Todorov
(2020), we first performed an intraparticipant reliability
analysis before determining the interparticipant
agreement. Figure 8A shows mean values and
standard errors of correlations within three repeated
measurements for each attribute.

As for interparticipant agreement, we first calculated
the median rating over the three repetitions. We then
correlated all the individual median ratings with the
group mean (excluding the individual). Figure 8B shows

Figure 8. (A) Mean values and standard errors of correlations within three repetition measurements for 15 participants of each
attribute. (B) Mean values and standard errors of correlation with a mean for 15 participants of each attribute.
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Figure 9. Three-dimensional MDS configuration embedded with nine attribute vectors and creation year vector.

Adjusted Overall
R square p-value Dim1 p-value Dim2 p-value Dim3 p-value

Smoothness 0.88 0.000*** −0.77 0.000*** 0.08 0.145NS 0.17 0.031*
Brushstroke 0.88 0.000*** 0.79 0.000*** −0.10 0.079NS −0.12 0.167NS
Convincingness 0.85 0.000*** −0.64 0.000*** −0.05 0.919NS 0.06 0.409NS
Contrast 0.70 0.000*** −0.42 0.000*** 0.02 0.709NS −0.29 0.000***
3D 0.68 0.000*** −0.46 0.000*** −0.07 0.248NS −0.08 0.388NS
Colorfulness 0.61 0.000*** −0.01 0.712NS −0.16 0.002** 0.61 0.000***
Background 0.50 0.000*** −0.44 0.000*** 0.00 0.996NS 0.25 0.045*
Glossiness 0.26 0.001*** −0.22 0.002** −0.23 0.01** 0.21 0.104NS
Brightness 0.20 0.005** −0.21 0.026* 0.19 0.101NS 0.43 0.014*

Table 2. Multiple linear regression of perceptual attributes. Note: Brushstroke: Brushstroke coarseness; Contrast: Shadow contrast;
3D: Three-dimensionality; Background: Contrast between apple and background.
*p < 0.05.
**p < 0.01.
***p < 0.001.
NSMeans not significant (p > 0.05).

mean values and standard errors of correlation with the
mean for the participants of each attribute.

We found varying degrees of interparticipant
agreement, which can be interpreted as perceptual
ambiguities (high correlation, low ambiguity and vice
versa). The interparticipant agreement varied between
0.85 and 0.59, with the highest scores for Smoothness,
Brightness, Brushstroke, and Convincingness. The
lowest score was for Colorfulness, with the others
in between. The relatively constant high intrarater
reliability correlations (all above 0.8) in Figure 8A
suggest that differences between observers for the
various attributes are truly due to interobserver
ambiguities.

Multiple linear regression of perceptual attributes
Figure 9 presents the results of the multiple

linear regressions within the MDS embedding

from Experiment 1, using the three dimensions as
independent variables and the attributes as dependent
variables. The orientation of the vector indicates the
direction that yielded the best regression, while the
length indicates strength of the regression (R2). Table
2 denotes corresponding adjusted R square values,
overall p-value, and weights (beta coefficients) plus
p-values for each dimension of the fit per attribute. The
following attributes have a high overall fit within the
MDS embedding: Smoothness, Brushstroke coarseness,
Convincingness, and Shadow contrast. The remaining
attributes are moderately (Three-dimensionality,
Colorfulness, Contrast between apple and background)
or only weakly correlated (Glossiness, Brightness).

As Table 2 shows, all attributes except Colorfulness
can be significantly associated with Dimension 1
from the Experiment 1 embedding, with Glossiness
and Brightness only weakly associated. Dimension
2 has only weak associations with Colorfulness and
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Adjusted Overall
R square p-value Dim1 p-value Dim2 p-value Dim3 p-value

Hue 0.55 0.000*** −0.05 0.008** 0.16 0.000*** −0.05 0.103NS
Chroma 0.55 0.000*** 0.02 0.528NS −0.01 0.802NS 0.53 0.000***
Lightness 0.04 0.186NS −0.07 0.194NS 0.11 0.115NS 0.09 0.401NS

Table 3. Multiple linear regression of color measurements. Note:
**p < 0.01.
***p < 0.001.
NSMeans not significant (p > 0.05).

Figure 10. Comparison between Dim2–Dim3 plane of the MDS embedding (on the left) and 2D plane of Hue and Chroma
measurements (on the right).

Glossiness. Finally, Dimension 3 has a unique high
association with Colorfulness and a moderate one with
Brightness.

Fitting of color data
Table 3 shows per color coordinate (Hue, Chroma,

Lightness) the adjusted R2 values, overall p-value, and
weights plus p-values for each dimension of the MDS
embedding from Experiment 1. Hue and Chroma both
have significant overall fittings, while Lightness is not
significantly associated with the 3D perceptual style
space. Hue is primarily associated with Dimension 2
but also has some weight on Dimension 1. The only
significant weight for Chroma is on Dimension 3. We

also provide a correlation matrix of the nine attributes
and three color measurements in the supplementary
material.

To illustrate the relation between image color
coordinates Hue and Chroma and Dimensions 2
and 3 of the embedding, we plotted the Dim2–Dim3
projection of the embedding next to the Hue–Chroma
plot. The result can be seen in Figure 10. A visual
comparison between the style space and the color
space underscores the strong association of Hue and
Chroma with Dim2 and Dim3, respectively. It should
be noted that although Hue has its primary weight on
Dimension 2, the positive correlation between Hue and
creation year (both highly correlated with Dimension
2) is low (r = 0.35), the two vectors of creation year
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and Hue having a substantial angle of 40.54 degrees
because of the negative correlation between Hue and
Dimension 1. In addition, the relation between creation
year and Dim2 was explored further by calculating
the partial correlation while controlling for Hue (r
= 0.66; p < 0.001). The resulting correlation shows
a small drop with respect to the original correlation
(r = 0.69).

Discussion

All visual attributes (highly to weakly) correlate
significantly with the 3D embedding, as can be seen
by the general adjusted R2 values in Table 2. The most
prominent attributes are Smoothness, Brushstroke,
and Convincingness, and the least contributing
attributes are Brightness and Glossiness. For the color
measurements, Hue and Chroma have significant
overall correlations with the 3D embedding. Lightness
has no significant correlation with the embedding,
which is in line with the low contribution of Brightness
to the perceptual attributes analysis. Finally, the
best-fitting attributes are about spatial aspects of the
paintings to which Convincingness is firmly associated,
where Convincingness in its turn can be associated with
realism according to O’Hare (1976).

Although all attributes (apart from Colorfulness and,
to a lesser extent, Brightness) correlated significantly
with Dimension 1, Brushstroke coarseness and
Smoothness were the strongest ones. Similar findings
were reported in previous studies (Berlyne, 1973; Klein,
1968; O’Hare & Gordon, 1977; Skager et al., 1966;
O’Hare, 1976; Gardner, 1974), with similarly defined
attribute names (e.g., clarity, texture). For instance,
O’Hare (1976) reported in his study that the second
dimension in his findings could be interpreted as clarity
or clear definition of detail, from sharp outlines to
diffuse and indefinite outlines. Gardner (1974) also
reported that texture (brushstroke shapes, lightness
gradients, etc.) makes a significant contribution to
an artist’s style. Elgammal et al. (2018) reported
a correlation between their second dimension and
Wölfflin’s principle of linear versus painterly, which is
connected to clarity of outline (brushstroke).

Dimension 2 corresponded strongly with creation
year, as shown in Experiment 1. Interestingly, none of
the attributes correlated with this dimension, except
relatively weak negative correlations for Colorfulness
and Glossiness. From Experiment 1, it was already
visible that Hue could possibly also be related to
Dimension 2. Indeed, the color statistics for Hue
show a high coefficient of determination (R2 = 0.55),
which originates from a direction mostly in the positive
Dimension 2 direction (the significant weight of 0.16
in Table 3) and to a lesser degree in the negative
Dimension 1 direction (the significant weight of −0.05

in Table 3). This becomes visually clear when again
looking at Figure 5, where a clear transition from red
to green is visible in Dimension 2, and one may also see
more yellow/greenish apples on the left side than on the
right side in Dimension 1. Although the trend is clearly
visible, the interpretation is less straightforward, and we
will continue this in the General discussion.

Dimension 3 is related to Colorfulness, another
suggestion that participants might have used color
information for the similarity judgments in our
study. In addition, fitting the results from the color
measurements suggested Dimension 3 was connected
to Chroma only. It should be noted that the rating
scale of Colorfulness was defined by monochrome to
colorful, and hence it was expected that participants
interpreted the term “colorfulness” as hue diversity,
but, the results suggest that they interpreted the term
more as saturation. In other words, semantic reasons
might have caused different interpretations, which is
also suggested by the lowest interparticipant correlation
for Colorfulness (see Figure 8B, low correlation, high
ambiguity).

In the attribute rating experiment, relatively high
interparticipant correlations were found (Figure 8B),
which is in line with the significant intersubject
consistency reported by Berlyne and Ogilvie (1974).
Next to Brightness, the lowest agreement has been
found for Shadow contrast, Contrast between apple and
background, and Glossiness. While this could partially
be semantic, it may also be visual. Especially since
Glossiness is a term that is generally unambiguous, the
relatively low agreement score could therefore indicate
that there is not much variation in Glossiness within
the 48 apples. Three-dimensionality scored higher,
followed by Smoothness, Brushstroke coarseness, and
Brightness.

General discussion

We have measured the perception of style using
a supposedly constant motif, the apple, by using
square cut-outs of paintings. Gombrich’s (1968)
description of style (“Style is a distinctive, and therefore
recognizable”) was operationalized in two experiments:
the first quantifying distinction by performing a
landmark MDS experiment, the second describing
the resulting embedding, which can be related to
recognizing style. The results reveal an interesting,
nonrandom multidimensional embedding of 48 apple
depictions that are related through various visual
features. The embedding is even more interesting
considering only low-level information was left in the
square cut-outs. Previous studies (Wallraven et al.,
2009; Siefkes & Arielli, 2018) believed humans need
high-level information to perceive different styles,
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which was removed as much as possible in our study. It
suggests that low-level information might be sufficient
for participants to perceive style differences.

In Experiment 1, we also found a strong correlation
between creation year and our perceptual space, with
both a linear fit along Dimension 2 (r = 0.69) and
a circular fit in the Dim1–Dim2 plane (r = 0.70).
These correlations were surprising, considering all the
high-level and mid-level information; in other words, all
the time-related items and surroundings (e.g., clothes,
house interior) that can provide information about
creation time were removed. Indeed, connections
between the perceptual space and paintings’ creation
year have been reported in other studies, but all with the
whole paintings as stimuli. Berlyne and Ogilvie (1974)
found a high multiple correlation (>0.8) between their
3D perceptual space and artists’ year of birth, which
roughly scales with the creation year of the paintings.
And Berlyne and Ogilvie (1974) interpreted the first
dimension in their perceptual space as old versus
modern. Elgammal et al. (2018) also found a temporal
pattern while using computational methods instead
of human judgments. Their embedding was achieved
by training neural networks on WikiArt-style labels.
Thus, similar findings from both human judgment
and computer algorithm indicate a relatively robust
correlation between style and time. And if we consider
the circular fit, the creation year changes in a cycle of
both texture and Hue.

In Experiment 2, we described the 3D perceptual style
space with multiple linear regressions of nine attributes
and colormeasurements. The first dimension of the style
embedding clearly related to many of the attributes,
most prominently Smoothness and Brushstroke
coarseness, but also others like Convincingness,
Shadow contrast, and Three-dimensionality. Except
Convincingness being a higher-level attribute, all
other mentioned attributes are related to spatial
properties. As shown in Figure 9 and Table 2,
Smoothness, Shadow contrast, Three-dimensionality,
and Convincingness all point in the same direction,
which indicates that increasing Smoothness, Shadow
Contrast, and Three-dimensionality could enhance
Convincingness. Similar positive correlations between
Contrast, Three-dimensionality, and Convincingness
was reported in a previous study (Di Cicco et al.,
2019). Smoothness and Brushstroke coarseness have
opposite directions in the 3D embedding, implying
they have an almost perfect negative correlation, which
appears logical as they indeed seem semantic opposites.
But it should be noted that the instructions for the
Smoothness rating experiment explicitly mentioned
the apple skin with the intention that Smoothness
should relate to what is represented (the apple) while
Brushstroke coarseness clearly relates to the medium.
However, our results pointed at a transfer between
these two modes, perhaps because apples painted in

a rough manner cannot easily be judged as being
smooth. Such a phenomenon can be further tested in
controlled experiments where motif and medium are
systematically varied.

The remaining two dimensions are associated
with color. The second dimension is associated with
Hue and the third dimension with Chroma as well
as the attribute Colorfulness. It seems there is some
connection between Hue and creation year since they
are both positively correlated to Dimension 2. Indeed,
from the beginning of the 19th century, the production
of new synthetic pigments exploded, leading to a
variety of colors unheard of in earlier centuries (Ball,
2003; Wilson-Bareau, 1991). Artists such as Rembrandt
had to make do with about a dozen pigments, while
Monet or Van Gogh could literally choose hundreds
of different pigments. This has led to an increase of
saturation of violets and greens, for example. Another
possibility is that it shows the history of the painted
objects, in our case apples. Despite their seemingly
independence of historical developments in fashion or
the development of technology, it is quite possible that
European cultivated apples have a history of their own,
in which there has been a gradual increase in saturated
green varieties over the past century or so. However,
even if we only consider the linear fit of the creation
year with Dimension 2, this time dimension still cannot
be fully explained by Hue change, given the creation
year and Dimension 2 have a high correlation (r = 0.69),
while the creation year and Hue have a low correlation
(r = 0.35), and the two vectors of the creation year and
Hue have a substantial angle of 40.54 degrees between
them. This conclusion is convincingly supported by the
fact that the partial correlation between Dimension 2
and creation year, controlling for Hue, has a value of
0.66, being close to the original correlation.

Although color measurements could not explain
the time dimension, the contribution of color in style
perception was robust and also reported in early
studies. Gardner (1974), for example, concluded that
both color and texture played a significant role in style
detection. Interestingly, Dimension 1 in our study
is mainly associated with spatial attributes, such as
brushstroke coarseness, smoothness, shadow contrast,
and three-dimensionality, which can also be interpreted
as texture. Hence, we reached the same conclusion
as Gardner (1974) that texture and color are two
important variables for pictorial style perception.

In this study, we showed that in judging matters of
style, participants in our two experiments demonstrated
high intersubjective agreement, in line with earlier
studies on the perception of style in art. We also
found that participants by and large followed the
historical timeline when performing their matching
tasks. In our case, this concerned only small details of
sometimes much larger paintings (our apple stimuli),
thus removing such important aspects as composition,
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mood, or general intention of the work of art as a
whole. With regard to paintings, people are apparently
quite capable of looking at the “how” of a painted
subject. They show a definite sense of style.

Experiment 2 showed some of the perceptual
ingredients on which this sense of style may rely, but
there did not seem to be a single, one-dimensional
perceptual factor explaining the results. Perhaps our
sense of pictorial style is just one member of a much
larger family of human sensitivities for the “how” of
something made or done by other humans: for example,
handwriting styles, dialects, speech habit, and dancing
styles (Hasenfus et al., 1983). In all such activities,
people detect various components simultaneously, as
if they were Gestalts. Further research on recurring
motifs in the history of art (e.g., hands, textile folds)
may get us closer to discovering the various roots of
this important sense of style in humans.

Keywords: style perception, multidimensional scaling,
art history, property estimation
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