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A B S T R A C T

Inspired by the attractive features of least-squares theory in many practical applications, this contribution
introduces least-squares-based deep learning (LSBDL). Least-squares theory connects explanatory variables
to predicted variables, called observations, through a linear(ized) model in which the unknown parameters
of this relation are estimated using the principle of least-squares. Conversely, deep learning (DL) methods
establish nonlinear relationships for applications where predicted variables are unknown (nonlinear) functions
of explanatory variables. This contribution presents the DL formulation based on least-squares theory in linear
models. As a data-driven method, a network is trained to construct an appropriate design matrix of which
its entries are estimated using two descent optimization methods: steepest descent and Gauss–Newton. In
conjunction with interpretable and explainable artificial intelligence, LSBDL leverages the well-established
least-squares theory for DL applications through the following three-fold objectives: (i) Quality control
measures such as covariance matrix of predicted outcome can directly be determined. (ii) Available least-
squares reliability theory and hypothesis testing can be established to identify mis-specification and outlying
observations. (iii) Observations’ covariance matrix can be exploited to train a network with inconsistent,
heterogeneous and statistically correlated data. Three examples are presented to demonstrate the theory. The
first example uses LSBDL to train coordinate basis functions for a surface fitting problem. The second example
applies LSBDL to time series forecasting. The third example showcases a real-world application of LSBDL
to downscale groundwater storage anomaly data. LSBDL offers opportunities in many fields of geoscience,
aviation, time series analysis, data assimilation and data fusion of multiple sensors.
1. Introduction

Big data is undoubtedly the twenty-first century phenomenon,
which deals with massive amounts of data in many areas of science,
engineering and industry. Though this provides great opportunities,
it also confronts us with unprecedented challenges regarding their
processing and interpretation (Williams, 2017). As a part of artificial
intelligence, machine learning (ML) algorithms have been widely used
in a variety of applications in computer vision, geoscience, medicine,
voice and face recognition, and email filtering. ML is one of today’s
most rapidly growing technical fields that lies at the core of artificial
intelligence (AI) and data science (Jordan and Mitchell, 2015). ML
builds a model based on sample data itself, where it is rather difficult
to develop a (linear) mathematical model to connect the explanatory
variables to predicted ones (Hu et al., 2020). There are therefore
demanding needs to develop novel machine learning and artificial
intelligence methods that help in processing and interpretation of such
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data. This contribution is an attempt to formulate the ML method using
the standard least squares theory.

Deep learning (DL) describes a specific family of machine learning
algorithms that are used to train complex prediction models (Hinton
et al., 2006). DL, successfully used to several application areas, is a
relatively new and novel methodology receiving much attention. For
example, in the classification of handwritten digits of the Modified
National Institute of Standards and Technology (MNIST) data set, a DL
method has set a record to have an error rate of only 0.21% (Wan
et al., 2013). There are different algorithms for DL including deep
feedforward neural networks (D-FFNN), convolutional neural networks
(CNNs), deep belief networks (DBNs), autoencoders (AEs), and long
short-term memory (LSTM) networks. For an introductory review on
these DL techniques the reader may refer to Emmert-Streib et al.
(2020).

Extracting meaningful patterns from big data for decision-making,
prediction and approximation poses a few challenges in DL. They range
https://doi.org/10.1016/j.engappai.2024.109376
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from format variation of raw data, noisy and poor quality data, high
dimensionality, and scalability of algorithms (Najafabadi et al., 2015)
to implementation problems like overfitting, statistical inference of re-
sults and the so-called saturation phenomenon. For example, it is rather
difficult to detect and identify outliers from training data in machine
learning techniques (Belhadi et al., 2020). These are mainly related to
the ‘black-box’ problem associated to this technique. The opposite of
black-boxness is transparency and there is ongoing research to increase
transparency in the current AI domain. For a review on eXplainable AI
(XAI), its concepts, taxonomies, opportunities and challenges we refer
to Arrieta et al. (2020). To address parts of the above problems we
put an attempt to make a connection between input and output by
establishing a linear structure in the deep learning black boxes. The
linear least squares theory can lay this relation.

Although linear model theory has a variety of successful applica-
tions, its applicability is limited. This is because the relation between
the explanatory and predicted variables is not always linear. As pre-
viously explained, the use of machine learning in general and deep
learning in particular has a variety of applications in handling these
kinds of problems. These learning methods are an application of ar-
tificial intelligence (AI) in which a network is trained on a series
of training examples, and then applied to make informed decisions.
The performance of the trained network is usually tested on a testing
dataset. The technique is both formulated in a supervised and unsu-
pervised framework. In its supervised variant, the training datasets
are designed to train algorithms into classifying data, or predicting
outcomes accurately. Unsupervised learning uses the algorithms to
analyze and cluster unlabeled data sets by discovering hidden patterns
in data without the need of human intervention. This contribution
considers the supervised framework.

Supervised learning can be categorized as two types of problems:
classification and regression (Criminisi et al., 2012). The former uses
an algorithm to accurately assign test data into specific categories, such
as separating hand-written digits from 0 to 9. The latter is a supervised
method that uses an algorithm to understand the relationship between
dependent and independent variables. They are usually helpful for
predicting numerical values based on different data points, such as
stock/sale/weather forecasting formulated in a linear regression or
stochastic-based regression models. To further highlight the difference
between the two, we note that classification is about predicting a label
and regression is about predicting a quantity. Therefore the output
variable in regression is numerical (or continuous), whereas for clas-
sification, it is categorical (or discrete) (Liaw et al., 2002). Regression
is the subject of discussion in this contribution.

Least squares (LS) and deep learning (DL) have been widely used in
many engineering applications. A complete review of these methods is
beyond the scope of the present contribution, instead we briefly review
some relevant literature on the intersection. The available literate on
the theory of LS and DL mainly relies on the individual use (and
comparison) of these methods (Zeng et al., 2018; Chang and Song,
2023), DL with an LS cost function (Cai et al., 2020; Jin et al.,
2024), DL with an assisted LS method (Wang et al., 2021b; Singh
et al., 2024), or a combination of LS and DL (Zhang et al., 2019b;
Jin et al., 2024). There is also research that explores the integration
of LS optimization techniques with deep learning models to enhance
interpretability, reliability, and performance (Mao et al., 2017). They
introduced an LS generative adversarial network that improved training
stability, and hence could address issues such as vanishing gradients.
The LS support vector machine has been used to enhance classification
tasks in high-dimensional data. This method assigns specific penalties
to samples based on their susceptibility to misclassification and their
position relative to the decision boundary (Zhao et al., 2022). Although
LS has been widely used in many engineering problems, its combination
with DL is rather limited. There is no rigorous formulation of LS and
DL methods that enables to take advantage of the combination of

both methods: DL methods to capture complex non-linearity and LS

2 
theory for appropriate statistical inference of results. This contribution
represents a step forward in integrating these two approaches within
a theoretical framework. This alignment enhances the interpretability
and transparency of the model, and hence contributes to the goals of
XAI.

A question arises as to whether one can formulate the DL algorithm
in the standard least squares theory. This turns out to be the case
and is the focus of the present contribution. We will elaborate to see
how such relation can be made. We make use of a feature (input)
matrix, consisting of explanatory variables, and apply the gradient
descent methods to establish a design matrix. The design matrix is
estimated through a convolution of the feature matrix with a so-called
weight matrix, which is unknown. To allow for possible non-linearity,
the convolved matrix is fed to an appropriate ‘activation function’
(see later Eq. (15)). Having DL formulated in the framework of the
linear least squares theory opens a wide range of opportunities and
challenges. The method allows to apply the existing theory of the
least squares method to the DL problem. For example, the precision
of the predicted values/decisions (prediction error) can directly be
evaluated through this formulation. Also hypothesis testing referring
to detection, identification and validation (DIA) can be extended to the
DL problem (Teunissen, 2000a, 2018).

As mentioned, DL methods face challenges like the black-box prob-
lem and the need for vast amounts of training data. These issues
underscore the necessity for developing DL models that are able to
effectively capture fundamental physical phenomena, such as structure
and symmetry. There is increasing interest in integrating physics prin-
ciples into DL, leading to the development of physics-informed neural
networks (PINNs) models (Raissi et al., 2019; Karniadakis et al., 2021).
PINNs embed mathematical models of physical laws, often represented
as partial differential equations (PDEs), into the loss function during
training (Lehmann et al., 2023). They can therefore integrate physics
laws into the learning process, which improves performance with lim-
ited data (Karniadakis et al., 2021) and addresses the explainability
and interpretability of DL methods (Cuomo et al., 2022). They provide
prior information through a linear system of equations with uncertainty
represented by a covariance matrix (Menke, 2015). By incorporat-
ing prior knowledge, PINNs reduce the need for extensive data. The
least squares method can embed this prior knowledge using soft and
hard physics-based constraints into DL through a unified least-squares
formulation (Amiri-Simkooei, 2019).

This paper is organized as follows. Section 2 reviews the linear least
squares theory. In particular, the univariate and multivariate model will
be discussed. Section 3 presents the rationale behind the development
of least-squares-based deep learning (LSBDL) and its transparency.
Section 4 generalizes the linear(ized) least squares theory to LSBDL. The
design matrix is trained to minimize the least squares objective function
using the steepest descent (SD) method. Special cases, linked to what
is already known in literature, will also be discussed. Section 5 gives
the Gauss–Newton (GN) formulation of LSBDL, known for its faster
convergence rate compared with SD. Section 6 embeds LSBDL within
the least squares framework, which is twofold. (i) determining quality
control measures like covariance matrix of prediction, (ii) using least-
squares theory to detect model errors and outliers. Section 7 elaborates
to further developed different aspects of LSBDL in deeper networks,
for example exploration of multi-layer LSBDL. Section 8 provides an
overview of highlights, opportunities, and challenges associated with
LSBDL, along with its XAI perspective. For example, the use of co-
variance matrix is crucial to express (co)variances among observations,
particularly when fusing different data sources. This matrix plays an
important role in training networks, even when the data are incon-
sistent, heterogeneous, or statistically correlated. Section 9 illustrates
the performance of the proposed method using three examples. In

Section 10 we draw some conclusions.



A. Amiri-Simkooei et al.

𝑛
𝐴
s
o

𝑥

T
t

w
p
e

𝑄

v
t
u
r
𝑌
v
m
2

𝑌

i
1
m
f
c

𝖣

w
v
(
o
s
c
3
i
s

𝑋

T

𝑌

w
p

h
u

𝑌
c
f

t
t
i
t
d
A

𝑇

w
c
i
d

𝑇

w

t
t
t
a
p
‘
a
p

w
T

Engineering Applications of Artiϧcial Intelligence 138 (2024) 109376 
2. Standard linear least squares theory

This section reviews the least squares theory in linear model of
observation equations. Consider the following linear model

𝑦 = 𝐴𝑥 + 𝑒, 𝖣(𝑦) = 𝑄𝑦 (1)

where 𝑦 ∈ R𝑚 is a vector of 𝑚 observations, 𝑥 ∈ R𝑛 is a vector of
unknown parameters, 𝑒 ∈ R𝑚 is a vector of 𝑚 residuals (errors),
∈ R𝑚×𝑛 is a given design matrix, and 𝑄𝑦 ∈ R𝑚×𝑚 is the positive

emi-definite covariance matrix of observables 𝑦. 𝖣 is the dispersion
perator. The least squares estimate of the unknown parameters is

̂ = (𝐴𝑇𝑄−1
𝑦 𝐴)−1𝐴𝑇𝑄−1

𝑦 𝑦 (2)

he least squares estimates of the observations and residuals are respec-
ively as follows:

𝑦̂ = 𝑃𝐴𝑦 and 𝑒 = 𝑃⟂
𝐴 𝑦 (3)

here 𝑃𝐴 = 𝐴(𝐴𝑇𝑄−1
𝑦 𝐴)−1𝐴𝑇𝑄−1

𝑦 and 𝑃⟂
𝐴 = 𝐼 − 𝑃𝐴 are two orthogonal

rojectors (Teunissen, 2000b). The covariance matrices of the above
stimators are

𝑥̂ = (𝐴𝑇𝑄−1
𝑦 𝐴)−1, 𝑄𝑦̂ = 𝑃𝐴𝑄𝑦 and 𝑄𝑒 = 𝑃⟂

𝐴𝑄𝑦 (4)

The above model of observation equations is referred to as the uni-
ariate model. It is because the model relates one observation vector 𝑦
o one unknown vector 𝑥. To keep the generality of our formulation, we
se a so-called multivariate linear model. Such a model can generally
elate 𝑟 observation vectors, all collected in an 𝑚× 𝑟 observation matrix
= [𝑦1,… , 𝑦𝑟] (each 𝑦𝑖, 𝑖 = 1,… , 𝑟 is an 𝑚-vector), to 𝑟 unknown

ectors, all collected in an 𝑛 × 𝑟 unknown matrix 𝑋 = [𝑥1,… , 𝑥𝑟]. A
ultivariate linear model is of the form (Koch, 1999; Amiri-Simkooei,
009)

= 𝐴𝑋 + 𝐸 (5)

n which the same 𝑚 × 𝑛 design matrix 𝐴 connects 𝑦𝑖 to 𝑥𝑖 for all 𝑖 =
,… , 𝑟, and 𝐸 = [𝑒1,… , 𝑒𝑟] is an 𝑚 × 𝑟 residual matrix. The covariance
atrix of 𝑌 is referred to as the (co)variance among entries 𝑦𝑖𝑗 and 𝑦𝑘𝑙,

or 𝑖, 𝑘 = 1,… , 𝑚 and 𝑗, 𝑙 = 1,… , 𝑟. It is more convenient to express this
ovariance matrix as a Kronecker product ⊗ of two matrices as

(𝑌 ) = 𝑄vec(𝑌 ) = 𝛴 ⊗𝑄 (6)

here vec(.) is the vector operator converting a matrix into a column
ector, the 𝑟× 𝑟 matrix 𝛴 expresses covariances among different classes
output), and the 𝑚×𝑚 matrix 𝑄 expresses covariances among different
bservations within a class. For example, in global navigation satellite
ystem (GNSS) position time series, the (co)variances among three
oordinate components (north, east and up) can be expressed by a
× 3 matrix 𝛴, whereas the time correlation of individual time series

s expressed by an 𝑚 × 𝑚 matrix 𝑄 (Amiri-Simkooei, 2013). The least
quares estimate of the unknown parameters is (Amiri-Simkooei, 2007)

̂ = (𝐴𝑇𝑄−1𝐴)−1𝐴𝑇𝑄−1𝑌 (7)

he least squares estimates of the observation and residual matrices are

̂ = 𝑃𝐴𝑌 , and 𝐸̂ = 𝑃⟂
𝐴 𝑌 (8)

here 𝑃𝐴 = 𝐴(𝐴𝑇𝑄−1𝐴)−1𝐴𝑇𝑄−1 and 𝑃⟂
𝐴 = 𝐼 − 𝑃𝐴 are two orthogonal

rojectors. The covariance matrices of the above estimates are

𝑄vec(𝑋̂) = 𝛴 ⊗ (𝐴𝑇𝑄−1𝐴)−1,

𝑄vec(𝑌 ) = 𝛴 ⊗ 𝑃𝐴𝑄,

𝑄vec(𝐸̂) = 𝛴 ⊗ 𝑃⟂
𝐴𝑄,

(9)

aving dimensions 𝑛𝑟 × 𝑛𝑟, 𝑚𝑟 × 𝑚𝑟, and 𝑚𝑟 × 𝑚𝑟, respectively. The

nivariate model is a special case of the multivariate model with 𝑟 = 1, 𝑛

3 
= 𝑦, 𝑋 = 𝑥, 𝐸 = 𝑒, 𝐴 = 𝐴, 𝛴 = 𝜎2, 𝑄 = 𝑄, giving 𝑄𝑦 = 𝜎2𝑄 (𝜎2 is
alled the variance of unit weight). Therefore we stay with the general
ormulation of the multivariate model.

The least squares formulation allows to apply hypothesis testing to
he observations and the linear model. In particular one can test for
he presence of inconsistencies in the functional model such as outliers
n observations. If 𝛴 and 𝑄 are known, a commonly used measure is
he overall model test (OMT). It is based on the following measure of
iscrepancy on the quadratic form of the residuals (Teunissen, 2000a;
miri-Simkooei, 2007)

𝑟(𝑚−𝑛) = tr(𝐸̂𝑇𝑄−1𝐸̂𝛴−1) (10)

here tr(.) is the trace of a matrix. The above test statistic has a
hi-squared distribution 𝜒2 with 𝑑𝑓 = 𝑟(𝑚 − 𝑛) degrees of freedom,
.e. 𝑇𝑟(𝑚−𝑛) ∼ 𝜒2(𝑟(𝑚 − 𝑛), 0), provided the observations are normally
istributed. In the univariate case, we have (𝑟 = 1)

𝑚−𝑛 = 𝑒𝑇𝑄−1
𝑦 𝑒 ∼ 𝜒2(𝑚 − 𝑛, 0) (11)

here 𝑄𝑦 = 𝜎2𝑄 is assumed known.
The above test can be performed at a given confidence level. If

he test is rejected it indicates that there are unresolved issues on
he consistency between the model and observations. This is referred
o as the ‘detection’ step in the DIA (detection, identification and
daptation) steps (Teunissen, 2000a). This can possibly be due to the
resence of outliers in the observations, which can be identified in the

identification’ step using the w-test statistics. The w-test is widely used
s a datasnooping procedure to screen individual observations for the
resence of an outlier (Baarda, 1968). To test the 𝑖th observation, the

w-test statistics is of the form (Teunissen, 2000a)

𝑤𝑖 =
𝑐𝑇𝑖 𝑄

−1
𝑦 𝑒

√

𝑐𝑇𝑖 𝑄−1
𝑦 𝑄𝑒𝑄−1

𝑦 𝑐𝑖
(12)

hich has a standard normal distribution under the null hypothesis.
he vector 𝑐𝑖 = [0,… , 1,… , 0]𝑇 is a canonical unit vector, having all

zeros with a one as its 𝑖th entry; 𝑖 ranges from 1 to 𝑚 to check for all
observations.

A recently extended DIA method takes into account the detection,
identification and adaptation steps at the same time. Estimation and
testing are thus combined in this procedure (Teunissen, 2018).

3. Problem description of LSBDL

The theory of the previous section will be applied to the least-
squares-based deep learning (LSBDL) problem, thus making LSBDL
transparent and explainable. LSBDL, as a nonlinear problem, should
be formulated in the nonlinear least squares framework. Two gradient
descent methods of LSBDL are proposed: (1) Steepest descent method
(Section 4), and (2) Gauss–Newton method (Section 5), see Teunissen
(1990).

3.1. Definition and notation

Before we start formulating LSBDL, we briefly define some standard
terms used in AI: Training involves estimating unknown parameters
𝑋 and weights (𝑊 ). The training rate 𝛼 controls the iterative update
of weight parameters in the gradient methods. Activation functions
are non-linear differentiable functions that introduce non-linearity.
Regularization techniques enhance generalization capability by using
a parameter 𝜅 to balance bias and variance. The momentum parameter
𝜇 enhances training speed and accuracy by incorporating the history of
gradients. For more information, we refer to Bishop and Bishop (2024).

For the sake of brevity/convenience, the following notations are
interchangeably used in the context of this paper:

𝑥 = vec(𝑋): an 𝑛𝑟-vector of unknown parameters reshaped from the
̂
× 𝑟 unknown matrix 𝑋; 𝑥̂ = vec(𝑋) is the least squares estimate for
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𝑥 (𝑛𝑟 entries). It is noted that vec(.), the vector operator, converts the
atrix 𝑋 into a column vector 𝑥, which is convenient to express the
ultivariate variables as the univariate variables.
𝑦 = vec(𝑌 ): an 𝑚𝑟-vector of observations reshaped from the 𝑚 × 𝑟

observation matrix 𝑌 ; 𝑦̂ = vec(𝑌 ) is the least squares estimate for 𝑦 (𝑚𝑟
entries).

𝑒 = vec(𝐸): an 𝑚𝑟-vector of residuals reshaped from the 𝑚×𝑟 residual
matrix 𝐸; 𝑒 = vec(𝐸̂) is the least squares estimate for 𝑒 (𝑚𝑟 entries).

𝑤 = vec(𝑊 ): a 𝑘𝑛-vector of unknown weights reshaped from the 𝑘×𝑛
eight matrix 𝑊 ; 𝑤̂ = vec(𝑊̂ ) is the least squares estimate for 𝑤 (𝑘𝑛

entries).
The above notations can accordingly be generalized to the covari-

ance matrix of the above variables; for example 𝑄𝑦 = 𝑄vec(𝑌 ) is the
covariance matrix of 𝑦 = vec(𝑌 ).

An activation function and its derivative are denoted as 𝚊(.) and
𝚊′(.), respectively, with their matrix counterparts as 𝙰(.) and 𝙰′(.). For
example, a sigmoid activation function and its first derivative are

𝐴 = 𝙰(𝑢) = 1∕(1 + 𝑒−𝑢), 𝐴′ = 𝙰′(𝑢) = 𝐴 − 𝐴 ⊙ 𝐴 (13)

where ⊙ is the element-wise Hadamard product. In principle, other
activation functions can be used as well (Ramachandran et al., 2017).

3.2. Problem description

In the classical set-up of the multivariate linear model 𝑌 = 𝐴𝑋 +𝐸,
the design matrix 𝐴 and the observation matrix 𝑌 are assumed known.
This is however not the case for our deep learning model as the design
matrix 𝐴 is unknown. The design matrix is then to be trained in an
iterative procedure in a supervised learning algorithm. We would still
stick on capital 𝐴 for this design matrix, which is also abbreviated
for the ‘activation’ function. A combination of different activation
functions are usually used in DL algorithms (see later Eq. (104)).

To train the design matrix 𝐴, we need input data. Each row of
the input data can in principle create one row of 𝐴. In the classical
linear model, this is referred to as the explanatory variables or the
so-called input variables. For example, in a linear regression model
𝑦(𝑢) = 𝑥1𝑢 + 𝑥2 these explanatory variables are [𝑢, 1], which is a
linear function of the input variable 𝑢. There are however examples
that are not linear functions of the input variable. The sine fitting
problem 𝑦(𝑡) = 𝑥1 sin(𝜔𝑡) + 𝑥2 cos(𝜔𝑡) + 𝑥3, with the basis functions
[sin(𝜔𝑡), cos(𝜔𝑡), 1], leads to a nonlinear function of input variable 𝑡. In
a curve fitting problem, a 𝑝-order polynomial 𝑦(𝑢) = 𝑥1𝑢𝑝+⋯+𝑥𝑝𝑢+𝑥𝑝+1
can lead to the basis functions [𝑢𝑝, ⋯ , 𝑢, 1], which are also nonlinear
functions of input variable 𝑢. Although the above basis functions are
nonlinear, they are entries of the design matrix 𝐴, and therefore the
linear least squares theory can directly be used to estimate 𝑥𝑖’s.

For deep learning applications, the above-mentioned basis func-
tions, and therefore elements of 𝐴, are not directly available. We start
with the explanatory variables (input features) 𝑑 = [𝑑1,… , 𝑑𝑘]𝑇 . In the
DL literature they are also called neurons. The observation (output) 𝑦
is assumed to be an (unknown) nonlinear function 𝑦 = 𝑓 (𝑑, 𝑥) of the
input variables. An unknown linear combination of the input variables,
𝑑𝑇𝑤 + 𝑏, can be used to approximate 𝑦, where the entries of 𝑤, the
weights, and 𝑏, the bias term are unknown. This equation can provide
a linear relation between input 𝑑 and output 𝑦. To introduce the non-
linearity, an activation function 𝚊(.) can be used. The input of the
activation function is 𝑑𝑇𝑤+𝑏, and therefore we can have 𝑦 = 𝚊(𝑑𝑇𝑤+𝑏).
An important feature of an activation function is its ability to add non-
linearity and hence to allow capturing any complexity in the data. This
is the basics of all data-driven ML techniques. A generalized form of
the above equation can be expressed as

𝑦 = 𝑓 (𝑑, 𝑥) = 𝑥1𝚊(𝑑𝑇𝑤1 + 𝑏1) +⋯ + 𝑥𝑛𝚊(𝑑𝑇𝑤𝑛 + 𝑏𝑛) (14)

where 𝑥𝑖’s along with 𝑤𝑖’s and 𝑏𝑖’s are to be estimated. Eq. (14) is in
conjunction with the universal approximation theorem expressing that

finite linear combinations of appropriate activation functions (sigmoid a

4 
for example) can uniformly approximate any continuous real-valued
function of 𝑘 real variables with an arbitrary precision (Cybenko, 1989;
Hornik et al., 1989; Kruse et al., 2011; Costarelli et al., 2013).

We denote the feature matrix as an 𝑚 × 𝑘 matrix 𝐷, where 𝑚 is the
number of observations and 𝑘 is the number of features (𝑘 features
per observation). We present a methodology to train a design matrix
𝐴 and hence to establish a linear model of observation equations. As
indicated in Eq. (14) the entries of 𝐴, the basis functions, are indeed
nonlinear functions of the input variables 𝑑’s. This is conceptually a
simple idea, similar to the ‘sine’ or ‘curve’ fitting problems mentioned
above. Although we take advantage of the linear least squares theory
to estimate 𝑥𝑖’s, the entries of 𝐴 are (unknown) nonlinear functions of
input variables.

For an observation 𝑦𝑖 with input variables 𝑑𝑖 (𝑖th row of 𝐷), the
entries of 𝐴 are expressed as 𝑎𝑖𝑗 = 𝚊(𝑑𝑇𝑖 𝑤𝑗 +𝑏𝑗 ), 𝑖 = 1,… , 𝑚, 𝑗 = 1,… , 𝑛,

here 𝑑𝑖 is a given 𝑘-vector, 𝑤𝑗 is a 𝑘-vector of unknown weights
nd 𝑏𝑗 is a scalar bias term. The weights and biases (both included in
eight matrix 𝑊 ∈ R𝑘×𝑛) are the commonly used learnable parameters
f all ML models. In matrix notation, this can be reformulated to the
ollowing system of equations:

= 𝙰(𝐷𝑊 )𝑋 + 𝐸, 𝑄vec(𝑌 ) = 𝛴 ⊗𝑄 (15)

here 𝙰(.) = 𝚊𝑖𝑗 (.) ∈ R𝑚×𝑛, the design matrix, is an element-wise
ctivation function introduced above. The design matrix 𝐴 = 𝙰(𝐷𝑊 )
s not known because the weights and biases are unknown beforehand,
nd they need to be trained in the estimation process. The above system
s nonlinear with respect to 𝑊 . However, when these two matrices are
iven, the system becomes a linear system of equations with respect to
. We note that the weight matrix 𝑊 also includes unknowns related

o the biases 𝑏𝑗 , and therefore the feature matrix 𝐷 is augmented to
ontain the summation vector (a vector containing all ones).

In summary, our choice for Eq. (15) is motivated by the following
hree-fold arguments: (i) This equation is a multivariate version of
q. (14), which can be expressed as 𝑦 = 𝐴𝑥 + 𝑒 (univariate model).
he same basis functions and therefore the same design matrix 𝐴 are
sed to estimate the coefficients 𝑥𝑖’s, which can vary from one model to
nother. This can happen in multiple output regression models, applied
or example to forecast the multi-step ahead time series variables. (ii) In
L regression literature, the activation function of the last layer is usu-
lly the fully connected layer, which is set to be an identity map as I(𝑈 ) =

(Selmic and Lewis, 2002; Kawaguchi, 2016; Bakhshi and Chalup,
021). Identity maps provide a structural regularity between the input
nd output and helps the network to produce a better representation
f the output (He et al., 2016b; Kumar and Ningombam, 2018; Zhang
t al., 2019a). The formulation of Eq. (15) automatically imposes the
dentity map in the last layer because we can have I (𝙰(𝐷𝑊 )𝑋) =
(𝐷𝑊 )𝑋. Therefore this equation is seen as the transposed version of a
ully connected feed-forward neural network having one hidden layer
nd an identity activation function for its output layer (Kawaguchi,
016). A similar formulation also holds true later in Eq. (104) for the
ultilayer model. (iii) The linear model structure introduced in Eq. (15)

llows to apply the existing least squares theory to DL applications. For
xample, the global minimizer of the least squares problem for 𝑋 is au-
omatically ensured (see Eq. (7)). Hypothesis testing and other existing
heories in the DIA procedure can directly be applied to this model,
ee Baarda (1968), Teunissen (2000a, 2018). These characteristics of
SBDL are closely tied to XAI.

A final remark on the formulation of LSBDL is in order. The relation
etween different matrix dimensions 𝑘, 𝑛 and 𝑚 plays an important
ole in this formulation. As an overdetermined system of equations, the
umber of observations should be larger than the number of unknowns
n a least squares problem (𝑚 > 𝑛). The number of unknowns 𝑛,
columns of 𝐷𝑊 ), depends on the complexity of the problem. If we
ssume 𝐷 is of full-column rank, we have rank(𝐷) = 𝑘. It is known,
rom linear algebra, that (𝐷) = (𝐷𝑊 ), with (.) the range space of

matrix, provided the 𝑘×(𝑛 = 𝑘) matrix 𝑊 is a regular matrix (Strang,
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1988). This indicates that 𝐷𝑊 is also of full-column rank. However
when 𝑊 has more columns than rows, i.e. when 𝑛 > 𝑘, matrix 𝐷𝑊
cannot be of full-column rank. This does not however hold for 𝙰(𝐷𝑊 ),
as it can still be of full-column rank. This is due to the non-linearity
nature of the activation function 𝙰(.) applied, which violates the ‘linear
dependence’ theory. This can make the LSBDL theory more attractive
and flexible.

4. Steepest descent (SD) formulation of LSBDL

4.1. Derivation of SD gradient

The design matrix 𝐴 = 𝙰(𝐷𝑊 ) is unknown, which is to be trained/
estimated using the least squares method. Having matrices 𝑌 and 𝐷
available, the supervised learning leads to the following least squares
criterion:

(𝑊̂ , 𝑋̂) = arg min
(𝑊 ,𝑋)

1
2
‖𝑌 − 𝙰(𝐷𝑊 )𝑋‖

2 (16)

where ‖.‖2 is weighted by 𝛴 ⊗ 𝑄. If we assume that 𝐴 = 𝙰(𝐷𝑊 )
is given, we may then solve for the following minimization problem
‖𝐸‖

2 = ‖𝑌 − 𝐴𝑋‖

2 → min. We thus follow a two-step procedure
to estimate 𝑋 and 𝑊 . The global minimizer for 𝑋 is known to be
𝑋̂ = (𝐴𝑇𝑄−1𝐴)−1𝐴𝑇𝑄−1𝑌 . This will then accordingly give

𝑊̂ = argmin𝑊
1
2‖𝑌 − 𝐴(𝐴𝑇𝑄−1𝐴)−1𝐴𝑇𝑄−1𝑌 ‖2

= argmin𝑊
1
2‖𝑌 − 𝐴𝑋̂‖

2
(17)

here 𝐴 = 𝙰(𝐷𝑊 ) and 𝑌 − 𝐴𝑋̂ = 𝐸̂. Our aim is thus firstly to
inimize an objective function that depends only on the nonlinear
arameters 𝑊 , and then to proceed to estimate the linear parameters
(the first two representations in Eq. (17)). This two-step procedure is

onceptually similar to solving a nonlinear least squares problem with
eparable variables (Golub and Pereyra, 1973; Teunissen, 1988a). For
xample, in the sine fitting problem 𝑦(𝑡) = 𝑥1 sin(𝜔𝑡) + 𝑥2 cos(𝜔𝑡) + 𝑥3,

we may follow the above two-step procedure to estimate the nonlinear
unknown 𝜔 along with the linear unknowns 𝑥𝑖, 𝑖 = 1, 2, 3. Alternatively
we may also firstly estimate 𝑋̂, and then proceed to estimate 𝑊 (the
second representation in Eq. (17)). Both methods can be shown to
provide identical results for SD.

The objective function 𝜙 should be minimized with respect to the
unknown weights 𝑊 . This nonlinear minimization problem can be
solved by different optimization methods. Here, we use the SD method,
which is a first-order iterative optimization algorithm for finding a local
minimum of a differentiable function. The SD method modifies the
weights using the following iterative manner (Teunissen, 1990):

𝑊 (𝑡+1) = 𝑊 (𝑡) − 𝛼∇𝜙(𝑊 ) (18)

where 𝑊 (𝑡+1) is the updated weight matrix at iteration 𝑡 + 1, 𝛼 is
the learning rate, a predefined positive scalar, and ∇ is the gradient
operator. While we derive an analytical form for the gradient to ensure
simplicity and ease of implementation, users may alternatively employ
automatic differentiation for numerical differentiation of the cost func-
tion in Eq. (17), see Baydin et al. (2018). To calculate ∇𝜙(𝑊 ), a few
partial derivatives are required to be obtained, which are based on the
following theorem:

Theorem 1. Let the objective functions be of the forms

𝜙1 = tr(𝐵𝙰(𝐷𝑊 )𝐶) = tr(𝐵𝐴𝐶) (19)

and

𝜙2 = tr
(

𝐸(𝐵𝙰(𝐷𝑊 ))−1𝐶
)

= tr
(

𝐸(𝐵𝐴)−1𝐶
)

(20)

where 𝐵, 𝐶, 𝐷, 𝐸, and 𝑊 are given matrices of appropriate size, 𝑊

ontains running unknown variables, and 𝙰(.), the activation function, is
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assumed to be differentiable. Then their partial derivatives with respect to
matrix 𝑊 are

𝜕𝜙1
𝜕𝑊

= 𝐷𝑇 (𝐵𝑇𝐶𝑇 ⊙ 𝐴′) (21)

nd

𝜕𝜙2
𝜕𝑊

= −𝐷𝑇 (𝐵𝑇 (𝐴𝑇𝐵𝑇 )−1𝐸𝑇𝐶𝑇 (𝐴𝑇𝐵𝑇 )−1 ⊙ 𝐴′) (22)

espectively, where ⊙ is the element-wise Hadamard product applied to two
atrices of the same dimension, 𝐴 = 𝙰(𝐷𝑊 ) is the design matrix, and 𝐴′

is the first derivative of 𝐴 (see e.g. Eq. (13)).

Proof. See Appendix A.
The first representation in Eq. (17) is used to obtain the gradient

∇𝜙. After a few simple mathematical operations, the objective function
= 1

2‖𝑌 − 𝐴(𝐴𝑇𝑄−1𝐴)−1𝐴𝑇𝑄−1𝑌 ‖2 can be simplified to

𝜙(𝑊 ) = 1
2
tr(𝑌 𝑇𝑄−1𝑌 𝛴−1) − 1

2
tr(𝑈𝑇𝑁−1𝑈𝛴−1) (23)

where 𝑁 = 𝐴𝑇𝑄−1𝐴 is an 𝑛 × 𝑛 matrix and 𝑈 = 𝐴𝑇𝑄−1𝑌 is an 𝑛 × 𝑟
matrix. Both 𝑁 and 𝑈 are functions of the unknown 𝐴 and hence 𝑊 ,
but we note that the first term in this equation is not a function of 𝑊 .
Eq. (23) gives the gradient ∇𝜙 as

∇𝜙 =
𝜕𝜙(𝑊 )
𝜕𝑊

= −1
2
𝜕tr(𝑈𝑇𝑁−1𝑈𝛴−1)

𝜕𝑊
(24)

To derive the above partial derivative with respect to 𝑊 , the chain rule
should be used because both 𝑁 and 𝑈 are functions of 𝐴 = 𝙰(𝐷𝑊 ).
In principle, four partial derivatives are to be calculated; one in 𝑈 ,
one in 𝑈𝑇 , and two in 𝑁 . Due to the symmetric properties of the
matrices 𝑈𝑇𝑁−1𝑈 and 𝛴−1, only two partial derivatives are required
for computing the gradient ∇𝜙.

After a few simple mathematical operations, the above theorem,
along with Eq. (24), will then give

∇𝜙 = 𝐷𝑇 (𝑄−1𝐴𝑁−1𝑈𝛴−1𝑈𝑇𝑁−1 ⊙ 𝐴′)

− 𝐷𝑇 (𝑄−1𝑌 𝛴−1𝑈𝑇𝑁−1 ⊙ 𝐴′)
(25)

Knowing that 𝑋̂ = 𝑁−1𝑈 is the least squares estimate of the unknowns
𝑋 and 𝑌 = 𝐴𝑁−1𝑈 is the least squares estimate of the observations,
Eq. (25) reads then ∇𝜙 = −𝐷𝑇 (𝑄−1(𝑌 − 𝑌 )𝛴−1𝑋̂𝑇 ⊙ 𝐴′), or simply

𝜙 = −𝐷𝑇 (𝑄−1𝐸̂𝛴−1𝑋̂𝑇 ⊙ 𝐴′) (26)

where 𝐸̂ = 𝑌 − 𝑌 are the least squares residuals. This, with Eq. (18),
will then give

𝑊 (𝑡+1) = 𝑊 (𝑡) + 𝛼 𝐷𝑇 (𝑄−1𝐸̂𝛴−1𝑋̂𝑇 ⊙ 𝐴′) (27)

which iterates to improve 𝑊 in the SD algorithm. It incorporates the
matrices 𝐷 and 𝐴′, the least squares estimates of 𝐸̂ and 𝑋̂ and the
matrices 𝛴 and 𝑄 of the observation covariance matrix 𝑄vec(𝑌 ).

The gradient ∇𝜙 can also be obtained from the second representa-
ion 𝜙(𝑊 ) = 1

2‖𝑌 − 𝐴𝑋̂‖

2 in Eq. (17). The derivation is not given here
ut the gradient will be the same as in Eq. (26). Having ∇𝜙 available,
e may implement the SD in an iterative procedure to estimate 𝑊 (see
ection 4.2).
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Algorithm 1: Implementation of LSBDL using SD method

Input:
- obtain data/feature matrix 𝐷
- observation matrix 𝑌
- matrices 𝛴 and 𝑄

Initialization:
- initialize weight matrix 𝑊 (0) and 𝛥𝑊 (0) = 0
- set regularization parameter 𝜅
- set learning rate parameter 𝛼
- set momentum parameter 𝜇
- set softening parameter 𝑠
- set maximum iteration 𝑡𝑚𝑎𝑥
- provide convergence threshold 𝜖

begin
Do for 𝑡 = 0 till 𝑡𝑚𝑎𝑥
- compute the activation matrix 𝐴 and its derivative 𝐴′

- obtain the least squares estimates 𝑋̂ = (𝐴𝑇𝑄−1𝐴 + 𝜅𝐼𝑛)−1
𝐴𝑇𝑄−1𝑌
- compute the least squares residuals 𝐸̂ = 𝑌 − 𝐴𝑋̂
- compute the gradient matrix ∇𝜙 = −𝐷𝑇 (𝑄−1𝐸̂𝛴−1𝑋̂𝑇 ⊙ 𝐴′)
- soften the gradient by transformation ∇𝜙 = sgn(∇𝜙)⊙ |∇𝜙|𝑠
- compute weights’ corrections 𝛥𝑊 (𝑡+1) = −𝛼∇𝜙 + 𝜇 𝛥𝑊 (𝑡)

- update the weights 𝑊 (𝑡+1) = 𝑊 (𝑡) + 𝛥𝑊 (𝑡+1)

if ‖𝑊 (𝑡) −𝑊 (𝑡−1)
‖ > 𝜖

- break loop
else

- increase counter 𝑡 = 𝑡 + 1
end if
End do

end

4.2. Implementation of SD method

To implement the above SD algorithm, the procedure is started with
an appropriate initial weight 𝑊 (0), and iterated through the above
quations to modify the weights 𝑊 . The iterations will continue till
he convergence, for example when ‖𝑊 (𝑡+1) − 𝑊 (𝑡)

‖ becomes smaller
han a given threshold 𝜖, or when the objective function 𝜙(𝑊 ) has
ufficiently decreased (Teunissen, 1990). The method is applied to the
eights (and biases) to finally compute the activation (design) matrix
. A summary of these steps is provided in Algorithm 1. Having the

inear system of equations 𝑌 = 𝐴𝑋 + 𝐸 available, we may finally use
he least squares method to estimate the unknown parameters 𝑋. Its
east squares estimate is

̂ = (𝐴𝑇𝑄−1𝐴)−1𝐴𝑇𝑄−1𝑌 (28)

here 𝐴 = 𝙰(𝐷𝑊 ) is the trained design matrix and 𝑄 is a given 𝑚 × 𝑚
atrix. We may then also estimate 𝑌 = 𝐴𝑋̂ and 𝐸̂ = 𝑌 − 𝑌 .

The following remarks highlight the pros and cons of the SD method
pplied to LSBDL. One of the advantages of the SD method is its great
implicity. Only the first derivative of the objective function is required
nd no matrix inversion is needed. However, the rate of convergence
f SD is at most linear even for a quadratic cost function. The SD can
onverge to a local minimum and slow down in a neighborhood of a
addle point. It experiences a zig-zag pattern as iterations progress, re-
ulting in a low convergence rate (Teunissen, 1990). There are methods
hat improve the convergence speed of SD and can directly be applied
o LSBDL.

The SD algorithm modifies the weights at time step 𝑡+1 as 𝑊 (𝑡+1) =
(𝑡) + 𝛥𝑊 (𝑡+1) where 𝛥𝑊 (𝑡+1) = −𝛼∇𝜙𝑡. Modifications of gradient

escent have been proposed to handle the above-mentioned deficien-
ies. A widely used method that helps the network out of local min-
ma and breaks the zig-zag pattern is to use a momentum term as
ollows (Rumelhart et al., 1985):

𝑊 (𝑡+1) = −𝛼∇𝜙 + 𝜇𝛥𝑊 (𝑡) (29)
𝑡

6 
able 1
ypical range and the values used in this study for tuning hyper-parameters: learning
ate, regularization parameter, momentum parameter, and softening parameter.
Parameter Symbol Typical range Values used here

Regularization 𝜅 (10−10, 1) 10−4 , 10−6 , 10−8

Learning rate 𝛼 (10−10 , 1) 10−2 , 10−3 , 10−4

Momentum 𝜇 (0, 0.99) 0.9, 0.95
Softening 𝑠 (0.1, 1) 0.5

where 𝛥𝑊 (𝑡) is the weight modification at time step 𝑡 and 𝜇 ∈ (0, 1)
s the momentum parameter, to be determined. The inclusion of a
omentum term has been shown to increase the convergence rate
ramatically (Qian, 1999; Sutskever et al., 2013).

There are alternative methods. It is generally unfavorable if training
eads to large weight values. It is firstly because large weights can easily
ead to the saturation region in which the gradients almost vanish, and
econdly, large weights increase the risk of overfitting. We propose a
ethod to soften the gradient by a fractional exponent transformation

f the gradient matrix entries as follows:

= sgn(𝐺)⊙ |𝐺|

𝑠 (30)

here sgn(𝐺) and |.| are the sign and absolute operators and 𝑠 ∈ (0, 1)
s the tunable softening parameter. We found 𝑠 = 0.5, the square root,
o be an efficient parameter in the above ‘softening’ method.

Two aspects on the implementation of LSBDL notably require atten-
ion from users when applying LSBDL in various contexts. (i) Effective
mplementation of LSBDL relies on appropriately setting the tuning
arameters. Table 1 provides a list of typical values for the tuning
arameters, consisting of learning rate, regularization parameter, mo-
entum parameter, and softening parameter. Furthermore, for the

hree examples considered in our study, we have also presented the
ptimal values for these parameters in the same table. (ii) Selecting
ppropriate network architectures, also affecting the method’s perfor-
ance, depends on the complexity of the data. For example, simpler
atasets perform well with a network consisting of just one layer with
few neurons per layer, whereas more complex datasets may require

eeper networks with more neurons per layer. Users should adjust
he number of layers and neurons based on the performance observed
uring validation (see e.g. Section 9.1). By iterating and tuning these
arameters, users can tailor the network architecture to best fit the
pecific characteristics of the available data.

o training for 𝑋: In DL regression problems, the activation function
f the output layer is typically set as an identity function I(𝑈 ) =
(Kawaguchi, 2016). Traditionally both the output and hidden layer(s)

re updated by the gradient descent methods using the back-propagation
quations (Rumelhart et al., 1986; Hastie et al., 2009). In contrast to
hat is commonly used in literature, we followed a different procedure.
he identity output layer with variables 𝑋 does not require training

n LSBDL. Although one can use the back-propagation method (see
ection 7.3 on multilayer) to first update 𝑋(𝑡+1) = 𝑋(𝑡) − 𝛼∇𝜙(𝑋) and
hen 𝑊 , we did not follow this procedure. Because the global minimizer
or 𝑋 is already known from the linear least squares theory, in Eq. (17),
e substituted 𝑋̂ with its global minimizer from Eq. (28). Therefore

he objective function 𝜙 = 1
2‖𝑌 − 𝐴(𝐴𝑇𝑄−1𝐴)−1𝐴𝑇𝑄−1𝑌 ‖2 is only a

unction of 𝑊 . Although Eq. (27) is a function of 𝑋̂ and 𝐸̂, they are both
inear functions of 𝑌 ; so they were introduced just for implementation
onvenience. This indicates that we just need to train 𝑊 and therefore
ack-propagation is not applied when having one hidden layer.

.3. Special cases of LSBDL

The general formulation of Eq. (27) can take into consideration
pecial cases. We may simply consider 𝑄 = 𝐼𝑚 and 𝛴 = 𝐼𝑟, resulting
n 𝑄vec(𝑌 ) = 𝐼𝑟 ⊗ 𝐼𝑚. It then follows that

𝑊 (𝑡+1) = 𝑊 (𝑡) + 𝛼 𝐷𝑇 (𝐸̂𝑋̂𝑇 ⊙ 𝐴′) (31)
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which can be applied to independent observations having identical
precision.

For a better understanding of the LSBDL formulation, we denote
𝑍 = 𝑄−1𝐸̂𝛴−1𝑋̂𝑇 ⊙𝐴′, an 𝑚×𝑛 matrix. Eq. (27) will then read 𝑊 (𝑡+1) =
𝑊 (𝑡)+𝛼 𝐷𝑇𝑍. The individual entries 𝑤𝑢𝑣, 𝑢 = 1,… , 𝑘, 𝑣 = 1,… , 𝑛 can be
obtained from multiplication of the 𝑢th row of 𝐷𝑇 with the 𝑣th column
of 𝑍 as

𝑤(𝑡+1)
𝑢𝑣 = 𝑤(𝑡)

𝑢𝑣 + 𝛼
𝑚
∑

𝑖=1
𝑑𝑇𝑢𝑖𝑧𝑖𝑣 = 𝑤(𝑡)

𝑢𝑣 + 𝛼
𝑚
∑

𝑖=1
𝑑𝑖𝑢𝑧𝑖𝑣 (32)

Two special cases will be addressed for the general formulation. (1)
When 𝑄 and 𝛴 are diagonal matrices, i.e., 𝑄 = diag(𝜎21,𝑞 ,… , 𝜎2𝑚,𝑞),
uncorrelated samples, and 𝛴 = diag(𝜎21,𝑠,… , 𝜎2𝑟,𝑠), uncorrelated classes,
the entries 𝑧𝑖𝑣 simplify to

𝑧𝑖𝑣 = 𝑎′𝑖𝑣

𝑟
∑

𝑗=1

𝑥̂𝑣𝑗𝑒𝑖𝑗
𝜎2𝑖,𝑞𝜎

2
𝑗,𝑠

(33)

hich, with Eq. (32), leads to

(𝑡+1)
𝑢𝑣 = 𝑤(𝑡)

𝑢𝑣 + 𝛼
𝑚
∑

𝑖=1
𝑑𝑖𝑢𝑎

′
𝑖𝑣

𝑟
∑

𝑗=1

𝑥̂𝑣𝑗𝑒𝑖𝑗
𝜎2𝑖,𝑞𝜎

2
𝑗,𝑠

(34)

his equation indicates that the residuals of all observations will con-
ribute when training 𝑤𝑢𝑣. However, observations with higher precision
smaller 𝜎𝑖,𝑞 and 𝜎𝑗,𝑠) will have a larger contribution in the training.
2) When observations are equally weighted 𝜎𝑖,𝑞 = 1, 𝑖 = 1,… , 𝑚 and
𝑗,𝑠 = 1, 𝑗 = 1,… , 𝑟, the above equation reads

(𝑡+1)
𝑢𝑣 = 𝑤(𝑡)

𝑢𝑣 + 𝛼
𝑚
∑

𝑖=1
𝑑𝑖𝑢𝑎

′
𝑖𝑣

𝑟
∑

𝑗=1
𝑥̂𝑣𝑗𝑒𝑖𝑗 (35)

hich is indeed identical to the element-wise weight estimation pro-
osed in the literature (Rumelhart et al., 1986; Hastie et al., 2009).

Another special case considers the univariate model, so 𝑟 = 1, 𝑌 = 𝑦
nd therefore 𝑄vec(𝑌 ) = 𝑄𝑦 = 𝜎2𝑄. It then follows that

(𝑡+1) = 𝑊 (𝑡) + 𝛼 𝐷𝑇 (𝑄−1
𝑦 𝑒𝑥̂𝑇 ⊙ 𝐴′) (36)

or uncorrelated observations, 𝑄𝑦 = diag(𝜎21 ,… , 𝜎2𝑚), this will then
esult in (𝑢 = 1,… , 𝑘 and 𝑣 = 1,… , 𝑛)

(𝑡+1)
𝑢𝑣 = 𝑤(𝑡)

𝑢𝑣 + 𝛼
𝑚
∑

𝑖=1
𝑑𝑖𝑢𝑎

′
𝑖𝑣
𝑥̂𝑣𝑒𝑖
𝜎2𝑖

(37)

indicating again the impact of observations’ precision 𝜎𝑖’s in the train-
ng.

. Gauss–Newton (GN) formulation of LSBDL

The steepest descent (SD) method was elaborated in Section 4. The
econd gradient-based method to train the design matrix 𝐴 = 𝙰(𝐷𝑊 )
s Gauss–Newton (GN) (Teunissen, 1990). GN methods in the realm
f DL, as discussed in the literature, utilize second-order derivatives
nown as the Hessian matrix (Botev, 2020). This approach is often
eferred to as Newton method in the broader literature (Xu et al.,
020). Calculating and storing the Hessian matrix for AI applications is
sually infeasible due to their large size, which renders these methods
omputationally expensive and complex and therefore less practical for
arge-scale applications (Botev et al., 2017).

Our GN method is classified among the gradient-based method
first-order derivative), where the Jacobian matrix is needed (Hart-
ey, 1961; Ruhe, 1979; Gratton et al., 2007). The GN idea is to ap-
roximate/linearize the objective function (within the norm) using
he Taylor series expansion. GN has a faster convergence rate than

D (Teunissen, 1990) (see later Fig. 2).

7 
.1. Derivation of Jacobian matrix

Similar to Section 4, we consider two-step procedures to estimate
and 𝑊 . Our aim is firstly to estimate the nonlinear parameters 𝑊 ,

nd then to proceed to estimate the linear parameters 𝑋, and vice
ersa. The starting point is again Eq. (17), now reformulated as 𝑊̂ =
rgmin𝑊

1
2‖𝑌 − 𝑃⟂

𝐴 𝑌 ‖2, where the design matrix 𝐴 = 𝙰(𝐷𝑊 ) is to be
rained using the GN method by estimating the weight matrix 𝑊 . The
acobian matrix is derived in this subsection for which two formulas
re presented.

The non-linearity of ‖𝑌 −𝑃⟂
𝐴 𝑌 ‖2 is due to the non-linearity of 𝑃𝐴 =

𝙰(𝐷𝑊 ), because the quadratic form ‖.‖2 will disappear in the differen-
iation. The GN idea is then to approximate/linearize 𝑃𝐴 (within the
orm) using the Taylor series expansion as follows (Teunissen, 1990):
(𝑡+1)
𝐴 = 𝑃 (𝑡)

𝐴 + 𝜕𝑊 𝑃 (𝑡)
𝐴 (𝑊 −𝑊 (𝑡)) (38)

here 𝑃 (𝑡+1)
𝐴 = 𝑃𝙰(𝐷𝑊 (𝑡+1)), and so is 𝑃 (𝑡)

𝐴 . The above equation, with
q. (17), gives

̂ = 1
2
argmin

𝑊
‖𝐸̂ − 𝜕𝑊 𝑃𝙰(𝐷𝑊 )𝑌 (𝑊 −𝑊 (𝑡))‖2 (39)

where the residuals 𝐸̂ = 𝑌 − 𝑃𝐴𝑌 are calculated at 𝐴 = 𝙰(𝐷𝑊 (𝑡)).
Four partial derivatives play a role in computing the Jacobian

matrix. It is known that the differentiation, 𝖽(.), of an inverse matrix,
𝑁−1 = (𝐴𝑇𝑄−1𝐴)−1, is

𝖽(𝑁−1) = −𝑁−1𝖽(𝑁)𝑁−1 = −𝑁−1𝖽(𝐴𝑇𝑄−1𝐴)𝑁−1 (40)

hich leads to
𝜕𝑊 𝑃𝙰(𝐷𝑊 )𝑌 = [𝜕𝑊 𝐴]𝑁−1𝐴𝑇𝑄−1𝑌

− 𝐴𝑁−1𝐴𝑇𝑄−1[𝜕𝑊 𝐴]𝑁−1𝐴𝑇𝑄−1𝑌

− 𝐴𝑁−1[𝜕𝑊 𝐴𝑇 ]𝑄−1𝐴𝑁−1𝐴𝑇𝑄−1𝑌

+ 𝐴𝑁−1[𝜕𝑊 𝐴𝑇 ]𝑄−1𝑌

(41)

his can further be simplified to

𝑊 𝑃𝙰(𝐷𝑊 )𝑌 = 𝑃⟂
𝐴 [𝜕𝑊 𝐴]𝑋̂ + 𝐴𝑁−1[𝜕𝑊 𝐴𝑇 ]𝑄−1𝐸̂ (42)

r

𝑊 𝑃𝙰(𝐷𝑊 )𝑦𝑖 = 𝑃⟂
𝐴 [𝜕𝑊 𝐴]𝑥̂𝑖 + 𝐴𝑁−1[𝜕𝑊 𝐴𝑇 ]𝑄−1𝑒𝑖 (43)

or 𝑖 = 1,… , 𝑟. To obtain the Jacobian matrix, the above partial deriva-
ives should be derived. They are based on the following theorem:

heorem 2. Let the 𝑚-vector ℎ1 and ℎ2 be of the forms

1 = 𝐵𝐴𝑧 = 𝐵𝙰(𝐷𝑊 )𝑧 (44)

nd

2 = 𝐶𝐴𝑇 𝑧 = 𝐶𝙰(𝑊 𝑇𝐷𝑇 )𝑧 (45)

here 𝐵, 𝐶 and 𝐷 are given matrices of appropriate sizes, 𝑧 is a given vector,
contains running unknown variables and 𝙰(.), the activation function, is

ssumed to be differentiable. Then their Jacobian matrices are

1 = 𝜕𝑤ℎ1 = 𝐵[𝜕𝑊 𝐴]𝑧 = 𝐵
(

(𝑢𝑚𝑧𝑇 ⊗ 𝑢𝑇𝑘 )⊙𝑀
)

(46)

nd

2 = 𝜕𝑤ℎ2 = 𝐶[𝜕𝑊 𝐴𝑇 ]𝑧 = (𝐶 ⊗ 𝑢𝑇𝑘 )⊙ (𝑢𝑚𝑧𝑇𝑀) (47)

here 𝑤 = vec(𝑊 ), and

= (𝐴′ ⊗ 𝑢𝑇𝑘 )⊙ (𝑢𝑇𝑛 ⊗𝐷) (48)

ith 𝑢𝑘, 𝑢𝑛, 𝑢𝑚 the summation vectors of sizes 𝑘, 𝑛 and 𝑚, respectively.

roof. See Appendix B.
For the sake of convenience, we introduce the 𝑘𝑛-vector 𝑤 =

ec(𝑊 ). Eq. (39) can then be reformulated to

̂ = 1 argmin ‖vec(𝐸̂) − 𝐽 (𝑋̂, 𝐸̂)(𝑤 −𝑤(𝑡))‖2 (49)

2 𝑊 𝑤
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where the 𝑚𝑟 × 𝑘𝑛 Jacobian matrix 𝐽𝑤 = 𝐽𝑤(𝑋̂, 𝐸̂) can be obtained as

𝐽𝑤 =
⎡

⎢

⎢

⎣

𝐽1(𝑥̂1, 𝑒1)
⋮

𝐽𝑟(𝑥̂𝑟, 𝑒𝑟)

⎤

⎥

⎥

⎦

=
𝑟
∑

𝑖=1
𝑐𝑖 ⊗ 𝐽𝑖(𝑥̂𝑖, 𝑒𝑖) (50)

with 𝑐𝑖 the canonical unit vector. The individual 𝑚 × 𝑘𝑛 Jacobian
matrices 𝐽𝑖 = 𝐽𝑖(𝑥̂𝑖, 𝑒𝑖), 𝑖 = 1,… , 𝑟, can be obtained from multiple
application of Theorem 2 to Eq. (43). This will then give

𝐽𝑖(𝑥̂𝑖, 𝑒𝑖) = 𝑃⟂
𝐴
(

(𝑢𝑚𝑥̂𝑇𝑖 ⊗ 𝑢𝑇𝑘 )⊙𝑀
)

+ (𝐴𝑁−1 ⊗ 𝑢𝑇𝑘 )⊙ (𝑢𝑚𝑒𝑇𝑖 𝑄
−1𝑀)

(51)

where

𝑀 = (𝐴′ ⊗ 𝑢𝑇𝑘 )⊙ (𝑢𝑇𝑛 ⊗𝐷) (52)

is an 𝑚 × 𝑘𝑛 matrix.
An alternative formula for the two-step procedure is to firstly es-

timate 𝑋̂ and then 𝑊̂ . We will thus use the last formula in Eq. (17):
𝑊̂ = argmin𝑊

1
2‖𝑌 − 𝐴𝑋̂‖

2. The non-linearity is then due to the non-
inearity of 𝐴 = 𝙰(𝐷𝑊 ). The GN linearizes 𝐴 (within the norm) using

the Taylor series expansion, which leads to

𝜕𝑊 𝙰(𝐷𝑊 )𝑥̂𝑖 = [𝜕𝑊 𝐴]𝑥̂𝑖 (53)

or 𝑖 = 1,… , 𝑟. The Jacobian matrix can then be obtained from Eq. (50),
here the individual 𝑚×𝑘𝑛 matrices are obtained from the application
f Theorem 2 to the above equation (in 𝐽1 of Theorem 2, take 𝐵 = 𝐼
nd 𝑧 = 𝑥̂𝑖)

𝑖 = (𝑢𝑚𝑥̂𝑇𝑖 ⊗ 𝑢𝑇𝑘 )⊙𝑀 (54)

he above Jacobian matrices can now be used to estimate 𝑊 in an
terative GN method.

.2. Implementation of GN method

The Jacobian matrix 𝐽𝑤 along with the covariance matrix 𝑄vec(𝑌 )
can now be used to estimate 𝛿𝑤̂ = 𝑤(𝑡+1) −𝑤(𝑡) as follows:

𝛿𝑤̂ =
(

𝐽𝑇
𝑤𝑄

−1
vec(𝑌 )𝐽𝑤

)−1
𝐽𝑇
𝑤𝑄

−1
vec(𝑌 )vec(𝐸̂) (55)

Having substituted 𝐽𝑇
𝑤 =

∑𝑟
𝑖=1 𝑐

𝑇
𝑖 ⊗ 𝐽𝑇

𝑖 , 𝑄−1
vec(𝑌 ) = 𝛴−1 ⊗ 𝑄−1, 𝐽𝑤 =

∑𝑟
𝑗=1 𝑐𝑗 ⊗ 𝐽𝑗 and vec(𝐸̂) =

∑𝑟
𝑗=1 𝑐𝑗 ⊗ 𝑒𝑗 , it follows that

𝛿𝑤̂ =
(

𝑟
∑

𝑖=1

𝑟
∑

𝑗=1
𝜎−1𝑖𝑗 𝐽𝑇

𝑖 𝑄
−1𝐽𝑗

)−1 𝑟
∑

𝑖=1

𝑟
∑

𝑗=1
𝜎−1𝑖𝑗 (𝐽𝑇

𝑖 𝑄
−1𝑒𝑗 ) (56)

where 𝜎−1𝑖𝑗 =
(

𝛴−1)
𝑖𝑗 are the entries of 𝛴−1 (just for notational

convenience). In a special case where 𝛴 = diag(𝜎11,… , 𝜎𝑟𝑟) is a diagonal
matrix, it follows that

𝛿𝑤̂ =
(

𝑟
∑

𝑖=1
𝜎−1𝑖𝑖 𝐽𝑇

𝑖 𝑄
−1𝐽𝑖

)−1 𝑟
∑

𝑖=1
𝜎−1𝑖𝑖 (𝐽𝑇

𝑖 𝑄
−1𝑒𝑖) (57)

In a special case where 𝛴 = 𝜎2𝐼𝑟, it follows that

𝛿𝑤̂ =
(

𝑟
∑

𝑖=1
𝐽𝑇
𝑖 𝑄

−1𝐽𝑖
)−1 𝑟

∑

𝑖=1
𝐽𝑇
𝑖 𝑄

−1𝑒𝑖 (58)

Further simplification of the above equation can consider uncorrelated
and equally-weighted observations, i.e. 𝑄 = 𝐼𝑚, which leads to

𝛿𝑤̂ =
(

𝑟
∑

𝑖=1
𝐽𝑇
𝑖 𝐽𝑖

)−1 𝑟
∑

𝑖=1
𝐽𝑇
𝑖 𝑒𝑖 (59)

The estimated 𝛿𝑤̂ from the above equations can be used to up-
date 𝑤(𝑡+1) = 𝑤(𝑡) + 𝛿𝑤̂, resulting in an update for 𝑊 (𝑡+1). This can
accordingly be used to update 𝐴 = 𝙰(𝐷𝑊 (𝑡+1)) and therefore 𝑋̂. The
iterative procedure will continue till the convergence, for example
when ‖𝑤(𝑡+1) − 𝑤(𝑡)

‖ becomes smaller than the convergence threshold
𝜖, or when the objective function 𝜙(𝑊 ) has sufficiently decreased. A

summary of these steps is provided in Algorithm 2. t

8 
The following remarks highlight the pros and cons of the GN method
applied to LSBDL. The GN method is known to have a faster conver-
gence rate compared to the SD method. The rate of convergence of
GN is at least linear, but can be quadratic for special cases of flat
manifolds and/or consistent data (Teunissen, 1990). The method takes
advantage of the quadratic-form structure of the objective function. The
GN method allows to directly apply the existing body of knowledge of
the least squares method to LSBDL. There are also disadvantages for the
GN-based LSBDL. Because the 𝑘𝑛 × 𝑘𝑛 normal matrix 𝐽𝑇

𝑤𝑄
−1
vec(𝑌 )𝐽𝑤 is to

be inverted in GN, the computational burden can drastically increase
even for moderate values of 𝑘 and 𝑛.

Algorithm 2: Implementation of LSBDL using GN method

Input:
- obtain data/feature matrix 𝐷
- observation matrix 𝑌
- matrices 𝛴 and 𝑄

Initialization:
- initialize weight matrix 𝑊 (0) and 𝛥𝑊 (0) = 0
- set regularization parameter 𝜅
- set learning rate parameter, usually 𝛼 = 1
- set maximum iteration 𝑡𝑚𝑎𝑥
- provide convergence threshold 𝜖

begin
Do for 𝑡 = 0 till 𝑡𝑚𝑎𝑥
- compute activation matrix 𝐴 and its derivative 𝐴′

- obtain least squares estimates 𝑋̂ using Eq. (69)
- compute least squares residuals 𝐸̂ = 𝑌 − 𝐴𝑋̂
- compute Jacobian matrix 𝐽𝑤 from Eqs. (50) and (51)
- estimate 𝛿𝑤̂ from Eq. (55)
- update 𝑤(𝑡+1) = 𝑤(𝑡) + 𝛼𝛿𝑤̂
- reshape 𝑤(𝑡+1) to obtain 𝑘 × 𝑛 matrix 𝑊 (𝑡+1)

if ‖𝑊 (𝑡) −𝑊 (𝑡−1)
‖ > 𝜖

- break loop
else

- increase counter 𝑡 = 𝑡 + 1
end if
End do

end

6. Embedding of LSBDL in least squares framework

LSBDL is a transparent and explainable machine learning method,
as will be highlighted in this section. Its formulation in the least squares
framework allows for direct application of well-established theories to
LSBDL. Here, we extend some of these theories for LSBDL.

6.1. Covariance matrix of estimates

In the machine learning domain research is ongoing to include data
uncertainty in machine learning and its applications to geodetic data
science (Shahvandi and Soja, 2022). Having the LSBDL formulation
allows to obtain the precision of the least squares estimates 𝑋̂, 𝑌 and 𝐸̂
using the Gauss–Newton formulation. As a first approximation, we may
directly use Eq. (9) to obtain the covariance matrices 𝑄vec(𝑋̂), 𝑄vec(𝑌 )
nd 𝑄vec(𝐸̂), if we ignore the uncertainty of 𝑊̂ .

On the other hand, if we take a one-step procedure to simultane-
usly estimate 𝑋 and 𝑊 , we may use the following linearized system
f equations:

vec(𝑌 ) =
[

𝐴𝑥 𝐽𝑤
]

[

𝑥̂
𝛿𝑤̂

]

+ vec(𝐸) (60)

here 𝐴𝑥 = 𝐼 ⊗ 𝐴 and 𝑥̂ = vec(𝑋̂). This equation can be used

o investigate the estimability of 𝑋 and 𝑊 . If the columns of the
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design matrix [𝐴𝑥 𝐽𝑤] are linearly independent (full column rank), the
arameters 𝑥̂ = vec(𝑋̂) and 𝑤̂ = vec(𝑊̂ ) are unbiased estimable. Then,
he inverse of the normal matrix directly gives the covariance matrix
f the estimated parameters
[

𝑥̂
𝑤̂

]

=
[

𝑄𝑥̂ 𝑄𝑥̂𝑤̂
𝑄𝑤̂𝑥̂ 𝑄𝑤̂

]

=
[

𝑁𝑥𝑥 𝑁𝑥𝑤
𝑁𝑤𝑥 𝑁𝑤𝑤

]−1

(61)

here
𝑁𝑥𝑥 = 𝐴𝑇

𝑥𝑄
−1
𝑦 𝐴𝑥 = 𝛴−1 ⊗𝐴𝑇𝑄−1𝐴

𝑁𝑥𝑤 = 𝐴𝑇
𝑥𝑄

−1
𝑦 𝐽𝑤

𝑁𝑤𝑥 = 𝐽𝑇
𝑤𝑄

−1
𝑦 𝐴𝑥

𝑁𝑤𝑤 = 𝐽𝑇
𝑤𝑄

−1
𝑦 𝐽𝑤

(62)

ith 𝑄𝑦 = 𝑄vec(𝑌 ). Based on Eq. (61), the covariance matrix of 𝑥̂ =
ec(𝑋̂) can be obtained as (Teunissen, 2000b)

𝑥̂ =
(

𝑁𝑥𝑥 −𝑁𝑥𝑤𝑁
−1
𝑤𝑤𝑁𝑤𝑥

)−1 (63)

hich is a generalized form of the covariance matrix of estimates 𝑋̂ in
q. (9), taking also the uncertainties of 𝑊̂ into account. The covariance
atrix of 𝑤̂ = vec(𝑊̂ ) can also be approximated as

𝑤̂ =
(

𝑁𝑤𝑤 −𝑁𝑤𝑥𝑁
−1
𝑥𝑥𝑁𝑥𝑤

)−1 (64)

In a similar manner, the covariance matrix of 𝑦̂ = vec(𝑌 ) and 𝑒 =
ec(𝐸̂) can accordingly be determined. Without any derivation we have

𝑄𝑦̂ = [𝐴𝑥, 𝐽𝑤]

[

𝑄𝑥̂ 𝑄𝑥̂𝑤̂

𝑄𝑤̂𝑥̂ 𝑄𝑤̂

]

[

𝐴𝑇
𝑥

𝐽𝑇
𝑤

]

= 𝐴𝑥𝑄𝑥̂𝐴𝑇
𝑥 + 𝐴𝑥𝑄𝑥̂𝑤̂𝐽𝑇

𝑤 + 𝐽𝑤𝑄𝑤̂𝑥̂𝐴𝑇
𝑥 + 𝐽𝑤𝑄𝑤̂𝐽𝑇

𝑤

(65)

and

𝑄𝑒 = 𝑄𝑦 −𝑄𝑦̂ (66)

both extracted from the standard least squares method. Two special
cases of the above formulations can occur as follows:
Case 1: In a special case when 𝑁𝑤𝑤 = 0 (e.g. when 𝑊 is known),
Eq. (63) yields

𝑄𝑥̂ = 𝑁−1
𝑥𝑥 = 𝛴 ⊗ (𝐴𝑇𝑄−1𝐴)−1 (67)

which is identical to 𝑄vec(𝑋̂) in Eq. (9).
Case 2: Another special case occurs when 𝑁𝑥𝑥 = 0 (e.g. when 𝑋 is
known). In this case, Eq. (64) simplifies to

𝑄𝑤̂ = 𝑄vec(𝑊̂ ) = 𝑁−1
𝑤𝑤 =

(

𝐽𝑇
𝑤𝑄

−1
vec(𝑌 )𝐽𝑤

)−1
(68)

indicated also in Eq. (55). 𝑄𝑦̂ and 𝑄𝑒 can accordingly be obtained for
the above two special cases.

6.2. Statistical hypothesis testing

The LSBDL formulation allows to apply the hypothesis testing to
its linear(ized) model (see some challenges in Section 8.2). In fact, the
existing theories in the DIA procedure can directly follow as (Baarda,
1968; Teunissen, 2000a, 2018):

Detection: The overall model test (OMT) in Eqs. (10) and (11) can be
performed to test the general consistency between the observations and
the model. If the test is rejected this indicates that there are unresolved
issues on the consistency between the model and observations, of which
outliers could be a cause.

Identification: When the OMT is rejected, the w-test statistics in Eq. (12)
can directly be applied to specified alternative hypotheses, pointing to
individual observations for example, to identify the potential source of
model error such as systematic errors or outlying observations.

Adaptation: When outliers are confidently identified, they are then
compensated for in the functional model; adaptation of matrix 𝐴 by
 b
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emoving outliers (less rows in 𝐴), or introducing new unknowns (more
olumns in 𝐴). The final 𝑋̂ and its statistical inference can then be
resented, with all outlying samples removed.

In Section 9 we use the above DIA procedure in a surface fitting
roblem and a time series example using the LSBDL.

.3. Regularization of solution

There could arise complications on the application of deep learning
n real-word problems. When there are too many unknown weights
nd biases in 𝑊 the system of equations 𝑌 = 𝐴𝑋 + 𝐸 becomes ill-
osed, referred to as over-parametrization or overfitting. For the deep
earning formulation, the design matrix 𝐴 = 𝙰(𝐷𝑊 ) is then nearly rank
eficient and therefore the normal matrix 𝐴𝑇𝑄−1𝐴 or that in Eq. (61)
annot be regularly inverted. This can happen when the number of
olumns 𝑛 is (much) larger than the number of rows 𝑘 in 𝑊 . To obtain a

regular solution, regularization methods can be used. It is a technique
to prevent the model from overfitting by posing extra information to
the model.

In deep learning algorithms, data augmentation is often considered
as a type of regularization (Hernández-García and König, 2018). In
image classification, data augmentation concerns randomly selecting
cropped regions from images, flipping images horizontally, introducing
scaling and rotation to images, which adds observations to 𝑌 (increas-
ing 𝑚). Although data augmentation can also be implemented in the
LSBDL formulation, one other way to obtain a regular solution is to take
possible prior information on the unknown parameters into account.
The Tikhonov regularization method has been widely used with least
squares (Tikhonov, 1963). The least squares estimate of 𝑋 in Eq. (28)
is then modified to

𝑋̂ = (𝐴𝑇𝑄−1𝐴 + 𝜅𝐼𝑛)−1𝐴𝑇𝑄−1𝑌 (69)

where 𝜅 is the regularization parameter, to be determined. One way to
determine 𝜅 is to use the L-curve method (Hansen, 1999, 2001). An al-
ternative method that avoids introducing the regularization parameter
is to use the theory of generalized inverses (Penrose, 1955; Teunissen,
1985; Ben-Israel and Greville, 2003). The generalized inverse of the
normal matrix 𝑁 = 𝐴𝑇𝑄−1𝐴 can be used to obtain a regularized
olution as

̂ = (𝐴𝑇𝑄−1𝐴)−𝐴𝑇𝑄−1𝑌 (70)

here (.)− is the generalized inverse of a matrix. A particular class
f generalized inverses is called pseudoinverse or Moore–Penrose in-
erse (Greville, 1959; Barata and Hussein, 2012). The above equation
ill then read

̂ = (𝐴𝑇𝑄−1𝐴)+𝐴𝑇𝑄−1𝑌 (71)

here (.)+ is the pseudoinverse of a matrix.
The above formulations are an extension of the regularized least

quares solution to deep learning. This can be used to estimate the
inal 𝑋, but also to train the network in earlier steps. The above
egularization methods can also be used in Eq. (55) of the GN method
nd in Eq. (61).

.4. Variance component estimation

So far we assumed that the covariance matrix 𝑄vec(𝑌 ) of observa-
ions is known. This however will not be the case for many practical
pplications. We consider the case when the covariance matrix has
Kronecker structure as 𝑄vec(𝑌 ) = 𝛴 ⊗ 𝑄, see Eq. (6). We may

ave different possibilities to estimate its components. The matrix 𝛴
xpresses covariances among different classes, whereas 𝑄 expresses

(co)variances among different sequences within a specific class.
In practice a few (co)variance components can be assumed unknown

in 𝛴 and 𝑄. Least squares variance component estimation (LS-VCE) can

e used to estimate such components (Teunissen, 1988b; Teunissen and
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Amiri-Simkooei, 2008). For example, if 𝑄 is known, we may just simply
estimate 𝛴. The least squares estimate of 𝛴 is (Amiri-Simkooei, 2009)

̂ = 𝐸̂𝑇𝑄−1𝐸̂
𝑚 − 𝑛

(72)

where 𝐸̂ = 𝑌 − 𝑌 is the least squares estimate of matrix 𝐸.
The 𝑚 × 𝑚 matrix 𝑄 contains (co)variance information of different

observations. In the context of scientific and engineering applications,
with real-valued observations (real numbers), 𝑄 can play the role of
the covariance matrix. The inverse of 𝑄, i.e. 𝑄−1, is used to weigh
the contribution of different observations in the final estimates 𝑋̂
and 𝑊̂ , obtained by SD and GN, see Eqs. (27) and (57). There are
also possibilities to estimate unknown components in 𝑄, for example
when combining data from different sensors. By merging heterogeneous
information, data fusion has been proven to improve the performance
of ML models in many application fields (Arrieta et al., 2020). LS-
VCE can be used to estimate possible variances for each group of
observations or each sensor. The variances are then the unknown
components in 𝑄, and the univariate (Teunissen and Amiri-Simkooei,
2008) or multivariate (Amiri-Simkooei, 2009) formulation of LS-VCE
can be used to estimate such variances in the data fusion stochastic
model.

Matrix 𝑄 can also play a significant role in classification problems.
In ML classification methods, we mostly encounter to predict discrete
targets such as a binary decision of ‘yes’ or ‘no’ (or ‘1’ and ‘0’). In this
condition, 𝑄−1 can also play an important role in down-weighting or
up-weighting specific samples. It is well possible that some samples
are identified as gross errors (blunders), which are to be removed or
down-weighted in the estimation process. Also within a specific class,
the distribution of discrete values can vary significantly. Then, due to
the distribution difference in each class (or among different classes),
the algorithms tend to get biased towards the majority values present
and likely do not perform well on the minorities. Up-weighting is then
a way to fully address the presence and impact of the minorities on the
training performance.

6.5. Performance on test data

In ML, data sets are usually split into two subsets: training and
testing. The training data are fed into LSBDL to estimate 𝑊 and
𝑋. Then, the trained network can directly be used to predict future
events. Prior to prediction, the performance of the trained network
is investigated on the test data for which we have both 𝑌𝑡 and 𝐷𝑡
available. With the estimated 𝑊̂ and 𝑋̂, we may then predict

𝑌𝑡 = 𝙰(𝐷𝑡𝑊̂ )𝑋̂ = 𝐴𝑡𝑋̂,

𝐸̂𝑡 = 𝑌𝑡 − 𝙰(𝐷𝑡𝑊̂ )𝑋̂ = 𝑌𝑡 − 𝑌𝑡
(73)

here 𝐴𝑡 = 𝙰(𝐷𝑡𝑊̂ ), 𝑌𝑡 is a prediction for 𝑌𝑡, which is the test data
ut is unavailable for future events, and 𝐸̂𝑡 is the prediction error. 𝐸̂𝑡

includes both the errors of new samples 𝑌𝑡 (sampling noise) and the
rrors of the trained network (network noise due to 𝑊̂ and 𝑋̂).

Knowing that 𝑌𝑡 = 𝙰(𝐷𝑡𝑊̂ )𝑋̂, it follows that the GN design matrix
f the test data is [𝐴𝑥𝑡, 𝐽𝑤𝑡]. Similar to Eq. (65), this allows to apply the
rror propagation law to obtain the covariance matrix of 𝑦̂𝑡 = vec(𝑌𝑡) as

𝑄𝑦̂𝑡 = 𝐴𝑥𝑡𝑄𝑥̂𝐴
𝑇
𝑥𝑡 + 𝐴𝑥𝑡𝑄𝑥̂𝑤̂𝐽

𝑇
𝑤𝑡 + 𝐽𝑤𝑡𝑄𝑤̂𝑥̂𝐴

𝑇
𝑥𝑡 + 𝐽𝑤𝑡𝑄𝑤̂𝐽

𝑇
𝑤𝑡 (74)

o obtain the covariance matrix of the predicted error 𝑒𝑡 = vec(𝐸̂𝑡) an
xtra term due to the presence of 𝑦𝑡 = vec(𝑌𝑡) should be added to the

preceding equation. This leads to

𝑄𝑒𝑡 = 𝑄𝑦𝑡 +𝑄𝑦̂𝑡 (75)

meaning that the 𝑄𝑦̂𝑡 is indeed added to 𝑄𝑦𝑡 ; note in Eq. (66), the term
𝑄𝑦̂ is subtracted from 𝑄𝑦 to obtain 𝑄𝑒. The first term 𝑄𝑦𝑡=vec(𝑌𝑡) in the

above equation indicates errors of the new samples 𝑌𝑡 (sampling noise),
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whereas the second term 𝑄𝑦̂𝑡 expresses the error of the trained network
(network noise).

The estimated 𝛴 in Eq. (72) is based on the training data. ML tech-
niques are known for a tendency to suffer from overfitting problems,
leading to the residuals of the training data to be quite small and hence
to an underestimation of 𝛴. A more realistic estimate of 𝛴 may rely on
the test residuals 𝐸̂𝑡. This will then give

𝛴̂𝑡 =
𝐸̂𝑇
𝑡 𝑄

−1𝐸̂𝑡

𝑚𝑡
(76)

where 𝑚𝑡 is the number of samples in the test data. The above equation
includes both the network noise and the sampling noise. This is a more
realistic measure to investigate the performance of the trained network.
For example, the covariance matrices of 𝑋̂, 𝑌 , 𝐸̂, 𝑌𝑡 and 𝐸̂𝑡 can all
be adapted when 𝛴̂𝑡 is used instead of 𝛴̂. In this case, the covariance
matrices in Eq. (9) can be replaced by

𝑄̂vec(𝑋̂) = 𝛴̂𝑡 ⊗ (𝐴𝑇𝑄−1𝐴)−1

𝑄̂vec(𝑌 ) = 𝛴̂𝑡 ⊗ 𝑃𝐴𝑄

𝑄̂vec(𝐸̂) = 𝛴̂𝑡 ⊗ 𝑃⟂
𝐴𝑄

(77)

which use 𝛴̂𝑡 from Eq. (76).

7. Further development of LSBDL

In this section, we will further develop on the LSBDL formulation
based on the steepest descent (SD) method. The subject on GN is
beyond the scope of this contribution. Three topics will be covered.

7.1. Reduction of computational burden in DL model

There are occasions of the linear system of equations being very
large. This can happen when ‘too many’ data points are available (𝑚 is
too large), which is often the case with machine learning techniques as
a large number of training samples is available. Then, the observations
𝑌 can be split into 𝑝 groups as 𝑌 = [𝑌 𝑇

1 ,… , 𝑌 𝑇
𝑝 ]𝑇 , where each group

contains 𝑚𝑖 observations as 𝑌𝑖 ∈ R𝑚𝑖×𝑟, 𝑖 = 1,… , 𝑝, in conjunction with
the mini-batch training used in DL (Li et al., 2014). The feature matrix
can accordingly be row-wise partitioned to smaller matrices 𝐷𝑖. In this
case, the linear system of equations can be rewritten as follows:

𝑌 = 𝐴𝑋 + 𝐸 =
⎡

⎢

⎢

⎣

𝑌1
⋮
𝑌𝑝

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝐴1
⋮
𝐴𝑝

⎤

⎥

⎥

⎦

𝑋 +
⎡

⎢

⎢

⎣

𝐸1
⋮
𝐸𝑝

⎤

⎥

⎥

⎦

(78)

where 𝐴𝑖 = 𝙰(𝐷𝑖 𝑊 ) ∈ R𝑚𝑖×𝑛 is the design matrix corresponding
to observations 𝑌𝑖. Matrix 𝑄 is assumed to be of the form 𝑄 =
blkdiag(𝑄1,… , 𝑄𝑝), where 𝑄𝑖 ∈ R𝑚𝑖×𝑚𝑖 and blkdiag is the block diagonal
operator. We note that the unknowns 𝑋 and 𝑊 are the same among
all groups.

To handle the above group-wise model, the batch and recursive least
squares theory can be used to solve for 𝑋 and 𝑊 . Its batch formulation
reads

𝑋̂ =
(

𝑝
∑

𝑖=1
𝐴𝑇
𝑖 𝑄

−1
𝑖 𝐴𝑖

)−1( 𝑝
∑

𝑖=1
𝐴𝑇
𝑖 𝑄

−1
𝑖 𝑌𝑖

)

(79)

Given 𝑋̂, the weight matrix 𝑊 of Eq. (27) can be updated using the
following iterative procedure:

𝑊 (𝑡+1) = 𝑊 (𝑡) + 𝛼
𝑝
∑

𝑖=1
𝐷𝑇

𝑖 (𝑄
−1
𝑖 𝐸̂𝑖𝛴

−1𝑋̂𝑇 ⊙ 𝐴′
𝑖) (80)

where 𝐸̂𝑖 = 𝑌𝑖 − 𝐴𝑖𝑋̂ and 𝐴′
𝑖 is the derivative of 𝐴𝑖. Having a new

weight matrix 𝑊 available, we may update 𝐴𝑖 = 𝙰(𝐷𝑖𝑊 ), and repeat
he procedure for a new iteration over 𝑡.

This problem can also be solved in a recursive form. In this scenario,
the unknowns 𝑋 and 𝑊 are both updated in a recursive form. Using
the first set of data 𝑌1, we obtain

̂ 𝑇 −1 −1 𝑇 −1
𝑋(1) = (𝐴1 𝑄1 𝐴1) 𝐴1 𝑄1 𝑌1 (81)
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and

𝑊(1) = 𝑊(0) + 𝛼𝐷𝑇
1 (𝑄

−1
1 𝐸̂1𝛴

−1𝑋̂𝑇
(1) ⊙ 𝐴′

1) (82)

where 𝐸̂1 = 𝑌1 − 𝐴1𝑋̂(1) and 𝐴′
1 is the derivative of 𝐴1. Having

𝑋̂(𝑖−1) and 𝑊(𝑖−1) available from a set of observations 𝑌1,… , 𝑌𝑖−1, we
may add the new set 𝑌𝑖, to update 𝑋 and 𝑊 in a recursive form as
follows (Teunissen, 2001; Amiri-Simkooei, 2019)

𝑋̂(𝑖) = 𝑋̂(𝑖−1) − 𝑅𝑖−1𝐴
𝑇
𝑖 (𝑄𝑖 + 𝐴𝑖𝑅𝑖−1𝐴

𝑇
𝑖 )

−1(𝑌𝑖 − 𝐴𝑖𝑋̂(𝑖−1)) (83)

where 𝐴𝑖 = 𝙰(𝐷𝑖 𝑊(𝑖−1)). Matrix 𝑊 is then updated as

𝑊(𝑖) = 𝑊(𝑖−1) + 𝛼𝐷𝑇
𝑖 (𝑄

−1
𝑖 𝐸̂𝑖𝛴

−1𝑋̂𝑇
(𝑖) ⊙ 𝐴′

𝑖) (84)

where 𝐸̂𝑖 = 𝑌𝑖 − 𝐴𝑖𝑋̂(𝑖). In the above equations, starting from 𝑅1 =
(𝐴𝑇

1 𝑄
−1
1 𝐴1)−1, 𝑅𝑖 is updated as follows:

𝑅𝑖 = 𝑅𝑖−1 − 𝑅𝑖−1𝐴
𝑇
𝑖 (𝑄𝑖 + 𝐴𝑖𝑅𝑖−1𝐴

𝑇
𝑖 )

−1𝐴𝑖𝑅𝑖−1 (85)

Having finished the first iteration, with 𝑖 = 1,… , 𝑝 while 𝑡 = 1, we may
estart the same procedure to do the next iteration over 𝑡.

For the above recursive formulation, as an alternative method, we
ay update only 𝑋, while 𝑊 is kept fixed. We then update 𝑋̂(𝑖), 𝑖 =

1,… , 𝑝, and the final 𝑋̂(𝑝) is in fact 𝑋̂. Eq. (80) can then be used to
update 𝑊 , and the next iteration over 𝑡 can be scheduled.

7.2. Local feature extraction in DL model

Deep learning is known to be a powerful local feature extractor.
Feature extraction aims to reduce the number of explanatory variables
(features), in case there are too many variables. For example, a con-
volutional neural network (CNN), a class of deep neural networks, can
successfully capture the spatial and temporal dependencies in an image
through the application of relevant filters (Albawi et al., 2017). Its
architecture can perform a better fitting due to the reduction in the
number of parameters involved in a local area. This is referred to as
the local feature extraction of CNN.

Although, in general, different local feature extractors can be de-
fined, we propose a column-wise partitioning of the feature matrix.
Matrix 𝐷 can be decomposed into smaller sub-features as [𝐷1,… , 𝐷𝑝],
with 𝐷𝑖, 𝑖 = 1,… , 𝑝 an 𝑚 × 𝑘𝑖 matrix. We note that we may have
in general ∑𝑝

𝑖=1 𝑘𝑖 ≥ 𝑘, indicating overlaps among the columns of 𝐷,
consistent with the CNN stride structure (Kong and Lucey, 2017). The
individual matrices 𝐷𝑖 are then convolved with their individual weight
matrices as 𝐷𝑖𝑊𝑖. They will then be fed to an activation function and
yield the linear model 𝑌 = 𝐴𝑋 + 𝐸 as

𝑌 = [𝙰(𝐷1𝑊1),… , 𝙰(𝐷𝑝𝑊𝑝)]
⎡

⎢

⎢

⎣

𝑋1
⋮
𝑋𝑝

⎤

⎥

⎥

⎦

+ 𝐸

=
∑𝑝

𝑖=1 𝐴𝑖𝑋𝑖 + 𝐸

(86)

where 𝐴𝑖 = 𝙰(𝐷𝑖𝑊𝑖) are the individual design matrices to be trained.
This is a so-called column-wise partitioned model of observation equa-
tions (Teunissen, 2000b). The least squares criterion leads to the fol-
lowing partitioned normal equations (𝑁𝑋̂ = 𝑈):

⎡

⎢

⎢

⎣

𝑁11 ⋯ 𝑁1𝑝
⋮ ⋱ ⋮

𝑁𝑝1 ⋯ 𝑁𝑝𝑝

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑋̂1
⋮
𝑋̂𝑝

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝑈1
⋮
𝑈𝑝

⎤

⎥

⎥

⎦

(87)

where 𝑁𝑖𝑗 = 𝐴𝑇
𝑖 𝑄

−1𝐴𝑗 and 𝑈𝑖 = 𝐴𝑇
𝑖 𝑄

−1𝑌 . There are different ways
to solve these equations. The straightforward manner is to solve for 𝑋
simply from the inverse of 𝑁 , i.e. 𝑋̂ = 𝑁−1𝑈 . An alternative is to use
the block-triangular decomposition of 𝑁 = 𝐿𝐷𝐿𝑇 , where

𝐿 =

⎡

⎢

⎢

⎢

⎢

𝐼𝑛1 0 ⋯ 0
𝐿21 𝐼𝑛2 ⋯ 0
⋮ ⋮ ⋱ ⋮

⎤

⎥

⎥

⎥

⎥

(88)
⎣

𝐿𝑝1 𝐿𝑝2 ⋯ 𝐼𝑛𝑝 ⎦

11 
and

𝐷 = blkdiag
(

𝐷11, 𝐷11, ⋯ , 𝐷𝑝𝑝
)

(89)

where 𝐿 is a lower block-triangular unit matrix and 𝐷 is a block-
diagonal matrix. The entries of 𝐿 = 𝐿𝑖 𝑗 and 𝐷 = 𝐷𝑖 𝑖 are explained
n Appendix C.

To solve for 𝑋̂, rewriting 𝑁𝑋 = 𝐿𝐷𝐿𝑇𝑋 = 𝐿𝑍 = 𝑈 , we first solve
or 𝑍 from 𝐿𝑍 = 𝑈 as
𝐼𝑛1 0 ⋯ 0
𝐿21 𝐼𝑛2 ⋯ 0
⋮ ⋮ ⋱ ⋮

𝐿𝑝1 𝐿𝑝2 ⋯ 𝐼𝑛𝑝

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

𝑍1
𝑍2
⋮
𝑍𝑝

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

𝑈1
𝑈2
⋮
𝑈𝑝

⎤

⎥

⎥

⎥

⎥

⎦

(90)

hich gives

𝑖 = 𝑈𝑖 −
𝑖−1
∑

𝑗=1
𝐿𝑖𝑗𝑍𝑗 , 𝑖 = 1,… , 𝑝 (91)

e then need to use 𝐷𝐿𝑇 𝑋̂ = 𝑍, resulting in

𝐷11 𝐷11𝐿𝑇
21 ⋯ 𝐷11𝐿𝑇

𝑝1

0 𝐷22 ⋯ 𝐷22𝐿𝑇
𝑝2

⋮ ⋮ ⋱ ⋮

0 0 ⋯ 𝐷𝑝𝑝

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑋̂1

𝑋̂2

⋮

𝑋̂𝑝

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑍1

𝑍2

⋮

𝑍𝑝

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(92)

hich finally gives

̂ 𝑖 = 𝐷−1
𝑖𝑖
(

𝑍𝑖 −
𝑝
∑

𝑗=𝑖+1
𝐷𝑖𝑗𝐿

𝑇
𝑗𝑖𝑋̂𝑗

)

, 𝑖 = 𝑝,… , 1 (93)

he estimated 𝑋̂𝑖, 𝑖 = 1,… , 𝑝 can be used to update the individual
eights (see below, with Eq. (95)).

We may also propose an alternative method that considers the
ndividual 𝑋̂𝑖, 𝑖 = 1,… , 𝑝 in each iteration. Because the entire problem
ust be solved through an iterative manner, due to non-linearity of 𝑊𝑖’s

or example, this method estimates both 𝑋̂𝑖 and 𝑊𝑖’s in an iterative
ethod (we first update 𝑋̂𝑖 and then 𝑊𝑖). The 𝑖th block row of the
ormal equations 𝑁𝑋̂ = 𝑈 is ∑𝑝

𝑗=1 𝑁𝑖𝑗𝑋̂𝑗 = 𝑈𝑖, which is reformulated
o 𝑁𝑖𝑖𝑋̂𝑖 +

∑𝑝, 𝑗≠𝑖
𝑗=1 𝑁𝑖𝑗𝑋̂𝑗 = 𝑈𝑖. This finally provides an update for 𝑋̂𝑖 as

𝑋̂𝑖 = 𝑁−1
𝑖𝑖

(

𝑈𝑖 −
𝑝, 𝑗≠𝑖
∑

𝑗=1
𝑁𝑖𝑗𝑋̂𝑗

)

(94)

where 𝑖 runs from 1 to 𝑝. It is known that the final estimates 𝑋̂𝑖’s are
to be calculated through an iterative method.

The latest estimates of 𝑋̂𝑖’s (using either of the above methods), can
then be employed to update the individual weights as

𝑊 (𝑡+1)
𝑖 = 𝑊 (𝑡)

𝑖 + 𝛼𝐷𝑇
𝑖 (𝑄

−1𝐸̂𝛴−1𝑋̂𝑇
𝑖 ⊙ 𝐴′

𝑖) (95)

where 𝐸̂ = 𝑌 −
∑𝑝

𝑗=1 𝐴𝑗𝑋̂𝑗 can also be updated when an individual 𝑋̂𝑖

is updated. As an alternative, 𝐸̂ can be updated only once over each
iteration 𝑡 in which all 𝑋̂𝑗 have been estimated.

7.3. Multilayer DL model

So far we considered the single-layer model as 𝑌 = 𝙰(𝐷𝑊 )𝑋+𝐸, to
be as simple as possible. Our observations indicate that this model can
indeed be applied to a series of problems having moderate complexity.
If the above model is not suitable, we may consider to use a more
sophisticated model. Considering more complexity, possibly due to
complicated non-linearity, we consider a model that includes weights
in deeper layers. The adjective ‘deep’ refers to the use of multiple layers
in a deep learning network (Kawaguchi, 2016). As a starting point, we
consider a double-layer deep learning model as

( )
𝑌 = 𝙰2 𝙰1(𝐷𝑊1)𝑊2 𝑋 + 𝐸, (96)
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where in addition to 𝑊1 we have convolved a new weight matrix 𝑊2,
aving generally a new activation function 𝙰2(.). In this formulation, the

unknown matrices are then 𝑋, 𝑊1 and 𝑊2. We first have to solve for 𝑋,
then for 𝑊2, and finally for 𝑊1. Given 𝑋̂ = (𝐴𝑇𝑄−1𝐴)−1𝐴𝑇𝑄−1𝑌 , with
𝐴 = 𝐴2 = 𝙰2(.) it follows that 𝑌 = 𝐴𝑋̂ and 𝐸̂ = 𝑌 − 𝑌 . We then update
the weight matrix 𝑊2 as 𝑊 (𝑡+1)

2 = 𝑊 (𝑡)
2 − 𝛼2∇𝑊2

𝜙, with (cf. Eq. (26))

∇𝑊2
𝜙 = −𝐴𝑇

1 (𝑄
−1𝐸̂𝛴−1𝑋̂𝑇 ⊙ 𝐴′

2) (97)

where 𝛼2 is the 𝑊2 learning rate and 𝐴1 = 𝙰1(𝐷𝑊1) is a given 𝑚 × 𝑘
matrix. Having the 𝑊2 updated, we may then update 𝑋̂, 𝑌 and 𝐸̂
again. The last step concerns updating 𝑊1. This is to be done using
the following equation:

𝑊 (𝑡+1)
1 = 𝑊 (𝑡)

1 − 𝛼1∇𝑊1
𝜙(𝑊 (𝑡+1)

2 ,𝑊 (𝑡)
1 ) (98)

where 𝛼1 is the 𝑊1 learning rate and 𝜙(𝑊1,𝑊2) = 1
2 tr(𝑌

𝑇𝑄−1𝑌 ) −
1
2 tr(𝑈

𝑇𝑁−1𝑈𝛴−1) is given in Eq. (23). Its derivative with respect to
𝑊1 is then needed, which can follow from the following theorem:

Theorem 3. Let the objective functions be of the forms

𝜙1 = tr(𝐵𝙰2(𝙰1(𝐷𝑊1)𝑊2)𝐶) = tr(𝐵𝐴2𝐶) (99)

nd

2 = tr
(

𝐸(𝐵𝙰2(𝙰1(𝐷𝑊1)𝑊2))−1𝐶
)

= tr
(

𝐸(𝐵𝐴2)−1𝐶
)

(100)

where 𝐵, 𝐶, 𝐷, 𝐸, 𝑊1 and 𝑊2 are given matrices of appropriate size,
𝑊1 contains running unknown variables, and 𝙰1(.) and 𝙰2(.), the activation
functions, are assumed to be differentiable. Then their partial derivatives
with respect to the matrix 𝑊1 are
𝜕𝜙1
𝜕𝑊1

= 𝐷𝑇 ((𝐵𝑇𝐶𝑇 ⊙ 𝐴′
2)𝑊

𝑇
2 ⊙ 𝐴′

1
)

(101)

nd
𝜕𝜙2
𝜕𝑊1

= −𝐷𝑇 ((𝐵𝑇𝐻𝑇𝐸𝑇𝐶𝑇𝐻𝑇 ⊙ 𝐴′
2)𝑊

𝑇
2 ⊙ 𝐴′

1
)

(102)

respectively, where 𝐻 = (𝐵𝐴2)−1, ⊙ is the element-wise Hadamard product
applied to two matrices of the same dimension, 𝐴2 = 𝙰2(.) is the design
matrix, and 𝐴′

1 and 𝐴′
2 are the first derivatives of 𝐴1 and 𝐴2, respectively.

Proof. See Appendix D.
After a few simple mathematical operations, the above theorem

along with 𝑁 = 𝐴𝑇𝑄−1𝐴 and 𝑈 = 𝐴𝑇𝑄−1𝑌 provide the gradient ∇𝑊1
𝜙

as

∇𝑊1
𝜙 = −𝐷𝑇 ((𝑄−1𝐸̂𝛴−1𝑋̂𝑇 ⊙ 𝐴′

2)𝑊
𝑇
2 ⊙ 𝐴′

1
)

(103)

where 𝐴′
1 and 𝐴′

2 are the derivatives of the activation functions 𝙰1(.)
and 𝙰2(.), respectively.

We are now in a position to generalize the above formulation. Let
us convolve the feature matrix 𝐷 sequentially with a series of weight
matrices 𝑊1,… ,𝑊𝑝 and using the activation functions 𝙰1,… , 𝙰𝑝. The
model of observation equations 𝑌 = 𝐴𝑋 + 𝐸 reads then

𝑌 = 𝙰𝑝

(

𝙰𝑝−1
(

… 𝙰1(𝐷𝑊1) … 𝑊𝑝−1
)

𝑊𝑝

)

𝑋 + 𝐸, (104)

where the final 𝑚×𝑛 design matrix 𝐴 = 𝙰𝑝(.) is to be trained. The weight
matrices 𝑊𝑗 , should be estimated using the gradient descent method as

𝑊 (𝑡+1)
𝑗 = 𝑊 (𝑡)

𝑗 − 𝛼𝑗∇𝑊𝑗
𝜙(𝑊 (𝑡+1)

𝑝 ,… ,𝑊 (𝑡+1)
𝑗+1 ,𝑊 (𝑡)

𝑗 ,… ,𝑊 (𝑡)
1 )

where 𝑗 runs from 𝑝 to 1. We first update 𝑊𝑝 using the gradient ∇𝑊𝑝
,

with (cf. Eq. (26))

∇𝑊𝑝
= −𝐴𝑇

𝑝−1(𝑄
−1𝐸̂𝛴−1𝑋̂𝑇 ⊙ 𝐴′

𝑝) = −𝐴𝑇
𝑝−1𝐻𝑝 (105)

where 𝐴′
𝑝 = 𝐴′ = 𝙰′𝑝(𝐴𝑝−1(.)) is the derivative of 𝐴 and 𝐻𝑝 =

−1 ̂ −1 ̂ 𝑇 ′ ̂ ̂ ̂
𝑄 𝐸𝛴 𝑋 ⊙ 𝐴𝑝. We then update 𝑊𝑝, 𝑋, 𝑌 and 𝐸. The gradient
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descent method is again used to update 𝑊 (𝑡+1)
𝑝−1 = 𝑊 (𝑡)

𝑝−1 − 𝛼𝑝−1∇𝑊𝑝−1
𝜙,

with (cf. Eq. (103))

∇𝑊𝑝−1
𝜙 = −𝐴𝑇

𝑝−2
(

𝐻𝑝𝑊
𝑇
𝑝 ⊙ 𝐴′

𝑝−1
)

= −𝐴𝑇
𝑝−2𝐻𝑝−1 (106)

where 𝐻𝑝−1 = 𝐻𝑝𝑊 𝑇
𝑝 ⊙ 𝐴′

𝑝−1. From the mathematical induction, we
may further prove that the ∇𝑊𝑞

𝜙 can be obtained as

∇𝑊𝑞
𝜙 = −𝐴𝑇

𝑞−1
(

𝐻𝑞+1𝑊
𝑇
𝑞+1 ⊙ 𝐴′

𝑞
)

= −𝐴𝑇
𝑞−1𝐻𝑞 (107)

where 𝑞 runs from 𝑝 − 1 to 1 and

𝐻𝑞 = 𝐻𝑞+1𝑊
𝑇
𝑞+1 ⊙ 𝐴′

𝑞 (108)

It is noted that ∇𝑊1
𝜙 requires 𝐴0, which is indeed the feature ma-

trix 𝐷. The above formulation is a generalized form of the back-
propagation algorithm, widely used to train feed-forward artificial
neural networks (Buscema, 1998). This generalization has all the prop-
erties of the LSBDL we highlighted in Section 6. Using the chain rule,
the gradients were obtained with respect to the weight matrices 𝑊𝑖’s
and it iterates to modify the weights backward from the last (𝑊𝑝) to
the first (𝑊1) layer.

8. Opportunities and challenges of LSBDL

The general formulation of LSBDL has attractive properties and
offers new application and research areas, which we highlight in this
section. These properties will indeed render LSBDL transparent and
interpretable, which align closely with the rapidly growing field of XAI.

8.1. Directions for further research

GN method: This contribution mainly focused to formulate LSBDL using
the SD method. In Section 5, we also addressed the Gauss–Newton (GN)
method, a widely used nonlinear least squares problem solver (Hart-
ley, 1961; Ruhe, 1979; Teunissen, 1990; Gratton et al., 2007). The
method requires the Jacobian matrix to be derived. The minimization
problem in Eq. (17), as a nonlinear problem, was solved by GN,
which is known to have a faster convergence rate compared to the SD
method (Teunissen, 1990). GN can be used in small- to medium-sized
ML problems.

In Section 9.1 we numerically showcase that GN has a higher
convergence rate compared to SD (see later Fig. 2). Future studies
should however aim to rigorously investigate the performance of GN in
terms of convergence rate, computational burden, and scalability across
different problem sizes. This exploration provides new opportunities
and challenges for the GN formulation of LSBDL. For example, by
comparing its efficiency in large-scale ML problems, we can gain a
better understanding of its practical limitations and potential.

Deeper networks: The word ‘deep’ in neural networks refers to either
multilayer dense neural networks or convolutional neural networks
(CNN). Deep learning considers usually many hidden layers leading to
lots of training parameters, and hence posing a few challenges (Chen
and Lin, 2014). LSBDL can offer research directions of which we name
three. (i) When there exist too many training samples (big data), DL is
known to be computationally expensive (Elthakeb et al., 2018; Thomp-
son et al., 2020; Matsubara et al., 2022). The mini-batch training, with
a small number of training examples, is used iteratively to train the
entire network on all groups of samples until they are all used (Li et al.,
2014). LSBDL can handle this problem using recursive least squares. (ii)
DL is known to be a powerful local feature extractor of which CNN is
widely used (Albawi et al., 2017; Gu et al., 2018). We provided column-
wise partitioning of the input matrix to handle this problem. (iii) So far,
we mainly considered a single hidden layer. The word ‘deep’ can also

refer to as multiple hidden layers rather than a single layer. The above
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three topics were introduced in Section 7, but further development and
applications can be the focus of future research.

Embedding of LSBDL into least-squares framework: We formulated LSBDL
in the least-squares framework. This allows to directly apply the exist-
ing theory of the least squares method to deep learning problems. This
is in conjunction with the transparent and explainable AI algorithms
that help understanding the quality of DL output (Arrieta et al., 2020;
Vilone and Longo, 2021; Chou et al., 2022). For example, quality con-
trol measures such as the covariance matrix and precision of predicted
results can be determined by LSBDL. Also the available least-squares
reliability theory and hypothesis testing, to identify mis-specification
and outlying observations, can directly be established in the LSBDL
framework (Baarda, 1968). Generalization of some of these theories
was elaborated in Section 6, which offers new directions for future
research.

Convergence speed and overfitting: There are still challenges to be ad-
dressed by LSBDL. The challenges originate from three closely related
problems associated with deep learning: overfitting, local minimum and
convergence speed. Some of the future research directions in LSBDL
are itemized as follows: (1) Batch normalization is a widely adopted
technique that normalizes activations in intermediate layers of deep
learning to improve accuracy and speed up the training process (Ioffe
and Szegedy, 2015; Santurkar et al., 2018; Bjorck et al., 2018). (2)
Dropout is a technique to address the overfitting problem, where ran-
domly selected neurons (along with their connections) are temporally
ignored during the training process (Baldi and Sadowski, 2013; Sri-
vastava et al., 2014; Garbin et al., 2020). (3) Adam optimization is
one of the most popular momentum-based SD variants that modifies
individual adaptive learning rates from estimates of the first and second
moments of the gradients (Kingma and Ba, 2014; Zhang, 2018). These
are some research directions to be addressed in future.

Physics-informed neural networks: DL methods are known to be opaque
black-box methods, which prevent obtaining a realistic assessment of
the quality of predicted results. Ongoing research aims at increasing
transparency by addressing this DL’s black-box problem (Arrieta et al.,
2020). One aspect of transparency is to incorporate the physics laws
into the DL models while training, referred to as physics-informed
neural networks (PINNs) (Raissi et al., 2019; Karniadakis et al., 2021;
Cuomo et al., 2022). PINN is a scientific machine learning (SciML)
technique used to incorporate physics laws, like partial differential
equations (PDEs), in the training (Lehmann et al., 2024; Thiyagalingam
et al., 2022). A primary challenge for PINN is its generalization beyond
the training domain, especially when complex physical problems are
represented by PDEs. This issue arises for example in geophysical
inversion problems, when the neural network must learn the general
solution of PDEs like the elastic wave equation with varying param-
eters (Lehmann et al., 2023). Other physics laws include radiative
transfer modeling (RTM) (Gege, 2004) and the linear dispersion rela-
tion (LDR) (Santos et al., 2022; Daly et al., 2022) in satellite-derived
bathymetry methods. LSBDL can incorporate prior knowledge using
soft and hard physics-based constraints into DL through a unified
least-squares formulation (Amiri-Simkooei, 2019). As LSBDL can also
incorporate the covariance matrix of observations within the training
process, it explores the weighting of constraints in the PINN model
using least squares variance component estimation (LS-VCE) (Teunissen
and Amiri-Simkooei, 2008; Amiri-Simkooei, 2007).

Out-of-Distribution: Out-of-distribution (OOD) detection using deep learn
ing has gained increasing attention in the field of AI (Cui and Wang,
2022; Berend et al., 2020). LSBDL offers a robust framework to handle
OOD predictions by leveraging its foundation in the least squares
theory. Here, we outline four key aspects of OOD detection and man-
agement that can be effectively handled by LSBDL. (i) One of the
strengths of LSBDL is its ability to directly determine quality control
measures such as the covariance matrix and the precision of predicted
13 
outcomes. For example, high uncertainty in predictions can serve as
an indicator of OOD data. (ii) LSBDL can employ available reliability
theory and hypothesis testing to identify and detect (and hence remove)
model mis-specification and outlying observations (refer to Section 6.2
on DIA). This is particularly useful for OOD detection, as OOD data
often manifest as outliers or anomalies in the input. (iii) The LSBDL
framework exploits the covariance matrix of observations to train the
network with inconsistent, heterogeneous, and statistically correlated
data. This approach is particularly beneficial to handle OOD data
because it allows for higher weights to be given to more precise data
and less weight to less precise data, as indicated by the role of 𝑄
and 𝛴 in Eq. (27). (iv) Similar to all AI methods, LSBDL can also
be trained to be robust against OOD data. Techniques such as data
augmentation, adversarial training (Bai et al., 2021), and regularization
methods (dropout, weight decay, and batch normalization) can be
easily implemented within the LSBDL framework.

8.2. Challenges due to nonlinearity of LSBDL

The nonlinearity of the LSBDL model, originating from the utiliza-
tion of nonlinear activation functions and the depth of the layers used,
poses several challenges that warrant further research. Some research
directions in the field of LSBDL involve the following interrelated
fourfold challenges:

Quality control measures: We have provided a few measures for quality
control of the estimates in the DL models. For example, the covariance
matrix of estimates and predictions has been derived under different
scenarios (see Eqs. (61) to (66)). It is noted that this measure for
precision description is based on a one-layer learning model. Further
derivation of such uncertainty quantification measures needs to be
developed for deeper networks. This also poses other challenges as a
multi-layer deep network can be severely nonlinear and hence the esti-
mates can be biased (Teunissen and Knickmeyer, 1988), the covariance
matrices cannot be too much representative of the actual covariance
matrix (Wang and Zhao, 2017; Amiri-Simkooei et al., 2016), and the
convergence (rate) can severely be affected (Teunissen, 1990). The
deeper the network is, the more severe these challenges will become.
This offers new challenges to be addressed in the future.

Hypothesis testing: In Section 6.2, we introduce the application of sta-
tistical hypothesis testing to detect mis-specification and outliers in
the LSBDL model (Baarda, 1968). The nonlinearity of the model will
affect the distribution of its underlying test statistics. For example, the
distribution of the w-test statistic in Eq. (12) is not normal, even if the
original observables are normally distributed. Furthermore, under the
normality assumption, the test statistics in Eq. (11) has a chi-square
distribution. However, this cannot hold for nonlinear least squares
problems. For LSBDL, the type of activation function and the depth of
the layers used have a significant effect on the distributional assump-
tions. This opens new research challenges. For example, to reject the
null hypothesis and hence to identify mis-specification, it is always safe
to use the Chebyshev inequality, which is independent of the distribu-
tion and gives an upper bound for a specified level of significance 𝛼,
see Casella and Berger (2021). An alternative is based on the use of
Markov chain Monte Carlo (MCMC) methods (Gilks et al., 1995; Jones
and Qin, 2022), a powerful tool to estimate features of probability
distributions. MCMC comprises a class of algorithms for sampling from
a probability distribution. By constructing a Markov chain one can
obtain a sample of the desired distribution by recording states from
the chain. The more steps that are included, the more closely the
distribution of the sample matches the actual desired distribution.
Various algorithms exist to construct chains; the Metropolis–Hastings
algorithm is most popular (Metropolis et al., 1953; Wu et al., 2017).

Error in input 𝐷: Possible uncertainties in the input variables 𝐷 have
been ignored so far. A more realistic error propagation should also
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take uncertainty of 𝐷 into consideration. This can be implemented
y the weighted total least squares methods for which uncertainties
f both 𝐴 (due to 𝐷) and 𝑌 can simultaneously be considered in the
stimation process and its uncertainty quantification (Amiri-Simkooei
t al., 2016). In one hand, the covariance matrices given in Eqs. (61)–
66) only include the uncertainty of observations, which are propagated
o the parameters of interest through the linear(ized) model. On the
ther hand, approximation using DL methods is subject to approxima-
ion errors, which is an inherent characteristic of all approximation
ethods (Elbrächter et al., 2021; Lu et al., 2021). The above challenges
ill offer future research directions in this field.

anishing gradient: The DL models significantly suffer from the problem
f vanishing gradient. The vanishing gradient is a challenge that occurs
hen training deep neural networks, especially those with many layers.

t arises when the gradients of the loss function with respect to the
arameters of the network become small as they are backpropagated
hrough the layers, because the gradients of the loss function are
ultiplied by the derivatives of the activation functions as they are

ackpropagated (see Eq. (108)). These challenges offer new research
irections in which the weight initialization (Glorot and Bengio, 2010),
ctivation functions (He et al., 2015), batch normalization (Ioffe and
zegedy, 2015), and skip connections (He et al., 2016a) are among
ome possible methods to address these challenges. For example, the
se of the Rectified Linear Unit (ReLU) activation function, having
derivative of one for positive inputs, helps prevent the vanishing

radient problem (He et al., 2015).

.3. Directions for some applications

SBDL versus ML methods: ML methods have been applied to different
pplication fields. A review of those methods is beyond the scope of
resent contribution. Here we refer to random forest (RF), support
ector regression (SVR) and multilayer perceptron (MLP), as widely
sed methods. The RF regression is a supervised ensemble-learning
echnique that generates thousands of decision trees, which act as
egression functions on their own, and the final RF output is the average
f outputs from all decision trees (Breiman, 2001; Ho, 1995). SVR is
ased on the support vector machine (SVM) whose goal is to model and
hen predict complex relationship between input and output through
apping the data into a high-dimensional feature space (Awad and
hanna, 2015; Smola and Schölkopf, 2004). MLP is a fully connected

eed-forward artificial neural network that consists of an input layer,
n output layer and at least one hidden layer. MLP can be used
o approximate complex nonlinear functions (Rumelhart et al., 1986;
zugwu et al., 2005; Kawaguchi, 2016).

In a recent work, the performance of the above three methods
as investigated for downscaling the groundwater storage anomaly

GWSA) extracted from the gravity recovery and climate experiment
GRACE) mission (Sabzehee et al., 2023). The methods predicted GWSA
s a function of hydro-climatic variables such as precipitation, evap-
transpiration, land surface temperature and normalized difference
egetation index. RF outperformed the other two methods to downscale
WSA. Our findings show that LSBDL outperforms the RF method using

he same dataset (see Section 9.3). This needs further investigation in
imilar application fields such as data fusion methods (Meng et al.,
020), remote sensing applications (Belgiu and Drăguţ, 2016), mapping
f mineral prospectivity (Rodriguez-Galiano et al., 2015) and solar
nergy systems (Ahmad et al., 2018).

eoscience applications: LSBDL particularly offers new opportunities in
eoscience. The applications cover a variety of problems in which
he ordinary linear model theory cannot directly be applied. Such
pplications range from current challenges in global navigation satellite
ystems (GNSS), the gravity recovery and climate experiment (GRACE),
14 
multi-sensor integrated unmanned ship navigation, atmospheric moni-
toring and forecasting, multi-frequency multi-beam echo-sounders (MF-
MBES) to satellite-based Lidar, SAR and multi-spectral imagery. For
some of these applications, we may specifically refer to GNSS multi-
path detection (Hsu, 2017; Suzuki and Amano, 2021), estimation of
precipitable water vapor (Lee et al., 2019; Zhang and Yao, 2021; Razin
and Voosoghi, 2022), downscaling of GRACE-derived terrestrial water
storage anomalies (Jyolsna et al., 2021; Foroumandi et al., 2022; Sabze-
hee et al., 2023), soil moisture estimation (Kim and Lakshmi, 2018;
Senyurek et al., 2020; Nabi et al., 2022), wind speed prediction (Chen
et al., 2018; Ibrahim et al., 2021; Asgarimehr et al., 2022), applications
in synthetic aperture radar (SAR) images (Schwegmann et al., 2016;
Chen et al., 2019a; Fracastoro et al., 2021), total electron content
forecasting (Chen et al., 2019c; Natras et al., 2022) and time series
analysis (Torres et al., 2021; Gao et al., 2022; Shahvandi and Soja,
2022).

Inverse problems: Inverse problems, encountered in many scientific and
engineering fields including geophysics, astronomy, remote sensing
and acoustics, require estimating system parameters from observed
(noisy) data (Tarantola, 2005). In geophysics, they involve deducing
unknown subsurface properties from observed data, such as seismic
waves, gravity, or electromagnetic fields (Muir, 2022). Traditional
approaches often rely on linear approximations and regularization
techniques to manage ill-posedness and ensure stable solutions. Deep
learning techniques have been shown to be superior to the traditional
methods in seismic tomography (Araya-Polo et al., 2018) and 3D elastic
wave propagation (Lehmann et al., 2024a). This becomes even more ap-
pealing when using SciML with PINN and PDE (Lehmann et al., 2024a).
Ongoing research demonstrates how neural networks can be trained to
predict subsurface velocity models from seismic data, highlighting the
potential of AI to improve the accuracy and efficiency of geophysical
inversions.

LSBDL addresses the inverse problem by training a neural net-
work to establish the design matrix that links input data (e.g. velocity
models) to predicted outcomes (e.g. wavefields) through a linear least-
squares framework. This linear foundation is enhanced by the nonlinear
capabilities of deep learning, allowing the method to handle complex,
real-world geophysical relationships more effectively than purely lin-
ear methods. LSBDL applies the well-established least-squares theory
to geophysical inverse problems in a three-fold manner. (i) LSBDL
leverages the covariance matrix of observations during training, which
makes it well-suited to handle geophysical data, often being inconsis-
tent and heterogeneous. (ii) LSBDL provides quality control measures
like the covariance matrix and precision of predicted outcomes. (iii)
LSBDL can embed prior knowledge (e.g. of PDEs) using soft and hard
physics-based constraints into the model through a unified least-squares
formulation (Amiri-Simkooei, 2019).

Aviation: LSBDL is expected to contribute to various aviation acoustic
and operational applications. (i) The use of AI methods in aviation noise
modeling is gaining momentum (Feng et al., 2023). ML and DL play a
crucial role in this field, which develop more accurate and adaptable
noise prediction models (Cha et al., 2023). By leveraging large datasets,
including noise measurements, flight trajectories, and meteorological
conditions, these models can optimize predictions of noise levels and
their impact on communities (Wang and Ma, 2024). (ii) In aviation
operations, ML methods, such as MLP (Alla et al., 2021) and RF (Dai,
2024), have also been employed to predict flight delays. Similar ML
and DL methods have been employed to build explainable RF classifiers
to predict flight anomalies (E-Silva and Murça, 2023), predict safety-
critical landing metrics using supervised machine learning (Puranik
et al., 2020), and use ML methods for aircraft maintenance (Karaoğlu
et al., 2023; Helgo, 2023). LSBDL has the high potential to accomplish
the above tasks, which offers new opportunities and challenges in
aviation noise modeling and operations.

Time series analysis: Time series analysis is a hot research topic in

various scientific and engineering domains, where the goal is to model
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sequential data points over time. Within this field, prediction and
anomaly detection are two prominent research topics. (i) ML methods
such as SVM (Smola and Schölkopf, 2004), RNN methods like long
short-term memory (LSTM) and echo state network (ESN), and random
forest (RF) (Bagnall et al., 2017) have shown promising results in
time series forecasting. For example, LSTM has been employed to
accurately predict stock prices (Nelson et al., 2017) and air quality
indices (Wang et al., 2021a). (ii) ML methods have also been used to
anomaly detection in time series data (Li and Jung, 2023), which is
crucial in various domains like ionospheric monitoring (Zhang et al.,
2024), among others.

LSBDL offers opportunities for time series analysis, which covers
both forecasting and anomaly detection. For time series prediction,
LSBDL utilizes past observations as features to predict future values.
Anomaly detection, essential for identifying unusual patterns or out-
liers, leverages LSBDL’s least squares reliability theory and hypothesis
testing to identify mis-specifications and outlying observations. This
dual capability of LSBDL in time series forecasting and outlier detection
is showcased in Section 9.2. LSBDL will thus offer new opportunities
and challenges for time series analysis.

Data fusion using LSBDL: Data fusion of multiple sensors, having in-
consistent, heterogeneous and statistically correlated uncertainties, is
still a challenging problem in ML methods (Meng et al., 2020; Qiu
et al., 2022). The challenges require effective processing methods that
compensate the heterogeneity and non-stationary properties of a large
amount of data obtained from multiple sensors (Salcedo-Sanz et al.,
2020). For some ongoing research in data fusion we may refer to the
role of uncertainty in decision making and trust in automated analyt-
ics (Stracuzzi et al., 2018), unresolved challenges in weather forecasts
using multiple data sources with different uncertainties (Watson-Parris,
2021), and data fusion of multiple sensors used in autonomous vehi-
cles (Kurzidem et al., 2020). Parts of uncertainty, heterogeneity and
correlation of observations can be explained in the data covariance
matrix. For example, high-precision observations bring a larger con-
tribution in the training than less precise observations (see Eq. (34)).
LSBDL allows to take into consideration the covariance matrix 𝑄vec(𝑌 ) =
𝛴⊗𝑄 of observations in the training. Matrix 𝛴 expresses (co)variances
among different classes (output), whereas matrix 𝑄 expresses variances
of observations from different samples/sensors. This will thus offer new
applications when combining observations from different sensors in the
training.

9. Three illustrative examples

The efficacy of the proposed LSBDL method is demonstrated through
two basic examples and a real-world geoscience application. The results
primarily focus on the SD method, while GN is also used to train
the network in Example 1. To investigate the performance of the
methods, we primarily use the root mean squared error (RMSE) metric.
RMSE quantifies the average magnitude of prediction errors, with lower
values indicating better model performance.

9.1. Surface fitting problem

Approximating a given surface or an unstructured point cloud by
parametric methods has been widely investigated in scientific and en-
gineering problems (Pottmann and Leopoldseder, 2003). In parametric
methods, an unknown function 𝑧 = 𝑓 (𝑢, 𝑣) is approximated with a series
of given data points or samples specified as 𝑧𝑖 = 𝑦𝑖, 𝑖 = 1,… , 𝑚. The
surface is usually approximated using a summation as

𝑓 (𝑢, 𝑣) =
𝑝
∑

𝑖=1
𝐵𝑖(𝑢, 𝑣)𝑥𝑖 (109)

where 𝑥𝑖’s are the unknown coefficients and the basis functions
𝐵 (𝑢, 𝑣), 𝑖 = 1,… , 𝑝 are usually polynomial, piecewise polynomial or
𝑖
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Table 2
Overall model test (OMT) on test statistics 𝑠̂2 = 𝑇 ∕(𝑚− 𝑛) = 𝑒𝑇𝑄−1

𝑦 𝑒∕(𝑚− 𝑛) for Cases 1
and 2 (TS1 and TS2) versus critical values (CV) under three scenarios with 𝑛 = 5, 10,
and 20; observations 50, 250 and 350 contain blunders.
𝑛 CV 𝑠̂2 = TS1 Result 𝑠̂2 = TS2 Result

5 1.154 17.34 reject 1.675 reject
10 1.155 4.39 reject 1.646 reject
20 1.156 1.77 reject 1.618 reject

piecewise rational. Such basis functions include at least pure splines
(Amiri-Simkooei et al., 2018), B-splines (Wang et al., 2006), Bézier
basis splines (Bercovier and Jacobi, 1994), radial basis functions (Carr
et al., 2001), PHT-splines (Wang et al., 2011), bivariate splines (Zeil-
felder, 2002), and triangular B-splines (He and Qin, 2004).

The basis functions 𝐵𝑖(𝑢, 𝑣) in Eq. (109) are indeed elements of the
esign matrix 𝐴. This indicates that the basis functions are known
priori, and they can in principle be linear/nonlinear functions of

he variables 𝑢 and 𝑣. This however indicates that the entries of 𝐴
re known a priori. Although the final approximating surface can
enerally be a nonlinear function (possibly due to nonlinearity of the
asis functions), we use the linear least squares theory to estimate its
oefficients.

nown function: We follow a similar method using the non-par-
metric method LSBDL in which the linear least squares theory is used.
he main difference is that the entries of 𝐴 (basis functions) are not
nown a priori, and therefore they should be trained in an iterative
rocedure. In principle, function values 𝑧 = 𝑓 (.), measured as a function
f positions 𝑢 and 𝑣, known as a point cloud, are approximated by a
D surface using LSBDL. The efficiency of the method is investigated
hrough a numerical example, which starts from a known mathemat-
cal function. For simulation of a 2D surface, consider the following
athematical function

(𝑢, 𝑣) = 𝑢𝑒−(𝑢
2+𝑣2) (110)

here 𝑒(.) is the exponential function.

ata generation: Fig. 1 [left] shows this function on a regular grid of
1 × 41 = 1681 points on 𝑢 = −2 ∶ 0.1 ∶ 2 and 𝑣 = −2 ∶ 0.1 ∶ 2.
data set of 𝑚 = 500 points, sampled from Eq. (110) and generated

sing the uniform distribution over the region is used to illustrate the
fficacy of the proposed method (Fig. 1 [right]). Random noise with
standard deviation of 0.01 is added to the generated data set. Three

bservations, namely observations 50, 250 and 350, are intentionally
ontaminated with outliers of −0.1, −0.1 and 0.1, respectively. We

therefore have 𝑦 = [𝑧1,… , 𝑧𝑚]𝑇 , where 𝑧𝑖 is measured at coordinates
(𝑢𝑖, 𝑣𝑖), 𝑖 = 1,… , 𝑚. The goal is to approximate/regenerate this data set
using the LSBDL theory proposed in Sections 4 and 5. We will assume
𝑄 = 𝐼𝑚, an identity matrix of size 𝑚.

Two sets of features: To train a design matrix, we use the features
[1, 𝑢, 𝑣] (Case 1) and [1, 𝑢, 𝑣, 𝑢𝑣, 𝑢2, 𝑣2] (Case 2). Case 1 is indeed the
simplest case of which the features are just the point coordinates and
a bias. The 𝑖th row of the feature matrix 𝐷 is then 𝐷𝑖 = [1, 𝑢𝑖, 𝑣𝑖] or
𝐷𝑖 = [1, 𝑢𝑖, 𝑣𝑖, 𝑢𝑖𝑣𝑖, 𝑢2𝑖 , 𝑣

2
𝑖 ]. The convolution of 𝐷𝑊 is then activated

by the sigmoid function to make the design matrix 𝐴 = 𝙰(𝐷 𝑊 ). As
indicated before, we use 𝑚 = 500 data points to train the network. As
a test data set, we again use the regular grid of 41 × 41 = 1681 points,
to see how we can reproduce the known function 𝑓 (𝑢, 𝑣) = 𝑢𝑒−(𝑢2+𝑣2) in
Fig. 1 [left]. To train the design matrix, we set the hyper-parameters to
𝛼 = 0.01, 𝜅 = 10−6, 𝜇 = 0.9 and 𝑠 = 0.5. The weight matrix 𝑊 is of size
3 × 𝑛 and 6 × 𝑛, for Case 1 and Case 2, respectively, with their initial
entries generated randomly using the uniform distribution between −1
and 1. To investigate the effect of under-parametrization on the results,
different values of 𝑛 are suggested. This value is set to 𝑛 = 5, 10 and
20. We set 𝑄𝑦 = 𝜎2𝐼𝑚, with 𝜎 = 0.01 (hence 𝛴 = 𝜎2 and 𝑄 = 𝐼𝑚).

Training using SD and GN : For Case 1 (𝑘 = 3), with 𝑛 = 20, the
training is performed to see its performance using the SD and GN
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Fig. 1. Mathematical function 𝑓 (𝑢, 𝑣) = 𝑢𝑒−(𝑢2+𝑣2 ) shown on a rectangular regular grid of 𝑢 = −2 ∶ 0.1 ∶ 2 and 𝑣 = −2 ∶ 0.1 ∶ 2 [a]. 500 data points simulated randomly using uniform
distribution for the mathematical function 𝑓 (𝑢, 𝑣) scattered irregularly over region −2 ≤ 𝑢 ≤ 2 and −2 ≤ 𝑣 ≤ 2 [b].
Fig. 2. Normalized objective function, estimated variance factor 𝑠̂2 = 𝑒𝑇𝑄−1
𝑦 𝑒∕(𝑚 − 𝑛), over different iterations for Case 1, with 𝑛 = 20; SD method (a) and GN method (b).
𝑠

Fig. 3. Least squares residuals of the trained linear model 𝑦 = 𝐴𝑥 + 𝑒. Indicated are
outlying observations # 50, 250, and 350 (red circles).

methods. Fig. 2 shows the reduction of the (normalized) objective
function in different iterations, which is indeed the estimated variance
factor 𝑠̂2 = 𝑒𝑇𝑄−1𝑒∕(𝑚 − 𝑛) and is expected to be one. The normalized
𝑦
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values make the comparison easier when dealing with different values
of 𝑛 = 5, 10, and 20. A clear reduction is observed in both sub-frames,
indicating that the network is learning through iterations of both SD
and GN. Although SD shows a steady reduction through iterations,
GN converges quickly, which is known to have a faster convergence
rate (less iterations) compared to SD (Teunissen, 1990); here the GN
normal matrix 𝐽𝑇

𝑤𝑄
−1
vec(𝑌 )𝐽𝑤 is of size (𝑘𝑛 = 60) × (𝑘𝑛 = 60), but the

computational burden can drastically increase for larger values of 𝑘 and
𝑛. For both methods, the estimated variance factor does not reach the
preassigned value of 1, which can have two reasons: (1) The model is
under-parametrized indicating that the number of unknowns (𝑛 = 20),
or the number of features 𝑘 = 3 are not sufficient to fully capture
the non-linearity of 𝑓 (𝑢, 𝑣). (2) The three outliers introduced do not
allow the estimated variance factor 𝑠̂2 to become smaller. We further
elaborate on this.

Detection in DIA: We now apply the hypothesis testing using OMT,
referred to as ‘detection’ in the DIA procedure in Section 6.2. For Cases
1 and 2, the normalized objective functions of models, for 𝑛 = 5, 10 and
20, are presented in Table 2. In general, introducing more parameters,
either by having larger 𝑛’s or by having more features (Case 2 versus
Case 1) reduces the estimated variances. In the ‘detection’ step, an OMT
̂2 = 𝑇 ∕(𝑚 − 𝑛) = 𝑒𝑇𝑄−1

𝑦 𝑒∕(𝑚 − 𝑛) has been performed to test the
validity of the model and observations at a confidence level of 99%.
All cases indicate that the null hypothesis is rejected, expressing that
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Fig. 4. Function values predicted on a regular grid of 41 × 41 = 1681 points on 𝑢 = −2 ∶ 0.1 ∶ 2 and 𝑣 = −2 ∶ 0.1 ∶ 2 [a]. Predicted errors, difference between predicted and true
values [b].
Fig. 5. Standard deviation of predicted function values on a regular grid of 41 × 41 =
1681 points on 𝑢 = −2 ∶ 0.1 ∶ 2 and 𝑣 = −2 ∶ 0.1 ∶ 2.

Fig. 6. Prediction error (difference between the true and predicted values) for the
double-layer model.

the observations do not fit the model. This is mainly due to the under-
parametrization of the model or the introduced outlying observations,
which are identified in the identification step.

Identification in DIA: We now apply the hypothesis testing using the w-
test statistic, referred to as ‘identification’ in the DIA procedure (see
Section 6.2). Case 2 (and 𝑛 = 20) is used to identify the outlying
observations. The least squares residuals, presented in Fig. 3, clearly
show there are three outlying observations. The w-test statistics in
Eq. (12) are as follows: 𝑤50 = 10.07, 𝑤250 = 8.22, and 𝑤350 = −10.39,
which are all rejected at the 99% confidence level of the standard
normal distribution, with the critical value of ±2.58. Therefore, these
observations should be excluded from the dataset.

Adaptation in DIA: When outliers are confidently identified, they should
be compensated for in the functional model (here we just remove
17 
Table 3
Overall model test (OMT) on test statistics 𝑠̂2 = 𝑇 ∕(𝑚− 𝑛) = 𝑒𝑇𝑄−1

𝑦 𝑒∕(𝑚− 𝑛) for Cases 1
and 2 (TS1 and TS2) versus critical values (CV) under three scenarios with 𝑛 = 5, 10,
and 20; outlying observations 50, 250 and 350 were removed.
𝑛 CV 𝑠̂2 = TS1 Result 𝑠̂2 = TS2 Result

5 1.154 16.340 reject 1.034 accept
10 1.155 1.723 reject 1.002 accept
20 1.156 1.070 accept 0.984 accept

them). When the original observations are used (those without out-
liers), the OMT will accept the null hypothesis (see Table 3), which
includes Case 1, with 𝑛 = 20 and Case 2 with 𝑛 = 5, 10, and 20. This
indicates that the observations fit the model well, and hence no under-
parametrization occurs in these cases. This is further confirmed by the
w-test values, which are 𝑤50 = 1.23, 𝑤250 = −0.84, and 𝑤350 = −2.01
and they are all accepted at the above confidence level. For Case 1,
with 𝑛 = 5 and 𝑛 = 10, the OMT is still rejected, indicating under-
parametrization due to an insufficient number of neurons in the hidden
layer (small 𝑛’s).

Prediction: Having the weight matrix 𝑊 and the unknown vector 𝑥
estimated, the function values can be predicted on a regular grid of
41 × 41 = 1681 points on 𝑢 = −2 ∶ 0.1 ∶ 2 and 𝑣 = −2 ∶ 0.1 ∶ 2 (the
same grid as in Fig. 1 [a]). The feature matrix 𝐷𝑡 and hence the design
matrix 𝐴𝑡 = 𝙰(𝐷𝑡𝑊 ) can be used to predict the function values. The
results are shown in Fig. 4 [a]. Their predicted errors, differences with
those provided in Fig. 1 [b] as the true values, are presented in Fig. 4
[bottom]. Their root mean square error (RMSE) is 0.005. This is partly
due to the uncertainties in 𝑥̂ (resulted from observation errors 𝜎 = 0.01)
and partly due to mismodeling of the function 𝑓 (𝑢, 𝑣).

Uncertainty of prediction: DL methods typically require test data to
evaluate the performance of the trained model. LSBDL, however, goes
further by providing additional measures, such as the covariance ma-
trix of predictions, which results in the prediction uncertainty. The
uncertainties in observations 𝑌 contribute to the uncertainty of the
estimates 𝑥̂ and 𝑊̂ and hence to the prediction results. We use Eq. (74)
to estimate the standard deviation of the predicted function values
shown in Fig. 4 [a]; the results are presented in Fig. 5. The average
standard deviation is around 4 × 10−3, which closely aligns with the
previously mentioned RMSE of 5 × 10−3. The slight difference can be
attributed to the approximation errors, an inherent characteristic of all
approximation methods (Elbrächter et al., 2021; Lu et al., 2021), and
a challenge that future research in this field will need to address.

Double-layer model: In addition to our primary focus on a single-layer
network, we also investigated the performance of a double-layer net-
work model using Eq. (96). The hyper-parameters were set to 𝛼 = 0.01,
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Fig. 7. Time series data set contaminated with normally distributed noise with 𝜎 = 0.01.
Solid blue line shows training data and dashed red line shows testing data.

𝜅 = 10−6, 𝜇 = 0.9 and 𝑠 = 0.5. For the single-layer model, the number
of unknown weights was 60, calculated as 6 input neurons multiplied
by 10 hidden neurons. In contrast, the double-layer model had only
24 unknown weights, with 6 input neurons connecting to 2 hidden
neurons in the first layer (𝑊1 of size 6 × 2), and 2 hidden neurons
connecting to 6 hidden neurons in the second layer (𝑊2 of size 2 × 6).
Although this reduction in the number of parameters can potentially
lead to under-parametrization and a worse fit, the added depth of the
network resulted in a significant improvement in performance. When
evaluated over 10 independent runs, the RMSE of the double-layer
model decreased from 4.6 × 10−3 (observed in the single-layer model)
to 2.5 × 10−3. Fig. 6 illustrates the prediction error for the double-
layer model (cf. Fig. 4 [b]). These findings follow the principle that
exponential functions, such as the one given in Eq. (110), introduce a
high degree of non-linearity (Strogatz, 2018). Our results indicate the
potential advantages of employing deeper network architectures, which
highlights the enhanced capability of the double-layer model to capture
and learn complex patterns within the data more effectively than the
single-layer model.

9.2. Time series forecasting

As an extrapolation problem, time series prediction is considered to
be a challenging type of predictive problem. The complexity originates
from the sequence dependence among the input variables. In general,
parametric and non-parametric methods are commonly used in time
series analysis. The parametric methods include dynamic time series
prediction methods in which the functional and stochastic effects can be
captured in the best linear unbiased prediction (BLUP) framework (Te-
unissen, 2001). They assume that the underlying stationary stochastic
process has a certain structure such as an auto-regression or a moving
average with a small number of parameters. The task is then to estimate
the parameters of the model describing its stochastic process.

By contrast, a nonparametric method is a mathematical tool that
does not make any assumptions on the underlying model and hence on
its corresponding parameters. As a data-driven method, the underlying
model is determined/trained without assuming any structure on its
particular application. The non-parametric methods used are singular
spectrum analysis (SSA) (Elsner and Tsonis, 2013), spectral and wavelet
analysis (Torrence and Compo, 1998), and recurrent neural networks
(RNN) such as the long-short term memory (LSTM) method (Hochreiter
and Schmidhuber, 1997).

Time series simulation: The LSBDL method is used to forecast events in
time series. Let us simulate a time series based on the following model:

𝑦(𝑡) = 𝑦0 + 𝑟 𝑡 +
∑3

𝑖=1 sin (𝜔𝑖𝑡 + 𝜙𝑖)

+
(

1 + 2 sin(𝜔4𝑡)
)

sin (𝜔5𝑡)
(111)

where 𝑦0 = 2 is the intercept, 𝑟 = 0.02 is the rate, 𝜔1 = 10, 𝜔2 = 13,
𝜔 = 16, 𝜔 = 6 and 𝜔 = 20 are the frequencies and 𝜙 = 1, 𝜙 = 2
3 4 5 1 2

18 
Fig. 8. Normalized objective function, estimated variance factor 𝑠̂2 = 𝑒𝑇𝑄−1
𝑦 𝑒∕(𝑚 − 𝑛),

over different iterations of training time series data (SD method).

Fig. 9. Least squares residuals of the trained linear model 𝑦 = 𝙰(𝐷𝑊 )𝑥 = 𝐴𝑥+𝑒 of time
series data. Indicated are outliers in observations # 100, 400, and 700 (red circles).

and 𝜙3 = 3 are the phases. The time series is simulated over a time
span of 𝑇 = [0, 100], with an interval of 0.1, so in total there are 𝑚 =
1001 observations. The observations are contaminated with normally
distributed random noise with a standard deviation of 𝜎 = 0.01. Three
observations, namely observations 100, 400 and 700, are intentionally
contaminated with outliers of 0.1, −0.1 and −0.1, respectively. Fig. 7
shows a typical example of the simulated data set.

Input and output : We aim to predict future events merely based on
historical data, so without using Eq. (111). Given the time series values
at 𝑇 = [𝑡1, 𝑡2,… , 𝑡𝑝] a common exercise in time series analysis is
to forecast 𝑞 future values at [𝑡𝑝+1,… , 𝑡𝑝+𝑞] based on the historical
data (Elsworth and Güttel, 2020). We set 𝑝 = 100 and use 𝑞 = 1 in
our forecasting. The above simulated data are divided into training
and test data sets (observations 𝑦1 to 𝑦900 for training and observations
𝑦801 to 𝑦1001 for test). For the training data set, feature matrix 𝐷 and
observations 𝑦 are of the form

𝐷 =

⎡

⎢

⎢

⎢

⎢

𝑦1 … 𝑦100
𝑦2 … 𝑦101
⋮ ⋱ ⋮

⎤

⎥

⎥

⎥

⎥

, 𝑦 =

⎡

⎢

⎢

⎢

⎢

𝑦101
𝑦102
⋮

⎤

⎥

⎥

⎥

⎥

(112)
⎣

𝑦800 … 𝑦899 ⎦ ⎣

𝑦900 ⎦
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Fig. 10. Time series of original test data (dashed blue line) versus and predicted data (dashed red line) [left]. Difference between the true and predicted values (prediction error)
[right]; LSBDL (top), LSTM (middle), and ESN (bottom).
In a similar manner, 𝐷𝑡 and 𝑦𝑡 can be constructed from observations
𝑦801 to 𝑦1001 for the test data set.

Establishing model: The feature matrix is augmented to include the bias
term as 𝐷 ← [𝐷 ∶ 𝑢], where 𝑢 is the summation vector containing all
ones. We then have 𝑘 = 101. As indicated before, we use the 𝑚 = 800
data points to train the network. The convolution of 𝐷𝑊 is activated
using a ReLU function to train the design matrix 𝐴 = 𝙰(𝐷 𝑊 ). The
weight matrix 𝑊 is of size 101 × (𝑛 = 5) with their initial entries
generated randomly using the uniform distribution between −1 and 1.
We set 𝑄𝑦 = 𝜎2𝐼𝑚, where 𝜎 = 0.01. The observations (including the
three outliers) are used to train the network. The hyper-parameters are
set to 𝛼 = 0.001, 𝜅 = 10−6, 𝜇 = 0.9 and 𝑠 = 0.5.

Application of DIA: Fig. 8 shows the reduction of the (normalized)
objective function in different training iterations, which is indeed the
estimated variance factor 𝑠2 = 𝑒𝑇𝑄−1

𝑦 𝑒∕(𝑚 − 𝑛); it is mathematically
expected to be one, and therefore we can apply the DIA procedure
in the hypothesis testing. In the presence of the outliers, an OMT has
also been performed to test the validity of the model and observations
at a confidence level of 99%. The test statistic is 𝑇 ∕(𝑚 − 𝑛) = 1.68,
which is larger than the critical value of 𝜒2(𝑚 − 𝑛, 0.01)∕(𝑚 − 𝑛) = 1.12,
indicating that the null hypothesis is rejected; the observations do not
fit the model (‘detection’ step). This is due to the presence of the three
outliers. In the ‘identification’ step the three outliers can be detected.
Fig. 9 shows the least squares residuals. The outliers at the positions
100, 400 and 700 can clearly be marked and hence removed by the w-
test statistic. We may then remove the outlying observations and repeat
the analysis in the ‘adaptation’ step.

Prediction: Having the weight matrix 𝑊 and the unknown vector 𝑥
estimated, the trained network is finally used to predict future events.
Based on the test data 𝑦801 to 𝑦1001 we obtain 𝐷𝑡 and 𝑦𝑡 and then predict
𝑦̂𝑡 = 𝐴𝑡𝑥̂ = 𝙰(𝐷𝑡𝑊 )𝑥̂. The results are provided in Fig. 10 [a]. Their
predicted errors (𝑒𝑝 = 𝑦𝑡 − 𝑦̂𝑡), differences with those provided in Fig. 7
as the true values, are presented in the same plot [b]. Their root mean
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squares error (RMSE) is 0.014. This is partly due to the observation
errors (𝜎 = 0.01) and partly due to mismodeling of the trained network.

Architecture of ESN and LSTM : We compare the LSBDL results with those
obtained by two types of recurrent neural network (RNN), namely an
echo state network (ESN) (Lukosevicius and Jaeger, 2009; Viehweg
et al., 2023) and long short-term memory (LSTM) (Hochreiter and
Schmidhuber, 1997; Greff et al., 2016), using the same training and
test data. Both methods were tuned for their optimal architectures and
hyper-parameters. (i) In the ESN, a reservoir of randomly initialized
neurons captures the dynamics of the input time series, while only the
readout weights are trained. Key parameters include the input size of
100 (number of past time steps used for prediction), so identical to that
of LSBDL. The reservoir size, which influences the network’s capacity to
model complex patterns, was set to 8000 neurons. Sparsity, controlling
the density of connections within the reservoir, was set at 0.1 to balance
computational efficiency with modeling capacity. The spectral radius
of the reservoir weight matrix was adjusted to ensure the echo state
property, usually kept below 1, with a common value around 0.95 to
maintain stability (Jaeger, 2001). Regularization, applied during the
training of readout weights, was set at a small value of 10−8. (ii) The
LSTM architecture was designed with an input size corresponding to the
number of past samples, and a hidden layer consisting of 100 neurons to
capture the temporal dependencies in the data. The network includes a
sequence input layer, followed by an LSTM layer, and a fully connected
layer to map the hidden states to the output. The final regression layer
was used to facilitate continuous value prediction. For training, we
employed the Adam optimizer with a maximum of 200 epochs and
1200 iterations. The training options were configured with an initial
learning rate of 0.001, and a piecewise learning rate schedule. The
learning rate was set to decrease by a factor of 0.2 every 125 epochs
to ensure stable convergence. The network was trained on the training
data and subsequently used to make predictions on the test data.

Comparison of metrics: The performance evaluation of the three meth-
ods, LSBDL, LSTM and ESN, demonstrates a clear superiority of LSBDL
in both accuracy and computational efficiency. (i) The RMSE for LSBDL
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is 0.014, significantly lower than the RMSEs for LSTM (0.066) and
ESN (0.081). Given the range of the original time series (∼0 to 8), all
methods provide acceptable performance; however, LSBDL outperforms
the other two methods by a substantial margin in terms of precision
(Fig. 10). (ii) We also evaluated the computational burden of the three
methods on a computer with an Intel Core i7-10610U CPU@1.80 GHz,
2.3 GHz, 4 cores, 16 GB RAM. The computational time required for
LSBDL is remarkably low at 0.20 s, compared to 60.3 s for LSTM and
34.4 s for ESN. This highlights LSBDL’s efficiency and effectiveness,
which makes it also an appropriate alternative for time series analysis
applications.

9.3. Downscaling of GRACE data

The third example demonstrates the application of LSBDL to a
real-world geoscience problem. The application of AI methods for
downscaling the groundwater storage anomaly (GWSA) is an important
research topic, particularly in regions with complex hydrological and
climatic dynamics (Shokri et al., 2018; Chen et al., 2019b). Many
basins, suffering from significant water loss due to a combination of
climatic factors and human activities, demand high-resolution data for
effective water resource management. The launch of the gravity recov-
ery and climate experiment (GRACE) satellite mission in 2002 provided
important large-scale groundwater data, but its coarse resolution limits
its utility for smaller basins. To overcome this, downscaling methods,
especially those based on AI techniques, have been used.

To downscale the GWSA to higher resolutions, AI techniques, in-
cluding SVR, MLP, and RF, have been employed to enhance the spatial
resolution of GRACE data. Among them, RF stands out as the most
effective method for GWSA downscaling. RF is a supervised learning
algorithm that uses an ensemble learning method to improve prediction
accuracy. It can handle large datasets with numerous input variables
without overfitting and can effectively identify the importance and
interactions of variables (Breiman, 2001).

Previous studies have demonstrated the superiority of RF over SVR
and MLP in various hydrological applications. For example, research
has been conducted to successfully apply RF to downscale GRACE data
over the Indus basin, and hence to achieve higher resolution (Ali et al.,
2021). RF has also been used to improve the spatial resolution of
groundwater storage data for the Northern High Plains aquifer (Ra-
haman et al., 2019). These examples underscore RF’s capability to
capture complex nonlinear relationships inherent in hydrological pro-
cesses, which makes it a reliable tool for downscaling GWSA. In a recent
work, we also investigated the performance of the above three methods
for downscaling the GWSA extracted from GRACE (Sabzehee et al.,
2023). The methods, tuned for their optimal performance, predicted
GWSA as a function of hydro-climatic variables such as precipitation,
evapotranspiration, land surface temperature, normalized difference
vegetation index (NDVI), time and geographical coordinates. RF was
shown to have the best performance over SVR and MLP.

To evaluate and select the optimal model, the performance of RF,
SVR and MLP was assessed in a recent publication using three distinct
metrics (Sabzehee et al., 2023): RMSE (already introduced), Pearson’s
correlation coefficient (R), and Nash–Sutcliffe efficiency (NSE). R mea-
sures the linear relationship between predicted and observed values,
with values ranging from −1 to 1. Values closer to 1 indicate strong
positive correlations, which suggests that the model predictions align
well with the actual observations. NSE assesses the predictive power
of the models, with values ranging from −∞ to 1 (Nash and Sutcliffe,
1970). An NSE value of 1 corresponds to a perfect match between
predicted and observed data, while values less than 0 indicate that the
model performs worse than the mean of the observed data.

We investigate the performance of LSBDL using the same metrics.
The hyper-parameters were set to 𝑛 = 500, 𝜅 = 10−6, 𝛼 = 5 × 10−5,
𝜇 = 0.95, and 𝑠 = 0.5. We used a dataset consisting of 𝑚 = 31640
samples from Sabzehee et al. (2023). To investigate the performance
20 
Fig. 11. Predicted versus observed GWSA to investigate the performance of RF (blue)
and LSBDL (red) on the test data.

of the methods, we split the data into training and test sets, with
70% of the samples used for training and 30% for testing. For each
run, the training samples were selected randomly to ensure variability
and robustness in the evaluation. To make the results reliable, we
employed a cross-validation approach by carrying out the procedure
on 10 independent runs. The performance metrics were computed
based on these 10 runs to provide an assessment of each method’s
performance. The computational burden of the models was evaluated
on a computer with an Intel Core i7-10610U CPU@1.80 GHz, 2.3 GHz,
4 cores, 16 GB RAM.

The results are presented in Table 4. They indicate that LSBDL
significantly outperforms the SVR, MLP, and RF models as it achieves
higher Pearson correlation coefficients (R), larger NSE values, and
lower RMSE values. This is also graphically demonstrated in Fig. 11
from a typical run, which compares LSBDL with the competing method
RF. However, LSBDL is not the fastest method. SVR, while being the
fastest, has the worst performance in terms of accuracy metrics. MLP
offers a balance between accuracy and running time, performing better
than SVR but worse than RF and LSBDL in terms of accuracy, with a
moderate running time. RF, despite its longer running time, has good
performance in accuracy metrics, being second best in RMSE, R, and
NSE.

Prior to the above analysis we took a step to pre-analyze the data
for detecting possible outliers. This is performed using the identification
step in the DIA procedure, which applies hypothesis testing using the
w-test statistic (see Section 6.2). We used all data (so both training
and test data together) to train the LSBDL using the set-ups explained
earlier. To check the consistency of the results, we run the method twice
(two independent runs, each run consists of 10 sub-runs). The w-test
statistic values were then computed for these two runs. Fig. 12 shows
the results, which highlight two key observations: (i) The results from
the two independent runs demonstrate a high degree of consistency.
This indicates that the LSBDL model produces stable and reliable results
when applied multiple times under the same conditions. (ii) The figure
indicates that some observations are rejected at the 99% confidence
level of the standard normal distribution (corresponding to critical
values of ±2.58). These outliers were excluded from the dataset in the
above analysis to enhance the accuracy of the final results.

It is also noted that we applied the classical DIA theory (Teunissen,
2000a). Future work can also consider an extended DIA method, which
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Table 4
Metrics RMSE, R, and NSE used to evaluate the performance of SVR, MLP, and RF.
The table also includes the running time of each method.

Metric SVR MLP RF LSBDL

RMSE 35.76 24.74 20.38 18.15
R 0.938 0.969 0.980 0.984
NSE 0.874 0.939 0.959 0.967

Running time (s) 22.5 46.2 85.5 37.7

Fig. 12. The w-test values of GWSA modeling using LSBDL obtained for two
independent runs; outliers indicated as red dots.

integrates both estimation and testing in the same framework (Teunis-
sen, 2018).

10. Concluding remarks

10.1. Summary

This contribution presented the least-squares-based deep learning
(LSBDL) method. LSBDL applies the least squares theory of linear mod-
els to the deep learning (DL) problem. A linear model usually links the
observations 𝑦 (dependent variables) to a set of explanatory variables
(independent variables) through an unknown linear relation. A linear
model of observation equation 𝑦 = 𝐴𝑥 + 𝑒 is a matrix representation
of the above relation, where 𝐴, the given design matrix, consists of
the explanatory variables. There are applications for which the relation
between the observations and explanatory variables is not known a
priori. This is the case in many engineering and (geo)science problems.
Data-driven techniques such as those provided by artificial intelligence
(AI) are widely used to establish such a (non)linear relation between
input (explanatory variables) and output (observations). The link is
realized by means of convolutions and nonlinear activation functions
to capture the unknown relation. Weights and biases are both learnable
parameters inside the DL network.

We investigated the possibility of applying the least squares theory
of linear models to DL. This turned out to be feasible. A design matrix
is trained to relate the input and output variables in an iterative
procedure. The objective function is minimized using optimization
techniques such as the gradient-based descent methods. Two methods
were proposed: (1) Steepest descent (SD) method, (2) Gauss–Newton
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(GN) method. Analytical expressions, formulated by the estimates 𝑋̂
and 𝐸̂, were derived to compute the gradient of the objective function
or the Jacobian matrix and hence to iteratively improve the initial
weights and biases. The performance of the method was investigated
on two basic illustrative examples, with synthetic data sets, providing
promising results.

10.2. Highlights of LSBDL

The advantages and strengths of LSBDL are highlighted as follows:

• LSBDL was formulated using two gradient-based methods: Steep-
est descent (SD) and Gauss–Newton (GN) (Teunissen, 1990). Both
formulations leverage the capability of deep learning (DL) meth-
ods to capture complex non-linearity and the appropriate statisti-
cal inference of the least squares theory.

• In the current structure of DL methods, both the output and
hidden layer(s) are updated using gradient descent methods and
back-propagation equations (Bishop and Bishop, 2024). In con-
trast, our approach follows a different procedure where the output
layer with variables 𝑋 does not require training in LSBDL. This
is because the global minimizer for 𝑋 is already known from the
linear least squares theory, as described in Eq. (17).

• The contribution of the least squares residuals in training depends
on observation weights expressed in 𝑄−1 and 𝛴−1. For example,
if the precision of an observation improves by a factor of 2, its
residual is multiplied by a factor of 22 = 4, thereby having a
more significant contribution in the training process. The current
literature does not take this issue into consideration, see Buduma
et al. (2022). The method can thus be used when dealing with
inconsistent and heterogeneous data.

• By integrating prior knowledge and physics-based constraints into
the least squares formulation, LSBDL enhances the interpretability
and explainability of DL models (XAI). This integration allows
the model to leverage well-established physical principles and to
provide a clear understanding of the underlying processes, which
thereby addresses one of the major challenges in traditional DL:
the black-box problem (Von Eschenbach, 2021).

• Unlike available DL methods that rely on testing data to evalu-
ate performance, LSBDL intrinsically determines quality control
measures such as the covariance matrix and the precision of pre-
dicted outcomes, see Teunissen (2000b). This built-in mechanism
provides insights into the confidence and variability of the pre-
dictions, thereby enhancing XAI. LSBDL offers quality assessment
during training, which sets it apart from standard DL methods,
often lacking such quality control features.

• LSBDL can employ available reliability and hypothesis testing
theory to identify and remove model mis-specifications and outly-
ing observations using the DIA theory (Baarda, 1968; Teunissen,
2000a, 2018). This is particularly useful for out-of-distribution
(OOD) detection, as OOD data often manifest as outliers or
anomalies in the input (Cui and Wang, 2022).

10.3. Outlook

LSBDL offers new opportunities in geoscience and aviation. The
applications cover a variety of problems in which the ordinary linear
model theory cannot directly be applied. Such applications range from
current challenges in global navigation satellite systems (GNSS), the
gravity recovery and climate experiment (GRACE), aviation acoustic
and operations, multi-sensor integrated unmanned ship navigation,
atmospheric monitoring and forecasting, multi-frequency multi-beam
echo-sounders (MF-MBES) to satellite-based Lidar, SAR and multi-
spectral imagery. Different aspects of LSBDL were addressed in this
contribution. Local feature extractors and a multilayer DL formulation
were provided. What kinds of local features, or how many layers to
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use in the LSBDL are still relevant challenges to be addressed. It is
also expected that LSBDL will be applied to various scientific and
engineering applications. A wide range of applications in tomography,
data assimilation and data fusion of multiple sensors is expected. For
example, merging inconsistent, heterogeneous and statistically corre-
lated data is one of the challenges in data fusion methods. LSBDL can
take the covariance matrix of observations into consideration to train
networks with heterogeneous information.
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Appendix A. Proof of Theorem 1

This appendix provides the partial derivatives for two expressions
needed for the derivations. The expressions can contain a couple of ma-
trix operations like transposes, multiplications, inverses, traces and ac-
tivation functions. To calculate the derivatives we follow the following
convention.

For the sake of brevity, the summation ∑ will be disregarded. This
is based on the ‘summation’ convention, which states that whenever
there arises an expression in which an index occurs twice on the same
side of any equation, or term within an equation, it is understood to
represent a summation on the repeated index. A repeated index is called
a ‘summation index’, while an unrepeated index is a ‘free index’. For
two matrices 𝑆 and 𝑇 , the trace of 𝑆 can be denoted as tr(𝑆) = 𝑠𝑖𝑖
summation over 𝑖), while the matrix itself is symbolized as 𝑆 = 𝑠𝑖𝑗 , its
ranspose is denoted as 𝑆𝑇 = 𝑠𝑇𝑖𝑗 = 𝑠𝑗𝑖, and the multiplication of 𝑆 and

is denoted as 𝑆 𝑇 = 𝑠𝑖𝑘𝑡𝑘𝑗 , where 𝑖 and 𝑗 are free indices and 𝑘 is the

ummation index. 𝖽
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.1. Proof of part I

Expression in Eq. (21) is proved. We aim to obtain the partial
erivative of the following equation with respect to 𝑊 :

= tr(𝐵𝙰(𝐷𝑊 )𝐶) = tr(𝐵𝐴𝐶) (A.1)

here 𝐵, 𝐷, 𝑊 and 𝐶 are arbitrary matrices with appropriate sizes,
nd 𝙰 is a given activation function, to be applied in an element-
ise manner to all entries of 𝐷𝑊 . The elements of the matrix 𝑊
re assumed to be the function variables, for which the following
artial derivatives are to be calculated: 𝜕𝜙

𝜕𝑊 . This is indeed the partial
derivative of a scalar 𝜙 = tr(.) with respect to the matrix 𝑊 , which is
a matrix of the same size. It reads
𝜕𝜙
𝜕𝑊

=
𝜕(𝐵𝙰(𝐷𝑊 )𝐶)𝑖𝑖

𝜕(𝑊 )𝑢𝑣
=

𝜕𝑏𝑖𝑗𝑎𝑗𝑘𝑐𝑘𝑖
𝜕𝑤𝑢𝑣

(A.2)

here 𝑎𝑗𝑘 = 𝚊(𝑑𝑗𝑙𝑤𝑙𝑘) = 𝐴 = 𝙰(𝐷𝑊 ) is the design matrix. The above
quation is then reformulated as

𝜕𝜙
𝜕𝑊

=
𝜕𝑏𝑖𝑗𝚊(𝑑𝑗𝑙𝑤𝑙𝑘)𝑐𝑘𝑖

𝜕𝑤𝑢𝑣
(A.3)

or, taking the terms 𝑏𝑖𝑗 and 𝑐𝑘𝑖 out of the derivative, as

𝜕𝜙
𝜕𝑊

= 𝑏𝑖𝑗𝑐𝑘𝑖
𝜕𝚊(𝑑𝑗𝑙𝑤𝑙𝑘)

𝜕𝑤𝑢𝑣
(A.4)

Using the chain rule in partial derivative, we obtain

𝜕𝜙
𝜕𝑊

= 𝑏𝑖𝑗𝑐𝑘𝑖
𝜕𝚊(𝑑𝑗𝑙𝑤𝑙𝑘)
𝜕𝑑𝑗𝑙𝑤𝑙𝑘

𝜕𝑑𝑗𝑙𝑤𝑙𝑘

𝜕𝑤𝑢𝑣
(A.5)

or, with 𝚊′(𝑑𝑗𝑙𝑤𝑙𝑘) =
𝜕𝚊(𝑑𝑗𝑙𝑤𝑙𝑘)
𝜕𝑑𝑗𝑙𝑤𝑙𝑘

, as

𝜕𝜙
𝜕𝑊

= 𝑑𝑗𝑙𝑏𝑖𝑗𝑐𝑘𝑖𝚊
′(𝑑𝑗𝑙𝑤𝑙𝑘)

𝜕𝑤𝑙𝑘
𝜕𝑤𝑢𝑣

(A.6)

he partial derivative of 𝑤𝑙𝑘 with respect to 𝑤𝑢𝑣 is the product 𝛿𝑙𝑢𝛿𝑘𝑣,
here 𝛿 is the Kronecker delta, which is 𝛿 = 1 if the indices are equal,

and 𝛿 = 0 otherwise. This, with 𝑎′𝑗𝑘 = 𝚊′(𝑑𝑗𝑙𝑤𝑙𝑘), will then give

𝜕𝜙
𝜕𝑊

= 𝑑𝑗𝑙𝑏𝑖𝑗𝑐𝑘𝑖𝑎
′
𝑗𝑘𝛿𝑙𝑢𝛿𝑘𝑣 (A.7)

r
𝜕𝜙
𝜕𝑊

= 𝑑𝑗𝑢𝑏𝑖𝑗𝑐𝑣𝑖𝑎
′
𝑗𝑣 = 𝑑𝑇𝑢𝑗

(

𝑏𝑇𝑗𝑖𝑐
𝑇
𝑖𝑣 ⊙ 𝑎′𝑗𝑣

)

(A.8)

his finally provides the partial derivative in matrix notation as
𝜕𝜙
𝜕𝑊

= 𝐷𝑇 (𝐵𝑇𝐶𝑇 ⊙ 𝐴′) (A.9)

hich completes the proof of the first part. The function 𝜙 = tr(.) can
n fact be in different forms as

= tr(𝐵𝙰(𝐷𝑊 )𝐶) = tr(𝙰(𝐷𝑊 )𝐶𝐵) = tr(𝐶𝐵𝙰(𝐷𝑊 )) (A.10)

of which Eq. (A.9) is its partial derivative.

A.2. Proof of part II

Expression in Eq. (22) is proved. We aim to obtain the partial
derivative of the following equation with respect to 𝑊 :

𝜙 = tr
(

𝐸(𝐵𝙰(𝐷𝑊 ))−1𝐶
)

= tr
(

𝐸(𝐵𝐴)−1𝐶
)

(A.11)

here 𝐴 = 𝙰(𝐷𝑊 ) is the activation function/matrix. We need to
ompute the partial derivative of 𝜙 with respect to matrix 𝑊 . It reads
𝜕𝜙
𝜕𝑊

=
𝜕𝜙
𝜕𝑤𝑢𝑣

(A.12)

where 𝑢 and 𝑣 are the free indices of 𝑊 . For the sake of brevity we
assume 𝐻 = (𝐵𝙰(𝐷𝑊 ))−1. It is known that the differentiation, 𝖽(.), of

atrix 𝐻 is

(𝐻) = −𝐻 𝖽(𝐵𝙰(𝐷𝑊 ))𝐻 (A.13)
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Eqs. (A.11) and (A.12) with 𝐻 = (𝐵𝙰(𝐷𝑊 ))−1 gives
𝜕𝜙
𝜕𝑊

=
𝜕tr(𝐸𝐻𝐶)

𝜕𝑤𝑢𝑣
(A.14)

or
𝜕𝜙
𝜕𝑊

=
𝜕(𝑒𝑖𝑗ℎ𝑗𝑘𝑐𝑘𝑖)

𝜕𝑤𝑢𝑣
= 𝑒𝑖𝑗𝑐𝑘𝑖

𝜕ℎ𝑗𝑘
𝜕𝑤𝑢𝑣

(A.15)

This, with Eq. (A.13), rewritten in the form of 𝖽(ℎ𝑗𝑘) = 𝖽(ℎ𝑗𝑙𝑏𝑙𝑚𝑎𝑚𝑛ℎ𝑛𝑘) =
ℎ𝑗𝑙ℎ𝑛𝑘𝑏𝑙𝑚𝖽(𝑎𝑚𝑛), gives

𝜕𝜙
𝜕𝑊

= −𝑒𝑖𝑗𝑐𝑘𝑖
ℎ𝑗𝑙ℎ𝑛𝑘𝑏𝑙𝑚𝜕(𝑎𝑚𝑛)

𝜕𝑤𝑢𝑣
(A.16)

Further, we have 𝖽(𝑎𝑚𝑛) = 𝖽(𝚊(𝑑𝑚𝑜𝑤𝑜𝑛)), which yields

𝜕𝜙
𝜕𝑊

= −𝑒𝑖𝑗𝑐𝑘𝑖ℎ𝑗𝑙ℎ𝑛𝑘𝑏𝑙𝑚
𝜕(𝚊(𝑑𝑚𝑜𝑤𝑜𝑛))

𝜕𝑤𝑢𝑣
(A.17)

Using the chain rule in the partial derivatives, we obtain

𝜕𝜙
𝜕𝑊

= −𝑒𝑖𝑗𝑐𝑘𝑖ℎ𝑗𝑙ℎ𝑛𝑘𝑏𝑙𝑚
𝜕𝚊(𝑑𝑚𝑜𝑤𝑜𝑛)
𝜕𝑑𝑚𝑜𝑤𝑜𝑛

𝜕𝑑𝑚𝑜𝑤𝑜𝑛
𝜕𝑤𝑢𝑣

(A.18)

The partial derivative of 𝑤𝑜𝑛 with respect to 𝑤𝑢𝑣 is the product 𝛿𝑜𝑢𝛿𝑛𝑣
𝜕𝜙
𝜕𝑊

= −𝑒𝑖𝑗𝑐𝑘𝑖ℎ𝑗𝑙ℎ𝑛𝑘𝑏𝑙𝑚𝑎′𝑚𝑛𝑑𝑚𝑜𝛿𝑜𝑢𝛿𝑛𝑣 (A.19)

where 𝑎′𝑚𝑛 = 𝚊′(𝑑𝑚𝑜𝑤𝑜𝑛) is the derivative of 𝑎𝑚𝑛. The above equation
simplifies to
𝜕𝜙
𝜕𝑊

= −𝑒𝑖𝑗𝑐𝑘𝑖ℎ𝑗𝑙ℎ𝑣𝑘𝑏𝑙𝑚𝑎′𝑚𝑣𝑑𝑚𝑢 (A.20)

Rearranging the matrices products yields
𝜕𝜙
𝜕𝑊

= −𝑑𝑇𝑚𝑢
(

𝑏𝑇𝑙𝑚ℎ
𝑇
𝑗𝑙𝑒

𝑇
𝑖𝑗𝑐

𝑇
𝑘𝑖ℎ

𝑇
𝑣𝑘 ⊙ 𝑎′𝑚𝑣

)

(A.21)

which finally provides the partial derivative in the matrix notation as
𝜕𝜙
𝜕𝑊

= −𝐷𝑇
(

𝐵𝑇𝐻𝑇𝐸𝑇𝐶𝑇𝐻𝑇 ⊙ 𝐴′
)

(A.22)

or, with 𝐻 = (𝐵𝐴)−1, as
𝜕𝜙
𝜕𝑊

= −𝐷𝑇
(

𝐵𝑇 (𝐴𝑇𝐵𝑇 )−1𝐸𝑇𝐶𝑇 (𝐴𝑇𝐵𝑇 )−1 ⊙ 𝐴′
)

(A.23)

where 𝐴 = 𝙰(𝐷𝑊 ). This completes the proof of the second part.

Appendix B. Proof of Theorem 2

B.1. Proof of part I

We derive the Jacobian matrix in Eq. (46). Let ℎ = 𝐵𝐴𝑧 = 𝐵𝙰(𝐷𝑊 )𝑧
be an 𝑚-vector, with the given matrices 𝐵, 𝐴, 𝐷 and 𝑊 of appropriate
sizes. The partial derivative of ℎ with respect to 𝑤 = vec(𝑊 ) is an 𝑚×𝑘𝑛
Jacobian matrix as follows:

𝐽 = 𝜕ℎ
𝜕𝑤

=
𝜕𝐵𝙰(𝐷𝑊 )𝑧
𝜕vec(𝑊 )

(B.1)

where 𝑊 = [𝑤1,… ,𝑊𝑛] is a 𝑘 × 𝑛 matrix of running variables. Vector
ℎ can further be developed as

ℎ = [𝐵𝚊(𝐷𝑤1),… , 𝐵𝚊(𝐷𝑤𝑛)]𝑧

= 𝑧1𝑏𝑇𝑖 𝚊(𝐷𝑤1),… , 𝑧𝑛𝑏𝑇𝑖 𝚊(𝐷𝑤𝑛)
(B.2)

where 𝑏𝑇𝑖 , for 𝑖 = 1,… , 𝑚, is the 𝑖th row of 𝐵. The Jacobian matrix is
then

𝐽 =
[

𝜕𝑤1
ℎ,… , 𝜕𝑤𝑛

ℎ
]

=
[

𝜕𝑤1
𝑧1𝑏𝑇𝑖 𝚊(𝐷𝑤1),… , 𝜕𝑤𝑛

𝑧𝑛𝑏𝑇𝑖 𝚊(𝐷𝑤𝑛)
]

=
[

𝑧 𝑏𝑇 𝜕 𝚊(𝐷𝑤 ),… , 𝑧 𝑏𝑇 𝜕 𝚊(𝐷𝑤 )
]

(B.3)
1 𝑖 𝑤1 1 𝑛 𝑖 𝑤𝑛 𝑛 w

23 
where the partial derivatives 𝜕𝑤𝑗
𝚊(𝐷𝑤𝑗 ) = 𝜕𝚊(𝐷𝑤𝑗 )

𝜕𝑤𝑗
are given as (note

𝑤𝑗 = [𝑤1𝑗 ,… , 𝑤𝑘𝑗 ]𝑇 )

𝜕𝑤𝑗
𝚊(𝐷𝑤𝑗 ) =

[

𝜕𝑤1𝑗𝚊(𝐷𝑤𝑗 ),… , 𝜕𝑤𝑘𝑗𝚊(𝐷𝑤𝑗 )
]

(B.4)

for 𝑗 = 1,… , 𝑛. The above equation gives (we have 𝐷 = [𝑑1,… , 𝑑𝑘])

𝑤𝑗
𝚊(𝐷𝑤𝑗 ) =

[

𝚊′(𝐷𝑤𝑗 )⊙ 𝑑1,… , 𝚊′(𝐷𝑤𝑗 )⊙ 𝑑𝑘
]

(B.5)

r

𝑤𝑗
𝚊(𝐷𝑤𝑗 ) = (𝚊′(𝐷𝑤𝑗 )𝑢𝑇𝑘 )⊙𝐷 = (𝑎′𝑗𝑢

𝑇
𝑘 )⊙𝐷 (B.6)

here 𝑢𝑘 is a summation vector of size 𝑘. This, with Eq. (B.3), gives

𝐽 =
[

𝑧1𝑏𝑇𝑖 (𝑎
′
1𝑢

𝑇
𝑘 )⊙𝐷,… , 𝑧𝑛𝑏𝑇𝑖 (𝑎

′
𝑛𝑢

𝑇
𝑘 )⊙𝐷

]

= 𝑏𝑇𝑖
[

𝑧1(𝑎′1𝑢
𝑇
𝑘 )⊙𝐷,… , 𝑧𝑛(𝑎′𝑛𝑢

𝑇
𝑘 )⊙𝐷

]

= 𝑏𝑇𝑖
[

(𝑢𝑚𝑧𝑇 ⊗ 𝑢𝑇𝑘 )⊙ (𝐴′ ⊗ 𝑢𝑇𝑘 )⊙ (𝑢𝑇𝑛 ⊗𝐷)
]

(B.7)

here 𝑢𝑚 and 𝑢𝑛 are the summation vectors of size 𝑚 and 𝑛, respectively.
he above equation, with 𝐵 = 𝑏𝑇𝑖 for 𝑖 = 1,… , 𝑚, gives

= 𝐵
(

(𝑢𝑚𝑧𝑇 ⊗ 𝑢𝑇𝑘 )⊙𝑀
)

(B.8)

where 𝑀 = (𝐴′ ⊗ 𝑢𝑇𝑘 )⊙ (𝑢𝑇𝑛 ⊗𝐷) is an 𝑚 × 𝑘𝑛 matrix.

B.2. Proof of part II

We derive the Jacobian matrix in Eq. (47). Let ℎ = 𝐶𝐴𝑇 𝑧 =
𝐶𝙰(𝑊 𝑇𝐷𝑇 )𝑧 be an 𝑚-vector, with the given matrices 𝐶, 𝐴, 𝐷 and 𝑊 of
appropriate sizes. The partial derivative of ℎ with respect to 𝑤 = vec(𝑊 )
is an 𝑚 × 𝑘𝑛 Jacobian matrix as follows:

𝐽 = 𝜕ℎ
𝜕𝑤

=
𝜕𝐶𝙰(𝑊 𝑇𝐷𝑇 )𝑧

𝜕vec(𝑊 )
(B.9)

where 𝑊 = [𝑤1,… ,𝑊𝑛] is a 𝑘 × 𝑛 matrix of running variables. Vector
ℎ can further be developed as

ℎ = 𝐶𝙰(𝑊 𝑇𝐷𝑇 )𝑧 = 𝑐𝑇𝑖
⎡

⎢

⎢

⎣

𝚊(𝑤𝑇
1 𝐷

𝑇 )𝑧
⋮

𝚊(𝑤𝑇
𝑛 𝐷

𝑇 )𝑧

⎤

⎥

⎥

⎦

(B.10)

here 𝑐𝑇𝑖 is the 𝑖th row of 𝐶, for 𝑖 = 1,… , 𝑚. We then have

= 𝑐𝑖1𝚊(𝑤𝑇
1 𝐷

𝑇 )𝑧 +⋯ + 𝑐𝑖𝑛𝚊(𝑤𝑇
𝑛 𝐷

𝑇 )𝑧 (B.11)

he Jacobian matrix is

𝐽 =
[

𝜕𝑤1
ℎ,… , 𝜕𝑤𝑛

ℎ
]

=
[

𝜕𝑤1
𝑐𝑖1𝚊(𝑤𝑇

1 𝐷
𝑇 )𝑧,… , 𝜕𝑤𝑛

𝑐𝑖𝑛𝚊(𝑤𝑇
𝑛 𝐷

𝑇 )𝑧
]

=
[

𝑐𝑖1𝜕𝑤1
𝑧𝑇 𝚊(𝐷𝑤1),… , 𝑐𝑖𝑛𝜕𝑤𝑛

𝑧𝑇 𝚊(𝐷𝑤𝑛)
]

=
[

𝑐𝑖1𝑧𝑇 𝜕𝑤1
𝚊(𝐷𝑤1),… , 𝑐𝑖𝑛𝑧𝑇 𝜕𝑤𝑛

𝚊(𝐷𝑤𝑛)
]

(B.12)

ecause 𝚊(𝑤𝑇
𝑗 𝐷

𝑇 )𝑧 = 𝑧𝑇 𝚊(𝐷𝑤𝑗 ) is a scalar. The partial derivatives are
iven as (see above)

𝑤𝑗
𝚊(𝐷𝑤𝑗 ) = (𝚊′(𝐷𝑤𝑗 )𝑢𝑇𝑘 )⊙𝐷 = (𝑎′𝑗𝑢

𝑇
𝑘 )⊙𝐷 (B.13)

here 𝑢𝑘 is the summation vector of size 𝑘. With Eq. (B.12), this gives

𝐽 =
[

𝑐𝑖1𝑧𝑇 (𝑎′𝑗𝑢
𝑇
𝑘 ⊙𝐷),… , 𝑐𝑖𝑛𝑧𝑇 (𝑎′𝑛𝑢

𝑇
𝑘 ⊙𝐷)

]

(B.14)

he above equation, with 𝐶 = 𝑐𝑇𝑖 for 𝑖 = 1,… , 𝑚, gives

= (𝐶 ⊗ 𝑢𝑇𝑘 )⊙ (𝑢𝑚𝑧𝑇𝑀) (B.15)

′ 𝑇 𝑇
here 𝑀 = (𝐴 ⊗ 𝑢𝑘 )⊙ (𝑢𝑛 ⊗𝐷) is an 𝑚 × 𝑘𝑛 matrix.
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Appendix C. Entries of 𝑳 and 𝑫

The block-triangular decomposition of 𝑁 in Eq. (87) is of the form
𝑁 = 𝐿𝐷𝐿𝑇 , where 𝐿, a lower block-triangular unit matrix and 𝐷, a
lock-diagonal matrix, are given in Eq. (88). The sub-matrices 𝐿𝑖𝑗 and
𝑗𝑗 are as follows:

𝑖 𝑗 = 𝑁𝑖𝑗|𝐽𝑁
−1
𝑗𝑗|𝐽 (C.1)

here 𝑗 < 𝑖 and 𝐽 = {1,… , 𝑗 − 1} and

𝑖𝑗|𝐽 = 𝑁𝑖𝑗 −
𝑗−1
∑

𝑘=1
𝑁𝑖𝑘|𝐽𝑁

−1
𝑘𝑘 𝑁

𝑇
𝑖𝑘|𝐽 (C.2)

urther, the matrices 𝐷𝑗𝑗 = 𝑁𝑗𝑗|𝐽 are given as

𝑗 𝑗 = 𝑁𝑗𝑗|𝐽 = 𝑁𝑗𝑗 −
𝑗−1
∑

𝑘=1
𝑁𝑗𝑘|𝐽𝑁

−1
𝑘𝑘|𝐽𝑁

𝑇
𝑗𝑘|𝐽 (C.3)

Proof. Substitute the lower block-triangular unit matrix 𝐿 and the
block-diagonal matrix 𝐷 into 𝐿𝐷𝐿𝑇 to show that it equals 𝑁 in
Eq. (87).

For example, the sub-matrices 𝐷𝑗𝑗 are of the form

𝐷11 = 𝑁11

𝐷22 = 𝑁22 −𝑁21𝑁−1
11 𝑁

𝑇
21 = 𝑁22|1

𝐷33 = 𝑁33 −
∑2

𝑗=1 𝑁3𝑗|𝐽𝑁−1
𝑗𝑗|𝐽𝑁

𝑇
3𝑗|𝐽 = 𝑁33|𝐽

(C.4)

where 𝐽 = {} for 𝑗 = 1, and 𝐽 = {1} for 𝑗 = 2. Accordingly, the
sub-matrices 𝐿𝑖𝑗 are

𝐿21 = 𝑁21𝑁−1
11

𝐿31 = 𝑁31𝑁−1
11

𝐿32 = (𝑁32 −𝑁31𝑁−1
11 𝑁

𝑇
31)𝑁

−1
22|1 = 𝑁32|1𝑁−1

22|1

𝐿42 = (𝑁42 −𝑁41𝑁−1
11 𝑁

𝑇
41)𝑁

−1
22|1 = 𝑁42|1𝑁−1

22|1

𝐿43 = (𝑁43 −
∑2

𝑗=1 𝑁4𝑗|𝐽𝑁−1
𝑗𝑗|𝐽𝑁

𝑇
4𝑗|𝐽 )𝑁

−1
33|𝐽 = 𝑁−1

43|𝐽𝑁
−1
33|𝐽

(C.5)

where 𝐽 = {} for 𝑗 = 1, and 𝐽 = {1} for 𝑗 = 2.

Appendix D. Proof of Theorem 3

D.1. Proof of part I

To derive the first part of Theorem 3 (Eq. (101)), just for notational
convenience, let us assume S = 𝙰1, 𝙰 = 𝙰2, 𝑈 = 𝑊1, and 𝑊 = 𝑊2,
Eq. (99) reads

𝜙1 = tr(𝐵𝙰(S(𝐷𝑈 )𝑊 )𝐶) = tr(𝐵𝐴𝐶) (D.1)

It is therefore required to calculate 𝜕𝜙1
𝜕𝑈 . This reads

𝜕𝜙1
𝜕𝑈

=
𝜕𝑏𝑖𝑗𝑎𝑗𝑘𝑐𝑘𝑖

𝜕𝑢𝑢𝑣
= 𝑏𝑖𝑗𝑐𝑘𝑖

𝜕𝑎𝑗𝑘
𝜕𝑢𝑢𝑣

= 𝑏𝑖𝑗𝑐𝑘𝑖
𝜕𝚊(𝑠𝑗𝑙𝑤𝑙𝑘)

𝜕𝑢𝑢𝑣
(D.2)

Using the chain rule in partial derivatives yields

𝜕𝜙1
𝜕𝑈

= 𝑏𝑖𝑗𝑐𝑘𝑖
𝜕𝚊(𝑠𝑗𝑙𝑤𝑙𝑘)
𝜕𝑠𝑗𝑙𝑤𝑙𝑘

𝜕𝑠𝑗𝑙𝑤𝑙𝑘

𝜕𝑢𝑢𝑣
(D.3)

or
𝜕𝜙1
𝜕𝑈

= 𝑏𝑖𝑗𝑐𝑘𝑖𝑤𝑙𝑘𝑎
′
𝑗𝑘

𝜕𝑠𝑗𝑙
𝜕𝑢𝑢𝑣

(D.4)

here 𝑎′𝑗𝑘 = 𝚊′(𝑠𝑗𝑙𝑤𝑙𝑘) is the derivative of 𝚊(𝑠𝑗𝑙𝑤𝑙𝑘). The above equation,
with 𝑠𝑗𝑙 = s(𝑑𝑗𝑚𝑢𝑚𝑙), gives

𝜕𝜙1 = 𝑏𝑖𝑗𝑐𝑘𝑖𝑤𝑙𝑘𝑎
′ 𝜕s(𝑑𝑗𝑚𝑢𝑚𝑙) (D.5)
𝜕𝑈 𝑗𝑘 𝜕𝑢𝑢𝑣

24 
or, with the chain rule, as
𝜕𝜙1
𝜕𝑈

= 𝑏𝑖𝑗𝑐𝑘𝑖𝑤𝑙𝑘𝑎
′
𝑗𝑘

𝜕s(𝑑𝑗𝑚𝑢𝑚𝑙)
𝜕𝑑𝑗𝑚𝑢𝑚𝑙

𝜕𝑑𝑗𝑚𝑢𝑚𝑙
𝜕𝑢𝑢𝑣

(D.6)

or, with 𝑠′𝑗𝑙 =
𝜕s(𝑑𝑗𝑚𝑢𝑚𝑙 )
𝜕𝑑𝑗𝑚𝑢𝑚𝑙

, as

𝜕𝜙1
𝜕𝑈

= 𝑏𝑖𝑗𝑐𝑘𝑖𝑤𝑙𝑘𝑑𝑗𝑚𝑎
′
𝑗𝑘𝑠

′
𝑗𝑙
𝜕𝑢𝑚𝑙
𝜕𝑢𝑢𝑣

(D.7)

or
𝜕𝜙1
𝜕𝑈

= 𝑏𝑖𝑗𝑐𝑘𝑖𝑤𝑙𝑘𝑑𝑗𝑚𝑎
′
𝑗𝑘𝑠

′
𝑗𝑙𝛿𝑚𝑢𝛿𝑙𝑣 = 𝑏𝑖𝑗𝑐𝑘𝑖𝑤𝑣𝑘𝑑𝑗𝑢𝑎

′
𝑗𝑘𝑠

′
𝑗𝑣 (D.8)

Rearranging the indices from 𝑢 to 𝑣 gives
𝜕𝜙1
𝜕𝑈

= 𝑑𝑇𝑢𝑗𝑏
𝑇
𝑗𝑖𝑐

𝑇
𝑖𝑘𝑎

′
𝑗𝑘𝑤

𝑇
𝑘𝑣𝑠

′
𝑗𝑣 (D.9)

or in a clearer notation as
𝜕𝜙1
𝜕𝑈

= 𝑑𝑇𝑢𝑗
(

(𝑏𝑇𝑗𝑖𝑐
𝑇
𝑖𝑘 ⊙ 𝑎′𝑗𝑘)𝑤

𝑇
𝑘𝑣 ⊗ 𝑠′𝑗𝑣

)

(D.10)

or in matrix notation as
𝜕𝜙1
𝜕𝑈

= 𝐷𝑇 ((𝐵𝑇𝐶𝑇 ⊙ 𝐴′)𝑊 𝑇 ⊙ 𝑆′) (D.11)

Back substitution from 𝑆 = 𝐴1, 𝐴 = 𝐴2, 𝑈 = 𝑊1, and 𝑊 = 𝑊2 proves
the theorem as
𝜕𝜙1
𝜕𝑈

= 𝐷𝑇 ((𝐵𝑇𝐶𝑇 ⊙ 𝐴′
1)𝑊

𝑇
1 ⊙ 𝐴′

2
)

(D.12)

hich completes the proof.

.2. Proof of part II

To derive the second part of Theorem 2 (Eq. (102)), we again
ssume S = 𝙰1, 𝙰 = 𝙰2, 𝑈 = 𝑊1, and 𝑊 = 𝑊2. Eq. (100) will then
ead

2 = tr
(

𝐸(𝐵𝙰(S(𝐷𝑈 )𝑊 ))−1𝐶
)

= tr
(

𝐸(𝐵𝐴)−1𝐶
)

(D.13)

here 𝐴 = 𝙰(S(𝐷𝑈 )𝑊 ) is the activation function. For the sake of
revity we assume 𝐻 = 𝑁−1 = (𝐵𝐴)−1 = (𝐵𝙰(S(𝐷𝑈 )𝑊 ))−1, where
= 𝐵𝐴 = 𝐻−1. The differentiation, 𝖽(.), of matrix 𝐻 is

(𝐻) = 𝑑(𝐵𝐴)−1 = −𝐻 𝖽(𝑁)𝐻 (D.14)

t is then required to compute the partial derivative of 𝜙2 = tr(𝐸𝐻𝐶)
ith respect to matrix 𝑈 as

𝜕𝜙2
𝜕𝑈

=
𝜕𝜙
𝜕𝑢𝑢𝑣

=
𝜕𝑒𝑖𝑗ℎ𝑗𝑘𝑐𝑘𝑖

𝜕𝑢𝑢𝑣
= 𝑒𝑖𝑗𝑐𝑘𝑖

𝜕ℎ𝑗𝑘
𝜕𝑢𝑢𝑣

(D.15)

where 𝑢 and 𝑣 are the free indices of 𝑈 . The above equation with
Eq. (D.14) reads
𝜕𝜙2
𝜕𝑈

= −𝑒𝑖𝑗𝑐𝑘𝑖ℎ𝑗𝑙ℎ𝑚𝑘
𝜕𝑛𝑙𝑚
𝜕𝑢𝑢𝑣

= −𝑒𝑖𝑗𝑐𝑘𝑖ℎ𝑗𝑙ℎ𝑚𝑘𝑏𝑙𝑜
𝜕𝑎𝑜𝑚
𝜕𝑢𝑢𝑣

(D.16)

The term 𝜕𝑎𝑜𝑚
𝜕𝑢𝑢𝑣

can further be developed as

𝜕𝑎𝑜𝑚
𝜕𝑢𝑢𝑣

=
𝜕𝚊(𝑠𝑜𝑝𝑤𝑝𝑚)

𝜕𝑢𝑢𝑣
=

𝜕𝚊(𝑠𝑜𝑝𝑤𝑝𝑚)
𝜕𝑠𝑜𝑝𝑤𝑝𝑚

𝜕𝑠𝑜𝑝𝑤𝑝𝑚

𝜕𝑢𝑢𝑣
(D.17)

or
𝜕𝑎𝑜𝑚
𝜕𝑢𝑢𝑣

= 𝑎′𝑜𝑚𝑤𝑝𝑚
𝜕𝑠𝑜𝑝
𝜕𝑢𝑢𝑣

= 𝑎′𝑜𝑚𝑤𝑝𝑚
𝜕s(𝑑𝑜𝑞𝑢𝑞𝑝)

𝜕𝑢𝑢𝑣
(D.18)

or
𝜕𝑎𝑜𝑚
𝜕𝑢𝑢𝑣

= 𝑎′𝑜𝑚𝑤𝑝𝑚𝑠
′
𝑜𝑝𝑑𝑜𝑞

𝜕𝑢𝑞𝑝
𝜕𝑢𝑢𝑣

(D.19)

This with Eq. (D.16) gives
𝜕𝜙2
𝜕𝑈

= −𝑒𝑖𝑗𝑐𝑘𝑖ℎ𝑗𝑙ℎ𝑚𝑘𝑏𝑙𝑜𝑎′𝑜𝑚𝑤𝑝𝑚𝑠
′
𝑜𝑝𝑑𝑜𝑞𝛿𝑞𝑢𝛿𝑝𝑣 (D.20)

or
𝜕𝜙2 = −𝑒 𝑐 ℎ ℎ 𝑏 𝑎′ 𝑤 𝑠′ 𝑑 (D.21)

𝜕𝑈 𝑖𝑗 𝑘𝑖 𝑗𝑙 𝑚𝑘 𝑙𝑜 𝑜𝑚 𝑣𝑚 𝑜𝑣 𝑜𝑢
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or
𝜕𝜙2
𝜕𝑈

= −𝑑𝑇𝑢𝑜𝑏
𝑇
𝑜𝑙ℎ

𝑇
𝑙𝑗𝑒

𝑇
𝑗𝑖𝑐

𝑇
𝑖𝑘ℎ

𝑇
𝑘𝑚𝑎

′
𝑜𝑚𝑤

𝑇
𝑚𝑣𝑠

′
𝑜𝑣 (D.22)

or
𝜕𝜙2
𝜕𝑈

= −𝐷𝑇 ((𝐵𝑇𝐻𝑇𝐸𝑇𝐶𝑇𝐻𝑇 ⊙ 𝐴′)𝑊 𝑇 ⊙ 𝑆′) (D.23)

The above equation, with 𝑆 = 𝐴1, 𝐴 = 𝐴2, 𝑈 = 𝑊1, and 𝑊 = 𝑊2,
ields
𝜕𝜙2
𝜕𝑈

= −𝐷𝑇 ((𝐵𝑇𝐻𝑇𝐸𝑇𝐶𝑇𝐻𝑇 ⊙ 𝐴′
1)𝑊

𝑇
1 ⊙ 𝐴′

2
)

(D.24)

which completes the proof.
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