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Abstract. A novel approach is presented to predict wind pressure on tall buildings 
for early-stage generative design exploration and optimisation. The method provides 
instantaneous surface pressure data, reducing performance feedback time whilst 
maintaining accuracy. This is achieved through the use of a machine learning algorithm 
trained on procedurally generated towers and steady-state CFD simulation to evaluate 
the training set of models. Local shape features are then calculated for every vertex in 
each model, and a regression function is generated as a mapping between this shape 
description and wind pressure. We present a background literature review, general 
approach, and results for a number of cases of increasing complexity.
Keywords. Machine learning; CFD; tall buildings; wind loads; procedural modelling.

INTRODUCTION
It is generally recognised that architects currently re-
quire performance information to guide their deci-
sions almost from the inception of a project. In fact, 
there is a mentality present of simply trying to col-
lect as much data as possible with the intention of 
synthesising it into a situated design response. This 
presents a problem, especially for computational 
fluid dynamic (CFD) wind simulation, whereby the 
time required to assess the performance is obstruc-
tive to the fast and iterative nature of current para-
metric design softwares. This is possibly due to the 
tendency for architectural software tools to origi-
nate in engineering fields, without due considera-
tion of speed-accuracy tradeoffs to adjust for the ap-
plication requirements (Chittka et al., 2009; Lu et al., 
1991). In other words, they are typically too accurate 
and slow for the fast pace of modern conceptual de-
sign, massing or form decisions. Developing a meth-
od that can give real-time performance feedback 
about a form allows for intuitive play of the kind we 
are used to with physical models.

Wind engineering has traditionally been within 
the remit of engineers or specialists, with numeri-
cal simulation (CFD) considered a supportive tool to 
physical boundary layer wind tunnel (BLWT) testing. 
For instance, in the computational wind engineering 
(CWE) literature there is substantial caution around 
numerical analysis, namely for Reynolds-averaged 
Navier-Stokes (RANS) and to a lesser extent large-
eddy simulations (LES) (Stathopoulos, 1997; Bitsua-
mlak, 2006; Dagnew et al., 2009; Menicovich et al., 
2002). However, architects are increasingly getting 
involved with analysis, where concerns over accu-
racy are less paramount since demand is typically for 
relative scenario comparison or general flow behav-
iour (Lomax et al., 2001; Malkawi et al., 2005; Chronis 
et al., 2012).

The tall building typology has been identified 
as a focal area here for a number of reasons. Firstly, 
as height increases so too do the wind forces (along 
with seismic and gravitational) which has conse-
quences on facade panelisation and structural effi-
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ciency, amongst others. We can construct a simple 
motivational argument to say that increased exter-
nal wind force requires more opposing force, i.e. 
more structure, more materials, larger cores, less let-
able floor space, less revenue etc. Therefore there is 
a need to consider the aerodynamic form of these 
buildings as they increase in height. Secondly, the 
trend for tall buildings is to build them as high as 
(contextually, economically and structurally) pos-
sible, necessitating cutting-edge design and con-
struction technologies (CTBUH, 2012). Thirdly, tall 
building form lends itself well to parametric design 
as there is often a high degree of vertical logic that 
can be expressed neatly with mathematical expres-
sions (this generalisation is at least more true than 
for shorter buildings). Given this, it is possible to eas-
ily generate a procedural, or generic, tall building 
model that, with a relatively small number of param-
eters, can represent a large number of potential de-
signs. This becomes useful when the objective is to 
sample the typological space of potential buildings, 
which will be discussed in the methodology.

We present a novel approach to predict wind 
pressure on tall building models for early-stage 
generative design exploration and optimisation 
(exploration as the non-discrete parametric equiva-
lent of tinkering, and optimisation as the single- or 
multi-objective directed design space search requir-
ing iterative testing and evaluation). The method 
provides fast surface pressure data with the conven-
tional visualisation,  reducing performance feedback 
time whilst maintaining verisimilitude.

This is achieved through the use of a machine 
learning algorithm, trained on a pre-computed set 
of CFD simulation data. ANSYS CFX 13.0, a commonly 
used solver in engineering practice, was used for 
steady-state RANS with a k-E turbulence model. The 
learning technique is grouped with artificial neural 
networks (ANN), support vector machines (SVM), 
and random forest (RF) decision trees, in that there 
is a training set of cases from which generalised 
rules are generated (Duffy, 1997). The term machine 
learning stems from the fields of computer science 
(Mitchell, 1997) and artificial intelligence (Samuel, 

1959), but in statistics is referred to as regression 
and in engineering as function approximation or 
surrogate modelling. Once trained, this enables 
us to provide a new test case and make a predic-
tion of the outcome. Inductive reasoning, episte-
mologically, means constructing generalisations 
from specific information, as opposed to deductive 
reasoning where small details are construed from 
generalisations. The fundamental outcome of this 
learning approach is therefore a continuous output 
response allowing interpolation and extrapolation 
between cases that have not been explicitly simu-
lated. In doing so, we are essentially moving the 
simulation time from the front-end to the back-end 
of the process where more time is available for pre-
computation.

The following section provides a review of rel-
evant literature in the generative, performative 
design of tall buildings, wind modelling methods, 
speed-accuracy tradeoffs, incorporation of learn-
ing in design, concluding with a problem-solution 
hypothetical argument positioned in this state of 
current literature. The subsequent structure of this 
paper will describe the methodological approach in 
general terms, and results are presented from a se-
ries of experimental case studies of increasing com-
plexity from trivial to practical. The conclusions, fur-
ther work and the paper as a whole are positioned 
within the scope of ongoing research.

LITERATURE REVIEW

Tall Buildings
Tamura et al. (2009; 2010) and Tanaka et al. (2012) 
acknowledge the increase in tall building complex-
ity beyond the traditional extruded rectilinear form. 
We are now seeing more unconventional free-style 
forms derived from the architect’s use of more ad-
vanced modelling software. These new complicated 
sectional shapes that may vary with height, can ac-
tually provide better aerodynamic performance by 
disrupting, or ‘confusing’, vortex shedding and thus 
reducing crosswind response. Benefits can also be 
found in more subtle manipulations such as corner 
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chamfering or cutting, and by creating voids, or po-
rous regions, near the edges.

Despite rapid advances over the past century, 
this emerging generation of skyscrapers poses new 
challenges for wind engineering. Irwin (2009) dis-
cusses a number of these, such as the impact that 
aerodynamics have on construction cost. Since the 
structure itself is a large proportion of the cost, and 
as for tall buildings the wind is the governing lateral 
load, there are significant benefits to be had from 
reducing wind loads. This also has the effect of re-
ducing lateral motions that can potentially cause 
occupant discomfort. He also suggests that shape 
aerodynamics must be proactively considered, and 
iteratively optimised, early on in the design. With the 
new generation of super-tall towers over 600m it is 
simply not possible to ignore the wind performance. 
He quotes a designer of the Burj Khalif, saying “we 
practically designed the tower in the wind tunnel”, 
and were therefore able to produce an extremely ef-
ficient aerodynamic shape that enabled the height 
with reasonable structural systems and costs, and 
without any damping system.

The increase in the use of parametric CAD soft-
wares has seen a rise in the last decade namely with 
the release of Bentley GenerativeComponents and 
Rhino Grasshopper, plus more generally with the in-
creased adoption of scripting. These allow the user 
to create parametrically associative relationships 
related to geometry. The extension of this idea is to 
use rules to define the parameters, or where these 
rules can be related to the performance of a mod-
el component the geometry is directed by some 
evaluative metric. Certain metrics can be calculated 
quickly without problem, but if the calculation takes 
time it becomes obstructive to the modelling pro-
cess. We adopt the premise that it is better to have a 
broader range of lower resolution data rather than a 
limited amount of exact data.

Speed-Accuracy Tradeoffs
Speed-accuracy tradeoffs (SATs) show that response 
accuracy generally increases with response time, i.e. 
taking more time to make a decision results in a bet-

ter decision. Biological examples have been noted 
by Chittka et al. (2009), who explains that “when it 
takes a long time to solve a difficult task, and the po-
tential costs of errors are low, the best solution from the 
perspective of an animal might be to guess the solution 
quickly, a strategy that is likely to result in low decision 
accuracy.” The two extremes can be called impulsive 
and reflective. This provides a neat analogy for per-
formance analysis in design where it is necessary to 
consider what the application of the simulation tool 
is, and the consequent risks, before deciding a suit-
able accuracy.

Crucially though, and in conjunction with this 
reasoning, Burns (2005) demonstrates that making 
more decisions with more mistakes (fast and inaccu-
rate) results in better overall performance (with bees, 
more nectar collected) than the more fastidious 
(slow and accurate). Defining accuracy as the propor-
tion of choices that are correct, this highlights that 
accuracy should not be confined to the immediate 
task, i.e. simulation accuracy, but to the larger one of 
improving building performance (Figure 1).

Response time is critical for performance-driven 
design and SATs must be considered when deve-
loping early stage tools for when large-scale deci-
sions are made. Performance information is often 
scarce at this stage and iterative decisions must be 
made quickly, necessitating fast response times in 
sync with the project cycles. The development of 
CFD models have been focused over the past dec-
ades on improving accuracy, and computational 
time is optimised by specific software vendors after-
the-fact, with little thought given to the accuracy re-
quired by the user. In contrast, recent developments 
in computer graphics have started with the desired 
accuracy (believable) and speed (real-time) in mind, 
with successful results.

In the design context, CFD can typically be used 
for a number of purposes: analysis of internal air 
movement, pollution dispersion, noise propagation, 
pedestrian comfort in urban environments or tall 
building aerodynamics. As mentioned previously, 
it is the last that is the focal application here, espe-
cially for early design stages. There is a paradox here, 
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in that the most complex flow types (bluff bodies) 
and therefore most computationally intensive, need 
to be modelled in a scenario where fast results are 
required. The numerical method must be as accu-
rate and fast as possible. In fact, the conclusion is 
reached that the fastest method has poor accuracy 
and the slowest the best accuracy (as would be ex-
pected, considering the speed-accuracy tradeoffs 
mentioned earlier). There is general agreement be-
tween (Lomax et al., 2001) and (Chronis et al., 2012) 
that the “level of accuracy of a CFD simulation needs 
to be compromised with the turnaround time require-
ments of its application.”

Lu et al. (1991) describe the same issue in me-
chanical engineering where slow but accurate simu-
lation makes interactive decision making impossi-
ble, when only quick estimates are desired at early 
stages. It is only towards the final stages of design, 
“when the engineer has converged to a small region of 
decision space, more accurate simulations are needed 
to make fine distinctions.” The problem has therefore 
been present since the early 90s, but as a solution 
they propose integration of simulation, optimisation 
and machine learning.

Inductive Learning in Design
Our approach is supported by Samarasinghe (2007), 
who identifies the best solution to predicting sys-
tem behaviour through observational data. This is 
necessary when there is little or no understanding of 
the “underlying mechanisms because of complex and 
non-linear interactions among various aspects of the 
problem.” Extracting these complex relationships is 

often difficult since the systems are typically natural, 
and therefore can have randomness, heterogeneity, 
multiple causes and effects, and noise. Even when 
they are successfully extracted, they may be be-
yond our understanding and are held as intractable 
computational functions or data structures. Hanna 
(2011) tests the hypothesis that it is unnecessary to 
have any understanding of this underlying system 
behaviour, but rather it is possible to make predic-
tions about the system simply by making observa-
tions. This is demonstrated by learning the struc-
tural behaviour of system components and applying 
them to larger-scale scenarios.

Graening et al. (2008) propose a method that al-
lows the extraction of comprehensible knowledge 
from aerodynamic design data (jet-blades) repre-
sented by discrete unstructured surface meshes. 
They use a displacement measure in order to inves-
tigate local differences between designs and the 
resulting performance variation. Knowledge, or rule, 
extraction from CFD data is primarily used to guide 
human- centred design by improving understand-
ing of the system’s behaviour, whether it is for jet 
turbine blade optimisation or architectural design. 
Whilst the connection between local geometric fea-
tures and surface pressure has been extended and 
changed here, and used for a different application, 
this work is a close precedent.

Problem Hypothesis
It is argued here that approximations of CFD simu-
lations can be made with machine learning regres-
sion, using geometric shape descriptors as the learn-

Figure 1 

(Left) SAT for various task 

difficulties and skills; (Right) 

Notional positions of different 

modelling methods on SAT.
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ing features. The entire evaluation process can be 
broadly split into five key work areas: i) procedural 
geometry generation; ii) batch simulation; iii) shape 
feature generation; iv) machine learning training; 
v) prediction and visualisation. Feature generation 
is essentially the core of the process since the solu-
tion depends heavily on geometric description so 
as to define surface pressure as a function of it. We 
hypothesise that surface pressure distribution aris-
ing from wind flow around tall buildings can be 
learnt and predicted with an accuracy appropriate 
to early stage design (feedback from practice indi-
cates <20% error) using shape feature description. 
It can be shown that it is possible to combine, with 
an acceptable error, methods that have the separate 
contradictory objectives of predictive accuracy and 
speed.

METHODOLOGY

Data Set Generation: Procedural Modelling
The parametric model was created in Bentley Gen-
erativeComponents. The goal was to create a gen-
eralised tower model, with the two properties of 
minimising the number of parameters used whilst 
maximising the design representation potential, 
i.e. the number of possible buildings it could cre-
ate. This is important when considering optimisa-
tion or exploratory design space searches to avoid 
the curse of dimensionality. This means that as the 
number of variables increases, the design space in-
creases exponentially by nD, where n is the number 
of samples taken per parameter and D is the number 
of parameters, or dimensionality. There is therefore 
clearly a compromise to be made between model 
efficiency and representability.

The geometry for the training set was gener-
ated using a procedural tall building model with a 
select number of key parameters (Figure 2). There 
are in fact three separate topologies in the proce-
dural model with their own parameters, since it is 
difficult to incorporate the entire design space with 
one parametric logic (Park et al., 2004; Samareh, 
1999). Using the unstructured triangulated surface 
mesh from these means we are not limited by a sin-
gle parametric topology in the learning phase of the 
method (Graening et al., 2008). Local surface-mesh 
shape characteristics are used as input features to 
the learning algorithm instead of the design pa-
rameters, avoiding reliance on any one parametric 
model definition.

Simulation Method
An established solver, ANSYS CFX 13.0, was used 
throughout to run the RANS steady-state simula-
tions, with a k-ε turbulence model as it is regarded as 
the most robust. Each simulation, depending on the 
complexity, requires up to 60 minutes to converge 
(on a 2.66GHz i7). Solver convergence is reached 
when residuals fall below a minimum of 1−6, typically 
at around 100 to 200 iterations. The number of cells 
in the tetrahedral meshes varies between 0.8x106 
and 1.5x106 depending on the geometry, with pris-
matic expansion on surfaces 3 cells deep and a mini-
mum cell size of 0.1m. The wind was applied at an 
upstream inlet, with a reference speed (Ur) of 1ms−1 
at a reference height (Zr) of 10m. The most common-
ly used distribution of mean wind speed with height 
is the ‘power-law’ expression:
 Ux = Ur ( Zx / Zr )

 α	 (1)
The exponent α is an empirically derived co-

efficient that is dependent on the stability of the 

Figure 2 

(Left) Examples of evaluated 

procedural models in the 

training set on Case 4; (Right) 

Mesh feature extraction.
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atmosphere. For neutral stability conditions it is 
approximately 0.143, and is appropriate for open-
surroundings such as open water or landscape. 
Future work will include a wind profile that takes 
surrounding surface roughness, or context, into ac-
count, as well as potential wind direction change 
with height.

Shape Features and Learning
This method creates a definition for the pressure at 
a point on the model as the function of a local geo-
metric description. To describe a simple example 
of the process: there are N models of a cuboid with 
various orientations; each is evaluated, and the pres-
sure P is extracted at M points over each model; for 
every M, a shape descriptor X is calculated, such as 
the vertex height, normal components, curvature, 
etc; this gives a set of geometric characteristics, and 
a corresponding pressure value; these sets of P(X) 
are used as the training data. Pressure distribution 
is predicted from these geometric descriptors alone 
meaning the selection is critical. A sensitivity analy-
sis has been conducted with a variety of descrip-
tors to determine suitable representation, details 
of which are not included here. When a new case is 
presented, the shape descriptors are calculated and 
used to make a prediction of P. The feature definition 
for point pressure in R22 vector space used through-
out the following is: 
 P ( Z, N(x,y,z), Nσ1-5

(x,y,z), U(x,y,z))	 (2)
For a specific model vertex, P is the surface pres-

sure, Z is the height, N(x,y,z) are the normal compo-
nents, Nσ1-5

(x,y,z) is the standard deviation σ of normal 
components of cumulative mesh neighbourhood 
rings 1 through 5, and U(x,y,z) are the normalised 
model position components. The extent of the 
neighbourhood curvature can be extended beyond 
5 rings, within computational resource limits. The 
definition in Equation 2 gives 22 inputs and 1 output 
feature to train the learning algorithm for all cases 
described below.

For the Orientation, Height and Topology 
cases, an Artificial Neural Network (ANN) was 
used, with a 70:30% split of the provided data to 

training:validation. For the first two cases, separate 
sets constituting entire models were also held back 
for testing, i.e. training was at 15° and 20m inter-
vals respectively. For the third case, there was no 
extra test set but the whole was split 70:15:15% to 
training:validation:test. Validation data is to check 
for convergence during training. For the fourth case, 
training data was from the procedural tall building 
model and test data from another set of real build-
ings. In this case, a Random Forest (RF) algorithm 
was used instead as it provided better results for 
the more complex problem. Further work is needed 
with both methods to understand their applicability 
to certain tasks, however it is known that the RF is 
better with noisy data sets than the ANN. Training 
set sizes and summary results are given in Table 1, 
and computation times are given in Table 2.

RESULTS

Cuboid Orientation
The first and most simple test is the rotation of a 
cuboid, of width and depth 10m, and height 50m. 
Simulations were run at 5° intervals from 0 to 85°, 
and the ANN trained on 15° and tested at 5° inter-
vals. The sensitivity analysis here varies the number 
of training samples and measures the standard de-
viation, σ, of the difference between simulation and 
prediction. Figure 3 (left) shows the error σ against 
orientation for various set sizes (bold vertical lines 
are training intervals of 15°), (centre) the training 
regression of the entire set, and (right) the predic-
tion error for an orientation of 25°. With less training 
data, it can be seen that error is highest around 45° 
when flow bifurcations (regime change) occur, al-
though this is negated with sufficient data.

Cuboid Height
Secondly, a parametric cuboid was created with 
width and depth 10m, and height varying from 10 
to 100m in 5m increments. Figure 4 (left) shows the 
variability when trained on 10, 20, 30 and 45m inter-
vals, and (right) the prediction error for a height of 
25m when trained at 20m intervals.
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Topology
Here the number of edges was varied from 3 to 
10, with 0 (circle), diameter 10m and height 50m. 
Instead of keeping a complete model separate for 
testing as in the last two cases, here all cases were 
used but only a fraction of the total data set was 
used. This is varied in Figure 5 (left), with a training 
set ranging from 10000 to 50000.

Tall Buildings
In the final case, training data was collected from 
simulations of 600 procedural tall building models, 
with a total of over 4x106 shape features extracted. 
This was down-sampled to 105 by removing features 
in close proximity to reduce training time. The test 
set contains 10 real tall buildings from around the 
world, selected for their range of unique architectur-

Case Min σ Error (%) Max σ Error (%) Training Set Size
Orientation 1.2   (55°) 1.6   (10°) 110000 (15° training intervals)
Height 0.7   (10m) 2.0   (50m) 44720   (20m training intervals)
Topology 1.8   (5 Edges) 3.5   (0 Edges) 50000
Real 4.8   (Bank of China) 18.3 (Euston) 100000 (Procedural training)

Table 1 

Summary of minimum and 

maximum error standard 

deviations (% over test case 

pressure range).

Table 2 

Summary of time (seconds) 

required for each case, split 

into Training (one-off back-

end time) and Prediction 

(front-end time). Mean feature 

generation time is 0.085s/

vertex. *Mean over all test set. 
†After down-sampling.

Figure 3 

(Left) Orientation vs. Error 

σ %; (Centre) Training set 

regression, R=0.99564; (Right) 

Prediction error (25°).

Figure 4 

(Left) dHeight vs. Error σ %; 

(Centre) Training set regres-

sion, R=0.9992; (Right) Predic-

tion error (25m).

Case Train Sim. Train Feat. Gen. † Train Predict Feat. Gen. * Predict *
Orientation 21600 9060 2600 1540 < 0.1
Height 18000 2370 720 620 < 0.1
Topology 32400 4670 1060 1750 < 0.1
Real 2160000 12000 620 720 < 0.1
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al characteristics. Figure 6 shows predicted surface 
pressure distribution in the top row, and the error 
distribution for the set in the bottom row. The pres-
sure range (-5.5 to 2.0 Pa) was taken over the entire 
test set, as was the absolute error range (0 to 65.2%). 
The error distribution is shown in Figure 7 (right), 
which fits a Gaussian normal distribution. Error per-
centiles: 99th = 35.7%, 95th = 20.0%, 90th = 13.0%, 75th 
= 6.1%. That is, 75% of the test features have an error 
below 6.1%.

CONCLUSION
The results show that it is possible to achieve a rela-
tively small prediction error (Figure 7 and Table 1) 

for less time (Table 2), with the methodology and 
constraints described. These prediction errors are 
necessary for the compromise in avoiding consider-
ably intensive CFD simulation. Traditionally, for eve-
ry individual CFD simulation the process can take a 
minimum of 1 hour, compared to our methodology 
that has a total front-end prediction time of under 
12 minutes (for feature generation and prediction) 
and a back-end, one-off training set simulation time 
of 600 hours (for the real case). Once trained, an un-
limited number of predictions can then be made.  

Whilst these preliminary results are outside the 
rigorous accuracy necessary for final engineering 
analysis, they are within the boundaries acceptable 

Figure 5 

(Left) No. Edges vs. Error 

σ %; (Centre) Training set 

regression, R=0.98355; (Right) 

Prediction error (n0).

Figure 6 

(Upper) Predicted pressure, 

Pa; (Lower) Error, %. Pressure 

range is the min. and max. of 

the entire set for comparison, 

the error range is absolute 

max. error of the set (65.2%). 

(Left to right) (1) Metlife 

Building, NYC; (2) The Shard, 

London; (3) Willis Tower 

(Sears), Chicago; (4) Euston 

Tower, London; (5) Taipei 

101, Taiwan; (6) Shanghai 

World Financial Centre; (7) 

Bank of China; (8) Exchange 

Place, NYC; (9) Frankfurter 

Buro Centre, Frankfurt; (10) 

Washington Street, NYC. 
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for early-stage concept design for tall buildings, 
where interactive response time is a significant con-
sideration. The prediction accuracy and response 
times achieved are promising for further work given 
the well-known complexities of fluid behaviour.

The next stages of the work are to consider time-
dependent simulations to fully consider the approxi-
mation of turbulence, vortex shedding and gusts, as 
well as interference from complex urban contexts 
on boundary conditions, and further improvement 
to the shape feature selection and generation time.
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