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Abstract

Body tides reveal information about planetary interiors and affect their evolution. Most models to compute body
tides rely on the assumption of a spherically symmetric interior. However, several processes can lead to lateral
variations of interior properties. We present a new spectral method to compute the tidal response of laterally
heterogeneous bodies. Compared to previous spectral methods, our approach is not limited to small-amplitude
lateral variations; compared to finite element codes, this approach is more computationally efficient. While the tidal
response of a spherically symmetric body has the same wavelength as the tidal force; lateral heterogeneities
produce an additional tidal response with a spectra that depends on the spatial pattern of such variations. For
Mercury, the Moon, and Io, the amplitude of this signal is as high as 1%–10% of the main tidal response for long-
wavelength shear modulus variations higher than ∼10% of the mean shear modulus. For Europa, Ganymede, and
Enceladus, shell-thickness variations of 50% of the mean shell thickness can cause an additional signal of ∼1%
and ∼10% for the Jovian moons and Encelaudus, respectively. Future missions, such as BepiColombo and JUICE,
might measure these signals. Lateral variations of viscosity affect the distribution of tidal heating. This can drive
the thermal evolution of tidally active bodies and affect the distribution of active regions.

Unified Astronomy Thesaurus concepts: Solid body tides (2298); Planetary interior (1248); Natural satellites (Solar
system) (1089)

1. Introduction

The deformation of planets and moons under a tidal force
depends on their internal properties—e.g., density stratification,
as well as elastic and anelastic properties. As a consequence,
observations of body tides can be used to infer the internal
properties of planetary objects (e.g., Segatz et al. 1988;
Konopliv & Yoder 1996; Hoppa et al. 1999; Wahr et al.
2006; Hamilton et al. 2013; Sohl et al. 2014; Williams &
Boggs 2015; Steinbrüugge et al. 2018).

Traditionally, body tides have been studied under the
assumption of spherical symmetry, i.e., the internal properties
of the body only vary radially and not laterally. However,
planets and moons are not spherically symmetric. Seismic
tomography evidences that Earth’s lithosphere and mantle are
not spherically symmetric but present lateral structures asso-
ciated with tectonics and deep mantle dynamics (Woodhouse &
Dziewonski 1984; Ritsema et al. 2011); the Moon shows a
farside–nearside dichotomy in crustal thickness (Neumann et al.
1996; Wieczorek et al. 2013); and Mars has a well-known
northern–southern hemisphere dichotomy (Neumann et al. 2004;
Watters et al. 2007), as does the ocean world Enceladus (Porco
et al. 2006; Crow-Willard & Pappalardo 2015; Čadek et al.
2016; Beuthe et al. 2016; Park et al. 2024).

Lateral variations of internal properties affect the tidal
response of a body. If a body is spherically symmetric, the tidal
response is proportional to the tidal forcing—the body
responds with a mode of the same wavelength as that of the
forcing. In contrast, when internal properties vary laterally,
modes of different wavelength are coupled and the tidal

response contains modes of wavelengths other than that of the
forcing (e.g., Berne et al. 2023b). The tidal response spectrum
contains information about the amplitude and patterns of lateral
variations; hence, it can be used to constrain such variations—a
technique known as tidal tomography (e.g., Métivier et al.
2007; Zhong et al. 2012; Qin et al. 2014, 2016; Lau et al.
2017). Lateral variations of anelastic properties affect the
distribution of tidal energy dissipation within the interior
(Steinke et al. 2021), affecting the evolution of the interior and
resulting in distinct surface features.
The tidal response of a spherically symmetric body is often

obtained by solving the equations governing the deformation of
a self-gravitating body using a spectral method with spherical
harmonics as basis functions. The properties of spherical
harmonics allow to transform the 3D governing differential
equations into a set of equations with radial dependence only.
Love (1911) first used this approach to obtain the tidal response
of a self-gravitating homogeneous elastic body. Since then, the
approach of Love has been extended to radially stratified
bodies (e.g., Alterman et al. 1959; Takeuchi et al. 1962; Jara-
Orué & Vermeersen 2011) and to include anelastic effects (e.g.,
Peltier 1974; Ross & Schubert 1986; Wahr & Bergen 1986;
Segatz et al. 1988). This approach is computationally
inexpensive and allows to tackle the inverse problem—given
the tidal response of a body, inferring its interior properties.
Mode coupling makes it more complicated to obtain the tidal

response of a body with lateral heterogeneities. Several
methods have been developed to tackle the problem. Finite
element methods (FEM) have been employed for tidal (e.g.,
Métivier et al. 2006; Latychev et al. 2009; Zhong et al. 2012; A
et al. 2014; Souček et al. 2016, 2019; Steinke et al. 2021;
Zhong et al. 2022; Berne et al. 2023a) and surface loads (e.g.,
Wu 2004; van der Wal et al. 2013). Alternatively, spectral
methods can be used. Martinec and collaborators have
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developed a numerical spectral-finite element approach to
obtain the response of a self-gravitating viscoelastic Earth to
surface loads (Martinec 2000; Tanaka et al. 2011, 2021). In
their approach, the angular dependence of the solution is
expanded using tensor spherical harmonics and the resulting
equations solved using finite elements in the radial direction.
Numerical methods are very flexible, but they are computa-
tionally expensive, making them unsuitable to solve the inverse
problem. To overcome this limitation, several authors have
developed inexpensive semi-analytical spectral methods. How-
ever, existing methods either rely on perturbation theory, and
thus are only applicable to bodies with small lateral hetero-
geneities (Qin et al. 2014; Lau et al. 2015; Qin et al. 2016; Lau
et al. 2017), or on thin-shell theory, and are therefore limited to
bodies that have a thin outer shell overlying a fluid layer
(Beuthe 2018, 2019).

The aim of this work is to present a new spectral method that
combines the flexibility of numerical methods with the
computational efficiency of semi-analytical spectral methods
and apply it to consider the tidal response of bodies with lateral
heterogeneities. As opposed to spectral-perturbation methods,
our method does not require lateral variations to have a small
amplitude. Compared to the spectral-finite-element method of
Martinec (2000) and Tanaka et al. (2021), angular integrals are
performed analytically using the properties of tensor spherical
harmonics, rather than numerically, and the equations are
solved in the Fourier domain, rather than in the time domain (as
done for lateral variations of viscosity in Martinec 2000) or
iteratively (as done for lateral variations of elastic properties in
Tanaka et al. 2021).

The paper is structured as follows. Section 2 introduces the
viscoelastic-gravitational problem, and in Sections 3 and 4, the
governing equations are transformed to the spectral domain and
solved. In Section 5, we compare the new spectral method with
a spectral-perturbation method and an FEM code, and in
Sections 6 and 7, we obtain the tidal responses of elastic and
viscoelastic bodies with various types of lateral heterogeneities
to illustrate their effect on the tidal response. The paper finishes
with a summary of the main results in Section 8.

Alongside with this paper, we release the LOV3D software
package, which uses the method described here to compute the
tidal response of laterally heterogeneous bodies (Rovira-
Navarro 2024).

2. Problem Formulation

2.1. Governing Equations

The tidal response of a self-gravitating body can be obtained
by solving the mass, momentum, and Poisson’s equation. The
equations are linearized around a state of hydrostatic
equilibrium with gravitational potential f0 and pressure p0
given by ∇p0=− ρ0∇f0 and ∇2f0= 4πGρ0, where G is the
universal gravitational constant and ρ0 the density of the
unperturbed body. The resulting equations are then (e.g.,
Sabadini et al. 2016):

r r c r¢ = - - u , 1a0 0· ( )

s r r c r f ¢ -  + -  ¢ =u e eg g 0, 1br r0 0 0· ( · ) ( )

f p r ¢ = ¢G4 . 1c2 ( )

u is the displacement vector. s¢ is the incremental material
stress tensor, and r¢ andf¢ are the incremental local density and

gravitational potential, respectively—with the latest including
both the tidal potential and the potential arising from the
deformation of the body. χ=∇ · u is the divergence of the
displacement vector, er is the radial vector, and g the gravity of
the unperturbed body.
To close the system, a constitutive equation relating stress

and displacements is required. For an elastic body, we have

s lc m¢ = +  + I u u , 2( ( ) ) ( )†

where † indicates transpose and I is the identity matrix. λ is the
second Lame parameter (l k m= - 2

3
), and μ and κ are the

shear and bulk modulus. If the body is viscoelastic, the
correspondence principle can be used to relate stress and
displacement (e.g., Peltier 1974; Sabadini et al. 2016).
Equation (2) still holds, but now μ and λ are the Fourier-
transformed shear modulus and Lame parameter m̂, l̂. For
Maxwellian rheology, we have:

⎡
⎣⎢

⎤
⎦⎥

m
m wt

= -- 1
1

i
3a

M

1ˆ ( )

l k m= -
2

3
, 3bˆ ˆ ( )

where ω is the forcing frequency and τM is the Maxwell time
τM= η/μ, with η being the viscosity. Different expressions for
the Fourier-transformed shear modulus and Lame parameter
can be obtained for other rheological models (e.g., Andrade,
Voigt-Kelvin, Burgers, Sundberg-Cooper) (Renaud &
Henning 2018).
The tidal response is obtained by solving Equations (1) and (2)

for a given tidal load, interior structure, and boundary conditions.

2.2. Interior Structure and Model Assumptions

We consider a layered interior. For each layer, the interior
properties remain constant with radius. Each layer is char-
acterized by its outer radius, Ri, its density, ρi, and its
mechanical properties. The mechanical properties (i.e., shear
modulus, bulk modulus, and viscosity) are written as mean
values (μ0, κ0, and η0) and lateral variations

å
m q j k q j h q j

m k h m m k k h h q j= +
¹

4

r r r

r r r r r r Y

, , , , , , , ,

, , , , , .
n m

n
m

n
m

n
m

n
m

0 0 0
0,

0 0 0

( )

( ( ) ( ) ( ))
( ( ) ( ) ( )) ( ( ) ( ) ( )) ( )

Yn
m are spherical harmonics of degree n and order m (see

Appendix A.2), and θ and j are the colatitude and longitude,
respectively.
As in previous work (e.g., Qin et al. 2016), we account for the

effect of thickness variationsΔH of a layer using using effective
shear modulus variations: Δμ/μ0=ΔH/H0 (e.g., Qin et al.
2016). Yet this is an approximation that deserves further
comment. The tidal response of a body whose outer layer is a
thin solid shell floating above a liquid layer (i.e., thin-shell body)
is controlled by the extension and the bending rigidity: 2(1+ ν)
μH and μH3/6(1− ν) (Beuthe 2018). The effect of shear
modulus and shell-thickness variations in the extension rigidity
is equivalent. However, this is not true for the bending rigidity.
Bending effects are small, provided (H/R)2=1 and the response
has a characteristic long wavelength; when this is the case, they
can be neglected (membrane approximation). As bending effects
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become more relevant (e.g., thicker outer shells and shorter
wavelength), the use of an effective shear modulus to mimic
thickness variations becomes less accurate. Beuthe (2018)
applied thin-shell theory to study the deformation of Enceladus
with lateral shell-thickness variations, and showed that the
membrane approximation renders good results, provided shell
variations are of long wavelength. As bending effects are
expected to be smaller in larger icy moons (e.g., Europa and
Ganymede), we expect this approximation to hold better for
these moons.

While the method described below can be applied to any
layered interior structure, we will consider a simplified three-
layer model consisting of a nondeformable solid core of density
ρ1 surrounded by an incomprehensible liquid layer in
hydrostatic equilibrium with outer radius R2 and density
ρ2; and a solid shell with outer radius R, density ρ3, and mean
shear modulus, bulk modulus, and viscosity μ0, κ0, and η0.
This simple model can be used to represent rocky and icy
bodies. For the former, the innermost two layers correspond to
the inner and the outer core, and the outermost layer represents
both the rocky mantle and crust. For the latter, the core
corresponds to the rocky core, the liquid layer to a subsurface
ocean, and the outer layer to the ice shell. This simplified
model neglects the gravitational coupling between the inner
solid core and the surrounding shell, which typically have a
small effect on the tidal response, as well as dynamic liquid
tides in the liquid layer, which under certain circumstances can
play a relevant role in the tidal response (e.g., Rovira-Navarro
et al. 2019, 2023).

The tidal response is controlled by a set of nondimensional
parameters. The tidal response of an incompressible homo-
geneous elastic body only depends on the effective rigidity μeff.
A body with high effective rigidity exhibits small tidal
deformations. The role of compressibility depends on the
Poisson’s ratio ν. For ν≈ 0.5, the body behaves as an
incompressible body. Viscous effects depend on the nondi-
mensional Maxwell time τ. Bodies with τ→∞ behave
elastically. The introduction of a solid core and a liquid layer

adds three nondimensional parameters: the ratio between the
outer radius of the liquid layer and surface radius, rR; the ratio
between the outer layer density and the mean density, rρ; and
the density contrast between the liquid and solid shells, rΔρ.
For icy moons with subsurface oceans, rΔρ≈ 0, while for rocky
worlds, we will assume that the inner and outer core have the
same density. Lateral rheology variations introduce additional
nondimensional parameters. The effect of lateral variations of
rheology properties depend on the parameters kn

m, mn
m, and hn

m.
Characteristic nondimensional parameters for tidally active
Solar System bodies are listed in Table 1.

3. Spectral Method

Different approaches can be used to solve Equation (1). We
use a spectral method that employs tensor spherical harmonics
as basis functions (James & Cook 1976). The properties of
spherical harmonics allow to transform the three-dimensional
governing equations into a set of partial differential equations
that depend only on radial distance. In this section, we describe
the new spectral method. First, we explain how the different
fields are expanded using tensor spherical harmonics
(Section 3.1); we then provide the governing equations and
boundary conditions in the spectral domain (Sections 3.2 and
3.3); finally, we extend the definition of Love numbers
traditionally used for spherically symmetric bodies to laterally
heterogeneous bodies and obtain expressions to compute tidal
energy dissipation for the anelastic case (Sections 3.4 and 3.5).
The appendices contain further details about the method.
Appendix A provides definitions of tensor spherical harmonics;
Appendix B gives explicit expressions to compute various
integrals of products of tensor spherical harmonics required for
this approach; and Appendix C provides explicit expressions
for the governing equations.

3.1. Spectral Expansion

As we are considering a periodic forcing, it is convenient to
work in the Fourier domain. The tidal potential, fT, can be

Table 1
Representative Values for the Nondimensional Parameters for Some Solar System Bodies

Parameter Definition Moon Mercury Io Europa Ganymede Enceladus

μeff m rg Rs0 ¯ 6.38 1.22 5.20 0.54 0.45 71.70

rR R2/R 0.22 0.80 0.53 0.98 0.95 0.91
rρ r r3 ¯ 0.98 0.54 0.92 0.33 0.52 0.62

rΔρ r r r-2 3( ) ¯ 1.60 0.65 0.54 0 0 0

ν
k m
k m

-
+

3 2

6 2
0 0

0 0
0.36 0.36 0.36 0.33 0.33 0.33

τ ωη0/μ0 L L 3.42 L 0 L
mn

m, Δμ/μ0 (ΔH/H0) Equation (4) L L 0.1 0.2 L 1

kn
m, Δκ/κ0 Equation (4) L L L L L L

hn
m, Δη/η0 Equation (4) L L 1 L L L

k2
u Equation (28) 0.025 0.44 0.056 − 0.0150i 0.23 0.4 0.016

h2
u Equation (28) 0.042 0.8 0.1 − 0.026i 1.16 1.3 0.044

Notes. The shear and bulk modulus of ice and rock are from Souček et al. (2019) and Kervazo et al. (2021), respectively. For the Moon, we consider a core radius of
390 km and adjust the core and mantle densities to meet the density density and MoI constraint. For Mercury, the interior structure follows from the average density,
and the total and outer shell moments of inertia (Genova et al. 2019). Io’s interior model is from Steinke et al. (2020a). Ice shell-thickness values for Europa,
Ganymede, and Enceladus are from Hussmann et al. (2002), Beuthe et al. (2016), and Vance et al. (2018). We assume ice and ocean densities of 1000 kg.m−3, and the
core density is set to meet the mean density constraint. Io’s viscosity is adjusted to match the k2( )I from astrometric observations (Lainey et al. 2009). Lateral
variations are given in terms of maximum peak-to-peak variations with respect to the mean value. For Io, representative viscosity and shear modulus variations follow
from expected variations in tidal heating (Steinke 2021); for Enceladus and Europa, expected shell-thickness variations are from Beuthe et al. (2016) and Nimmo et al.
(2007), respectively. The gravitational and radial displacement Love numbers (k2

u and h2
u) for the spherically symmetric elastic case are also given.
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written as

⎛
⎝

⎞
⎠

åf q j f q j= w wr t
r

R
Y, , , , e . 5T

k

n
T

n
m

n
m t, i

k

k

k k
k

k k( ) ( ) ( )( )

nk, mk, and ωk are respectively the degree, order, and frequency of
the tidal force. fT should be real, implying that for each nk,
mk, +ω component there is an nk, −mk, −ω component with
amplitude f f= -w w- - 1T

n
m m T

n
m, ,

k

k k

k

k k( )( ) ( ) , where - indicates the

complex conjugate. The amplitude of f wT
n
m ,
k

k k( ) depends on the
tidal component considered—Appendix D provides the expression
corresponding to a synchronous satellite in an eccentric orbit. As
Equation (1) is linear, the complete tidal response can be obtained
by linearly adding the solution for each tidal component. In what
follows, we will consider the solution to a tidal force of frequency
ω of the form

⎛
⎝

⎞
⎠

f q j f q j

f q j

=

+ -

w

w

+

+ - -

r t
r

R
Y

Y

, , , , e

1 , e . 6

T
n

T
n
m

n
m t

m T
n
m

n
m t

, i

, i

T

T

T
T

T

T
T

T
T

T

( ) ( ( )

( ) ( ) ) ( )

( )

( )

The + and − components correspond to the +ω and −ω

components of the tidal force.
We expand rank 0 tensors, such as the perturbing potential f¢

and the divergence of the displacement vector ∇ · u, using
spherical harmonics of rank 0:

åf q j c q j f c

f c q j

¢ =

+

w

w

+ +

- - -

r t r t r r

r r Y

, , , , , , , , e

, e , ,

7

n m
n
m

n
m t

n
m

n
m t

n
m

,

, , i

, , i

( ( ) ( )) [( ( ) ( ))

( ( ) ( )) ] ( )
( )

where summation is over n ä [0, ∞ ] and m ä [− n, n].
The rheology parameters are also expanded in spherical

harmonics (Equation (4)). For an anelastic body, the complex
shear modulus is obtained using the correspondence principle
(Equation (3)),

⎛

⎝
⎜

⎞

⎠
⎟

åm q j m m q j

wt

m q j

h q j

= +

´ -
+ å

+ å

¹

¹

¹

-

r r r Y

r

r Y

r Y

, , 1 ,

1
i 1 ,

1 ,
, 8

n m
n
m

n
m

M

n m n
m

n
m

n m n
m

n
m

0
0,

,0

0,

0,

1

ˆ ( ) ( )( ( ) ( ))

( )
( ) ( )
( ) ( )

( )

with τM,0= η0/μ0 being the average Maxwell time. The
Fourier-transformed shear modulus can be decomposed into
spherical harmonics:

åm q j m m m q j= +
¹

r r r Y, , , , 9
n m

n
m

n
m

0 0
0,

ˆ ( ) ˆ ( ) ˆ ( ) ( ) ( )

with

òm m
pm

m m= W
W

Y,
1

4
, d . 10n

m
n
m

n
m

0

( ( ˆ ) ( ˆ )) ( ( ˆ ) ( ˆ )) ( )R I R I

R and I denote the real and imaginary components,
respectively. For an elastic body, we have m m=0 0ˆ
and m m= - -1n

m m
n

mˆ ( ) ˆ .

The displacement vector is expanded using tensor spherical
harmonics of rank 1 (Appendix A.3):

åq j q j= +w w+ - -u Yr t u r u r, , , e e , ,

11
n n m

n n
m t

n n
m t

n n
m

, ,
,
, i

,
, i

,
1

1 1 1
( ) [ ( ) ( ) ] ( )

( )

where summation is over n ä [0, ∞], mä (− n, n), and
n1ä [n− 1, n+ 1]. The decomposition in tensor spherical
harmonics automatically separates between spheroidal
(n1= n± 1) and toroidal components n1= n. This expansion
is different from that traditionally used to solve the viscoelastic-
gravitational problem, which uses the radial-poloidal-toroidal
decomposition:

åq j q j

q j q j

=

+ + +w

+

+ +

u R

S T

r t U r

V r W r c c

, , , ,

, , e . ,
12

n m
n
m

n
m

n
m

n
m

n
m t

,

,

, ,
n
m i

( ) ( ( ) ( )

( ) ( ) ( ) ( ))
( )

where c. c means complex conjugate. U V W, ,n
m

n
m

n
m and -un n

m
, 1,

un n
m
, , +un n

m
, 1 are related via a linear transformation

(Equation (A14)).
The stress and strain tensors are expanded using tensor

spherical harmonics of rank 2 (Appendix A.4):






å
s q j q j

s
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+
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[( ( ) ( ))

( ( ) ( )) ] ( ) ( )

where summation is over n ä [0,∞], mä [− n, n], n1ä [n− 1,
n+ 1], and n2 ä [n1− 1, n1+ 1]. Generally, rank 2 tensors
have nine independent components, but as the stress and strain
tensors are symmetric, they only have six independent
components. Because of this, it is convenient to use an
alternative projection based on tensor harmonics defined by
Zerilli (Zerilli 1970). Following the notation of James & Cook
(1976),






å
s q j q j

s

s q j

¢ ¢

=

+
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+ +

- - - T

r t r t

r r

r r

, , , , , , ,

, e

, e , . 14
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l
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2

2 2
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[( ( ) ( ))

( ( ) ( )) ] ( ) ( )

( ) ( )

( ) ( ) ( )

This projection has the advantage of separating the trace l= 0,
anti-symmetric l= 1, and symmetric trace-free l= 2 compo-
nents. For a symmetric rank 2 tensor, there are six nonzero
components of the stress and strain tensor for each degree and
order: the trace (l= 0, n2= 0) and the symmetric spheroidal
(l= 2, n2= n and n2= n± 2) and toroidal (l= 2, n2= n± 1)
components. The Zerilli and rank 2 spherical harmonics tensor
spherical harmonics are linearly related (see Appendix A.4).
To apply the boundary conditions, the radial components of

the stress tensor are required. The radial component of the
stress tensor can be written in the rank 1 spherical harmonics
basis or alternatively in the radial-poloidal-toroidal basis often
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used in the literature:
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The spheroidal, poloidal, and toroidal components can be
written in terms of the sn n m

l
, ;2

( ) components of the stress tensor
(Equation (C9)).

The previous tensors must be real, which implies that the +
and − components are related. Once the solution to the +
component is obtained, the solution to the − component
follows immediately from the complex-conjugate properties of
tensor spherical harmonics (see Appendix A.1)

3.2. Spectral Form of the Governing Equations

Using the spectral expansions defined in Section 3.1 and the
properties of tensor spherical harmonics (James & Cook 1976),
we can transform the mass and momentum conservation
equations and Poisson equation (Equation (1)) as well as the
constitutive law (Equation (2)) to the spectral domain.

The components of the momentum equations (Equation (1b))
in the -Yn n

m
, 1, Yn n

m
, , and +Yn n

m
, 1 bases are given by
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with n1ä [n− 1, n+ 1]. Here, G(n, n1), ¶n
n

1
2, and Λ(n1, l) are

operators defined in Equations (A19) and (A3); and the terms
between curly brackets are Wigner’s 6-j symbols.

The Poisson equation (Equation (1c)) is
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where ∂r stands for the derivative with respect to the radial
distance r, and Dn is an operator defined in Equation (A20).
The right-hand side is 0 if the density is uniform within the
layer and the solid is incompressible. The explicit forms of the
momentum and the Poisson equation are given in Appendix C.

To obtain the spectral form of the constitutive law
(Equation (2)), it is useful to rewrite it as

 
s l m m

l m m
¢ = +  + 
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T S

3 2 2
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T and S stand for the trace and trace-free symmetric parts of the
tensor, and we have used the following definition of the strain
tensor:

 ¢ =  +  =  + u u T u S u
1

2
. 19( ( ) ) ( ) ( ) ( )†

An explicit expression for the strain tensor, which can be
obtained using the properties listed in Section 3 of James &
Cook (1976), is given in Appendix C.

Plugging Equation (4) into Equation (18) and using the
spectral expansion of the strain tensor, we can obtain the stress

tensor as
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A0
ˆ and A An

m
0

ˆ stand for the laterally uniform and laterally
varying components of A, respectively. Finally, the compo-
nents of the stress tensor sn n m

l
, ;2

( ) are obtained by projecting the
stress tensor into a basis of Zerilli’s tensors,
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where : is the inner product. Using Equation (20), we find
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( · )( ) ( ) are the coupling coefficients, which
indicate the coupling of mode (nα, mα) and (n,m) due to
rheology variations of degree and order (nβ, mβ). The coupling
coefficients with nonzero value determine which modes are
coupled. Their explicit form and properties are given in
Appendix B.
Equations (16), (17), (19), and (23) form a closed set of

partial differential equations that can be solved under well-
posed boundary conditions.

3.3. Boundary Conditions

To obtain the tidal response, the previous set of equations
must be solved under appropriate boundary conditions. We
impose boundary conditions at the surface R and at the core–
mantle boundary R2. The derivation of the boundary conditions
can be found in Sabadini et al. (2016). At the surface, R, the
stress vanishes:
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and the potential stress, Q, is given by
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with nT and mT being the degree and order of the considered
tidal forcing.
At the boundary between the liquid layer and the outermost

solid layer (R2), there is zero tangential and zero toroidal stress,
and the radial stress is given by the difference between the
radial displacement and the geoid:
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The gradient of the gravitational potential is
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Degrees 0 and 1 require special treatment (Farrell 1972; Qin
et al. 2014). For degree 0, the displacement and radial stress
vector only have radial components. Because of compressi-
bility, the body can experience nonzero radial displacements.
However, as the mass of the body does not change, the
perturbing potential should be 0, f0= 0. The degree 1 solution
automatically satisfies + + =

p
R S2 0m m gQ

G1 1 4

m
1 , which implies

that two of the boundary conditions are a linear combination of
each other. This is because the degree 1 solution includes a
translation of the center of mass that does not introduce stress.
As we are working in the center of mass reference center, we
constrain this translation to be 0, f = 0m

1 . Moreover,
=T R 0m

1 2( ) is automatically fulfilled if =T R 0m
1 ( ) . This is

because the toroidal mode contains a net rotation that does not
introduce stress. Instead of using =T R 0n

m
2( ) , we impose a 0

toroidal displacement at R2 without introducing extra stress
=W R 0m

1 2( ) , as done in Qin et al. (2014).

3.4. Love Numbers of an Aspherical Body

The tidal response of a body can be expressed in terms of
Love numbers, a set of dimensionless proportionality constants
that relate the tidal force and the body’s response. For a
spherically symmetric body, a tidal forcing of a given degree
and order results in a response of the same degree and order.
Moreover, due to the spherical symmetry, the Love numbers
are independent of the order of the forcing. Because of this,
there exist a set of frequency-dependent Love numbers (radial
hn, poloidal ln, and gravitational kn) per degree that can be
evaluated at any radial point. If there are lateral heterogeneities,
a forcing of a given wavelength might excite a mode with
different wavelength. Because of this, the definition of Love
numbers must be extended. More generally, we can write the
tidal response as
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α and β indicate the tidal response at degree and order nβ, mβ

due to a forcing at degree and order nα, mα. t are the toroidal
Love number, which are 0 for a spherically symmetric body.
The only nonzero numbers Love numbers for a spherically
symmetric body are

a a
a ahn m

n m
,
, ,

a a
a aln m

n m
,
, ,

a a
a akn m

n m
,
, , and as they are

independent of order, they can be simply written as hn, ln,
and kn.

3.5. Energy Dissipation

If the body is anelastic, its deformation is not adiabatic. The
mean volumetric energy dissipated during a tidal period T is

given by
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The previous integral can be computed either in the
temporal–spatial domain using ò(t, r, θ, j) and σ(t, r, θ, j),
or alternatively in the spectral domain using their spectral
expansions. Plugging Equation (14) into Equation (29) and
performing the time integral, we find
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For a given radius, we can project the previous expression
into spherical harmonics to obtain the spectra of energy
dissipation, i.e.,
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The average energy dissipation for radius r is given by
e r0

0 ( ) and can be obtained using the orthogonality and
complex-conjugate properties of tensor spherical harmonics
(Appendix A.1):
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The total energy dissipation can be found by radially
integrating e0

0 ,
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Alternatively, the total tidal dissipation can be obtained from
the work done by the tidal force (Love 1927),
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which can be transformed into a surface integral (e.g., Peale &
Cassen 1978; Zschau 1978; Platzman 1984),
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where f¢ is the perturbing potential (i.e., f f f= ¢ + T ) and the
subscript n indicates that only the component of degree n of the
potential is considered. Using the spectral expansion of the
tidal potential (Equation (5)), the definition of the Love
numbers (Equation (28)) and the orthogonality of spherical
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harmonics, we find:
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If we consider a spherically symmetric body in an eccentric
orbit, the previous expression reduces to the classic expression
(e.g., Peale et al. 1979):
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4. Numerical Approach

The system of differential equations presented in Section 3.2
is written in terms of the three components of the displacement
vector ( - +u u u, ,n n
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and the gravitational potential (fn
m), for each degree and order.

However, it is more convenient to rewrite the equations in
terms of the variables traditionally employed to solve the
viscoelastic deformation of a self-gravitating body (e.g.,
Love 1911; Farrell 1972; Sabadini et al. 2016): the radial,
poloidal, and toroidal components of the displacement vector
and of the radial component of the stress tensor
(U V W R S T, , , , ,n
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m) and the gravitational potential

and its gradient (f, ∂rf):
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where we have also introduced the y radial functions
traditionally used in the viscoealstic–gravitational problem
(e.g., Sabadini et al. 2016). We note that the problem is
formulated in terms of the gradient of the gravitational potential
y6= ∂rf rather than the potential stress Q. The equations can
be then be cast in the form (Appendix C)

¶ =y Dyr r , 40r ( ) ( ) ( )

where D is a linear operator that depends on the interior
properties and the radial distance r.

Given a forcing of degree nT and order mT, not all the modes
(n, m) are excited. If there are no lateral rheology variations,
equations of different degree and order are decoupled.
Additionally, if we only consider a zonal forcing mT=0 and
no longitudinal rheology variations (i.e., k m h= = = 0n

m
n
m

n
m

for m≠ 0), spheroidal ( f f¶U V R S, , , , ,n
m

n
m

n
m

n
m

n
m

r n
m) and tor-

oidal (W T,n
m

n
m) modes are decoupled. More generally, the

modes (n,m) involved in the tidal response depend on the
forcing spectra (nT, mT) and that of the lateral variations (nLV,
mLV) via the coupling terms. Given a mode (nα, mα) and lateral
variations of the form (nLV, mLV), the coupled modes (nα,
mα)⊗ (nLV, mLV)⇒ (n, m) are given by the nonzero coupling
coefficients. The coupled modes can be obtained recursively by
using the selection rules listed in Appendix B. Starting from the
tidal force (nT, mT), the modes involved in the solution can be

obtained by recursively applying the selection rules: first-order
modes, (nT, mT)⊗ (nLV, mLV)⇒ (n1, m1), second-order modes
(n1, m1)⊗ (nLV, mLV)⇒ (n2, m2), and modes of order p, (np−1,
mp−1)⊗ (nLV, mLV)⇒ (np, mp).
As opposed to a spherically symmetric body, for which there

is only one mode involved in the tidal response per forcing
harmonic (nT, mT), an infinite set of modes are excited by the
tidal force when lateral variations are considered. This makes it
impossible to obtain an exact solution to the problem using the
spectral method. An approximate solution is obtained by
setting a maximum cutoff order Np. The reduced system of
differential equations is given by

¶ =y D yr r , 41r a a a( ) ( ) ( )

with ya containing only the considered modes and Da their
corresponding dynamics. ya is an 8Nmodes vector or
8(Nmodes− 1)+ 4 vector if the degree 0 response is excited.
To obtain the tidal response, Equation (41) is integrated
numerically from the boundary between the liquid layer and the
outermost solid layer (R2) to the surface using a Runge–Kutta
scheme. The solution is given by
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¢ ¢ ¢ ¢y Rn k

m
n
n

m
m

k
k

, 2( ) .
The integration constants are obtained by applying the

boundary conditions listed in Section 3.3, and the solution
follows from Equation (42). Once the radial functions y are
obtained, the components of the displacement vector, and strain
and stress tensors in tensor spherical harmonic bases are obtained
using Equations (A14), (C1), and (C4). The solution can be
transformed from the spectral domain to the spatial and time
domain using Equations (7), (11), and (14), and the definitions of
the rank 0 (Equation (A9)), rank 1 (Equation (A11)), and rank 2
(Equation (A16)) tensor spherical harmonics.
Figure 1 provides an overview of the method described above,

which is implemented in the LOV3D software repository.

5. Model Benchmark and Comparison with Previous
Methods

We compare the results obtained with the spectral method
presented here with those obtained using the spectral-perturba-
tion method of Qin et al. (2014, 2016) and the FEM code of
Berne et al. (2023a, 2023b).
The spectral method of Qin et al. (2014, 2016) relies on

perturbation theory. As opposed to the method presented above,
the solution is computed recursively. The tidal response of the
spherically symmetric body is used to obtain the first-order
modes which is then employed to compute second-order modes,
etc. For each mode, only the radial functions corresponding to
that mode are considered unknown. The coupling terms (second
term in the RHS of Equation (23), and terms related to lateral
variations in Equation (C11)) are considered to be known and
follow from a lower-order mode, effectively acting as a forcing.
This way, the equations corresponding to each of the modes
participating in the tidal response are decoupled. This means
that, for a mode of a given perturbation order, the effect of
higher-order modes is ignored.
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The spectral-perturbation method of Qin et al. (2014, 2016)
provides an approximated solution whose accuracy is expected
to decrease as the amplitude of lateral variations increases. To
test the accuracy of the perturbation method, we consider an
elastic Io-like body (Table 1, τ→∞ ) with zonal—(nLV,
mLV)= (1, 0), (nLV, mLV)= (2, 0)—and sectoral—(nLV,
mLV)= (1, ± 1)—lateral variations under a zonal tidal
forcing—(nT, mT)= (2, 0)—and compute the tidal response.
We note that similar results are obtained for different interior
parameters and forcing. For each of the considered lateral
heterogeneities, we obtain the gravitational Love numbers
using the two methods and compute the difference between
them. The tidal response can be written as the tidal response of
a spherically symmetric body, given by k u

2 , plus an additional
response arising from lateral variations Dk n m

2,0
, .

Figure 2 shows the tidal Love number spectra for the three
sets of lateral heterogeneities; first-, second-, and third-order
modes are indicated. The additional tidal response increases
from being 0.01% of the tidal response of the uniform body for
peak-to-peak shear modulus variations of ∼0.1% of the mean
shear modulus to about 10% for variations of the same order of
magnitude as the mean shear modulus. The additional tidal
response is clearly dominated by first-order modes, which for
small lateral variations are orders of magnitude higher than

second-order modes. However, the difference between first-
and second-order modes decreases as the amplitude of lateral
variations increases.
The results obtained with the spectral and the spectral-

perturbation method show good agreement. Differences
between the results obtained with the two models are as small
as ∼10−5% for lateral variations of less than ∼10−3%. The
difference is likely caused by differences in how the equations
are radially integrated; for instance, the difference decreases as
the number of radial points used in the Runge–Kutta
integration increases. This difference increases as the amplitude
of lateral heterogeneities increases. However, it remains small
even when substantial lateral heterogeneities are considered.
For 10% peak-to-peak variations of the shear modulus, the
difference remains below 1%; discrepancies of 10% or more
are only attained when peak-to-peak variations of the shear
modulus have the same order of magnitude as the mean shear
modulus. The remarkable agreement is due to the fast decrease
of mode amplitude with increasing mode order, as shown in
Figure 2. This means that the effect of modes of higher-order
modes on modes of lower order remains small even with high-
amplitude lateral heterogeneities.
We also consider the case of an icy moon. We obtain the tidal

response for the reference Enceladus model (Table 1) for various

Figure 1. Flowchart of the methodology employed to obtain the tidal response.
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types of lateral variations using both spectral methods and the
FEM code. For the FEM approach, we adapt the methodology
outlined in Berne et al. (2023a) and Berne et al. (2023b) to
develop an FEM capable of simulating tidal deformation on
laterally heterogeneous ocean worlds. FEMs solve the equation of
motion for quasi-static problems by formulating 3D displacements
(i.e., in response to applied forces and boundary conditions) as a
series of linear shape functions across a mesh domain. For this
work, we discretize mesh domains using tetrahedra with a
maximum edge length of 1 km and consider between 18·106 and
33·106 elements for each simulation. To simulate tidal loading, we
upload mesh geometries to a modified version of the geodynamic
software package Pylith (Aagaard et al. 2007), which can self-
consistently consider forces arising from external tidal potentials,
self-gravity, and radial displacements at boundaries between
internal density layers (for additional details, see Supplementary
S1.1 of Berne et al. 2023a). To incorporate lateral variations in
elastic properties, we sample analytic basis functions (i.e.,
spherical harmonics) for a given heterogeneity at mesh node
locations. Following simulations, we expand displacements into
spherical harmonics and compute Love numbers for comparison
to semi-analytic solutions presented in this work.

Figure 3 compares the results obtained with the three
methods (i.e., spectral method, spectral-perturbation method,
and FEM). With few exceptions, the results obtained with the
FEM and the spectral method show the best agreement. As
explained above, the difference between the spectral and
spectral-perturbation method grows with the amplitude of
lateral variations reaching values as high as 5% for peak-to-

peak shear modulus variations of 50%. In contrast, the
difference between results obtained with the spectral and the
FEM remains below 1% and is often 1 order of magnitude
smaller than for the former. We ascribe small discrepancies
between results with the spectral method and the FEM code to
errors associated with resolution. We find that the agreement
between both methods improves when the FEM mesh size
decreases from 5 to 1 km.
To benchmark the viscoelastic component, we compute the

Love numbers of a spherically symmetric uniform body obtained
using analytical expressions (e.g., Matsuyama et al. 2018) and
LOV3D, and we find excellent agreement (relative differences of
<10−6%). For a viscoelastic body with lateral variations, we
check that energy dissipation is computed self-consistently by
comparing the total energy dissipation obtained using the two
approaches outlined in Section 3.5 (i.e., Equations (34) and
(37)), finding good agreement (see Appendix E).

6. The Tides of a Laterally Heterogeneous Elastic Body

Figure 2 evidences that different spatial patterns of lateral
variations result in distinct tidal responses. This is further
illustrated in Figure 4, which shows the degree 2 gravitational
Love spectra for monochromatic (single total and zonal
wavenumber) shear modulus variations. Each type of lateral
variations leads to a unique Love number spectra. Hence, if the
full tidal response were measured, the inverse problem could be
solved and the spatial pattern and amplitude of lateral variations
inferred; this technique is known as tidal tomography.

Figure 2. Gravitational Love numbers for different types of lateral shear modulus variations (upper panels), and the differences with the Love numbers obtained via
the perturbation approach of Qin et al. (2014) (lower panels). An elastic Io (Table 1) with shear modulus variations of different wavelengths (nLV, mLV) is assumed.
The amplitude of lateral variations is given in terms of the peak-to-peak variation of the shear modulus with respect to its mean. The solution is cut off at perturbation
order 3. The line width indicates the order of the mode, with thicker lines indicating lower-order modes. In the upper panels, the dashed lines correspond to the
solution obtained with the perturbation method of Qin et al. (2014). For (nLV, mLV) = (1, 1), only the + m∣ ∣ modes are shown, but - m∣ ∣ modes of amplitude

= --k k1n m m n m
2,0

,
2,0

,( )∣ ∣ ∣ ∣ ∣ ∣ are also excited. The difference between the two methods is computed as -k k k k k k100 n m u
R

n m u
Q

n m u
R2,0

,
2 2,0

,
2 2,0

,
2∣( ) ( ) ∣ ∣ ∣ , with R and Q standing

for the method presented here and the method of Qin et al. (2014), respectively.
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Figure 3. Same as Figure 2, but for the Enceladus model (Table 1). Differences are obtained as D - D Dk k k k k k100 n m u
R

n m u
X

n m u
R2,0

,
2 2,0

,
2 2,0

,
2∣( ) ( ) ∣ ∣ ∣ , where X can either

be the results obtained using the FEM model or the spectral-perturbation method. Solutions obtained using the FEM of Berne et al. (2023a) and the perturbation
method of Qin et al. (2014) are indicated with filled circles and dashed lines, respectively.

Figure 4. Love number spectra for degree 2 and orders 0 (upper panel), 1 (center panel), and 2 (lower panel) tidal forcings for lateral variations of different degrees
and orders (nLV, mLV). An elastic Io is assumed (Table 1), and the solution is cut off at perturbation order 4. Color intensity indicates the strength of the mode, and the
terms with highest amplitude are indicated with a cross. For all cases, we assume peak-to-peak shear modulus variations of 10% of the mean shear modulus.
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The use of tidal tomography presents several challenges. The
amplitude of the additional tidal response arising from lateral
variations is small, making it challenging to measure. Because
of this, we can expect that only the terms with the highest
amplitudes will be measured. Moreover, lateral variations in
different regions and of different properties (e.g., elastic
properties and layer thickness) can result in a similar tidal
spectra. Finally, lateral variations are likely not monochromatic
but feature various wavelengths. This makes the solution of the
inverse problem nonunique. As an example, both degree 1 and
degree 3 lateral variations produce a degree 3 tidal signal (see
Figure 4). If no other terms of the spectra are measured, a
degree 3 response would be indicative of a hemispherical
dichotomy but could not be used to distinguish between degree
3 and degree 1 lateral variations. Distinguishing between the
two would require measuring the degree 5 tidal response,
which is more prominent for degree 3 lateral variations. Lateral
variations also alter the tidal response at the degree and order of
the forcing, most prominently for degree 2 variations. This
makes it challenging to distinguish the effects of lateral
heterogeneity from the tidal response, and it might even result
in errors when estimating the mean properties of the body. In
such cases, a way to detect lateral variations is by comparing
the k2 Love numbers at different orders, which are only equal if
the body is spherically symmetric. The tidal potential of a
moon in an eccentric orbit has both order 0 and order 2
components, making this approach attractive.

So far, tidal tomography has just been used for Earth (Lau
et al. 2017), for which there is high-quality geodetic data.
However, future space missions might make it possible to use
tidal tomography for other Solar System bodies. Figure 5
shows the gravitational Love number spectra for Io, the Moon,
and Mercury (Table 1). In all cases, the additional tidal

response (Δk) is normalized by the tidal response of the
spherically symmetric body (k2

u), listed in Table 1.
The Gravity Recovery and Interior Laboratory (GRAIL)

mission provided very accurate lunar gravity data, which can
be used to constrain the amplitude of lateral heterogeneities in
the Lunar interior (Qin et al. 2014). We caution that a
comprehensive inversion can only be done if an expression for
the Love numbers that account for the effect of lateral
variations (i.e., Equation (28)) rather than the classic expression
often used (e.g., Konopliv et al. 2013), is used when obtaining
the gravity solution from raw GRAIL data, and the model
parameter space is thoroughly sampled. However, the results
shown in Figure 5, combined with the available GRAIL gravity
field, give a qualitative impression of the amplitude of lateral
variations. For instance, Williams et al. (2014) showed that the
measured degree 3 response of the Moon is consistent with a
spherically symmetric model; this suggests that there are not
high-amplitude odd-degree lateral variations, as otherwise one
would measure a high degree 3 response. Additionally, the
degree 2 orders 0 and 2 Love numbers of the Moon differ by
∼1%, but are within the uncertainty of the measurements
(Konopliv et al. 2013; Lemoine et al. 2013). From Figure 5,
this suggests that degree 2 variations are less than ∼10%.
Of the three bodies, Mercury is the one for which the

additional tidal response is the smallest relative to the tidal
response of a spherically symmetric. Nevertheless, as Mercury
is the body with the highest k u

2 , lateral variations lead to the
highest gravity signal in absolute terms. The MESSENGER
mission measured Mercury’s k2 with an accuracy of approxi-
mately 5%, insufficient to observe lateral variations. In
contrast, BepiColombo, scheduled to start its science opera-
tions in 2026, is expected to improve the accuracy to ∼0.1%
(Genova et al. 2021). The accuracy at which the nondiagonal

Figure 5. Gravitational Love numbers, k n m
2,0

, , for lateral shear modulus variations of different wavelengths (nLV, mLV) for Io (solid lines), the Moon (dashed lines), and
Mercury (dotted lines).

11

The Planetary Science Journal, 5:129 (23pp), 2024 May Rovira-Navarro, Matsuyama, & Berne



Love numbers can be obtained (e.g.,
a a
b bkn m

n m
,
, , with nα≠ nβ,

mα≠mβ) can only be determined via a simulation of
BepiColomboʼs gravity science experiment. Assuming the
accuracy inferred for k2 extends to the other Love numbers,
variations of the shear modulus or of the thickness of
Mercury’s rocky envelope as small as 2% might be detected.
As demonstrated by Figure 5, the detection threshold depends
on the spatial pattern of lateral variations.

We also consider the role of lateral heterogeneities in icy
moons. As noted in Section 2.2, shell-thickness variations can
be approximately mapped to shear modulus variations,
provided the shell is thin compared to the moon’s radius. This
is the case for icy moons—for Europa and Ganymede, the shell
to radius ratios are ∼0.02 and 0.05, respectively; for Enceladus,

the ratio is higher, at ∼0.1, making the approximation less
accurate. Figure 6 shows the additional tidal response for zonal
variations of the shear modulus for Europa, Ganymede, and
Enceladus. The relative additional tidal response resulting from
lateral variations (Dk kn m

n m
n
u

,
,

T T T
) is approximately 1 order of

magnitude higher for Enceladus than for the two Jovian moons.
For Enceladus, lateral variations of 50% cause an additional
tidal response ∼10% the amplitude of the main tidal response
(see also Berne et al. 2023a and Bêhounková et al. 2017), while
for the latter the additional tidal response is ∼1%. Never-
theless, as k2 of Enceladus is more than 1 order of magnitude
smaller (Table 1), Dkn m

n m
,
,

T T
is similar for the three icy moons.

The possibility to observe lateral variations depends on their
amplitude and the accuracy to which the Love number spectra

Figure 6. Effect of lateral heterogeneities of different wavelengths for Europa (first row), Ganymede (second row), and Enceladus (third row). The highest-amplitude
components of the tidal responses arising from zonal lateral variations of degrees 1 (first column), 2 (second column), and 3 (third column) are depicted. For reference,
the degree 2 Love number of a spherically symmetric body, k u

2 , is indicated (dashed black lines).
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can be obtained. For Enceladus, gravity and shape data
indicate that shell-thickness varies from 29 km at the equator
to 7 km at the south pole (Čadek et al. 2016; Beuthe et al. 2016;
Hemingway & Mittal 2019). In contrast, shell-thickness
variations for Europa are not expected to exceed 7 km (Nimmo
et al. 2007). Ganymede’s shell-thickness variations are not
constrained, yet ocean circulation models predict shell-thick-
ness variations to be smaller for big icy moons (Kang &
Jansen 2022). This makes Enceladus a prime candidate for the
use of tidal tomography in the future. With the JUpiter Icy
Moons Explorer (JUICE) on its way to the Jovian system, it is
interesting to consider if it can pick up the signal arising from
lateral variations of shell properties. JUICE will measure
Ganymede’s k2 with an expected accuracy of 10−4 (Cappuccio
et al. 2020), which is less than 0.1% of Ganymede’s expected
k2. This accuracy is sufficient to detect differences in k2,0

2,0 and
k2,2

2,2 caused by lateral variations of ice shell properties, making
tidal tomography a promising tool for constraining lateral
variations in Ganymede’s shell.

7. The Tides of a Laterally Heterogeneous Maxwell Body

In the previous section, we considered the tidal response of
an elastic body with lateral variations. We will now consider
how lateral variations affect the tidal response of a viscoelastic
body. If a body is not perfectly elastic, part of the tidal energy
is converted into heat. Here, we explore the effect that lateral
variations of the viscosity has on tidal heating patterns.

We employ our reference Io model (see Table 1) and consider
various patterns of viscosity variations. The complex shear
modulus spectra is obtained using Equations (8)–(10). Even in
the case of monochromatic viscosity variations, the complex
shear modulus spectra is not monochromatic but contains infinite
terms of varying amplitude. To use the spectral method, the
complex shear modulus spectra needs to be cut off. We consider
terms up to 2 orders of magnitude smaller than the leading non-
degree-0 term of the complex shear modulus. The heating
pattern depends on the tidal potential spectra. We focus on the
tides experienced by a synchronous body in an eccentric orbit
with zero obliquity—for which we give the tidal potential in
Appendix D. We obtain the tidal response for each component of
the tidal potential and compute the energy spectra as described in
Section 3.5.
Figures 7 and 8 show the spatial distribution of tidal heating for

various types of monochromatic lateral viscosity variations and the
corresponding spectra (Equation (31)), respectively. Even for a
spherically symmetric body, tidal heating is not homogenously
distributed within the interior. For the considered tidal forcing, the
heating pattern consists of terms of degree and order (0, 0), (2, 0),
(2, ± 2), (4, 0), (4, ± 2), and (4, ± 4) (e.g., Beuthe 2013). For the
three-layer model considered here (solid core, liquid core, and
rocky envelope), tidal heating is maximum at the poles; along the
equator, tidal heating exhibits minima at the subplanet (0°) and
antiplanet (180°) points and maxima at the center of the trailing
and leading hemispheres (90° and −90°, respectively). Viscosity

Figure 7. Pattern of tidal heating for a spherically symmetric body (upper row) and for bodies with different types of lateral viscosity variations. For the spherically
symmetric body, the total heating pattern is shown; for the rest, the difference between their corresponding heating pattern and that of a spherically symmetric body is
shown. All plots are normalized by the average tidal heating of the spherically symmetric body. The reference Io model is employed (see Table 1) with peak-to-peak
viscosity variations of 50%. The subplanet (SP) and antiplanet (AP) points as well as the centers of the trailing and leading hemispheres (TH and LH) are indicated.
The longitudinally and longitudinally averaged tidal heating are also shown. In the first panel, Io’s volcanoes are indicated (blue dots), with contours corresponding to
the density of Io’s volcanoes (red and blue contours indicating values higher and lower than the global average) (Steinke et al. 2020).
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lateral variations introduce additional terms. The difference
between the tidal heating pattern of a uniform body and a body
with lateral variations is dominated by the same pattern as the
considered viscosity variations. For example, a polar dichotomy of
degree 1 and order 0 in viscosity translates into the same
dichotomy in tidal heating (see second panel in Figure 7). This also
follows from the tidal heating spectra, where the most prominent
terms are those with same wavelength as the considered viscosity
variations (Figure 8). Apart from this dominant term, other terms
with smaller amplitude also arise.

Some terms of the tidal heating spectra are not symmetric with
respect to the 0° meridian. This is most evident when looking at
the tidal heating map corresponding to the lateral variations of
degree 2 and order 0, where we observe a westward shift in the
longitude at which the minimum heat flux is attained compared
to the spherically symmetric case. The appearance of a trailing–
leading hemisphere asymmetry is remarkable since the con-
sidered patterns of lateral variations do not contain such an
asymmetry. A similar phenomenon was observed by Steinke
et al. (2021), who used FEM to obtain tidal heating patterns for a
multilayered, laterally heterogeneous Io. The asymmetry arises
because the tidal potential is not symmetric with respect to the
east–west direction. As shown in Appendix D, the tidal potential
can be broken into a degree 2 and order 0 standing wave, and
degree 2 and order 2 westward and eastward-propagating waves
of different amplitudes. The amplitude of the eastward
component is greater than that of the westward component,
breaking the symmetry of the problem. No asymmetry is
observed if a single standing wave is considered.

Tidal heating patterns can help constrain the interior
properties of rocky and icy worlds (e.g., Breuer et al. 2022).
The distribution of volcanoes in Io has been used as a proxy of
tidal heating. In Io, the concentration of volcanoes is greater
toward middle to low latitudes, and it is bimodal, exhibiting
two maxima 30°–60° eastward of the sub-Jovian and anti-
Jovian points (see Figure 7). Moreover, the distribution of
volcanoes also contains a statistically significant degree 6
component (Kirchoff et al. 2011; Hamilton et al. 2013; Steinke
et al. 2020). The link between tidal heating and volcanic
patterns is not simple: convection and melt transport affect how
the two patterns relate (Steinke et al. 2020a), and the inferred
volcanic patterns are affected by biases in observations. Recent
observations by the Juno spacecraft have discovered new
volcanoes in previously poorly covered polar regions and even
hinted that the north pole could have a higher concentration of
hot spots (Zambon et al. 2023; Davies et al. 2024).

The tidal heating pattern characteristic of a three-layer (solid
core,liquid core and rocky envelope) spherically symmetric Io

does not match the observed distribution of volcanoes. As
illustrated in Figure 7, the surface heat flux peaks at the poles,
does not exhibit a 30°–60° eastward shift with respect to the
tidal axis, and does not have degree 6 terms nor a polar
dichotomy. The heating pattern is affected by both radial and
lateral variations of internal properties. The presence of a low-
viscosity asthenosphere can account for the concentration of
volcanoes at middle to low latitudes. However, spherically
symmetric models cannot reproduce the observed eastward
shift of volcanic activity with respect to the sub-Jovian point.
Tyler et al. (2015) showed that tidal heating in a magma ocean
can cause this shift. The results discussed here, as well as the
FEM model of Steinke et al. (2021), indicate that lateral
viscosity variations can introduce a longitudinal shift. The
magnitude and direction of the longitudinal shift depend on the
particular form of lateral and radial variations of internal
properties. A comprehensive exploration of the joint effect of
radial and lateral variations is left for future work. As
evidenced in Figure 8, lateral variations of internal properties
can also introduce a degree 6 heat flux pattern and cause a polar
dichotomy (terms with odd m).
Interior properties and heating patterns are tightly related.

Viscosity and shear modulus depend on temperature and melt
fraction. Lateral variations of tidal heating affect both quantities
(Steinke et al. 2020a) and hence the heating pattern. This
feedback can have important implications for the interior
evolution of tidally active bodies. As shown in Figure 8, even
a body with a uniform interior exhibits nonuniform tidal heating.
Such a pattern will alter material properties and feedback into the
heating pattern, driving interior evolution. Alternatively, primor-
dial lateral heterogeneities might be amplified by the feedback in
a similar way. The extent to which this happens depends on how
heat is transported within the body. Tackling this complex
problem requires coupling a tidal and a thermal model. The lower
computational cost of spectral methods compared to FEM
methods makes them an attractive tool to approach the problem.

8. Summary and Outlook

In this work, we presented a spectral method to compute the
tidal response of bodies with lateral heterogeneities, and we
applied it to elastic and viscoelastic bodies. Below, we
summarize the key points:

1. The new spectral method shows good agreement with
results obtained with the spectral-perturbation approach
of Qin et al. (2014) and the FEM model of Berne et al.
(2023a, 2023b). Differences between the results obtained
with the new method and the perturbation method grow

Figure 8. Tidal heating spectra (Equation (31)) corresponding to the cases of Figure 7. The energy spectra is given in terms of amplitude (upper panel) and the
longitudinal eastward shift in the fraction of longitudinal wavelength with respect to Yn

m( )R (lower panel).
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as the amplitude of lateral variations increases. Predic-
tions obtained using the perturbation method differ by
less than 1% for shear modulus variations of 10% and
only reach ∼10% for peak-to-peak variations of the same
order of magnitude as the mean shear modulus. This
makes the perturbation method a powerful tool to
compute the tidal response of bodies, unless such
variations have high amplitude. Differences between the
FEM approach and the presented spectral method remain
small even for high-amplitude lateral variations. Spectral
methods are more computationally efficient: a model that
takes ∼10 days to run using the FEM code in a two-core
computer is solved in less than a minute using the spectral
method presented here; in terms of memory, the grids
employed in the FEM runs presented here required
∼1 GB of memory, while the coupling matrices
employed in the spectral model required ∼1MB. This
makes spectral methods more suitable to tackle the
inverse problem. However, unlike FEMs, the spectral
code presented here cannot include faults, cracks, or
nonlinear rheology, and layer thickness variations can
only be treated by mapping them to shear modulus
variations (Berne et al. 2023a).

2. Each set of lateral variations results in distinct Love
number spectra. Thus, measurements of the complete tidal
response of a body can be used to constrain lateral
variations. Nevertheless, the solution of the inverse
problem is nonunique, as it is unlikely that the complete
Love number spectra can be measured and lateral
variations at different depths might result in similar spectra
(Section 6). Other measurements, such as static gravity and
topography, might help to solve this degeneracy.

3. For the Moon, Io, and Mercury, shear modulus variations
of the same order of magnitude as the mean shear
modulus can cause an additional tidal response as high as
∼1%–10% of the main tidal response. BepiColombo
should observe the fingerprint of lateral variations,
provided they are higher than approximately 2% of the
mean shear modulus (Section 6).

4. In icy worlds, lateral variations of ice shell thickness
modify the tidal response. Due to the expected amplitude of
shell-thickness variations, Enceladus is a prime candidate to
use tidal tomography. For Europa and Ganymede, shell-
thickness variations can lead to an additional tidal response
on the order of 0.1%–1% of the main tidal response
depending on their amplitude. The accuracy of JUICE
makes it possible to detect this signal (Section 6).

5. Lateral variations modify the distribution of tidal heating
for viscoelastic bodies. The additional tidal heating
pattern due to lateral variations of the viscosity is
dominated by the pattern of such variations. Lateral
viscosity variations can cause a trailing–leading hemi-
sphere asymmetry in tidal heating. This could explain the
eastward shift of volcanic activity with respect to the sub-
Jovian and anti-Jovian points observed in Io (Section 7).

6. The dependence of interior properties on temperature and
melt fraction, which in turn depend on the distribution of
tidal heating, gives rise to a complex feedback that can
drive interior evolution. The computational efficiency of
the spectral method makes it a good candidate to study
this feedback (Section 7).

7. For this work, we considered a simplified interior structure
consisting of a solid nondeformable core, overlaid by
a hydrostatic liquid and a solid envelope with radially
uniform properties (Section 2.2). These assumptions can
be relaxed—i.e., the deformation of the inner core can be
considered, dynamic liquid tides included, and radial
variations of interior properties introduced.
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Appendix A
Tensor Spherical Harmonics

Tensor spherical harmonics are a generalization of spherical
harmonics to tensors of rank >0. For problems with spherical
geometry, expanding the tensors in tensor spherical harmonics
allows to employ the properties of tensor spherical harmonics to
eliminate longitude and latitude from the equations of motion. A
rank k tensor a can be written as (James & Cook 1976)

å=a Ya . A1
n m n n

n n n
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n n n
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k

k k
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Below, we define tensor spherical harmonics and introduce
some of their main properties. We also give explicit
expressions of tensor spherical harmonics of ranks 0, 1, and
2; explain how to transform between them and other bases
often used in literature and in this manuscript; and list operators
used in the text. An exhaustive list of properties can be found in
James & Cook (1976).

A.1. Definitions

Tensor spherical harmonics of degree n and order m of rank
k are recursively defined as (James & Cook 1976)
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with the 2× 3 array being the Wigner 3-j coefficient, and Λ(a,
b, c..) is given by

L ¼ = + + +a b c a b c, , , 2 1 2 1 2 1 ... . A31 2( ) (( )( )( ) ) ( )

eμ are defined in terms of the unit vectors of Cartesian
coordinates (1x,1y,1z) as

= = - = - +-e e e1 1 1 1 1i 2 i 2 .
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The Wigner 3-j symbols are only nonzero when n, n1..nk
satisfy the triangular identity, which means that a rank k tensor
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spherical harmonic of degree and order n and m have 3k tensor
spherical harmonics.

For convenience, we will sometimes use aYn k( ) to refer
to

a a a
aYn n n

m
, ,.., k1

Tensor spherical harmonics form an orthogonal basis.
Integrated over the unit sphere, we have that
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b is the Kronecker delta;
and · is the generalized dot product of two tensors defined in
James & Cook (1976) as
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The complex conjugate of a tensor spherical harmonic of
rank k is given by
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which implies that, if a tensor is real, the m and −m
components are related as
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A.2. Rank 0 Tensors

Rank 0 tensor spherical harmonics are the classic spherical
harmonics Yn
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A.3. Rank 1 Tensors

Rank 1 tensors, such as the displacement vector u, are
expanded using tensor spherical harmonics of rank 1, which
can be written in spherical coordinates as
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Rank 1 tensor spherical harmonics are related to the
scaloidal-poloidal-toroidal basis (Rn

m, Sn
m, Tn

m) as
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We can transform between the components of vectors in the
rank 1 tensor spherical harmonics basis, - +u u u, ,n n
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and in the scaloidal-poloidal-toroidal basis, U V W, ,n
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A.4. Rank 2 Tensors

A rank 2 tensor (A) can be expanded into tensor spherical
harmonics of rank 2, = åA YAn m n n n n n

m
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, , , , , , ,1 2 1 2 1 2
, which in

spherical coordinates are given by
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Alternatively, rank 2 tensors can be expanded using Zerilli tensors, = åA TAn m l n n n m
l

n n m
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, , , , ; , ;2 2 2

( ) ( ) , which are linearly related to rank 2

tensor spherical harmonics as
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The terms between curly brackets are Wigner’s 6-j symbols. As Zerilli tensors are obtained by an unitary transformation from tensor
spherical harmonics, it follows that they are also orthonormal with respect to the inner product. We can transform between the
components of a tensor in tensor spherical harmonics, An n n

m
, ,1 2

, and in the Zerilli basis, An n m
l
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A.5. Operators

The following operators are used:
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Appendix B
Tensor Spherical Harmonics Integrals

To obtain both the coupling coefficients and the energy dissipation spectra, the following integral should be evaluated:
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Equation (B1a)) is required to compute the coupling coefficients and (B1b) to compute the energy dissipation integrals. The two
expressions can be obtained from
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using the complex-conjugate properties of tensor spherical harmonics (Equation (A7)). To evaluate
a a a
a
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b

n
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n
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, ; , ;2 2
( · )( ) ( ) , we

write it in terms of rank 2 spherical harmonics Yn
m
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which can be obtained using the expressions provided in Section 4 of James & Cook (1976):
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We have used the abbreviation L = + + ¼ +n k n n n2 1 2 1 2 1 .k1( ( )) ( )( ) ( )
The amount of integrals that need to be evaluated is greatly reduced by noting that many are 0.
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3. n2α, n2β, and nν satisfy the triangular inequality;
4. n2α+ n2β+ nν is even;
5. If mα=mβ=mν, nα+ nβ+ nν is even;
6. mβ+mα+mν=0.

The previous set of properties can be used to deduce a set of selection rules for the excited modes. A mode of degree and orders
(n0, m0), together with lateral variations of degree and order (n1, m1), results in modes of degree (n2, m2) if
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where x or y indicate if the mode is spheroidal or toroidal, and the cases x= s, y= t, and x= t, y= s can be considered.

Appendix C
Explicit Form of the Equations

The components of the strain tensor follow from the gradient of the displacement vector (Equation (19)):

 c= -
1

3
, C1an n m n

m
, ;
0 ( )( )

⎛
⎝

⎞
⎠

 = ¶ +-
-
- - -u

n

r
u , C1bn n m

n

n r n n
m

n n
m

, 2;
2 1

2 1 , 1 , 1 ( )( )

⎛
⎝

⎞
⎠

 = ¶ +
+

-
-
+

u
n

r
u

1

2

1
, C1cn n m

n

n r n n
m

n n
m

, 1;
2 1

2 1 , , ( )( )

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

 = - ¶ -
-

+ ¶ +
++ +

- + -
- +

+ + + +
n

r
u

n

r
u

1 2
, C1dn n m

n n

n n r n n n
m n n n

n n n r n n n
m

, ;
2 2 3 2 2

12 2 1 2 1 , 1,
2 1 1

3 2 3 2 2 2 1 , 1, ( )( ) ( )( )
( )( )

( )( )
( )( )( )

⎛
⎝

⎞
⎠

 = - ¶ -+
+
+

u
n

r
u

1

2
, C1en n m

n

n r n n
m

n n
m

, 1;
2 2

2 1 , , ( )( )

⎛
⎝

⎞
⎠

 = - ¶ -
+

+
+
+ + +u

n

r
u

1
. C1fn n m

n

n r n n
m

n n
m

, 2;
2 2

2 3 , 1 , 1 ( )( )

18

The Planetary Science Journal, 5:129 (23pp), 2024 May Rovira-Navarro, Matsuyama, & Berne



cn
m is the divergence of the displacement vector:
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Equation (C1) can be written more concisely as
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The components of the stress tensor can be written in terms of the strain tensor and the material properties:
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The explicit forms of the momentum (Equation (16)) and Poisson equations (Equation (17)) are
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For conciseness, we have introduced the matrices sC Rn
m, sC Sn

m, sC Tn
m that allow to obtain the radial, solenoidal, and toroidal

components of the radial component of the stress tensors in terms ofs ;n n m
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Plugging the expressions for the stress tensor (Equation (C4)) into Equations (C9) and (C10), using the linear transformation
betweenU V W, ,n

m
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n
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m
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, 1 , , 1 (Equation (A14)) for the resulting equations and Poisson’s equation (Equation (C8d)),
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we find
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The terms with Rv arise from lateral variations and couple equations involving different modes (see Equation (C7)). Without lateral
variations, Equation (C11) reduces to the equations typical of a spherically symmetric body. Using linear algebra, the previous set of
equations can be cast as ∂ry=Dy.
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Appendix D
Tidal Potential for a Synchronous Satellite

The tidal potential experienced by a synchronous body in an
eccentric orbit of period T= 2π/ω is given by (e.g., Jara-Orué
& Vermeersen 2011)
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correspond to standing, westward-propagating and eastward-
propagating waves, respectively. As the tidal potential is real,
we have that f f= -- - +1T

n
m m T

n
m, ,( )( ) ( ) . The amplitudes of the

different components of the tide are given in Table 2.

Appendix E
Test on the Total Energy Dissipation

We test that the total energy dissipation obtained using the
stress and strain tensors (Equations (29)–(34)) and considering
the work done by the tidal potential (Equations (35)–(37)) is the
same. We consider a viscoelastic Io that is spherically symmetric
and one that has zonal degree 2 lateral viscosity variations
with peak-to-peak amplitudes of 50% of the mean viscosity and
compute tidal heating using Equation (34) (E1 ) and (37) (E2 ). We
find excellent agreement between the total energy dissipation

obtained with the two methods, with the difference decreasing as
the number of radial points used for the radial integration
increases (Figure 9). Equivalent results are obtained for lateral
variations of different amplitude, degree, and order.
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Figure 9. Difference in tidal heating computed using the stress and strain
tensors (Equation (29), E1 ) and the work done by the tidal force (Equation (35),
E2 ). We assume the viscoelastic Io model of Table 1 and zonal degree 2 lateral
viscosity variations with peak-to-peak amplitudes of 50% of the mean
viscosity.
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