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Summary

Robotics have developed at a very high rate in the last few years. Industries are becoming
capable of automating repetitive procedures without pause, and the production speed and
quality are improving everyday. The main drawback of robotics in industry is the inability to
deal with slight changes in an environment or in certain object parameters. This problem is
very much present at Koninklijke Luchtvaart Maatschappij (KLM) Cargo, therefore they want
to automate parts of their product handling cycle. KLM Cargo handles 540 000 tons of cargo
every year and their processing hub is located at Schiphol airport. A number of automation
opportunities exist at this location, such as the use of Automatic Guided Vehicle (AGV),
smart planning algorithms and palletising/depalletising robots. This last point is addressed
in this thesis.
The automation of the palletising/depalletising procedure is highly complex for a number
of reasons: large variety of packages to be handled, restrictions for orientation of packages,
hazardous materials, and more. The planning of a palletising order can handle the orientation
problem and the placement of hazardous cargo, but the variety in size, weight and shape of
packages makes fully automated palletising/depalletising difficult. The process of handling the
packages is performed by manual labour and with the help of forklift trucks. An ideal solution
to compensate the arduous labour is to use physical Human-Robot Interaction (pHRI). This
concept allows a robot and human to handle cargo together to place it at a location. The
current academic developments in human-robot collaborative object manipulation require
known object dynamics and dimensions. This information is not known at KLM cargo, and
therefore, the framework of human-robot collaborative object manipulation must be extended
to allow for unknown object dynamics. One approach is currently being developed by using the
Slotine and Li method of adaptive control. Unfortunately, this approach has a big drawback
with regards to persistence of excitation. A new method utilizes fuzzy Takagi-Sugeno (TS)
system with the sector nonlinearity approach where payload information is included in the
systems state vector. This approach allows an observer to estimate the payload parameters
without the persistence of excitation limitation. This thesis shows the motivation for using
the fuzzy approach and develop it for a two-link manipulator and compare its performance
to the classical approach.
While the classical approach works under persistence of excitation, a one link manipulator is
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shown to work without this condition. Two fuzzy observers were tested, the fuzzy Luenberger
observer and a sliding mode observer. Unfortunately, for the two link manipulator a feasible
observer gain is not found. The approach was tested again, but this time only to estimate
the mass of the payload. Unfortunately, this did not yield a feasible observer either. In order
to find out the reason for this infeasibility and create an approach that will obtain a feasible
solution requires more analysis of the observability of the fuzzy system.
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Chapter 1

Introduction

1-1 KLM cargo

Koninklijke Luchtvaart Maatschappij (KLM) is a Dutch airline business founded in 1919
whose first flight was from Amsterdam to London in 1920 carrying 345 passengers and 25 000
kilos of cargo in their first year. Much has changed since that period and as the oldest airline
to have kept its original name, KLM fused with Air France in 2004, making the Air France -
KLM group. Now KLM deals with 540 000 tons of cargo annually to 350 destinations. The
KLM cargo department collaborates with the Air France cargo department to transport a
whole range of goods separated into four services,

• General cargo

• Equation (Express cargo)

• VMA (Variation, Mail, Aerospace)

• Cohesion & Industries

The cargo bay of KLM, where the cargo is handled, is located at Amsterdam Airport Schiphol
(SPL) beside the runway. Here the cargo bay has direct entry onto the runway to deliver the
cargo directly to the plane. In Figure 1-1 the overview of the cargo bay on April 2014 is shown
including the main areas within the departments. Shown are a number of special handling
units such as the Safe, Animal Hotel and Aerospace, and the global sections Worldport 1
(WP1) &Worldport 2 (WP2), Europort and many more. The cargo bay is separated into three
main buildings, Vrachtgebouw/Freightbuilding 1 (VG1/FB1), Vrachtgebouw/Freightbuilding
2 (VG2/FB2), and Vrachtgebouw/Freightbuilding 3 (VG3/FB3).

1-1-1 Vrachtgebouw/Freightbuilding 1 (VG1/FB1)

VG1/FB1 deals specifically with Variation and Equation. Airmail will come through this
section to be sorted into destinations. All products in Equation are express cargo and require
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2 Introduction

Figure 1-1: Cargo bay Layout

fast handling. There is a dedicated area in VG1/FB1 to handle this. Finally, VG1/FB1 has
dedicated areas for animal transport, high valued goods and the aerospace sector. These
last points will sometimes flow over into the other buildings to be grouped by destination if
possible.

1-1-2 Vrachtgebouw/Freightbuilding 2 (VG2/FB2)

VG2/FB2 deals with incoming cargo. Cargo, loaded in aircraft pallets and/or containers
(referred to as Unit Load Device (ULD)) from incoming flights is disassembled here and will be
loaded onto trucks to be transported to the European destinations. The trucking destinations
are separated into Europe (EUR) and Amsterdam (AMS) destinations. Figure 1-2 shows the
cargo handling process [1]. In this flowchart two types of ULDs are handled, Mixed Unit
Load Device (M-ULD) and True Unit Load Device (T-ULD). A T-ULD is a ULD which does
not require any more loading or unloading and can simply be passed straight through to the
truck or to VG3/FB3. Any freight which needs to be flown will be passed onto VG3. A
M-ULD can be broken down at VG2/FB2 and the individual product will be either released
to the trucking for local and European destinations, or sent to VG3/FB3 for rebuilding onto
another ULD.

1-1-3 Vrachtgebouw/Freightbuilding 3 (VG3/FB3)

VG3/FB3 is the building with the most activity and work floor staff. Here the ULDs are built
and broken down (same as VG2/FB2) for flights. This building has an intake section on the
land side where trucks are unloaded and the cargo is moved to a Work Station (WS) to be
built up for the flight. When the ULD is completed, it is released into the Pallet/Container
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1-1 KLM cargo 3

Figure 1-2: VG2/FB2 cargo handling process
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4 Introduction

Figure 1-3: VG3/FB3 cargo handling process

Handling System (PCHS) and can be taken to the plane when necessary. Truck driven cargo
is due to arrive between 2 and 5 hours before the flight is scheduled to depart (this time
frame is not always achieved but is handled specially, or moved onto a different flight). Some
ULDs are M-ULDs and are broken down and rebuilt by their new destination. This process
happens in VG3/FB3. Between the different buildings there is some cross traffic. Some of the
broken down products at VG2/FB2 are assigned to outgoing flights and are built up again at
VG3/FB3. Some packages from VG1/FB1 are also included in the ULDs built in VG3/FB3.
Transport between these facilities is often carried out by forklift trucks and sometimes small
carriages with trailers.

1-1-4 ULD

A Unit Load Device (ULD) is an aircraft pallet/container standardised for all planes. Air-
craft’s are divided by their different types of cargo holds as shown in Figure 1-4.
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1-1 KLM cargo 5

Figure 1-4: Types of cargo holds on planes

• Cargo only

– Main deck
– Lower deck
– Bulk

• PAX

– Lower deck
– Bulk

• Combi

– Main deck (shared with passengers)
– Lower deck
– Bulk

The Bulk hold cannot take any ULDs, while the Main and Lower deck holds have different
height restrictions for their ULD. Each aircraft has its own specifications as the Main and
Lower deck ULDs can be built in such a way to follow the contours of the hold. KLM uses a
number of different types of ULD as shown in Table 1-1 and Table 1-2 [2]. Each constructed
ULD has its own specific usable volume and planned load. The amount of products placed
on a pallet is a task shared between planners and the work floor staff. Each flight receives a
number of allocated spots for ULDs and the received packages are planned per flight with a
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(a) Container (b) Pallet

Figure 1-5: ULD types

Table 1-1: Pallet ULD types

IATA code Dimensions
(L×W) (cm)

Tare weight
(empty inc. net) (kg)

P1P/PAP/PAG 318 × 224 120
P6P/PQP/PMC 318 × 244 125
P4M/PZA/PRA 498 × 156 365
P7E/PSE/PGA 606 × 244 430
P9A/PLA/PLB 318 × 153 94

restricted number of ULDs. The types of ULD that may be used can be summed up into two
groups, containers (Figure 1-5a) and pallets (Figure 1-5b). The main restriction of a container
is the access possibilities. Most containers can only be accessed from one of the sides which
is covered with a flexible plastic cover. Sometimes the overhang as shown in Figure 1-5a of
the container is not directly accessible from the outside. The ULDs are limited not only
by its length and width but also by its allowed weight. This limitation is defined by which
position the ULD will take in the aicraft’s cargo hold. Each plane is split into a number
of subsections where cargo may be stored. These details are specified for specific positions
within a specific type in the Aircraft Handling Manual (AHM)[2] and for each individual
aircraft type within the Air France - KLM fleet ([3–12]). When planning the cargo which
is to be built up onto a ULD, a planner will notify the workshop of which products will be
loaded onto which ULD. The loading process of the ULDs is a palletising problem referred to
as the Distributors Package Packing Problem (DPPP). This process at KLM can be further
analysed.

1-1-5 Development options

The process as explained above does not make use of many automatic aids. The planning
is completed using a number of different computer programs, but the movement of products
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1-1 KLM cargo 7

Table 1-2: Container ULD types

IATA code Base Dimensions
(L×W)(cm)

Body Dimensions
(L×W×H)(cm)

Tare weight
(kg)

AKE 156 × 153 200 × 151 × 162 65
RKN 156 × 153 200 × 151 × 162 267/635
AAF 318 × 224 404 × 224 × 161 270
AAK 318 × 224 317 × 223 × 161 250
AMF 318 × 244 404 × 244 × 161 305
AAP 318 × 224 318 × 224 × 162 219/286/240
RAP 318 × 224 318 × 224 × 162 438/1100

over the work floor is mainly performed by use of manual labour and fork lift trucks. A
T-ULD is handled by a PCHS where a fully constructed ULD may be temporarily stored.
This system ensures that ULDs arrive at the correct times to the correct outlet ports. After
a careful mapping of the process, five improvement opportunities were identified:

• Automatic sorter for letters and small packages

• Weight, volume and dimension analysis before handling

• Smart tagging

• Automated product movement over work floor

• Automated palletising/depalletising

• Planning of ULD construction through algorithm (DPPP)

For the first four points, solutions exist in industry and can be implemented. Smart tagging
may be achieved through the used of Radio Frequency Identification (RFID) scanning and the
product movement may be achieved through the use of Automatic Guided Vehicle (AGV)s or
conveyor systems. For the automated palletising/depalletising there are limited possibilities.
To analyse the opportunities in this option, the current process must be analysed carefully and
current palletising solutions for different applications must be considered. A smart planning
of packages may be further defined when the packing method is known. Restrictions in
accessibility to the ULD may alter the functioning of this algorithm.

Palletising/Depalletising

The build-up of ULDs is a specialised procedure where cargo is expertly arranged onto or
into a ULD. The cargo bay has 80 workstations for the build-up and breakdown of pallets.
Each workstation is equipped with a platform adjustable in height made of powered rollers,
as shown in Figure 1-6. Each workstation allows a ULD to be built up and to be released
by the Transport Vehicle (TV) into PCHS. The platform can be lowered 1.6 meters into the
ground to allow the builders to build up to a height of 3 meters. The build-up of pallets [13]
is a relatively simple process. A pallet is placed on the platform and a pre-cut sheet of plastic
is laid over the top. The cargo which is planned to be built up is often already present in
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Figure 1-6: ULD workstation

a buffer near to the platform, and the cargo is taken from the buffer and loaded onto the
pallet in whatever way the employee wants. When the cargo is on the pallet, another sheet
of plastic is used to cover the cargo and the other sheet of plastic is tucked underneath the
second to protect the cargo from rain and dirt when outside. The pallet is then covered with
a net which will hold all the cargo in place. In case of heavy loads, extra straps will be used
underneath the net to hold the cargo in place. When the sending is deemed safe to fly, it is
input into PCHS from where it is processed.

Current Industrial Palletising

Industrial automated palletising is used in a variety of applications. Currently the majority of
technologies used are fully automated. Three categories of fully automated palletising design
may be considered [14]:

• Robot centred work cell

• In-line robot work cell

• Mobile robot work cell

The robot centred and in-line work cells both operate with a fixed in place robot, where the
products move within the reach of the robot to be palletised. The mobile robot work cell
contains a robot on either an overhead rail or a floor track system where the robot may change
its position relative to the palletising task. For a detailed overview refer to the Literature
review [15].
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1-2 Problem Definition 9

1-2 Problem Definition

Based on the analysis of the processes at KLM cargo and the limitation of the currently
available industrial solutions, a number of design parameters may be chosen to define the
problem. The palletising process needs to deal with objects of a great variety in dimensions,
masses and inertial parameters. Some objects may require special handling or may be limited
in their possible position on the ULD. Spacial planning of the objects position on the ULD
is unknown, but may be introduced (DPPP). The physical act of palletising is currently
performed by manual labour and fork lift trucks, and a full automated procedure would be
extremely complicated and expensive. An ideal solution for this problem is where the heavy
lifting and manual labour can be compensated by a pro-active lifting assistant, where the
labourer can be free to place an object while the weight is compensated by a robotic assistant.
To aid the performance and improve palletising speed, the robot may actively contribute to
the motion of the object. The active contribution of a robotic assistant can be defined in
the physical Human-Robot Interaction (pHRI) framework. This is a field which has grown in
recent times due to the increasing interest in human and robot working together. The problem
with the approaches taken by a varied number of researchers is that the object handled by
the human and robot is required to be of known mass, inertial values, and dimensions. A big
step in this field would be to develop such a system which would allow the robot to handle
any object. Research is ongoing on this topic and currently the method used has a condition
regarding persistence of excitation. A new approach has been introduced by Beyhan et al.
[16] and this thesis will develop this approach for the pHRI framework.

1-3 Outline

This thesis will discuss the role of object parameters in the framework of pHRI in Chapter 2.
The current approach to estimate payload parameters is an adaptive control technique which
is developed in Chapter 3. The drawbacks of the traditional approach are explained, and
after which an alternative approach is introduced in Chapter 4. This section will show the
motivation for using the alternative approach and develop it for a two-link manipulator.
Finally, the results and accompanying conclusions and recommendation will round off this
thesis.
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Chapter 2

Physical Human-Robot Interaction

Robots have become an everyday part of industry with their great strength, precision and
constant performance as big benefactors to their success. Robots have proven their strength
in repetitive and heavy tasks, but they still cannot outperform a human when it comes to
dealing with a large variety of objects and problems. The process as described for Koninklijke
Luchtvaart Maatschappij (KLM) is a heavy task, but also requires planning and problem
solving capabilities. If an object does not quite fit where it should go, a robot would not be
able to quickly find a next best solution, a robot would not nudge other objects slightly out
of the way to create space for the new one. This flexibility in human thinking is what makes
a human-robot team an ideal solution. The robot compensating the heavy lifting, while the
human is free to deal with the placement of objects and any short term problems that come
up.

The drawback of this inflexibility in robots is demonstrated in the baggage handling system
at Amsterdam Airport Schiphol (SPL). The baggage handling area in Schiphol is a state of
the art facility handling 70 million bags per year in a fully automated storage, sorting and
transport system designed in collaboration with Vanderlande [17]. A new development in the
baggage handling is the introduction of robots to load luggage for a specific destination onto
a luggage cart (see Figure 2-1 [18]).

This loading process is fully automatic, but its placement of bags is not perfect and sometimes
requires a person to rectify the mistakes. These small mistakes are very difficult to iron out,
due to the varying nature of the suitcases and the limited capabilities of the vision system.
The robot plans the placement of suitcases by a rectangular prism, which is far from a perfect
representation of a suitcase. This means that when the robot thinks a spot is perfectly filled,
in reality this may not be the case. This is one of the biggest drawbacks of modern day robotics
and a headache for industrial processes. The proposed framework of physical Human-Robot
Interaction (pHRI) is a possible solution currently in development at several institutions.
One of the possible solutions close to industrial implementation is the exoskeleton developed
by Daewoo [19]. This proposal (see Figure 2-2) is a passive system where the exoskeleton
compensates the weight carried, but does not actively contribute to the object manipulation.
This system is being tested and analysed for further development. The exoskeleton may offer
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12 Physical Human-Robot Interaction

Figure 2-1: Robot sorting bags into luggage cart

Figure 2-2: Industrial exoskeleton
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a great improvement in object handling as the human is now able to carry very heavy objects
and manipulate them as if they were much lighter. While this Iron Man-like approach is
applicable in many areas, it may be overly complicated and expensive for the application
at KLM Cargo and more so, it may restrict the person in their motion due to the bulky
hardware. As can be seen in Table 1-2, the size of pallets to be built up vary a lot and may
require placement in tight gaps, where any wearable robot may get in the way. The sheer
size of the pallet to be built also means that some objects may need to be placed in hard to
reach places. For this situation it may be preferred to have a partially automated robot which
could bring the object near to the area of placement where the human can adjust the object
to ensure ideal placement. A collaborative approach where both the human and robot may
influence the object motion offers an ideal solution for the KLM palletising problem. There are
multiple institutions looking into this problem, many of which can be found in the literature
review for this project [15]. One of the approaches which shows very promising results and was
actively looking into the estimation of object dynamics is being investigated at the Technische
Universität München (TUM) in the department Information-Oriented Control (ITR). This
department has recently published a thorough overview of the cooperative manipulation task
[20]. Mörtl et al. [20] clearly explains the varied aspects of the pHRI problem and uses a
number of assumptions:

• 1 human with single/multiple robots,

• Constraints of the environment are such that the task is achievable,

• Rigid object is tightly grasped and of known shape and dynamics,

• Object dynamics are holonomic,

• Grasp points are such that the task is controllable and its control inputs are redundant
[21],

• Haptic communication only through physical coupling.

These assumptions create the basis for the task of a robot and human transporting a rigid
body of known dynamics to a commonly known location. For the application at KLM, the
object dynamics may not be known, and in order for this information to be determined, a
parameter estimation scheme can be utilized. In order to implement such a scheme, it is
important to understand how the cooperative scheme works. According to Salleh et al. [22]
an object centred formulation of the problem results in the smoothest transfer of the object.
This means that the problem will be approached as shown in Figure 2-3 where the object is
described in Eq. (2-1).

Mcẍc + fc(xc, ẋc) = uc (2-1)

Where xc is the configuration of an object of inertia Mc with external wrench uc and envi-
ronmental forces fc. In the cooperative robotics scheme the payload dynamics fits into the
inverse dynamics section as shown in Figure 2-4. The information required by this system
to function consists of the mass and its inertia matrix. The object dynamics are estimated
in this paper using an off-line estimation procedure prior to any experimentation. This lim-
itation can be surpassed by using an on-line estimation procedure to determine the object
dynamic properties. Current research at the TUM is focussed on the analysis of the objects’
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14 Physical Human-Robot Interaction

Figure 2-3: Object centred model

Figure 2-4: Object centred model

properties using a traditional adaptive control strategy. This strategy has been proven to be
effective and the control algorithm shows good results for estimation and trajectory tracking
[23]. This strategy will be described in the next chapter.
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Chapter 3

Composite Adaptive Control

An approach to estimate the object parameters, currently under development at TUM, is an
adaptive control scheme originally developed by Slotine and Li [24]. Three adaptive control
approaches are shown in a report by Vijverstra [23], the direct, indirect and composite adap-
tive control approaches. Vijverstra showed that the best performance overall was given by
the composite approach which can be used in the framework for physical Human-Robot In-
teraction (pHRI). The approach is developed in this chapter and will be tested for a two-link
manipulator. The results will offer a basis for comparison to an alternative approach shown
in in Chapter 4.

3-1 Composite Adaptive Control

A rigid body manipulator may be defined as Eq. (3-1).

H(q(t))q̈(t) + C(q(t), q̇(t))q̇(t) +G(q(t)) = τ(t) (3-1)

where,

• H(q(t)) is a symmetric positive definite manipulator inertia matrix,

• C(q(t), q̇(t)) is a matrix of centripetal and coriolis torques,

• G(q(t)) is a vector with gravitational torques,

• q(t) is a vector of generalized coordinates,

• q̇(t) is a vector of generalized velocities,
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16 Composite Adaptive Control

• q̈(t) is a vector of generalized accelerations,

• τ(t) is a vector of torque inputs.

The dynamics described are linear in terms of well selected parameters, known as the linear
parametrization property. Therefore, the robot dynamics can be rewritten as in Eq. (3-2),
where a(t) is a vector with payload and robot parameters, and Y (q(t), q̇(t), q̈(t)) is a nonlinear
matrix function. The payload is the object handled by the robot.

Y (q(t), q̇(t), q̈(t))a(t) = τ(t) (3-2)

Within this framework, the following tracking parameters may be defined:

• qd(t) is the desired trajectory of the generalized coordinates,

• q̇d(t) is the desired trajectory of the generalized velocities,

• q̈d(t) is the desired trajectory of the generalized accelerations.

The control purpose is to derive a control law for τ(t) which drives q(t), q̇(t), q̈(t) to qd(t), q̇d(t), q̈d(t),
and an adaptation law for the unknown parameters a(t). The tracking error for such a system
is defined by εt(t) in Eq. (3-3).

εt(t) = ˙̃q(t) + Λq̃(t) (3-3)

where,

• Λ is a constant positive definite matrix,

• q̃(t) = q(t)− qd(t) is the difference between the desired and true states.

The adaptive controllers were designed by letting the estimated parameters â(t) be used in
the system matrices such that the control law may be written as shown in Eq. (3-4).

Ĥ(q(t))q̈(t) + Ĉ(q(t), q̇(t))q̇(t) + Ĝ(q(t))−KDεt(t) = τ(t)
Y (q(t), q̇(t), q̇r(t), q̈r(t))â(t)−KDεt(t) = τ(t)

(3-4)

where,

• Ĥ(q(t)) is a symmetric positive definite manipulator inertia matrix,

• Ĉ(q(t), q̇(t)) is a matrix of centripetal and coriolis torques,

• Ĝ(q(t)) is a vector with gravitational torques,

• q̇r(t) is the reference velocity, q̇r(t) = q̇d(t)− Λq̃(t),
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3-2 Example: Two-link manipulator 17

• q̈r(t) is the reference acceleration, q̈r(t) = q̈d(t)− Λ ˙̃q(t),

• KD is a Constant positive definite matrix to regulate the tracking error.

Slotine and li [24] have analysed the issues of parameter convergence and shown that this
is dependent on a persistence of excitation condition. The adaptation law for a composite
adaptive control system is given in Eq. (3-5).

Adaptation Law : ˙̂a(t) = −P (t)
[
Y (q(t), q̇(t), q̈(t))T εt(t) + Y T (q(t), q̇(t), q̈(t))R(t)e(t)

]
Adaptation Gain : Ṗ (t) = λ(t)P (t)− P (t)Y T (q(t), q̇(t), q̈(t))Y (q(t), q̇(t), q̈(t))P (t)

Forgetting Rate : λ(t) = λ0

(
1− ‖P (t)‖

k0

)
(3-5)

where,

• e(t) is the prediction error ŷ(t)− y(t),

• P (t) is the Time-varying positive definite gain matrix,

• R(t) is a uniformly positive definite weighting matrix indicating how much attention
should be payed to the parameter information in the prediction error,

• λ(t) is the forgetting factor,

• λ0 is the maximum forgetting rate,

• k0 is the upper bound of the gain matrix norm.

Vijverstra [23] demonstrates the global tracking convergence of the composite control through
Lyapunov analysis. The conditions include bounded desired trajectories and persistence of
excitation, which results in tracking and prediction errors being globally exponentially con-
vergent.

3-2 Example: Two-link manipulator

To demonstrate the abilities of the composite adaptive controller and to test the conditions
of persistence of excitation, a two-link manipulator will be considered as shown in Figure 3-1.
This manipulator will be considered without gravitational and inertial influences for simplicity.
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18 Composite Adaptive Control

Figure 3-1: The two-link manipulator

3-2-1 Plant

The model plant will be described in its generalized states q(t) = [φ1(t), φ2(t)]T , where φ1(t)
and φ2(t) are as shown in Figure 3-1. The system matrices may therefore be described by
Eq. (3-6).

H(q(t)) =
[

(m1(t) +m2(t))l21 m2(t)l1l2 cos(φ1(t)− φ2(t))
m2(t)l1l2 cos(φ1(t)− φ2(t)) m1(t)l22

]

C(q(t), q̇(t)) =
[

0 m2(t)l1l2φ̇2(t) sin(φ1(t)− φ2(t))
m2(t)l1l2φ̇1(t) sin(φ1(t)− φ2(t)) 0

]
G(q(t)) = 0

(3-6)

where,

• l1 is the length of first manipulator link,

• l2 is the length of second manipulator link,

• m1 is the mass at the end of the first link,

• m2 is the mass at the end of the second link.
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3-2 Example: Two-link manipulator 19

To rearrange this representation into Eq. (3-2), the mass and length parameters in H(q(t))
and C(q(t), q̇(t)) may be replaced by terms in the parameter vector a(t) = [a1(t), a2(t), a3(t)]T
as shown in Eq. (3-7).

H(q(t)) =
[

a1(t) a2(t) cos(φ1(t)− φ2(t))
a2(t) cos(φ1(t)− φ2(t)) a3

]

C(q(t), q̇(t)) =
[

0 a2(t)φ̇2(t) sin(φ1(t)− φ2(t))
a2(t)φ̇1(t) sin(φ1(t)− φ2(t)) 0

]

where,

a =

(m1(t) +m2(t))l21
m2(t)l1l2
m1(t)l22



The system above may be written in the linear parametrization form as shown in Eq. (3-7).

Y (q(t), q̇(t), q̈(t)) =
[
φ̈1(t) cos(φ1(t)− φ2(t))φ̈2(t) + sin(φ1(t)− φ2(t))φ̇2

2(t) 0
0 cos(φ1(t)− φ2(t))φ̈1(t)− sin(φ1(t)− φ2(t))φ̇2

1(t) φ̈2(t)

]
(3-7)

To write this function in the form as shown in Eq. (3-4), the reference parameters must be
introduced to generate the function in Eq. (3-8).

Y (q(t), q̇(t), q̇r(t), q̈r(t)) =[
φ̈1r(t) cos(φ1(t)− φ2(t))φ̈2r(t) + sin(φ1(t)− φ2(t))φ̇2(t)φ̇2r(t) 0

0 cos(φ1(t)− φ2(t))φ̈1r(t)− sin(φ1(t)− φ2(t))φ̇1(t)φ̇1r(t) φ̈2r(t)

]
(3-8)

3-2-2 Desired Trajectory

The desired trajectory will be a step-wise reference between π/4 and 0 every five seconds
for φ1(t) and 2.5 seconds for φ2(t) as shown in Figure 3-2. Using a step-wise reference
means that the derivatives of the desired trajectories are 0. These reference signals are used
to demonstrate the response with persistence of excitation. The reference signal without
persistence of excitation will be demonstrated by a simple step towards π/4 for both link
angles.
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Figure 3-2: Reference signal with persistence of excitation
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3-2 Example: Two-link manipulator 21

3-2-3 System Parameters

The initial conditions of the system and its control parameters are shown below.

m1(t) = 2kg
m2(t) = 3kg

l1 = 2m
l2 = 3m
a1 = 5
a2 = 3
a3 = 3

â1(0) = 0kg
â2(0) = 0kg
â3(0) = 0kg
KD = 700I2×2

Λ = I2×2

P (0) = I3×3

R(t) = I3×3

λ0 = 1
k0 = 1

3-2-4 Results

The results shown consist of two parts. The first part will show the tracking and estimation
response of the system under persistence of excitation, whereas the second will demonstrate
the response when the desired trajectory is not fulfilling the persistence of excitation condition.

Persistence of excitation condition fulfilled

When the desired trajectory is a step-wise reference, the estimation of the mass parameters
converges to the true levels as can be seen in Figure 3-4. The tracking response of the system
also converges to the desired level as can be seen in Figure 3-3.
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Figure 3-3: Tracking response
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Figure 3-4: Estimation response
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24 Composite Adaptive Control

Persistence of excitation condition not fulfilled

When the desired trajectory is a step signal, the estimation of the mass parameters does not
converge to the true levels as can be seen in Figure 3-6. The tracking response of the system
does converge to the desired level as can be seen in Figure 3-5.
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Figure 3-5: Tracking response
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26 Composite Adaptive Control

3-2-5 Discussion

The simulations above show that for a signal which is persistently exciting, the estimation of
the mass parameters converges very quickly. The â(t) values rise to the correct figures within
12 seconds, which may be improved through other continuously exciting signal or increasing
the adaptation rate by introducing a new tuning parameter k1 into the adaptation law as
shown in Eq. (3-9).

˙̂a(t) = −k1P (t)
[
Y T (q(t), q̇(t), q̈(t))εt(t) + Y T (q(t), q̇(t), q̈(t))R(t)e(t)

]
(3-9)

This may improve the speed of convergence but that is not the focus of this thesis. As can
be seen in the second simulation, a single impulse for the angles will not provide enough
information to achieve convergence at the correct values. This means that when a two-link
manipulator attempts to achieve a task with an object of unknown mass, it must follow a
specific trajectory to find the correct estimate. This will require time and a potentially erratic
motion by the robot. Since the robot is to function in the vicinity of humans, such a motion
is not desirable. A recent development in fuzzy observer design has shown that there is an
alternative to this approach. This will be discussed in the next chapter.
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Chapter 4

Fuzzy Adaptive Control

To introduce the alternative method for estimating masses of a two-link manipulator, first
an introduction to fuzzy logic will be given. The alternative method, as shown by Beyhan et
al. [16], consists of rewriting the nonlinear model into a fuzzy approximation and using an
observer to estimate the states. This paper will be explained after the introduction to fuzzy
logic, after which the approach will be developed for the two-link manipulator. Two types of
observers will be considered and simulation results will be shown.

4-1 Fuzzy Systems

4-1-1 Fuzzy sets

A fuzzy set is a method for defining sets which may not be optimal for use with classical sets.
These sets may often consist of vague concepts such as tall, short, big, small, hot, cold, and
many more. While classical sets determine an element to either belong to that set or not, a
fuzzy set may gradually assess the membership. An example of the effectiveness of describing
concepts such as height as a fuzzy set can be shown by considering the following statement:

"John is tall".

This statement may be analysed with classical sets by defining measures of height in a set of
tall men, M , and its membership, µM (x) as shown in Eq. (4-1).

µM (h) =
{

1 if h ≥ 180 cm
0 if h < 180 cm (4-1)

Therefore, if John has a height of 179.5 cm, he may be defined as short (µM (179.5) = 0) but
if he is 180 cm, he is tall (µM (180) = 1). Intuition says that a difference of 0.5 cm should not
make the difference between being labelled tall or short. Defining height as a fuzzy set can
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28 Fuzzy Adaptive Control

solve this. We may define the fuzzy set of height as shown in Eq. (4-2). The set is shown in
Figure 4-1.

µM (h) =


1 if h ≥ 190 cm
(0, 1) if 170 cm < h < 190 cm
0 if h ≤ 170 cm

(4-2)

This method of using membership functions to represent sets is applicable to a large range

Figure 4-1: Fuzzy description of height

of topics. The membership function may take many shapes as shown in Figure 4-2. These
membership functions can be used to build fuzzy models.

Figure 4-2: Membership functions
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4-1 Fuzzy Systems 29

4-1-2 Fuzzy models

A fuzzy model may be used for imitating processes which are difficult to model with classical
mathematics. One of the main strengths is that fuzzy models have the power to imitate
nonlinear systems through a number of linear systems at specific operating points as explained
by Lendek et al. [25] . The Takagi-Sugeno (TS) fuzzy model is one approach developed by
Takagi and sugeno [26]. This approach consists of if-then rules as shown in Eq. (4-3).
Ri : If z1 is Zi1 and · · · and zp is Zip then

y = fi(z), i = 1, 2, . . . ,m (4-3)

where,

• Ri is the i-th model rule for a total of m rules,

• zp is a vector of p antecedent variables,

• Zip are the antecedent fuzzy sets,

• y is the model output,

• fi(z) is the consequent vector function often dependent on the scheduling variables.

• z is the vector of scheduling variables.

This rule based system may be described as shown in Figure 4-31. Each of the three sections

Figure 4-3: Fuzzy inference

in this figure corresponds to parts of the fuzzy model. The fuzzification occurs in the mapping
of zp onto Zip after which the fuzzy inference engine utilizes the if-then rules to compute the
output fuzzy variables. These are then defuzzified by computing the weighted combination of
the output of the rules. The fuzzification produces a certain truth value given by a membership
function ωij : R→ [0, 1]. The truth value ϕi(z) for an entire rule is found based on the premise
variables using a conjunction operator such as the algebraic product as shown in Eq. (4-4).

ϕi(z) =
p∏
j=1

ωij(zj) (4-4)

1http://www.tribalengineering.com/technology/fuzzy-ictl.aspx
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30 Fuzzy Adaptive Control

The obtained truth value is normalized using Eq. (4-5).

wi(z) = ϕi(z)∑m
j=1 ϕi(z) (4-5)

Where wi(z) is the normalized membership function. In this normalization it is assumed that∑m
j=1 ϕi(z) 6= 0. The output of rule i is then defuzzified using the normalized membership

function to compute the weighted combination of the output of the rules as shown in Eq. (4-6).

y =
m∑
i=1

wi(z)fi(z) (4-6)

This approach may be used to represent or approximate a nonlinear function by choosing
the consequent functions as linear or affine functions. These functions will be called local
functions as they are only valid locally, i.e., where the value of the corresponding normalized
membership function is zero. The final outputs of the TS fuzzy models are computed as
shown in Eq. (4-7).

ẋ =
m∑
i=1

wi(z)(Aix +Biu)

y =
m∑
i=1

wi(z)(Cix)
(4-7)

where,

• Ai is the i-th state matrix,

• Bi is the i-th input matrix,

• Ci is the i-th output matrix,

• x is the state vector of the system,

• ẋ is the derivative of the state vector of the system.

4-2 Sector Nonlinearity Approach

TS Fuzzy Model

The sector nonlinearity approach, first described by Ohtake et al. [27], is a method for
constructing TS fuzzy models. Lendek et al. [25] show that for a nonlinear system of equations
given by the form as shown in Eq. (4-8), the sector nonlinearity approach may be applied.

ẋ = f (x,u) x + g (x,u) u
y = h (x,u) x

(4-8)

where,

• f (x,u), g (x,u), h (x,u) are nonlinear matrix functions,
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4-2 Sector Nonlinearity Approach 31

• x ∈ Rnx is the state vector,

• u ∈ Rnu is the input vector,

• y ∈ Rny is the output vector.

The sector nonlinearity approach allows the construction of a fuzzy system given a number
of assumptions:

• All variables are assumed to be defined on a compact set,

• f (x,u), g (x,u), h (x,u) are smooth functions with bounded elements.

Scheduling variables may be chosen as zj(·) ∈ [nlj , nlj ], j = 1, 2, · · · , p where each zj variable
represents a non-constant term in f, g and h, and nlj and nlj are the minimum and maximum,
respectively, of zj . For each zj , two weighting functions, ηj0(·) and ηj1(·) can be constructed
as shown in Eq. (4-9).

ηj0(·) = nlj − zj(·)
nlj − nlj

ηj1(·) = 1− ηj0(·) j = 1, 2, · · · , p (4-9)

The following properties are true for these weighting functions.

• ηj0(·) ≥ 0,

• ηj1(·) ≥ 0,

• ηj0(·) + ηj1(·) = 1,

• zj = nljη
j
0 (zj) + nljη

j
1 (zj).

The product of the weighting functions that correspond to the fuzzy sets in the rule computes
the membership function wi(z) of rule i.

wi(z) =
p∏
j=1

ηj0,1(zj) (4-10)

where,

• ηj0,1(zj) is either ηj0(zj) or ηj1(zj) depending on whether the weighting function used in
the rule is the minimum or maximum respectively,

• wi(z) ≥ 0,

•
∑m
i=1wi(z) = 1.
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32 Fuzzy Adaptive Control

The matrices Ai, Bi, and C are constructed by substituting the maximum and minimum
values of the scheduling variables into their corresponding position within the original matrix
and vector functions f , g, and h. Then, using the membership functions defined by Eq. (4-10),
the original nonlinear system (Eq. (4-8)) is exactly represented by the TS fuzzy model shown
in Eq. (4-11).

ẋ =
m∑
i=1

wi(zj) (Aix +Biu)

y =
m∑
i=1

wi(zj) (Cix)
(4-11)

For the problem at hand, the TS fuzzy model can be simplified by assuming the output signals
are the same for each rule. This means the new TS fuzzy model will be defined as shown in
Eq. (4-12).

ẋ =
m∑
i=1

wi(zj) (Aix +Biu)

y = Cx
(4-12)

4-3 Adaptive fuzzy payload estimation

A recent publication by Beyhan et al. [16] uses the TS fuzzy model to create an extended
state vector x. The approach taken by this paper is to use the sector nonlinearity approach to
find the fuzzy approximation of a nonlinear Single-Input Single-Output (SISO) system. The
nonlinear system discussed in this paper is a robot manipulator shown in Figure 4-4. This

Figure 4-4: Robot arm

robot arm may be described by the general dynamics as shown in Eq. (4-13).

mL2ϕ̈(t) + (Kdr −mgl) sin(ϕ(t)) = τ(t)
Kd−Kr cos(ϕ(t)) = F (t)

(4-13)
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4-3 Adaptive fuzzy payload estimation 33

where,

• ϕ(t) is the angle of the robot arm,

• ϕ̈(t) is the angular acceleration of the robot arm,

• τ(t) is the driving torque,

• F (t) is the driving force,

• d is the vertical projection of the spring displacement,

• m is the payload mass,

• L= 0.4m is the length of the link,

• r= 0.075m is the length of the spring arm,

• K= 568Nm is the spring constant,

• g= 9.81ms2 is the acceleration due to gravity.

Each of the variables described above are shown in Figure 4-5. To simplify this system to
a SISO representation, the driving torque will be set to τ(t) = 0. As the payload mass
will be assumed non-constant, the m parameter will be considered as m(t). With a change
of variables where x1(t) = ϕ(t) and x2(t) = ϕ̇(t) the system may be written as shown in
Eq. (4-14). For simplicity x1(t), x2(t), and y(t) will be written as x1, x2, and y respectively.

ẋ1 = x2

ẋ2 = sin(x1) g
L
− r sin(x1)(Kr cos(x1) + F (t))

L2m(t)
y = x1

(4-14)

The mass parameter (m(t)) in this representation consists of two parts, a payload to be carried
(mL(t)) and the mass of the end-effector (me). The maximum and minimum values for the
parameters are:

• F (t) ∈ [0, 160] N

• x1 ∈ [π2 , π] rad

• m(t) ∈ [0.35, 2] kg where me = 0.35 kg
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Figure 4-5: A schematic representation of the arm

The varying payload parameter is unknown and needs to be estimated. To do so, an extra
state may be added to Eq. (4-14) containing the mass parameters as shown in Eq. (4-15).

x3(t) = x3 = mL(t)
me +mL(t) (4-15)

This means that the extended nonlinear system may be written as shown in Eq. (4-16). Since
mL(t) is a piecewise constant variable, x3 inherits that property. Therefore, ẋ3 becomes equal
to zero except for a set of Lebesgue measure zero.

ẋ1 = x2

ẋ2 = sin(x1) g
L
− r sin(x1)(Kr cos(x1) + F (t))

meL2) (1− x3)

ẋ3 = 0
y = x1

(4-16)

4-3-1 Sector nonlinearity approach applied

Eq. (4-16) may be transformed into a TS fuzzy system through the sector nonlinearity ap-
proach, into a slightly different form than the one shown in Eq. (4-11). An alternative to this
is to introduce the form where affine terms are added to the system in the form of ai(y). A
fuzzy scheduling variable is introduced as defined in Eq. (4-17).

z = r sin(x1)(Kr cos(x1) + F (t))
meL2) ∈ [16.76, 214.28] (4-17)

Therefore, the TS fuzzy model may be defined as shown in Eq. (4-18), where Ci is independent
of the scheduling variable.

ẋ =
m∑
i=1

wi(zj) (Aix + ai(y))

y = Cix
(4-18)
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Where the weighting functions and local matrices become:

w1(z) = 214.28− z
214.28− 16.76 , w2(z) = 1− w1(z)

A1 =

0 1 0
0 0 16.76
0 0 0

 , A1 =

0 1 0
0 0 214.28
0 0 0


a1 =

[
0

sin(y) gL − 16.76

]
, a2 =

[
0

sin(y) gL − 214.28

]
C =

[
1 0 0

]

4-3-2 Observer design

Regarding the observer design for TS fuzzy systems, there are two approaches. The firsts
requires a scheduling variable consisting entirely of measured states, and the second where
the scheduling variable contains unmeasured states. For the example given by Beyhan et al.,
the only state required for the calculation of z is x1. Therefore, the first approach may be
used. An observer of this description is the fuzzy Luenberger observer [28] [29]. This observer
is a generalisation of the classical Luenberger observer to fuzzy systems, hereafter referred to
as the fuzzy observer. An observer of this kind is described by Eq. (4-19).

˙̂x =
m∑
i=1

wi(z) (Aix̂ + ai(y) + Li(y− ŷ))

ŷ = Cx̂
(4-19)

where Li are the observer gains, ŷ are the estimated model outputs, x̂ are the estimated
model states and ˙̂x their derivatives. The pairs (Ai, C) are assumed to be observable. When
the error dynamics ˙̂e = ẋ − ˙̂x, where e is the estimation error, are asymptotically stable,
an estimate of the real states is achieved. The stability conditions are given by Theorem 1.
These stability conditions include a convergence rate α> 0.

Theorem 1. [30] The error dynamics ˙̂e are asymptotically stable if there exists a common
P= P T > 0 such that,

P (Ai − LiC) + (P (Ai − LiC))T + 2αP < 0, i = 1, · · · ,m (4-20)

Remark. With the change of variables Mi = PLi, i = 1, · · · ,m Eq. (4-20) becomes Eq. (4-
21)

PAi −MiC +ATi P − CTMT
i + 2αP < 0, i = 1, · · · ,m (4-21)

The focus of this thesis lies on the performance of the observer, the control laws applied to
this system can be found in [16].
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36 Fuzzy Adaptive Control

4-3-3 Results

The Linear Matrix Inequality (LMI) problem in Theorem 1 was solved in Matlab using the
function feasp. The resulting gain matrices are shown in Eq. (4-22).

L1 =

 63
3917.8
331.7

 L2 =

 45.6
2849.7
136.1

 (4-22)

The system was run with an observer based feedback-linearisation control as shown in Beyhan
et al. [16]. The results achieved are presented by the tracking and estimation performance in
Figure 4-6 and the mass estimation in Figure 4-7.
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38 Fuzzy Adaptive Control

The results show that for a reference signal, which is a step towards π
2 , on x1, the arm

holds steady and the estimation for the payload mass converges to the reference value shown
by the blue line in Figure 4-7. This first result would offer a great opportunity for further
development into Multi-Input Multi-Output (MIMO) systems and to apply to the framework
of pHRI.

4-4 Example: Two-link manipulator

To develop the estimation performed by Beyhan et al. [16], the approach can be applied to
the same two-link manipulator derived in Eq. (3-6). This representation can be rewritten
into the general system in Eq. (4-8). As in the previously described example, the states of
this system must be extended to include the payload mass for estimation. In Chapter 3 the
chosen estimation included both mass estimates, and for this comparison the same approach
will be used. Therefore, the state vector x must be extended for the two-link manipulator.
The system as represented by Eq. (4-8) may be written out completely as shown in Eq. (4-23).

l21φ̈1(m1 +m2)− l1l2m2(φ̇2
2 sin(φ1 − φ2)− φ̈2 cos(φ1 − φ2)) = τ1

l22m2φ̈2 + l1l2m2φ̇
2
1 sin(φ1 − φ2) + l1l2m2φ̈1 cos(φ1 − φ2) = τ2

(4-23)

By choosing the extended state vector to be as defined in Eq. (4-24), the system can be
rewritten into the general form in Eq. (4-8).

x =



φ1
φ2
φ̇1
φ̇2
m2

1
m1+m2


=



x1
x2
x3
x4
x5
x6


(4-24)

With these states, the two-link manipulator may be expressed in the form as shown in Eq. (4-
25) where u = [τ1, τ2]T , cos(x1 − x2) = c12 and sin(x1 − x2) = s12.

ẋ3 = −l2τ1x6 − l1τ2x6c12 − l1l22x2
4x5x6s12 − l21l2x2

3x5x6s12c12
l21l2(x5x6c2

12 − 1)

ẋ4 = l1τ2 + l2τ1x5x6c12 + l21l2x
2
3x5s12 − l1l22x2

4x
2
5x6s12c12

l1l22x5(x5x6c2
12 − 1)

(4-25)

f(x) =



0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 −l1l22x

2
4x6s12

l21l2(x5x6c2
12−1)

−l21l2x
2
3x5s12c12

l21l2(x5x6c2
12−1)

0 0 0 0 l21l2x
2
3s12

l1l22x5(x5x6c2
12−1)

−l1l22x
2
4x

2
5s12c12

l1l22x5(x5x6c2
12−1)

0 0 0 0 0 0
0 0 0 0 0 0


(4-26)
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4-4 Example: Two-link manipulator 39

g(x) =



0 0
0 0

−l2x6
l21l2(x5x6c2

12−1)
−l1x6c12

l21l2(x5x6c2
12−1)

l2x5x6c12
l1l22x5(x5x6c2

12−1)
l1

l1l22x5(x5x6c2
12−1)

0 0
0 0


(4-27)

It is assumed that for this two-link manipulator system only the angular positions (φ1, φ2)
are measured, see Eq. (4-28).

y =
[
1 0 0 0 0 0
0 1 0 0 0 0

]
x (4-28)

This definition of the nonlinear matrix functions f(x) and g(x), allows the construction of
the scheduling variables. Eq. (4-26) and Eq. (4-27) contain eight non-constant terms, each of
which will be replaced by a scheduling variable. This means that a z vector may be defined
as shown in Eq. (4-29)

z = [z1, z2, z3, z4, z5, z6, z7, z8]T

z1 = −l1l22x2
4x6s12

l21l2(x5x6c2
12 − 1)

z2 = −l21l2x2
3x5s12c12

l21l2(x5x6c2
12 − 1)

z3 = l21l2x
2
3s12

l1l22x5(x5x6c2
12 − 1)

z4 = −l1l22x2
4x

2
5s12c12

l1l22x5(x5x6c2
12 − 1)

z5 = −l2x6
l21l2(x5x6c2

12 − 1)

z6 = −l1x6c12
l21l2(x5x6c2

12 − 1)

z7 = l2x5x6c12
l1l22x5(x5x6c2

12 − 1)

z8 = l1
l1l22x5(x5x6c2

12 − 1)

(4-29)
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40 Fuzzy Adaptive Control

A number of assumptions must be made regarding the maximum and minimum values of the
states. For the two-link manipulator, the following maxima and minima will be used.

x1 ∈
[
−π2 ,

π

2

]
x2 ∈

[
−π2 ,

π

2

]
x3 ∈ [−2π, 2π]
x4 ∈ [−2π, 2π]
x5 ∈ [1, 5]

x6 ∈
[1

2 ,
1
10

]

To find the maxima and minima of the scheduling variables, the zj functions in Eq. (4-29)
are analysed within the maxima and minima of the states. This results in the ranges for zj
shown in Eq. (4-30), assuming that l1 = 2 and l2 = 3.

z1 ∈ [−29.6088, 29.6088]
z2 ∈ [−241.7295, 241.7295]
z3 ∈ [−26.3189, 26.3189]
z4 ∈ [−241.7295, 241.7295]
z5 ∈ [0.025, 0.25]
z6 ∈ [−0.1667, 0.1667]
z7 ∈ [−0.1667, 0.1667]
z8 ∈ [−0.2222,−0.0222]

(4-30)

The weighting functions of these scheduling variables may now be defined as shown in Table 4-
1. The fuzzy models consist of the product of all each of the eight ηj functions. For each of
the combinations a state space model can be constructed as demonstrated in Eq. (4-31) and
Eq. (4-32).

w1(z) = η1
0η

2
0η

3
0η

4
0η

5
0η

6
0η

7
0η

8
0

ẋ =



0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 −29.6088 −241.7295
0 0 0 0 −26.31899 −241.7295
0 0 0 0 0 0
0 0 0 0 0 0


x +



0 0
0 0

0.025 −0.1667
−0.1667 −0.2222

0 0
0 0


u

(4-31)
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4-5 Observer Design: Estimated Scheduling Vector 41

zj η0
j η1

j

z1
29.6088−

−l1l22x2
4x6s12

l21l2(x5x6c2
12−1)

29.6088−−29.6088 1− η0
1

z2
241.7295−

−l21l2x2
3x5s12c12

l21l2(x5x6c2
12−1)

241.7295−−241.7295 1− η0
2

z3
26.3189−

l21l2x2
3s12

l1l22x5(x5x6c2
12−1)

26.3189−−26.3189 1− η0
3

z4
241.7295−

−l1l22x2
4x2

5s12c12
l1l22x5(x5x6c2

12−1)

241.7295−−241.7295 1− η0
4

z5
0.25− −l2x6

l21l2(x5x6c2
12−1)

0.25−0.025 1− η0
5

z6
0.1667− −l1x6c12

l21l2(x5x6c2
12−1)

0.1667−−0.1667 1− η0
6

z7
0.1667− l2x5x6c12

l1l22x5(x5x6c2
12−1)

0.1667−−0.1667 1− η0
7

z8
−0.0222− l1

l1l22x5(x5x6c2
12−1)

−0.0222−−0.2222 1− η0
8

Table 4-1: Weighing functions

w1(z) = η1
1η

2
0η

3
0η

4
0η

5
0η

6
0η

7
0η

8
0

ẋ =



0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 29.6088 −241.7295
0 0 0 0 −26.31899 −241.7295
0 0 0 0 0 0
0 0 0 0 0 0


x +



0 0
0 0

0.025 −0.1667
−0.1667 −0.2222

0 0
0 0


u

(4-32)

There are in total 256 rules, and therefore 256 fuzzy models as those shown in Eq. (4-32).
Now that the model has been explained, and since the outputs do not portray the entire
state vector, the observability matrix for this system must be checked to find out whether an
observer may allow the states to be estimated.

4-5 Observer Design: Estimated Scheduling Vector

For any functional observer, the combination of the Ai and C matrices must satisfy the
observability criterion. The construction of an observer is highly dependent on whether the
system matrices contain enough information about the system to infer the states from the
outputs.

Master of Science Thesis D. van Dieten
4028104



42 Fuzzy Adaptive Control

4-5-1 Observability

A Linear Time-Invariant (LTI) system may be said to be observable when the observability
matrix (Oj) is full row rank.

Oj =



C
CAj
CA2

j

CA3
j

CA4
j

CA5
j


, j = 1, · · · , r (4-33)

The observability for all linear systems was found to be full row rank. This means that an
observer can be developed to estimate the states.

4-5-2 Fuzzy Luenberger observer

The well known classical Luenberger observer [31] has been extended for fuzzy systems to
become the fuzzy-Luenberger observer [28] [29]. This observer can be used when a fuzzy
system uses a scheduling vector independent of the unmeasured states z, and when it is
dependent on the unmeasured states ẑ. Due to the construction of the above described
system, the observer for systems whose scheduling vector is dependent on unmeasured states
must be used. An observer for this system is defined in Eq. (4-34).

˙̂x =
M∑
i=1

wi(ẑj) (Aix̂ +Biu + Li(y− ŷ))

ŷ = Cx̂
(4-34)

The error dynamics (e = x− x) for such a system is defined by Eq. (4-35).

ė =
m∑
i=1

wi(ẑ) (Ai − LiC) e +
m∑
i=1

(wi(z)− wi(ẑ)) (Aix +Biu) (4-35)

Due to the scheduling vector consisting of the estimated variables rather than system states,
ẑ may be redefined for the example as shown in Eq. (4-36).

ẑ =



ẑ1
ẑ2
ẑ3
ẑ4
ẑ5
ẑ6
ẑ7
ẑ8


=



−l1l22x̂
2
4x̂6s12

l21l2(x̂5x̂6c2
12−1)

−l21l2x̂
2
3x̂5s12c12

l21l2(x̂5x̂6c2
12−1)

l21l2x̂
2
3s12

l1l22x̂5(x̂5x̂6c2
12−1)

−l1l22x̂
2
4x̂

2
5s12c12

l1l22x̂5(x̂5x̂6c2
12−1)

−l2x̂6
l21l2(x̂5x̂6c2

12−1)
−l1x̂6c12

l21l2(x̂5x̂6c2
12−1)

l2x̂5x̂6c12
l1l22x̂5(x̂5x̂6c2

12−1)
l1

l1l22x̂5(x̂5x̂6c2
12−1)



(4-36)
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4-6 Payload Mass Estimation 43

Bergsten [32] showed that for such a system, sufficient stability conditions are given by The-
orem 2.

Theorem 2. [32] Consider the error system in Eq. (4-35) and assume that∥∥∥∥∥
m∑
i=1

(wi(z)− wi(ẑ)) (Aix +Biu)
∥∥∥∥∥ ≤ µ ‖e‖ (4-37)

where µ> 0 is a known constant. Then, the error system is exponentially stable if there exists
P = P T > 0, Q = QT > 0 and Li, i = 1, 2, · · · ,m so that

P (Ai − LiC) + (P (Ai − LiC))T ≤ −Q[
Q− µ2 P
P I

]
> 0

(4-38)

Remark. With the change of variables Mi = PLi, Eq. (4-38) becomes:

PAi −MiC +ATi P − CTMT
i ≤ −Q (4-39)

which can be solved using the Yalmip toolbox for Matlab.

Remark. As long as the membership functions are smooth and the variables are defined on
a compact set, there exists a µ > 0 so that Eq. (4-38) holds. The bounding constant µ in
general can be found by solving the optimization problem [33].

µ = max
x,u,x̂,ẑ

=
∥∥∥∥∂(wi(z)− wi(ẑ)) (Aix +Biu)

∂e

∥∥∥∥
4-5-3 Simulation results

Unfortunately, while the theory shows a feasible solution may exist for the error dynamics to
be made exponentially stable, the Matlab toolbox is not able to find one. Regardless of the
solver used to try to find a feasible solution, one cannot be found. To try another approach,
the system can be simplified to include only the payload mass in the estimation procedure.
The first mass in Eq. (4-23) is part of the robot arm, and can be assumed known. This would
lower the number of scheduling parameters and states. Since the observer theory is still valid
for such a system, only the sector nonlinearity approach needs to be recalculated.

4-6 Payload Mass Estimation

Starting again from Eq. (4-24) the state vector needs to be redefined to Eq. (4-40).

x =


φ1
φ2
φ̇1
φ̇2
m2

 =


x1
x2
x3
x4
x5

 (4-40)
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44 Fuzzy Adaptive Control

With this state vector, the system may be described by Eq. (4-41) and Eq. (4-42).

ẋ3 = x5c12s12l
2
1l2x

2
3 + x5s12l1l

2
2x

2
4 − τ2c12l1 + τ1l2

l21l2(m2 + x5 − x5c2
12)

(4-41)

ẋ4 = −s12l
2
1l2x

2
3x

2
5 −m2s12l

2
1l2x

2
3x5 − c12s12l1l

2
2x

2
4x

2
5 + τ2l1x5 +m2τ2l1 − τ1c12l2x5

l1l22x5(m2 + x5 − x5c2
12)

(4-42)

The new equations result in the following general equations.

f(x) =



0 0 1 0 0
0 0 0 1 0
0 0 0 0 c12s12l21l2x

2
3+s12l1l22x

2
4

l21l2(m2+x5−x5c2
12)

0 0 0 0 −s12l21l2x
2
3x5−m2s12l21l2x

2
3−c12s12l1l22x

2
4x5

l1l22x5(m2+x5−x5c2
12)

0 0 0 0 0


(4-43)

g(x) =


0 0
0 0

c12l1
l21l2(m2+x5−x5c2

12)
l2

l21l2(m2+x5−x5c2
12)

c12l2x5
l1l22x5(m2+x5−x5c2

12)
m2l1+l1x5

l1l22x5(m2+x5−x5c2
12)

0 0

 (4-44)

Therefore, the scheduling vector becomes Eq. (4-45).

ẑ =



ẑ1
ẑ2
ẑ3
ẑ4
ẑ5
ẑ6


=



c12s12l21l2x̂
2
3+s12l1l22x̂

2
4

l21l2(m2+x̂5−x̂5c2
12)

−s12l21l2x̂
2
3x̂5−m2s12l21l2x̂

2
3−c12s12l1l22x̂

2
4x̂5

l1l22x̂5(m2+x̂5−x̂5c2
12)

c12l1
l21l2(m2+x̂5−x̂5c2

12)
l2

l21l2(m2+x̂5−x̂5c2
12)

c12l2x̂5
l1l22x̂5(m2+x̂5−x̂5c2

12)
m2l1+l1x̂5

l1l22x̂5(m2+x̂5−x̂5c2
12)


(4-45)

The fuzzy system matrices may be defined using the scheduling variables as shown in Eq. (4-
46)

Ai =


0 0 1 0 0
0 0 0 1 0
0 0 0 0 z1
0 0 0 0 z2
0 0 0 0 0

 , Bi =


0 0
0 0
z3 z4
z5 z6
0 0

 , C =
[
1 0 0 0 0
0 1 0 0 0

]
, (4-46)

With these system equations, the observability matrix is full row rank and therefore, the
system is observable. Using the inequalities in Theorem 2, an optimal observer gain may be
found. Unfortunately, the toolbox in YALMIP and the LMITool in Matlab do not manage to
compute a feasible solution for this system either. While this does not mean that a solution
does not exist, it does mean that it cannot be found using the Matlab toolboxes. The theory
for this approach seems to be a great solution but as its not working for these conditions,
alternatives must be analysed. One such alternative is a sliding mode observer.
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4-7 Sliding Mode Observer 45

4-7 Sliding Mode Observer

The sliding mode observer is a much studied observer form, but the method used in the fuzzy
logic variation is based on the work of Tan and Edwards [34], Palm and Driankov [28], and
Bergsten [32]. The fuzzy system may be extended to include unmatched uncertainties due to
modelling/approximation errors using Dζ1 and Eζ2, giving the system shown in Eq. (4-47).

ẋ =
m∑
i=1

wi(zj) (Aix +Biu) +Dζ1

y =
m∑
i=1

wi(zj) (Cix) + Eζ2

(4-47)

The sliding mode system works for a transformed system with the properties in the following
remark.

Remark. There exists a linear change of coordinates θ =Tx such that,

D̄ = TD =
[

0
D̄2

]
and C̄ = CT−1 =

[
0 I

]
(4-48)

The new system matrices will become:

Āi = TAiT
−1, B̄i = TBi, Li = T−1L̄i (4-49)

An observer with this form is shown in Eq. (4-50).

ẋ =
m∑
i=1

wi(zj) (Aix +Biu + Li(y− ŷ) + LiEν2) +Dν1

y =
m∑
i=1

wi(zj) (Cix) + Eζ2

(4-50)

Where ν1 and ν2 are the sliding mode conditions. The constraints concerning this sliding
mode observer are shown in Theorem 3.

Theorem 3. Let Li and Ξ be structured as

L̄i =
[
L̄1
i

L̄2
i

]
and Ξ =

[
N T
D̄2
0

]
(4-51)

where N is a basis of the null space of D̄T
2 (if ND̄2

= ∅ then Ξ = 0) and P1 = P T1 , P2 = P T2 ,
and Q = QT > 0 such that

P̃1 + P̃2 > 0
M i

1E = 0
ĀTi P̃1 + P̃1Āi + ĀTi P̃2 + P̃2Āi − C̄TMT

i −MiC̄ ≤ −Q[
Q− µ2 P̃1 + P̃2
P̃1 + P̃2 I

]
> 0
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46 Fuzzy Adaptive Control

where,

P̃1 =
[
P1 0
0 P2

]
(4-52)

and
P̃2 =

[
I 0
0 ΞT

] [
0 P3
P T3 0

] [
I 0
0 Ξ

]
(4-53)

To solve this set of equations for the observer gain, the relationship in Eq. (4-54) must be
solved.

Mi = PL̄i =
[

P1 P3Ξ
ΞTP T3 P2

] [
L̄1
i

L̄2
i

]
=
[
P1L̄

1
i + P3ΞL̄2

i

P2L̄
2
i + ΞTP T3 L̄1

i

]
=
[
M1
i

M2
i

]
(4-54)

The observer gains may therefore be found using L̄i = (P̃1 + P̃2)−1Mi. The observer stated
in the original coordinates is found in Eq. (4-55) where Li = T−1L̄i.

˙̂x =
M∑
i=1

wi(ẑj) (Aix̂ +Biu + Li(y− ŷ) + LiEν2) +Dν1

ŷ = Cx̂
(4-55)

For this system the matrices will be used for the estimation of the payload mass alone. The
transformation matrix that satisfies the conditions specified in Eq. (4-48) is:

T =


0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0


For the conditions in Theorem 3 no feasible solution could be found. The infeasible solutions
found for both observer options begs the question of observability. While the observability
matrix may suggest the existence of a feasible observer for each local linear system, it does
not confirm the observability of the entire nonlinear system. The reasons for not finding a
feasible solution for the described system must be further analysed.
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Chapter 5

Conclusion and recommendations

As no feasible solution can be found for the described systems, but the method has been
proven to work, the observability of the fuzzy system must be scrutinized. While the pairs
(Ai, C) for all the systems are observable for every linear model, this does not guarantee the
observability of the nonlinear system. Often the observability of the local models is used to
justify general observability. This assumption often works and results in feasible observer
gains. One such an example is the paper by Beyhan et al. [16]. Each of the pairs (Ai, C)
have been tested with the observability matrix and each one has full rank. Another example
is in the paper by Palm and Driankov [28], and more recently Soulami et al. [35]. This lack of
clarity of the definition of observability of Takagi-Sugeno (TS) fuzzy system, shows a necessity
for a method to analyse this property. If the observability properties for TS fuzzy systems can
be generalized, an approach can be constructed to find observer gains. One paper looking into
the improved observability analysis of a TS fuzzy model is by Ho et al. [36]. They investigate
a model with a slightly different system structure as shown in Eq. (5-1).

ẋ = (Ai + ∆Ai)x + (Bi + ∆Bi)u
y = (Ci + ∆Ci)x

(5-1)

where,

• ∆Ai is the uncertainty matrix of the system matrix,

• ∆Bi is the uncertainty matrix of the input matrix,

• ∆Ci is the uncertainty matrix of the output matrix.

This approach presents the criterion for robust global observability. This may offer a step into
analysing the overall observability conditions regarding fuzzy systems as they are presented
in this thesis. The approach presented here may still offer a good alternative to the classical
approach by Slotine and Li. The advantages it has with respect to avoiding the persistence of
excitation conditions may prove to be very important for the success of physical Human-Robot
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Interaction (pHRI). Finding a solution to this problem will be a big step towards the industrial
implementation of human and robotic cooperation at Koninklijke Luchtvaart Maatschappij
(KLM). There are many opportunities for modernisation and improvements, and the ability
to palletize with the assistance of a robot is a unique and innovative concept. Before practical
implementation of such a robot, a number of others areas must be investigated:

• Safety regarding the collaborative procedure,

• Collision avoidance schemes,

• Robot motion design,

– Attached at the ceiling?
– Attached to the floor?
– On a beam?
– On wheels?

• Gripper design for multiple payloads.

Each of these areas can be solved once the control framework is in place. While the conditions
for observer design in this thesis have not proved to result in feasible observer gains, further
research may find them and help with a big step towards estimating the payload properties
for a design for KLM.
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Glossary

List of Acronyms

AGV Automatic Guided Vehicle

AHM Aircraft Handling Manual

AMS Amsterdam

DPPP Distributors Package Packing Problem

EUR Europe

ITR Information-Oriented Control

KLM Koninklijke Luchtvaart Maatschappij

LMI Linear Matrix Inequality

LTI Linear Time-Invariant

MIMO Multi-Input Multi-Output

M-ULD Mixed Unit Load Device

PCHS Pallet/Container Handling System

pHRI physical Human-Robot Interaction

RFID Radio Frequency Identification

SISO Single-Input Single-Output

SPL Amsterdam Airport Schiphol

T-ULD True Unit Load Device

TS Takagi-Sugeno

TUM Technische Universität München
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54 Glossary

TV Transport Vehicle

ULD Unit Load Device

VG1/FB1 Vrachtgebouw/Freightbuilding 1

VG2/FB2 Vrachtgebouw/Freightbuilding 2

VG3/FB3 Vrachtgebouw/Freightbuilding 3

WP1 Worldport 1

WP2 Worldport 2

WS Work Station

List of Symbols

Greek Symbols
α Convergence rate
ϕ̈(t) The angular acceleration of the robot arm
∆Ai Uncertainty matrix in the system matrix
∆Bi Uncertainty matrix in the input matrix
∆Ci Uncertainty matrix in the output matrix
ηj0(·) Minimum weighting function
ηj1(·) Maximum weighting function
Λ A constant positive definite matrix
λ(t) Forgetting factor
λ0 Maximum forgetting rate
µ The bounding constant
µM (x) Membership value of value x in fuzzy set M
ν1 Sliding mode condition
ν2 Sliding mode condition
φ1(t) Angle of first manipulator link
φ2(t) Angle of second manipulator link
τ(t) Vector of torque inputs
εt(t) Tracking error
ϕ(t) The angle of the robot arm
ϕi(z) The truth value based on premise variables

Letter Symbols
q̈(t) Vector of generalized accelerations
q̈d(t) Desired trajectory of the generalized accelerations
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q̈r(t) The reference acceleration
˙̂x The derivative of the estimated model states
ẋ The derivative of the state vector
q̇(t) Vector of generalized velocities
q̇d(t) Desired trajectory of the generalized velocities
q̇r(t) The reference velocity
x̂ The estimated model states
ŷ The estimated model output
ẑ The scheduling vector based on estimated states
â(t) The estimated payload and robot parameters
Ĉ(q(t), q̇(t)) Estimation of matrix of centripetal and coriolis torques
Ĝ(q(t)) Estimation of vector with gravitational torques
Ĥ(q(t)) Estimation of symmetric positive definite manipulator inertia matrix
e Estimation error
fc The enviromental forces applied to the object
Mc The mass matrix of an object
uc The external wrench on an object
x The state vector
xc The configuration coordinates of the object
y Model output
z The vector of scheduling variables
N The basis of the null space
Oj The observability matrix
nlj Maximum of zj
nlj Minimum of zj
a(t) Vector with payload and robot parameters
Ai The i-th state matrix
ai(y) The affine terms
Bi The i-th input matrix
C(q(t), q̇(t)) Matrix of centripetal and coriolis torques
Ci The i-th output matrix
d Vertical project of the spring displacement
Dζ1 The matched uncertainty in the states
e(t) Prediction error
Eζ2 The matched uncertainty in the outputs
F (t) The driving force
fi(z) Consequent vector function
g Acceleration due to gravity
G(q(t)) Vector with gravitational torques
H(q(t)) Symmetric positive definite manipulator inertia matrix
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56 Glossary

K The spring constant
k0 Upper bound of the gain matrix norm
k1 Tuning parameter for adaptation speed
KD Constant positive definite matrix
L The link length
l1 Length of first manipulator link
l2 Length of second manipulator link
Li The observer gains
m The payload mass
m1 Mass at the end of the first link
m2 Mass at the end of the second link
me Mass of the end-effector
mL(t) Payload mass
P Positive definite matrix in Lyapunov function
P (t) Time-varying positive definite gain matrix
q(t) Vector of generalized coordinates
qd(t) Desired trajectory of the generalized coordinates
r Length of the spring arm
R(t) Uniformly positive definite weighting matrix
Ri The i-th model rule
T Transformation matrix
wi(z) The normalized membership function
Y (q(t), q̇(t), q̈(t)) Nonlinear matrix function
Zip The antecedent fuzzy sets
zp A vector of antecedent variables
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