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Abstract

Over the past years, the automotive industry has seen a constantly increasing level of automa-
tion of automotive vehicles. This increasing level of automation contributes to an increasing
safety in traffic and a reduction of traffic congestions due tio faster response times and higher
reliability, with respect to the human driver. The automation of a vehicle over the longitud-
inal and lateral degree of freedom requires additional safety measures to ensure safety of the
passengers during automated maneuvers. In a lateral control scenario, the fault detection and
isolation of faults occuring in the steering system belongs to these set of safety measures. By
detecting and isolating faults of interest in this system, a decision process follows which will,
for example, either compensate for the acting fault or bring the vehicle to a safe standstil in
the case that the fault surpasses a non-acceptable threshold.

This work presents a set of novel methods for fault detection and isolation for a generalized
set of linear time-invariant and parameter-varying systems. The faults under investigation
comprise of an additive fault acting as an offset on the system and a multiplicative fault acting
non-linearly on a set of known signals. Furthermore, the system is subjected to exogenous
disturbances. The first challenge imposed is the lack of isolability of the additive and multi-
plicative fault using conventional linear estimation techniques. The second challenge imposed
is the design of a fault detection mechanism for linear parameter-varying systems subject to
exogenous faults and disturbances.

The first contribution of this research is a moving least-squares based approach as an ex-
tension to an existing nullspace computation based parity-space fault detection filter. This
novel combination allows a decoupled estimation of the additive and multiplicative fault. The
second contribution is an extension to the first contribution by attacking one of the largest
sources of error: the dynamical content of the parity-space filter. The estimation perform-
ance of the combined fault detection and isolation filter of both contributions is provided
with a guaranteed performance bound, providing not only an intuitive tool to push down the
estimation error, but also shows possible trajectories for future work. The third and final
theoretical contribution is the adaption of the linear time-invariant parity space method for
a linear parameter-varying environment. A convex quadratic optimization problem is used
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which has an exact analytical solution for approximately rejecting the parameter-varying ef-
fects of the system.

A contribution of the more practical aspect of this thesis, is a demonstration of the ap-
plicability of the developed framework on real-life problems, both in a simulation setting
and an experimental setting. The theoretical framework has been applied in a practical case
study in fault detection and isolation for lateral control of autonomous vehicles. After having
proven out the theoretical framework in a linearized simulation environment, a systematic
approach is given for applying the developed theoretical tools in an experimental setting on
an autonomous vehicle. The experimental results confirm the theorems, showing that the
faults can be detected and isolated both in theory and in practice.
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ADAS Advanced Driver Assistance Systems
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Chapter 1

Introduction

Over the past century the road network has seen a constantly increasing number of automot-
ive vehicles. The growth rate of the number of vehicles, together with a decreasing space to
expand the road network results in many societal problems. Belonging to these problems is
the vastly increasing vehicle count together with a limited road capacity which as a result
increases the fuel consumption, traffic congestions, but above all the safety risks [1].

Following these observations, the focus is shifted towards the biggest uncertainty in road
safety and vehicle emissions: the human driver in charge of controlling the vehicle to its des-
tination. Cognitive and physical limitations of the human being have been a motivating factor
to increase automation in human transport [2]. Slow response times and signs of fatigue have
resulted in over 25 thousand traffic related fatalities in the European Union in 2017 alone [3].
These numbers motivate the need of action towards a safer and more efficient road network.

Advanced Driver Assistance Systems (ADAS) have been developed to aid the driver in safely
controlling the vehicle. Recent developments of these ADAS systems show a constantly in-
creasing level of automation. This increasing level of automation in ADAS systems is motiv-
ated by a potential increase in traffic safety and reduction of fuel consumption. For example,
a main motivating factor for the use of Cooperative Adaptive Cruise Control (CACC) was
given to be the reduction of traffic related accidents, traffic congestions and thus as a res-
ult fuel consumption [4]. The next step towards a more efficient and safer road network is
the progression towards fully autonomous capabilities of personal and commercial vehicles, a
progression which is well captured in Figure 1-1.
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2 Introduction

Figure 1-1: SAE Vehicle automation taxonomy, adopted from [5].

The Society of Automotive Engineers (SAE) has defined a taxonomy for levels of automa-
tion [6] (see Figure 1-1). The levels in this taxonomy range from level 0 (no driving automa-
tion) to level 5 (full driving automation). From level 3 onwards, the attention of the human
driver is no longer required, unless requested by the vehicle. For the levels 0, 1 and 2, the
driver is always in control of the vehicle. Automation level 3 and onward impose challenging
conditions. For these levels, the human driver is no longer expected to monitor the environ-
ment, which introduces higher demands on the safety logic of the vehicles controllers.

Undesired behavior caused by faulty system components is usually easily detected by the
human driver. The driver is usually aware of abnormal behavior of the vehicle and ensures
that either the vehicle is controlled to a safe stop, or the abnormal behavior is mitigated by
alternative control action. However, in an automation level where no human assistance is re-
quired unless requested, the vehicle’s controller has to detect this fault or abnormal behavior
and as a result, act accordingly. What follows is a decision making process which, based on
the severity of the fault, results in either a compensation in control action or an activation of
a limp home mode to bring the car to a standstill into a safe scenario.

1-1 Fault detection in lateral control

This research specifically focusses on a case study on the lateral control of an autonomous
vehicle for highway lane-keeping and vehicle-following. The area of lateral control is a thor-
oughly studied domain. Automated lateral control of the vehicle provides, together with the
earlier mentioned CACC-controllers, a unifying controller combination for fully automated
vehicle platoons. The goal of the lateral controller is to steer the vehicle to the center of
the reference-trajectory. This reference trajectory is generated either by the lane-marking for
lane-keeping or for example by the trajectory of the ego-vehicle for vehicle-following control-
lers. The main control actuator for the lateral controller is the steering actuator, which must

C.J. van der Ploeg Master of Science Thesis



1-1 Fault detection in lateral control 3

ensure that the lateral position and heading of the vehicle corresponds to the generated tra-
jectory. More often than not, the action for controlling the vehicle to the desired trajectory is
calculated by using a-priori knowledge of the lateral dynamics of the vehicle [7, 8], combined
with a set of measurements capturing the dynamical behavior of the vehicle and its relative
position with respect to the desired trajectory.

The use of model-based lateral control methods is often compromised once faults are act-
ing in the system. Often, the model-knowledge does not take into account behavior of the
system in faulty scenarios. In these scenarios, faults acting on the system can cause a devi-
ation of the system model behaviour from reality. As a result of this model-mismatch, the
lateral controller could cause a deviation from the desired trajectory or in the worst case
cause unstable behavior of the vehicle [9]. In light of the before mentioned SAE automation
levels [6], it is also important to be aware of the faults as to be able to compensate for them;
excessive faults could require additional action such as a request for driver take-over or a
switch to a limp home mode to bring the car to a safe standstill.

In this research, a distinction is made between two types of faults occuring from the steering
input of the lateral controller to the actual lateral behavior of the vehicle. Both of these faults
have represent a different physical effect and require different actions from the decision mak-
ing process when such a fault occurs. The first fault is considered to be an offset of the true
steering angle δ with respect to the steering-angle setpoint δset. This fault can present itself as
being an offset in the mechanical rack and pinion of the steering system, an angular offset of
the steering sensor with respect to the steering axle or for example an angular misalignment
of the wheels with respect to the steering system. This fault can simply be modeled as a
constant offset fa with respect to the steering angle setpoint δset from the lateral controller:

δ = δset + fa. (1.1)

The second fault considered is a proportional gain fm on the steering angle setpoint δset from
the lateral controller. In a faultless scenario, the value of this proportional gain is equal to
one as it results in a direct throughput of the steering angle setpoint to the vehicle. An
increase or decrease of this fault can be caused by for example a compliance in the steering
system excited by the lateral force and yaw moment, or a change in tyre pressure resulting in
a higher or respectively lower cornering stiffness. This fault can be modeled with respect to
the steering input δset and true steering angle δ as

δ = fmδset. (1.2)

The two before mentioned faults fa (1.1) and fm (1.2) result in the total input-output fault
model which has been adopted more often in literature [10], and is given as

δ = fmδset + fa. (1.3)

The main challenge imposed by this fault model is as follows: the transfer function from
fmδset to the system outputs is identical to the transfer function from fa to the system
outputs, leading to a case of input unobservabillity. This challenge is formalized in a more
general setting in Chapter 2 and will be taken into consideration as a requirement in the
following section. In the following section, the concept of fault detection and isolation is
introduced combined with the current state-of-the-art of model-based methods.

Master of Science Thesis C.J. van der Ploeg



4 Introduction

1-2 Fault detection and isolation, a brief overview

Generally, the function of fault diagnosis in control applications is to be aware of an undesir-
able fault acting on the system. The main concept of detectability is shown in Figure 1-2.

System dynamics Diagnosis

f

u

y

u

r(f)

Figure 1-2: A schematical representation for fault detection.

When a system is affected by an unknown fault, f , it is the purpose of fault detection to
find a mapping from the fault to a diagnosis signal, r(f), by use of the known inputs (u) and
outputs (y). This signal, r(f), is called the residual. For fault detection, the demands on the
residual are simple: if no fault is present, r should be equal to zero and if a fault is present
the residual r should be non-zero.

The notion of isolation is an extension to the definition of detection. It might be of in-
terest to detect a specific fault while rejecting other faults or disturbances that are not of
interest. Figure 1-3 depicts the intuition behind fault isolation, where f1 and f2 represent
specific fault signals of interest and d represents the unkown disturbances. The purpose of
fault detection and isolaton in this case is to decouple or isolate the detection of the faults.
It is to provide a signal r(f1), which is only dependent on a non-zero f1, and a signal r(f2),
which is only dependent on the faulty behavior f2. As a result, both residuals are decoupled
from other faults and/or disturbances d.

System dynamics Diagnosis
f1
d

u

f2

y

u

r1(f1)

r2(f2)

Figure 1-3: A schematical representation for fault isolation.

Isermann [11, 12] describes the current state-of-the-art in the area of fault diagnosis. A dis-
tinction can be made between methods that use knowledge about the system and its processes,
or more heuristic methods such as statistical classification or fuzzy logic. This thesis project
is focussed on the domain of model-based fault diagnosis methods as model knowledge is
assumed to be available, resulting in more reliable estimates. Referring back to Figure 1-2
and Figure 1-3, the diagnosis block therefore consists of a model-based diagnosis method.
Generally three different linear approaches in fault diagnosis exist: observer-based methods,
parameter-estimation methods and parity-space methods. After discussing these three main
pillars, other methods will be discussed which are formed by a combination of the before
mentioned methods.
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The main concept of linear observer-based methods is to apply classical observer theory on a
known model. An estimation error between the outputs of the real plant and the outputs of
the observer provides a residual from which the magnitude of model mismatch can be determ-
ined. This model mismatch can consecutively be linked to the presence of a fault. In the case
of a single fault acting on the system and having exact knowledge of the mathematical model
of the system, this can yield good results. Although in the case of several unknown inputs
acting on the system, i.e., disturbances, the problem itself becomes difficult to solve. In this
work, we do not assume to have knowledge on the dynamical behavior of the disturbance
signals and therefore we can not assume that the disturbance acting on our vehicles have a
low frequency content. Due to this assumption, linear observer techniques that enable fault
compensation by an augmented state observer, such as [13], can not be applied. Using this
method would increase the chance of false alarms, due to inaccurate disturbance estimation.
In [14, 15], methods are described to minimize the effect of the disturbance on the fault re-
sidual in a linear observer by posing it as a Semidefinite Programming (SDP) optimization
problem. However, perfect decoupling is not guaranteed and additionally it requires a trade-
off between fault sensitivity and disturbance sensitivity. Beard [16] describes a method where
a full-order observer employs a directional gain to tune the sensitivity for a specific fault of
interest, given that the faults of interest are isolable, although a clear systematic approach is
missing.

A different method for fault detection and isolation is parameter estimation. Parameter es-
timation methods employ a type of system identification to identify the system parameters
of the system under consideration. A deviation in these system parameters can lead to the
conclusion of a faulty system as emphasized in [12]. The estimated parameters can either rep-
resent physical parameters or parameters of a different realization. As opposed to the observer
and parity-space methods, a parameter estimation method can easily detect the non-linearly
acting multiplicative parameter and the linearly acting additive parameter, given conditions
on the persistency of excitation. An example of fault detection demonstrating the recursive
tracking of a fault parameter, is given by [17]. A large downside of these parameter estimation
techniques has been highlighted in [18] and [19]: the parameter estimation algorithm is weakly
robust for external disturbances. Parameter estimation techniques rely on the availability of
measurable inputs and outputs. Therefore, additonal methods have to be applied to allow
disturbance decoupling.

In [20], a parity-space solution is decribed which fully decouples the unmeasured disturbances
from the fault residuals using an algebraic null-space approach (provided the necessary and
sufficient conditions are fulfilled). This approach ensures, given the detectability and isol-
ability conditions and full knowledge on the dynamic appearance of the disturbances, that
the disturbances can be fully decoupled from the fault residual using efficient computation
techniques. This method does not allow direct application for our requirements as it assumed
that the faults are observable, which is an assumption that does not hold for our fault model
(see Section 2-3 for a more detailled description of this challenge). In [21], an extension to
this method is provided and two relevant contributions are emphasized. Furthermore, the
linear disturbance decoupling problem can be posed as a numerically efficient convex optim-
ization problem, but next to that the filter can be trained to reject the undesirable effect of
non-linearities in the system (requiring training the filter for a finite set of non-linear disturb-
ances). A different extension from [20] is given by [22], in which a feasible extension for Linear
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Parameter-Varying (LPV) systems is given for the detection of additive faults or multiplicat-
ive faults modelled as additive faults. However, it imposes a high computational complexity
due to the non-convex optimization problem. Similar as in the observer techniques, a variant
of detectability is assumed in [23]. This is not applicable given our background information,
since the faults are inseperable due to a lack of observability (see Section 2-3 for a more
detailled description of this challenge), hence we can only detect the presence of a fault and
not necessarily isolate the presence of a specific fault.

An extension for the detection and isolation of multiplicative and additive faults is given by
[24], where a class of continuous- and discrete-time adaptive observers is introduced. These
techniques are formed as a combination of the linear observer techniques combined with para-
meter estimation methods. Parameter estimation methods provide an online estimation of
uncertain dynamical parameters and subsequently these estimated parameters are used to
estimate the state or unknown input. An adaptive observer is applied in [25], showing that
the multiplicative fault can be modelled in the unknown state input matrix and the additive
fault as an exogenous signal. The same shortcoming of the regular linear observer applies to
these methods. It is difficult to decouple unmeasurable disturbances, hence resulting in poor
performance of the parameter estimation method due to acting disturbances. Although good
results can be obtained using this method, the absense of a systematic design method makes
its use cumbersome.

The state of the art of the case study, fault detection in lateral control of autonomous vehicles,
is composed from methods discussed in this section. The method proposed in [26] find its
closest similarity to the problem description in this thesis. A similar fault model is used and
an adaptive observer (i.e., a Luenberger with parameter estimation) is used to estimate the
additive and multiplicative faults. However, the rejection of disturbances has not systemat-
ically been taken into account, residual evaluation using thresholds is proposed to increase
robustness of the method for unmeasured disturbances. Other works are primarily focussed
on estimation of the steering offset or the additive fault. The work of [27] employs a Luenber-
ger observer with a gain that maximizes robustness against model uncertainties, such as the
varying longitudinal velocity, though its purpose is only to estimate the additive fault and the
presence of a multiplicative fault is neglected. The methods in [28, 29] employ a sliding mode
observer to increase robustness for unknown disturbances, while estimating multiplicative and
additive faults, where the multiplicative faults appear in the state dynamics. The method
however does not allow for estimation of an additive and multiplicative fault acting on the
same signal.

1-3 Research goal and contributions

The objective of this thesis research is to develop a method for fault detection and isolation
of faults occuring in the steering system of an autonomous vehicle. The main research goals
posed by this problem are twofold. The first goal is the development of a fault detection
mechanism for a fault in the system, demanding the rejection of modeled disturbances and
the detection of the fault for a linear time-invariant and parameter-varying system model.
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The second research goal is the development of a method which can split the residual from
the detection mechanism into the two specific (slowly time-varying) faults of interest. The
combination of the two goals provide a total goal to detect and isolate the two faults of
interest for both linear time-invariant and parameter-varying systems. Following the goals,
the contributions of this thesis work are listed below:

• A methodology for a non-linear isolation filter is proposed which can isolate the additive
and the multiplicative fault from the residual of a fault detection filter. The filter is
provided with a guaranteed performance bound which provides a tool to expose the
main strengths and weaknesses of the method.

• The main source of error in the non-linear isolation filter is incorporated in the design of
the isolation filter using the pre-filter. This extension shows that the dynamical effect
of the detection filter can be fully decoupled in a constant fault scenario. Again, a
guaranteed performance bound is given, showing the main strengths and weaknesses of
the extension in certain conditions.

• A tractable synthesis approach for a parameter-varying fault detection mechanism is
proposed. Given that the parameter-variations are measurable, the outcome is a de-
tection filter which can decouple the parameter-varying effect of the model from the
detection residual.

• The theoretical framework of the developed fault detection and isolation methods is
applied on a case study in the lateral control of autonomous vehicles. The case study
shows the applicability and the systematic approach of applying the methods on the
single-track lateral model.

• The theoretical framework is applied in an experimental setting: a real autonomous
vehicle in a lane-keeping maneuver. Application of the methods in a real-life setting
shows the effectiveness and robustness of the provided methods, not only in simulation,
but also in reality.

1-4 Notation

Before introducing the outline of the thesis, a few notational definitions are introduced that
will be used throughout the theoretical framework of this research.

Notation. The symbols Z and R represent the set of integers and real numbers and the
symbols Z+ and R+ represent the set of non-negative integers and real numbers, respectively.
The operators µn [x] (k) ∈ R, σ2

n [x] (k) ∈ R+, Vn [x] (k) ∈ R+ represent the first moment
µn [x] (k) := 1

n

∑n−1
i=0 x(k − i), the second moment σ2

n [x] (k) := 1
n

∑n−1
i=0 x

2(k − i) and finally
the variance Vn [x] (k) := σ2

n [x] (k) − µ2
n [x] (k) of the signal x( · ). Let a concatenated signal

x( · ) over n horizon be defined as xn(k) :=
[
x(k), x(k − 1), . . . , x(k − n+ 1)

]ᵀ
and can be

written in a diagonal matrix using the operator x�n (k) = In · (1ᵀn⊗xn(k)) where the operation
⊗ represents the Kronecker product. The p-norm for signal xn(k) is defined as ‖xn(k)‖p,
this notation can be redefined by a n-restricted vector p-norm for a signal x( · ) as ‖x‖Lnp(k).
For p = 2 we find the n-restricted Euclidean norm as ‖x‖Ln2(k) :=

√∑n−1
i=0 |x(k − i)|2 and
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the n-restricted ∞-norm (p=∞) is defined as ‖xn(k)‖Ln∞(k) := max0≤i≤n−1 |x(k − i)|. Let
A ∈ Rn×m be a matrix with real values, Aᵀ ∈ Rm×n be its transpose. let ‖A‖2 := σ(A) :=√
λ(AᵀA) be its induced 2-norm, where σ represents the largest singular value and λ, λ

represent the maximum and minimum eigenvalue, respectively. The symbol q represents the
shift operator, i.e., q[x(k)] = x(k + 1).

1-5 Outline of the thesis

The structure of the thesis is outlined as below:

Chapter 2: Problem description and outline of the proposed approach

Chapter 2 introduces a generalized set of models to which the model of the case study belongs.
A motivating example illustrates the applicability of the set of models by converting it to a
state-space set of equations. Next, the problem statement and challenges of the method for
the generalized setting are introduced. Finally, a short outline of the theoretical contributions
is discussed as a prequel to Chapter 3.

Chapter 3: Main results

Chapter 3 provides the theoretical framework of the novel methods developed during this
thesis. These methods present the non-linear isolation filter and an extension to the non-linear
isolation filter with the purpose to improve the estimation results. Finally, an extension to
the fault detection method to deal with the linear parameter-varying nature of the system is
proposed.

Chapter 4: An Application to the Lateral Control of Autonomous Vehicles

Chapter 4 provides an in-depth analysis of application of the developed theorems to the case
study mentioned in the introduction. Furthermore, it is shown that for the linearized system
the methods provide desired performance. Subsequently, a sensitivity analysis is performed
to show the applicability of the problem in scenarios with a larger parametric uncertainty.

Chapter 5: Experimental results

Chapter 5 provides experimental results for the tests applied on a real autonomous vehicle.
The testing methods and location are introduced. Subsequently, an elaborate analysis of the
results is given along with a methodology to adapt the methods to real-life scenarios.

Chapter 6: Conclusion, discussion and future work

Finally, Chapter 6 provides a conclusion on how the work of this thesis solves the original
problem statement. To conclude, a set of propositions is given for future work that have been
shortly explored throughout this thesis, but lie outside of its scope to be fully worked out at
this time.
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Chapter 2

Problem Description and Outline of
the Proposed Approach

In this chapter, a formal description of the generic model class used in this thesis is given.
The basic principles of the initial Fault Detection and Isolation (FDI) method are proposed
and shortcomings of this method are explained. Subsequently, a motivating example is given
showing that the proposed methodology can be applied to a broad spectrum of faulty systems.
Finally, the challenges of developing such an FDI method are introduced, followed by an
outline of the proposed novel extension of the FDI design method to provide a solution to
these challenges.

2-1 Model Description and Problem Statement

In this section, a class of non-linear models is introduced. This class encompasses the systems
dynamics throughout this thesis. Consider the following discrete-time non-linear Differential-
Algebraic Equation (DAE) model

H(q)[x] + L(q)[z] + F (q)[fa] + F (q)[E(z)fm] = 0, (2.1)

where the functions x, z, f represent discrete-time signals taking values in Rnx ,Rnz ,Rnf , re-
spectively, and E : Rnz → RnE is a continuous mapping. The matrices H(q), L(q), F (q) are
polynomial functions with appropriate dimensions in the variable q, which is viewed as the
shift operator, and thus they may be cast as linear operators in the space of discrete-time sig-
nals. The function x contains all unknown signals in the DAE system, typically representing
the internal states and unknown exogenous disturbances. The function z is composed of all
known signals including the control inputs u and the output measurements y. The signal fa
is considered an additive fault, while the signal fm is considered to be a multiplicative fault
or intrusion which interacts non-linearly with the signal E(z).
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10 Problem Description and Outline of the Proposed Approach

In absence of the fault signals fa, fm, all possible z-trajectories of the system can be charac-
terized as

M := {z : Z→ Rnz | ∃x : Z→ Rnx : H(q)[x] + L(q)[z] = 0} , (2.2)

which is called the behavior of the system. The goal for the fault detection and isolation filter
is to design a proper and stable filter whose input is the the known signal z and the respective
output, also referred to as the filter residual, is zero for all z ∈ M. Note that throughout
this study we assume that the initial conditions of the system, as well as the FDI filter, is
equal to zero. In the absence of zero initial conditions, the above definition of the residual is
relaxed to satisfy the condition only once the filter has settled from its initial condition. The
second condition for our residual generator is concerned with the fault sensitivity. For any
particular fault of interest, fa or fm, we require that the transfer function from that particular
fault to the residual is non-zero. In previous approaches [21, 20], a residual generator has
been designed via the use of a polynomial matrix NH(q) ensuring that the behavior of the
system (2.2), by multiplication of this matrix NH(q), can be recast as

M ={z : Z→ Rnz |NHH(q)︸ ︷︷ ︸
=0

[x] +NH(q)L(q)[z] = 0},

={z : Z→ Rnz |NH(q)L(q)[z] = 0}, (2.3)

where NH(q) represents an irreducible polynomial basis for the nullspace of H(q). A linear
combination of this basis N(q) = γ(q)NH(q) can be taken such that a Fault Detection (FD)-
filter N(q)L(q) can be applied on the known signal z, resulting in the behavior (2.3). This
operation creates the following conditions of a filter applied on the DAE model (2.1)

N(q)H(q) =0, (2.4a)
N(q)F (q) 6=0. (2.4b)

The first condition (2.4a) ensures rejection of the disturbances and the unknown states in
the residual r. The second condition (2.4b) ensures a non-zero response when the fault is
non-zero.

Assumption 2-1.1 (Detectability). Following [21] (Fact 4.4), a solution N(q) can be found
for (2.4) iff

Rank
([
H(q) F (q)

])
> Rank(H(q)). (2.5)

It is assumed throughout the remainder of this research that this condition is fulfilled. Addi-
tionally, for the sake of simplicity and to avoid clutter, it is assumed throughout the remainder
of this work that F (q) is a polynomial column vector. The latter implies that nE , nfa , nfm = 1.
Extension of the main results for nE , nfa , nfm > 1 can be made, hence the latter assumption
is made without loss of generality.

Following Assumption 2-1.1, a proper Linear Time-Invariant (LTI) FD-filter can be designed
fulfilling (2.3) and (2.4) by use of the following residual generator:

r = d−1(q)N(q)L(q)[z], (2.6)
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where the stable transfer function d−1(q) is intended to make the residual generator strictly
proper and stable. Note, that the LTI transfer function from the faults fa and fm, to the
residual r, as a result of applying filter (2.6) on (2.1) (which satisfies (2.4)), results in

r = −N(q)F (q)
d(q)︸ ︷︷ ︸
G(q)

[E(z)fm + fa]. (2.7)

Using the theorem from [21] (Lemma 4.2), this filter can be found by solving a linear pro-
gramming feasibility problem. The following lemma provides a framework for finding such a
solution.
Lemma 2-1.2. Under Assumption 2-1.1, let N(q) be a feasible polynomial of degree dN for
the following feasible solution to the set of conditions in (2.4)

d−1(q)N(q)H(q) = 0, (2.8a)
d−1(1)N(1)F (1) =− 1, (2.8b)

where the transfer matrices can be decomposed as

H(q) :=
dH∑
i=0

Hiq
i, F (q) :=

dF∑
i=0

Fiq
i,

N(q) :=
dN∑
i=0

Niq
i, d(q) :=

dd∑
i=0

diq
i,

where dH , dF , dN and dd represent the maximum degree of matrices H(q), F (q), N(q) and
d(q) respectively. Note, that (2.8b) describes a necessary condition on the DC-gain of the
fault mapping (2.7). Let the polynomial matrices N̄ , H̄, F̄ , d̄ be given as

N̄ :=
[
N0 N1 . . . NdN

]
,

H̄ :=


H0 H1 . . . HdH

0 . . . 0

0 H0 H1 . . . HdH
0

...
... . . . . . . . . . 0
0 . . . 0 H0 H1 . . . HdH

 ,

F̄ :=


F0 F1 . . . FdF

0 . . . 0

0 F0 F1 . . . FdF
0

...
... . . . . . . . . . 0
0 . . . 0 F0 F1 . . . FdF

 ,
d̄ :=

[
d0 d1 . . . dNd

]
.

Using the above definitions, the conditions (2.8) for a feasible stable LTI FD-filter N(q)L(q)
d(q)

can be recast as a linear programming feasibility problemN̄H̄ = 0,∑
N̄F̄∑
d̄

= −1.
(2.9)

Note, that this programming problem selects a feasible solution of the problem proposed in [21]
(Lemma 4.2). The proof is omitted as it is a straight forward adaption from that article.
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12 Problem Description and Outline of the Proposed Approach

2-2 Motivating Example

A motivating example can be given to show the generality of the used DAE framework.
Consider the following set of non-linear ordinary difference equations:

GX(k + 1) = AX(k) +Buu(k) +Bdd(k) +Bf (fa(k) + EX(BXX(k), u(k))fm(k)) , (2.10a)
Y (k) = CX(k) +Duu(k) +Ddd(k) +Df (fa(k) + EY (BYX(k), u(k))fm(k)) , (2.10b)

where u is the input signal, d the unknown exogenous disturbance, X the internal state of the
system, Y the measurable output, fa the additive acting set of faults or intrusions and finally
fm the set of faults acting as a multiplication on a non-linear combination of the internal
states and input. The matrices G, A, Bd, Bfa , Bfm , BX , C, Du, Dd, Dfa , Dfm are constant
matrices. Furthermore, we assume that there exist matrices KX , KY such that

BX =KXC, BY =KY C,

KXDu =0, KXDd =0, KXDf =0,
KYDu =0, KYDd =0, KYDf =0,

meaning that the internal system states acting non-linearly with the fault are a selection of the
entries of the measurable output Y . Finally, the functions EX , EY are non-linear mappings
as a function of the known signals. One can inspect that the above set of non-linear difference
equations (2.10) can easily be transformed into the non-linear DAE framework (2.1) as

x :=
[
X
d

]
, z :=

[
Y
u

]
, E(z) :=

[
EX(KX(Y −Duu), u)
EY (KY (Y −Duu), u)

]
,

H(q) :=
[
−qG+A Bd

C Dd

]
, L(q) :=

[
0 Bu
−I Du

]
, F (q) :=

[
Bf
Df

]
,

and thus, according to the previous subsection, a FDI filter can be designed which can detect
present faults in the system.

2-3 Challenges

Recalling the specific DAE framework with a multiplicative and additive faults occurring (2.1),
it might be of interest to isolate the impact of one fault. Specifically it might be of interest to
isolate the effect of an additive fault from the effect of a multiplicative fault and vice versa. The
conditions for isolability follow directly from the condition of detectability (2.5) using the new
augmented matrix H̃(q) =

[
H(q) F (q)

]
, where we assume that Rank(H̃(q)) > Rank(H(q)).

Additionally we assume that the fault has a non-zero relative degree to the measurable output.
A sufficient and necessary condition for a linear time-invariant FDI filter. detecting and
isolating the additive fault from the multiplicative fault, and vice versa, is stated as:

Rank
([
H̃(q) F (q)

])
> Rank(H̃(q)).

Note that this condition can not be fulfilled, since the matrix F (q) is already contained in
the column space of H̃(q), meaning that the multiplicative and additive fault are dynamically
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2-4 Outline of the Proposed Methodology 13

inseparable using this methodology. Separation of the two signals requires information of
the dynamic difference of the faults over a given past time-span. This research outlines a
novel extension of the proposed fault detection mechanism to detect and isolate the linearly
dependent additive and multiplicative fault using an augmented moving-horizon least-squares
filter.

2-4 Outline of the Proposed Methodology

In a discrete time environment and in the challenging conditions of the previous subsection,
the challenge of the research is the decoupling of the addive fault fault fa and multiplicative
fault fm assuming that their dynamics are linearly dependent. The first proposed theorem
in this research can be visualized by the Fault Isolation (FI)-filter in the control diagram in
Figure 2-1.

System dynamics
Internal state: X FD-Filter FI-Filter

fa

d

u

fm

y

u

z

r f̂a

f̂m

Figure 2-1: A visual representation of the proposed methodology.

where r respresents the residual output of the fault detection filter, i.e., the response of the
filter to a non-zero multiplicative and/or additive fault. Note that the detection filter (FD-
filter in Figure 2-1) is a feasible filter determined through Lemma 2-1.2. The isolation filter is
created using a moving-horizon least-squares filter with a n-steps moving horizon filter. An
error analysis containing a guaranteed error upper-bound of the proposed filter is given and
subsequently an extension of the isolation filter is given to attack the largest source of error,
being the dynamics between the true fault and the residual. Finally a theoretical extension
is given to the FD-filter which allows detection of faults to be fully decoupled for an LPV
system with measurable parameter variations.
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Chapter 3

Theoretical Framework

In this chapter, the main theoretical results of the thesis are provided. First, the main non-
linear isolation theorem is presented with a guaranteed upper bound on the estimation error.
The error bound is composed of three different sources of possible estimation errors, suggesting
potential directions to enhance the performance and applicability of the proposed isolation
filter. An extension to the main result is given which deals with the most dominant and hard-
to-reduce error term. Finally, the fault-detection algorithm is further extended to account for
a LPV system where the parameter variations can be measured. The mathematical proofs
for all theorems in this chapter are enclosed in Appendix A.

3-1 Non-linear isolation filter design

Definition 3-1.1 (Regression operator). For a signal x, assumed to be a scalar-valued func-
tion which is constant given a constant sampling interval, a linear operator φn[x](k) ∈ Rn×2

can be defined that collects present and past data up to n-steps back of the signal in a matrix
as

φn[x](k) :=
[
x(k) x(k − 1) . . . x(k − n+ 1)

1 1 . . . 1

]ᵀ
, ∀k ∈ Z (3.1)

where n ∈ Z+. Subsequently, we can define a non-linear operator Φn[x, y](k) ∈ R2 which is
composed as a non-linear combination of (3.1), acting as a linear operator on the present and
past measurements of y ∈ R

Φn[x, y](k) :=
(
φᵀn[x](k)φn[x](k)

)−1
φᵀn[x](k)


y(k)

y(k − 1)
...

y(k − n+ 1)

 . ∀k ∈ Z (3.2)
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The reduced regression operator, i.e., the regression operator which is only dependent on the
pseudo-inverse term as a function of signal x, inside the operator Φn[x, y](k), is defined as:

Φn[x](k) :=
(
φᵀn[x](k)φn[x](k)

)−1
φᵀn[x](k), ∀k ∈ Z, (3.3)

where Φn[x](k) ∈ R2×n.

Using the regression operator (3.2) from Definition 3-1.1, the non-linear isolation filter, estim-
ating the unknown faults fa and fm, using known measurements E(z) and FD-filter output
r, can be written as [

f̂a
f̂m

]
= Φn[E(z), r](k), (3.4)

where the variables f̂a, f̂m ∈ R represent the fault estimates. A filter is designed, which
separates the faults fa and fm from the measured residual, using a least squares regression
by taking in to account the relation between the faults and the residual (2.7).

Definition 3-1.2 (Restricted state and input transfer function). Given a transfer funcion
W (q), with a minimal state space realization (A,B,C,D), the propagation of the input u to
the output y over a restricted past finite horizon n at any time k is defined as

y(k)
y(k − 1)

...
y(k − n+ 2)
y(k − n+ 1)

 =


CAn−1

CAn−2

...
CA
C


︸ ︷︷ ︸

On

x(k − n+ 1) +


D CB . . . CAn−3B CAn−2B

. . . . . . ...
0 D CB CAB
0 . . . 0 D CB
0 . . . 0 0 D


︸ ︷︷ ︸

Tn


u(k)

u(k − 1)
...

u(k − n+ 2)
u(k − n+ 1)

 ,

where the signal x ∈ Rd is the internal state and Tn ∈ Rn×n and On ∈ Rn×d contain the
dynamics of the restricted state and input transfer function.

Under the assumption that σ2
n [E(z)] (k) 6= 0 and Vn [E(z)] (k) 6= 0, the following theorem

provides a guaranteed performance bound for the error behavior of the non-linear isolation
filter.

Theorem 3-1.3 (Isolation error bound). Consider the class of systems (2.1) combined with
a FD-filter (2.6) determined by Lemma 2-1.2. The non-linear isolation filter (3.4) has an
error behavior between the fault estimate and the mean fault over a window n ∈ Z+ which is
upper-bounded by ∥∥∥∥∥

[
f̂a − µn [fa]
f̂m − µn [fm]

]∥∥∥∥∥
2
≤
√

1 + |µn [E(z)] |
nVn [E(z)] ·

(
e1 + e2 + e3

)
, (3.5)

where the error terms in (3.5) are defined as

e1 =‖Tn
(
fmE(z) + fa

)
+ OnxF (k − n+ 1)‖Ln2(k), (3.6a)

e2 =
√
nVn [fm] (k) · ‖E(z)‖Ln∞(k), (3.6b)
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e3 =
√
nVn [fa] (k). (3.6c)

Recall that ‖ · ‖Ln2(k), ‖ · ‖Ln∞(k) are the restricted norms at time instance k. The matrices
Tn and On are the dynamic matrices of the restricted state and input transfer function (as
defined in Definition 3-1.2) of the minimal realization of G(q)−I with state xF . The transfer
function G(q) is defined in (2.7). The operators Vn [ · ] (k) and µn [ · ] (k) represent the variance
and mean of a signal at time k, as defined in the notational Section 1-4.

Following the result in Theorem 3-1.3, an intuition is given how system- and filter parameters
contribute to the estimation error of the filter (3.5).

Remark 3-1.4. We note that each component of the error upper-bound (3.5) is dependent on
the time instance k, hence the dependency is deliberately dropped to avoid clutter. The first
error term (3.6a) is induced by the dynamical behavior between the residual and the true fault.
The second term (3.6b) is caused by the time-varying behavior of the fault fm, i.e., higher
energy of this fault causes higher errors due to the “averaging” property of the least squares
filter. The third error term (3.6c) follows the same line of reasoning, as it is induced by the
energy of the additive fault fa over time-horizon n. The mean and variance of the measured
signals E(z) have a scaling influence on the sum of errors. It is also worth noting that the
time-horizon n plays a non-trivial role in the estimation error, as it not only acts as a scaling
factor on the sum of errors, but it also interacts with the variance and mean of known signals
z and fault signals fa and fm.

Following Theorem 3-1.3 and Remark 3-1.4, it should be clear to the reader how the behavior
of the estimation error can be influenced. For this research, it is assumed that only the
time-horizon n and the mapping of the FD-filter can be influenced. The filtering method is
applied in open-loop and hence influencing the properties of signal E(z) lies outside of the
scope of this research. The error e1 can be reduced individually by selecting an FD-filter
with fast dynamics acting from the fault to the residual, although depending on the problem
setting and requirements for noise sensitivity, the user may be limited in this perspective.
The following section provides an extension to the main theorem, allowing a relaxation on
the error induced by the FD-filter’s dynamics.

3-2 Pre-filter extension

Theorem 3-1.3 concluded with Remark 3-1.4, which elaborated on the main sources of error
after the FI-filter. Concluding this remark, it is found that the only controllable error source
in an open-loop scenario is the FD-filter dynamics induced error (3.6a). This source could
be influenced by the design of the detection filter. Alternatively, we can consider to apply a
penalty on the noise sensitivity for pushing down the estimation error. Figure 3-1 proposes a
new filter structure that, by augmentation of the pre-filter, allows decoupling of the dynamical
effect of the known signal E(z) for constant fa and fm.

The filtered signal Ẽ(z) is obtained from the known signal E(z) over n horizon by using the
restricted state and input transfer function of filter (2.7)

Ẽn(z(k)) = ÕnxE(k − n+ 1) + T̃nEn(z(k)), (3.7)
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18 Theoretical Framework

and the state space propagation matrices T̃n and Õn are the restricted state and input matrices
of the minimal realization of the transfer function G(q) (as defined in (2.7)).

System dynamics
Internal state: X FD-Filter FI-Filter

Pre-Filter

fa

d

u

fm

y

u

Ẽ(z)

r f̂a

f̂m

Figure 3-1: Augmentation of the Pre-Filter.

The non-linear regression operator (3.4), estimating unknown fault signals fa, fm, can be
updated using the FD-filter residual, r, and the filtered known measurement ,Ẽ(z) (3.7),
resulting in [

f̂a
f̂m

]
= Φn[Ẽ(z), r](k). (3.8)

The following theorem provides a guaranteed upper bound for the error behavior of the non-
linear isolation filter augmented with the pre-filter.

Theorem 3-2.1 (Pre-filter isolation error bound). Consider the class of systems (2.1) com-
bined with a FD-filter (2.6) determined by Lemma 2-1.2. Under the assumption that σ2

n

[
Ẽ(z)

]
(k) 6=

0, Vn
[
Ẽ(z)

]
(k) 6= 0, the non-linear isolation filter augmented with the pre-filter (3.8) has an

error behavior between the fault estimate and the mean fault over a window n ∈ Z+, which is
upper-bounded by

∥∥∥∥∥
[
f̂a(k)− µn [fa]
f̂m(k)− µn [fm]

]∥∥∥∥∥
2
≤

√√√√√√1 +
∣∣∣µn [Ẽ(z)

] ∣∣∣
nVn

[
Ẽ(z)

] · (ẽ1 + ẽ2 + e3) , (3.9)

where the error terms in (3.9) are defined as:

ẽ1(k) =‖ÕnxM (k − n+ 1)− f�mn
(k)ÕnxE(k − n+ 1)‖2 + ‖ÕnxA(k − n+ 1) + T̃nfan(k)− fan(k)‖2

(3.10a)

+ ‖(T̃nf
�
mn

(k)− f�mn
(k)T̃n)‖2‖En(z(k))‖Ln∞(k)

ẽ2(k) =
√
nVn [fm] (k) · ‖Ẽ(z)‖Ln∞(k). (3.10b)

Note, that the third error term e3 remains identical to the definition in (3.6c). The signals xA
and xM represent the internal states of the systems with restricted state and input matrices
T̃n and Õn with inputs fa and fm respectively. The diagonal matrix f�mn

(k) represents the
diagonalized vector of the sampled signal vector fmn(k) as defined in the notational Section 1-
4. We note that each component of the error upper-bound (3.9) is dependent on the time
instance k, hence the dependency is deliberately dropped to avoid clutter.
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3-2 Pre-filter extension 19

The following Corollary provides an immediate consequence of Theorem 3-2.1, showing the
value of this extension.

Corollary 3-2.2 (Perfect dynamical decoupling). Let the assumptions made in Theorem 3-
2.1 hold, and the fault signals fm and fa be constant, it can be observed that the variance terms
in (3.10b) and (3.6c) are zero. For the dynamical error upper bound (3.10a) it is found that
from an arbitrary initial condition [xM (0), xE(0), xA(0)] there exists a finite time k = T ∈ Z+
in which we can achieve

ẽ1(k + T ) = 0, ∀k

which by induction implies that∥∥∥∥∥
[
f̂a(k + T )− fa
f̂m(k + T )− fm

]∥∥∥∥∥
2

= 0. ∀k

The finite convergence time T is limited by the FI-filter horizon length n and the convergence
dynamics of both the stable FD-filter (2.7) and pre-filter (3.7) given a discrete sampling period.

Given the information from Theorem 3-2.1 and Corollary 3-2.2, it is therefore found that the
extension provides means to allow convergence to the true faults in finite time given that these
are constant. The pre-filter design allows decoupling of the dynamical effect of the FD-filter
from the fault estimates in a constant fault scenario. If the fault signals are time-varying, the
same intuitions as in Remark 3-1.4 hold. As a result, an increase of the estimation horizon n
will push down the guaranteed performance bound and can, as a result, also push down the
estimation error. Although, it will affect the convergence time to the true fault. A decrease
in FD-filter dynamics will decrease the dynamical mismatch between the FD-filter residual
and the true fault and, as a result, the pre-filter augmented isolation filter will result in a
faster convergence of the fault. An addition to these intuitions given in the following remark.

Remark 3-2.3. Following the results from Theorem 3-2.1 and Remark 3-1.4, an extra remark
has to be placed on the dynamical effect of the pre-filter (3.7) on the signal E(z). Since the
known signal E(z) is now filtered with these dynamics, it is possible that the effect of these
dynamics deteriorate the performance bound of the estimation error (3.9) through a reduction
of Vn

[
Ẽ(z)

]
. This phenomenon is caused by the variance or energy of the filtered known

signal Vn
[
Ẽ(z)

]
, which, dependent on the dynamics chosen for the FD-filter and thus the

pre-filter, can reduce the variance of this signal. As a result of a decrease in Vn

[
Ẽ(z)

]
, the

performance bound increases and thus the estimation error could also increase.

Concluding the theorems and remarks on the pre-filter, this extension provides means to
decouple the dynamical effect of the FD-filter in constant fault scenarios. For time-varying
faults, the dynamical mismatch reappears. Note, that the dynamical error induced by a time-
varying fault remains identical. The dynamical error induced by a time-varying multiplicative
fault can not be guaranteed to be higher or lower for the non-linear isolation filter, as it
depends on the trajectory of the multiplicative fault and the dynamics chosen for the FD-
filter.
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20 Theoretical Framework

3-3 Time-varying detection extension

In this extension, a tractable FD-filter design approach is proposed that allows fault detection
for a class of linear time-varying systems with parameter-varying dynamics. We extend our
notion of a LTI DAE model (2.6) to the definition of a linear parameter-varying DAE model

Hk(q)[x] + Lk(q)[z] + Fk(q)[fa] + Fk(q)[E(z)fm] = 0. (3.11)

In this extension, it is assumed that the transfer matrix Hk(q) contains dynamics up to a
degree of one. The linear parameter-varying polynomial matrices can be decomposed as an
affine representation in the linear parameter as proposed in the following fact.

Fact 3-3.1. A linear parameter-varying matrix Gk(q) can be written as an affine represent-
ation in the linear parameters, as follows:

Gk(q) =G(0)
k (q) +

m∑
i=1

G
(i)
k (q)ρik ,

where ρik ∈ R, ∀i represents a set of measurable time-varying parameters.

The detectability conditions for the LTI case (2.4) can be extended to the linear time-varying
case {

d−1(q)Nk(q)Hk(q) = 0, ∀k
d−1(q)Nk(q)Fk(q) 6= 0.

(3.12)

The above conditions allow us to find a filter to decouple the time-varying behavior of the
unknown signal dynamics from the time-varying behavior of the system,

Mk := {z : Z→ Rnz | ∃x : Z→ Rnx : Hk(q)[x] + Lk(q)[z] = 0} , ∀k,

such that the following behavior holds:

Mk = {z : Z→ Rnz | d−1(q)Nk(q)Lk(q)[z] = 0}, ∀k. (3.13)

A method to transform the conditions (3.12) into non-complex scalar or vector equations is
provided in the following lemma. In this lemma, we make the assumption that the maximum
degree of matrix H(q) is equal to one, i.e., dH = 1. An extension of this method to higher
degrees can be done without loss of generality.

Lemma 3-3.2. Let Nk(q) be the solution to (3.12) for system (3.11) where

Hk(q) :=H0k
+H1q, Fk(q) :=

dF∑
i=0

Fiq
i,

Nk(q) :=
dN∑
i=0

Nki
qi.

Then the conditions in (3.12) can be rewritten as{
N̄kH̄k = 0, ∀k,
‖N̄kF̄k‖∞ 6= 0,

(3.14)
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3-3 Time-varying detection extension 21

where

N̄k :=
[
N0k

N1k
. . . NdNk

]
,

H̄k :=


H0k−1 H1 0 . . . 0

0 H0k−2 H1 0
...

... . . . . . . 0
0 . . . 0 H0k−dN−1 H1

 ,

F̄ :=


F0k−1 F1k−1 . . . FdFk−1

0 . . . 0

0 F0k−2 F1k−2 . . . FdFk−2
0

...
... . . . . . . . . . 0
0 . . . 0 F0k−dN−1 F1k−dN−1 . . . FdFk−dN−1

 ,

d̄ :=
[
d0 d1 . . . ddd

]
,

where dN , dF , dd represent the maximum degree of matrices N(q), F (q) and d(q) respectively.

Proof. It is easy to observe that the causal input-output relation (3.13) can be rewritten as

dd∑
i=0

diq
−irx =

dN +1∑
i=1

Nikq
−i[H0k

+H1q[x]],

=
dN +1∑
i=1

Nik(H0k−i
q−i[x] +H1q

−i+1[x]),

and the Right-hand side (RHS) is equivalent to

N̄kH̄k

( [
I q−1I . . . q−kI

]
[x]
)
.

The same line of reasoning applies for the polynomial matrix F̄k.

The following fact provides a sufficient condition for the existence of a LPV FD-filter (3.13).

Fact 3-3.3. There exists a solution Nk(q) to the conditions in (3.12) iff for all trajectories
of the measurable parameter variation the following condition is fulfilled

Rank
([
H̄k F̄k

])
> Rank

(
H̄k

)
. ∀k (3.15)

Fact 3-3.3 provides a necessary and sufficient solvability condition for the problem in (3.12).
The proof is omitted as it is a straightforward adaption from [21] (Fact 4.4). Using the results
from Lemma 3-3.2, the main theorem for the LPV fault detection filter can be proposed.

Theorem 3-3.4 (Linear parameter-varying fault detection). Let the matrices H̄k, L̄k and F̄k
be given for all past and present time instances k ∈ Z and let condition (3.15) hold. A LPV
fault detection filter of the form (3.13) can be found at every time instance k, satisfying the
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conditions (3.12), by solving the following convex Quadratic Programming (QP) optimization
problem: 

maxN̄k
N̄kF̄kj

,

s.t. ‖H̄ᵀk N̄
ᵀ
k ‖22 = 0,

‖N̄ᵀk ‖22 ≤ 1,
(3.16)

in which the subscript j selects the jth column from the matrix F̄ . An approximate analytical
solution exists for (3.16) and is given as

N̄∗k (γ) = 1
2 F̄
ᵀ
kj

(I + γH̄kH̄
ᵀ
k )−1 (3.17)

where (3.17) approaches the true optimum of (3.16) for limγ→∞ N̄
∗
k (γ).

The near-optimal time-varying filter N̄∗k (γ) is the solution to the strongly convex dual problem
for which weak duality holds. The size of the duality gap is governed by the magnitude of
the Lagrange multiplier γ.

Corollary 3-3.5. Practical limitations of the minimal state-space realization for LPV filters
as proposed in [30] require us to apply the filter in a LPV-IO representation such that the
LPV mapping from z 7→ r as proposed in (3.13) can be practically implemented as

r(k) =N̄kL̄k
[
z(k − 1) z(k − 2) . . . z(k − dN )

]ᵀ
−

dd∑
i=0

dir(k − i)

where the matrix L̄k is defined as

L̄ :=


L0k−1 L1k−1 . . . LdFk−1

0 . . . 0

0 L0k−2 L1k−2 . . . LdLk−2
0

...
... . . . . . . . . . 0
0 . . . 0 L0k−dN−1 L1k−dN−1 . . . LdLk−dN−1



3-4 Discussion on the theoretical framework

In this chapter, the main foundation of the novel contributions of this thesis research has been
provided. The combination of the developed methods provides means for a fault detection
and isolation filter which can estimate the additive fault and multiplicative fault for a class
of LTI and LPV models.

In the first theoretical contribution, the non-linear isolation filter has been proposed with
a guaranteed performance bound. This filter is able to, combined with the nullspace compu-
tation based FD-filter (proposed in [21]), estimate the additive and multiplicative faults using
least-squares regression. The guaranteed performance bound shows the main strengths and
weaknesses of the filter and, above all, methods to increase or reduce the estimation error by
adjusting the performance bound.
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3-4 Discussion on the theoretical framework 23

In the second theoretical contribution, an extension was made for the non-linear isolation
filter. In the first contribution it was given that the dynamics of the FD-filter could deteri-
orate the FI-filter results if the dynamical content was too high. By a novel extension, called
the pre-filter, this dynamical content was taken into account in the least-squares regression
problem. As a result, the estimation error is guaranteed to converge in finite-time given that
the fault signals acting on the system are of a constant nature.

In the third theoretical contribution, the used FD-filter method was extended to support
LPV systems instead of only LTI systems. A QP optimization problem was proposed to
allow decoupling of the unknown disturbances from the fault. This optimization problem
was shown to be analytically solvable by the use of duality theorem. As a result, a filter is
developed which allows decoupling of the LPV nature of a system from the fault-sensitive
residual without the necessity of a LP or QP solver.
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Chapter 4

An Application to the Lateral Control
of Autonomous Vehicles

In this chapter, the lateral model of the autonomous vehicle in lateral motion is derived. The
lateral dynamics of this vehicle, modeled as a two degree of freedom single track model with
linearized lane error dynamics [31], will be inserted in the main framework of the theorems
discussed in Chapter 3. In the following section, following a set of boundary conditions and
simulation parameters, the theorems from the main results will be used on the linearized
vehicle model to show that our objective has been fulfilled. After analyzing these linear
results, a sensitivity analysis is applied for the FD-filter to investigate the robustness of the
method in a linearized scenario.

4-1 Boundary conditions and simulation parameters

Before modeling the lateral motion of the vehicle, a few preliminary boundary conditions
have to be set that allow the use of the single-track model and the theorems developed in
Chapter 3. The case study involves an autonomous vehicle controlled by lane-keeping or path-
following controller in highway scenarios. It is assumed that the vehicle is always driving at
an approximately constant longitudinal velocity, the velocities considered for the longitudinal
velocity Vx satisfy

70km · h−1 ≤ Vx ≤ 120km · h−1. (4.1)

Due to the approximately constant longitudinal velocity, the longitudinal acceleration can
also be assumed approximately zero. Additionally the lateral acceleration is bounded by the
sufficiently large road radii and bank angles of the public highways in the Netherlands [32],
such that for the longitudinal and lateral accelerations ax and ay we can reasonably assume
that

ax ≈0
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26 An Application to the Lateral Control of Autonomous Vehicles

ay ≤3m · s−2

Given these boundary conditions, the use of a single-track model is allowed (given the as-
sumptions from the linear model in Appendix B [33]). The model parameters for the vehicle
used in this chapter and Chapter 5 are based on a 2010 model Toyota Prius and are shown
in Table 4-1. The model parameters relate to the model as described in Appendix B. The
parameters in this table are identified by TNO, no additional identification cycle for the
parameters is applied in this thesis.

Parameter Value Unit

lf 1.108 [m]
lr 1.5920 [m]
m 1625 [kg]
Iz 2865.61 [kg ·m2]
Cf −1.17 · 105 [N · rad−1]
Cr −1.43 · 105 [N · rad−1]
g 9.81 [m · s−2]
h 0.01 [s]

Table 4-1: Model parameters used for the simulations.
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Figure 4-1: Fast Fourier transform of the controller input signal δset at 70km · h−1, magnitude
is given in radians.

Note that the symbol h represents the discrete sampling interval which is based on the max-
imal sampling frequency for which measurements will be available on the experimental plat-
form. For the non-linear isolation filter and pre-filter extensions the fault estimates rely on
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4-2 The linear vehicle model 27

a sufficient variance of the input signal δset (comparable to the notion of persistence of ex-
citation [34]). A low or even zero variance of the signal δset will result in an unbounded
estimation bound and error as can be seen in Theorem 3-1.3 and Theorem 3-2.1. To support
this relation, an assumption will be made on a “natural” variance of the input signal from the
controller, i.e., we assume that the vehicle is not always perfectly tracking the lane. This vari-
ance is primarily caused by exogenous disturbances, camera inaccuracies and system delays.
The variance is selected, based on a set of data collected by TNO, at the minimal velocity
of 70km ·h−1. A fast Fourier transfom of a subset of this data is shown in Figure 4-1. The
data shows a dominating frequency of 0.3Hz with a magnitude of approximately 2.3 · 10−3rad.
Based on these observations, the lane-keeping input signal is simulated as

δset = 2.3 · 10−3 sin(0.3 · 2π · t) (4.2)
This signal will be used as an input signal to the linear system in the simulation cases.

4-2 The linear vehicle model

A lateral single-track vehicle model captures the most dominant lateral dynamics of a vehicle
in lateral motion under a set of assumptions [33](a part of these assumptions is thoroughly
covered in Appendix B, the other part is covered by the proposed boundary conditions). A
schematic representation of the model can be found in Figure 4-2.

δ

lf

lr

Vx

−Vy

κ = 1
R

ye

ψe

−→
V

−β
ψ̇

αfFy,f

Fx,f

αr

Fx,r
Fy,r Fb

A

B

A B

φ

Figure 4-2: Schematic diagram of the 2-DOF bicycle model with lane error dynamics.

The lateral dynamics of a vehicle can be modeled using a two degree of freedom single-track
bicycle model where the measurement of the yaw-rate is available from the vehicle’s sensors.
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Subsequently, for the purpose of autonomous lane-keeping, the model can be augmented
with the lateral distance error and heading error states which are measured by the on-board
camera [8]. The curvature of the road is imposed as an uncontrollable input and is thus
handled as an exogenous disturbance. Another exogenous disturbance is the bank angle of
the road, which is the angle of the road over cross-section A − B as shown in Figure 4-2.
Finally, the fault model is introduced in the main model showing that the transfer function
from both faults to the output is identical, thus leading to the conclusion of undetectability
or unobservability as was introduced in the problem statement in Chapter 2. Following
the derivations in Appendix B, the state-space model of the linear single-track model with
augmented faults and disturbances can be written as



V̇y

ψ̈

ẏe

ψ̇e


︸ ︷︷ ︸
Ẋ

=



Cf +Cr

mVx

Cf lf−Crlr
mVx

− Vx 0 0
lfCf−lrCr

VxIz

l2fCf +l2rCr

VxIz
0 0

−1 0 0 Vx

0 −1 0 0


︸ ︷︷ ︸

A



Vy

ψ̇

ye

ψe


︸ ︷︷ ︸
X

+



−Cf

m

−lfCf

Iz

0

0


︸ ︷︷ ︸

B

(fmδset + fa) +



0 g

0 0

0 0

Vx 0


︸ ︷︷ ︸

Bd

 κ

sin(φ)


︸ ︷︷ ︸

d

,

(4.3a)

y =


0 1 0 0

0 0 1 0

0 0 0 1


︸ ︷︷ ︸

C



Vy

ψ̇

ye

ψe


︸ ︷︷ ︸
X

. (4.3b)

This vehicle model is an LTI state-space model for a constant longitudinal velocity Vx. As
proposed in [33], given that the longitudinal velocity is slowly time-varying, it can also be
used as a LPV state-space model.

4-3 Implementation of the developed methods

This section shows the systematic approach of implementing the main results of this research
on the case study. First, the LTI FD-filter is designed. Subsequently, the non-linear isolation
algorithm is applied and simulation results are presented together with a discussion. Following
these results, the pre-filter extension is added to show the striking effect it has on the isolation
performance. Finally, the FD-filter is extended to a linear parameter-varying scenario and
simulations results are provided to show the performance of the LPV filter and the isolation
techniques combined.
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4-3-1 Application of the fault detection filter

First, the system (4.3) is adjusted to rewrite it as a DAE set of equations (2.1). As a result,
the state-space equations from (4.3) are rewritten as

V̇y

ψ̈

ẏe

ψ̇e


︸ ︷︷ ︸
Ẋ

=



Cf +Cr

mVx

Cf lf−Crlr
mVx

− Vx 0 0
lfCf−lrCr

VxIz

l2fCf +l2rCr

VxIz
0 0

−1 0 0 Vx

0 −1 0 0


︸ ︷︷ ︸

A



Vy

ψ̇

ye

ψe


︸ ︷︷ ︸
X

+



−Cf

m

−lfCf

Iz

0

0


︸ ︷︷ ︸

B

δset,

+



−Cf

m

−lfCf

Iz

0

0


︸ ︷︷ ︸

Bf

((fm − 1)δset + fa)︸ ︷︷ ︸
f

+



0 g

0 0

0 0

Vx 0


︸ ︷︷ ︸

Bd

 κ

sin(φ)


︸ ︷︷ ︸

d

, (4.4a)

y =


0 1 0 0

0 0 1 0

0 0 0 1


︸ ︷︷ ︸

C



Vy

ψ̇

ye

ψe


︸ ︷︷ ︸
X

. (4.4b)

Notice that the above state-space description is different from (4.3) as the total effect of the
faults is now written as an additive fault. Furthermore, it is worth noting that the system
is described in continuous-time, whereas the main results are fitted to work with discrete-
time systems. It is therefore assumed that the system related signals X, δset, f and d are
piecewise constant signals, i.e., constant within the discrete sampling interval h. Using the
exact solution for a continuous time LTI system, the model can be transformed to discrete
time

X(k + 1) = eAh︸︷︷︸
A

X(k) +
∫ h

0
eAsBds︸ ︷︷ ︸
B

δset(k) +
∫ h

0
eAsBfds︸ ︷︷ ︸
Bf

f(k) +
∫ h

0
eAsBdds︸ ︷︷ ︸
Bd

d(k), (4.5a)

y(k) =Cx(k). (4.5b)

Substitution of the discrete system matrices (4.5) in (2.1) yields the following DAE

−qI +A Bd
C 0


︸ ︷︷ ︸

H(q)


X

κ

sin(φ)

+

 0 B

−I 0


︸ ︷︷ ︸

L



ψ̇

ye

ψe

δset


+

Bf
0


︸ ︷︷ ︸
F

[fa] +

Bf
0


︸ ︷︷ ︸
F

[(fm − 1)δset] = 0. (4.6)
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Following (4.6) and the condition posed in (2.5), an FD-filter can be found which rejects the
presence of the unmeasurable states in x and the disturbances in d and detects the faults fm
and fa if and only if

Rank


−qI +A Bd Bf

C 0 0


 > Rank


−qI +A Bd

C 0


 . (4.7)

A sampling interval of h = 0.01s was already chosen earlier as it is the same sampling time of
the required measurements in the experimental vehicle in Chapter 5. By numerically checking
the above condition (4.7) for a subset of velocities 70km · h−1 ≤ Vx ≤ 120km ·h−1, it can be
verified that the condition holds. After checking the conditions with intervals of 0.01km · h−1

from the minimum velocity up to the maximum velocity, it is assumed that the detectibility
condition holds for all velocities within the boundary condition. Therefore, a solution N(q)
for a fault detection filter d−1(q)N(q)L(q) (2.6) can be found such that the conditions in (2.4)
are fulfilled. In Chapter 3, an additonional condition has been imposed for synthesis of the
fault detection filter. In Lemma 2-1.2, a methodology is described which proposes a linear
program to find an optmal solution satisfying (2.4), while the DC-gain of the fault transfer
function (2.7) is equal to one. A solution to this problem is found by solving the following
Linear Programming (LP) feasibility problem:N̄H̄ = 0,∑

N̄F̄∑
d̄

= 1,
(4.8)

where the matrices are polynomial matrices composed as

N̄ :=
[
N0 N1 . . . NdN

]
,

H̄ :=


H0 H1 . . . HdH

0 . . . 0

0 H0 H1 . . . HdH
0

...
... . . . . . . . . . 0
0 . . . 0 H0 H1 . . . HdH

 ,

F̄ :=


F0 F1 . . . FdF

0 . . . 0

0 F0 F1 . . . FdF
0

...
... . . . . . . . . . 0
0 . . . 0 F0 F1 . . . FdF

 ,

where dN , dH and dF are the degrees of the polynomial matrices N(q), H(q) and F (q)
respectively. For the case study it holds that dH = 1, dF = 0. This feasibility problem (4.8)
can be solved numerically in an efficient manner using the GUROBI solver [35]. The input-
output relation of the filter is thus

d−1(q)N(q)L(q)
[
ψ̇ ye ψe δset

]ᵀ
=r, (4.9)

=− d−1(q)N(q)F (q)[(fm − 1)δset + fa], (4.10)

showing that a relation is found from the known inputs to the unknown and desired output
(the residual r). Two variables remain to be chosen: the order of the filter N(q) and the
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stable polynomial d(q). It is decided to find a total FD-filter which is stable and strictly
proper, hence deg(d(q))>deg(N(q)L). Since the highest relative degree of the output to a
disturbance or fault (in this case the bank angle) is two we need at least a filter with dN = 2
and thus a third-order stable transfer function d(q) is sufficient.
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Figure 4-3: The disturbance rejecting and fault detecting performance of the FD-filter with poles
at q = 0.9048.

For the first simulations, showing the detection peformance, the poles of the third-order trans-
fer function d(q) are placed at q = 0.9048 (a relatively slow pole to emphasize the dynamical
content of the FD-filter). It is debatable whether or not placing three poles on the same
location is beneficial for this application or not, due to the algebraic multiplicity. It was how-
ever outside the scope of this thesis to research the optimal pole placement for this specific
application. Should there be a specifically desired convergence behavior in terms of damping
ratio and settling time, one could approach a second-order transfer function and place the
remainder of the poles further towards the origin.

The filter is implemented by converting the optimized FD-filter into a minimal state-space
realization and by initializing it at x(0) = 0. In practice. zero initial conditions might not
always correspond to the true state of the system. Thus, when initializing the filter, there
might be a false positive or false negative fault as long as the initial condition has not dimin-
ished. Rejection of the effect of false initial conditions has not been taken into account in
this thesis work. The effect of these initial conditions are only found at initialisation of the
filter, as their effects diminish due to the asymptotic convergence rate of the stable FD-filter.
Figure 4-3 shows the first result for a third-order fault detection filter to approach this second
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32 An Application to the Lateral Control of Autonomous Vehicles

order convergence behavior. At t = 15s two disturbances are injected, after which an additive
fault fa = 0.1deg is injected at t = 30s, subsequently at t = 50s a multiplicative fault fm = 0.9
is injected which oscillates due to a sinusoidal input signal δset (4.2). Following these results,
the conclusion can be drawn that the effect of the disturbances is rejected. Furthermore, the
combined fault f is detected and tracked by the residual r, which presents itself as a filtered
version of f . Now that a clear methodology for FD-filter synthesis has been introduced, the
developed methods can be applied on the case study and subsequently analyzed.

4-3-2 Application of the non-linear isolation filter

In Section 3-1, the non-linear isolation filter is introduced, with the purpose to separate the
unknown faults fm and fa from the known residual r. The residual is an output from (4.9) and
is related to the fault as in (4.10). This subsection shows how to implement the developed
methods on our case study. The results also show the theoretical shortcomings that are
resolved in the following subsection. Using the regression operator from Definiton 3-1.1, in
combination with the known input δset and the residual from FD-filter (4.9), the non-linear
isolation filter, estimating the fault signals fm and fa, can be defined as[

f̂a
f̂m

]
= Φn[δset, r](k), (4.11)

as defined by the regression operator from Definition 3-1.1. Following the results from The-
orem 3-1.3, the estimation error of (4.11) is guaranteed to be upper-bounded by∥∥∥∥∥

[
f̂a − µn [fa]
f̂m − µn [fm]

]∥∥∥∥∥
2︸ ︷︷ ︸

θe

≤
√

1 + |µn [δset] |
nVn [δset]

·
(
e1 + e2 + e3

)
︸ ︷︷ ︸

Θe

, (4.12a)

e1 =‖Tn
(
fmδset + fa

)
+ OnxF (k − n+ 1)‖Ln2(k),

e2 =
√
nVn [fm] (k) · ‖δset‖Ln∞(k),

e3 =
√
nVn [fa] (k),

where Tn and On are a result of the restricted state and input transfer function from Defin-
ition 3-1.2 for which the state space matrices are provided by the minimal realization of the
filter (4.9). As a result, the FD-filter and FI-filter combination is found, see Figure 4-4.

Lateral dynamics
Internal state: X FD-Filter FI-Filter

fa

d

δset

fm

y r f̂a

f̂m

Figure 4-4: A visual representation of the FD-filter and FI-filter in the case study.

As proposed in Section 3-1 in Remark 3-1.4, the estimation error can be pushed down by
several sources of influence (for example an increased variance of the known signals), in the
following simulations these sources of influence are exploited. It is shown how these variations
affect the estimation error θe and its bound Θe as defined in (4.12a).

C.J. van der Ploeg Master of Science Thesis



4-3 Implementation of the developed methods 33

Case 1: The horizon of the FI-filter

The estimation horizon n of the non-linear isolation filter plays a dominant role in the upper-
bound of the estimation error as shown in (4.12). Not only does it affect the magnitude of the
upper bound as a constant, it also affects the variance and mean terms because it defines the
window over which the mean or variance is calculated. To find the effect of the horizon on
the estimation error and its upper bound, simulations have been applied with constant faults
fm = 0.5 and fa = 0.1deg. The input signal δset is excited by the signal described in (4.2)
at a velocity of Vx = 70km ·h−1. The disturbances are applied identically to Figure 4-3, but
will not be seen in the estimation error as they are already decoupled after the FD-filter. For
an estimation horizon of n = 10, n = 100 and n = 500 the simulation results are shown in
Figure 4-5.
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Figure 4-5: The estimation error θe and the performance bound Θe (as given in (4.12a)) of the
FI-filter for n = 10, n = 100 and n = 500 for a fixed pole location of q = 0.9048.

Not only in these simulations, but also in the other simulations in this subsection, the effect
of the initial condition of the isolation filter is not shown. For n = 10 it can be seen that
the determined upper bound touches the 2-norm of the estimation error at some points in
the simulation. As a result, pushing down the upper-bound should also push down those
specific points of the estimation error. The oscillatory behavior of the estimation error and
its upper-bound is clearly caused by the sinusoidal input δset combined with the fact that
we assume in the first theorem (Theorem 3-1.3) that there are no dynamics acting between
the true fault and the residual. For n = 100 (also shown in Figure 4-5), the effect of an
increasing horizon becomes quite clear: the upper-bound is pushed down further and hence
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34 An Application to the Lateral Control of Autonomous Vehicles

the estimation error and its mean are pushed down further. The bound shows that there
is still room for improving the estimation error, hence the horizon n is further increased to
n = 500.
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Figure 4-6: Separate fault estimation errors of the FI-filter for n = 10, n = 100 and n = 500
for a fixed pole location of q = 0.9048.

In this final simulation it is depicted (in Figure 4-5) that the upper-bound is no longer close
to the estimation error. The variance of the estimation error and its upper bound has dimin-
ished and a near steady-state estimation error seems to have been reached, the minima of the
estimation error have significantly increased as a result of the averaging effect of the filter.
Pushing the horizon even further will decrease the estimation error further but will also de-
gradate the dynamical performance of the filter as the convergence time grows proportionally
with the estimation horizon n.

The separate estimation results are shown in Figure 4-6. In these results it is found that
for a low estimation horizon, the estimations of the faults show an asymptotic behavior due
to the dynamics of the FD-filter. Furthermore, it shows that this asymptotic behavior of the
estimation error is reduced with an increasing estimation horizon. For n = 500, the estim-
ation error of the additive fault converges to the true additive fault. However, for the same
horizon n = 500, the multiplicative fault has an offset with respect to the true fm. For larger
n, this will reduce to the true multiplicative fault, although it will drastically affect transient
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behavior of the filter. It can be concluded from these results that the performance of the
filter is not satisfactory, it requires high estimation horizons to find a steady-state fault as a
result. This conclusion is drawn, without even having had a look at the behavior of the filter
for time-varying faults. The following subsection provides simulation results of the filter by
adjusting the poles of the FD-filter and the transfer function from fault to residual (equivalent
to (2.7)).

Case 2: The dynamics of the FD-filter

As mentioned in Remark 3-1.4, the dynamical content of the transfer function describing
the mapping f 7→ r has a large influence on the estimation error. This is caused by the
assumption that the relation between the residual and the fault is static while in reality this
is a dynamical relationship. By placing the poles of transfer function d(q) further towards
the origin, the significance of this dynamical mismatch can be reduced. The format of the
transfer function d(q) is simply a third-order transfer functions with three poles at the same
location. As a benchmark, the simulations are started in the same scenario as in Figure 4-5,
and the results are shown in Figure 4-7.
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Figure 4-7: The estimation error θe and the performance bound Θe (as given in (4.12a)) of the
FI-filter for q = 0.9048, q = 0.6065 and q = 0.3679 and a fixed horizon of n = 10.

The first step towards the origin is made with a triple pole location at q = 0.6065. The
variance and mean of the upper-bound exponentially decrease with respect to q = 9.9048.
The second and final step towards the unit circle is made with q = 0.3679 where the effect
of a smaller pole diminishes. The estimation error marginally decreases, which can again
be explained by the logarithmic decrease in upper-bound and estimation error. Reducing
the polepairs further towards the origin will eventually diminish the estimation error and its
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36 An Application to the Lateral Control of Autonomous Vehicles

upper-bound, although it will impose a sensitivity trade-off as the filter will become more
sensitive to sensor noise and uncertainties in the model and parameters.

The separate estimation results are shown in Figure 4-8. In these results it is found that, by
placing the poles further towards the origin, it results in a scaled down estimation error. The
asymptotic behavior of the estimation error remains, though the peak to peak amplitude is
pushed down. By placing the poles on the origin, the estimation error can be minimized for
this degree of freedom (essentially making a deadbeat filter). A practical use of this setting
is however absent, as all noise and disturbances in the system will be amplified. Resulting in
large sensitivity problems. As mentioned in Chapter 3, the augmentation of the pre-filter is
designed to partially overcome this problem. This result is discussed in the next section.

30 31 32 33 34 35 36 37 38 39 40

  Time [s]

-2

-1

0

1

2

3

4

5
10-3   Additive fault estimation

Ground truth
n=10, q=0.9048
n=10, q=0.6065
n=10, q=0.3679

30 31 32 33 34 35 36 37 38 39 40

  Time [s]

-0.5

0

0.5

1

1.5
 Multiplicative fault estimation

Figure 4-8: Separate fault estimation errors of the FI-filter for q = 0.9048, q = 0.6065 and
q = 0.3679 and a fixed horizon of n = 10.

4-3-3 Application of the pre-filter extension

In Section 3-2, an extension to the non-linear isolation filter is introduced which deals with
one of the big sources of error: the dynamical content of the mapping f 7→ r. By exploiting
the known relationship between the true fault and the residual, the input is pre-filtered to
adjust itself to the dynamical behavior of the residual. As a result, the estimation error is
only non-zero when the fault is time-varying. Seeing that we have made the assumption that
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the faults appear in the real system as slowly time-varying signals, this method should show a
definite improvement on the estimation error of the faults. The known input signal is filtered
with the pre-filter (2.7) such that

δ̃set = −N(q)F
d(q) [δset],

where δ̃set is the case study equivalent of Ẽ(z) from (3.7). The pre-filtered signal is sub-
sequently substituted in the regression operator (3.8) such that we find the non-linear isolation
filter with augmented pre-filter, resulting in a new estimation result of the fault parameters[

f̂a
f̂m

]
= Φn[δ̃set, r](k). (4.13)

As for the non-linear isolation filter, the pre-filter augmented non-linear isolation filter has
the following guaranteed upper-bound (3.9):

∥∥∥∥∥
[
f̂a(k)− µn [fa]
f̂m(k)− µn [fm]

]∥∥∥∥∥
2︸ ︷︷ ︸

θ̃e

≤

√√√√√√1 +
∣∣∣µn [δ̃set] ∣∣∣

nVn

[
δ̃set

] · (ẽ1 + ẽ2 + e3)

︸ ︷︷ ︸
Θ̃e

, (4.14)

ẽ1(k) =‖OnXM (k − n+ 1)− f�mn
(k)OnXE(k − n+ 1)‖2 (4.15)

+ ‖OnXA(k − n+ 1) + Tnfan(k)− fan(k)‖2 (4.16)
+ ‖(Tnf

�
mn

(k)− f�mn
(k)Tn)‖2‖δ̃set‖Ln∞(k),

ẽ2(k) =
√
nVn [fm] (k) · ‖δ̃set‖Ln∞(k),

e3(k) =
√
nVn [fa] (k).

Following the observations in Corollary 3-2.2, we have thus created a filter which perfectly
decouples the additive and multiplicative faults from the dynamical effect of the FD-filter.
The resulting filter structure is shown in Figure 4-9. As for the non-linear isolation filter,
simulations are performed to find ways of improving the performance for the pre-filter aug-
mented non-linear isolation filter. A variation of the estimation horizon and pole location will
show the tuning variables and their effect on the total estimation error.

Lateral dynamics
Internal state: X FD-Filter FI-Filter

Pre-Filter

fa

d

δset

fm

y

δ̃set

r f̂a

f̂m

Figure 4-9: A visual representation of the FD-filter and FI-filter with augmented Pre-Filter in
the case study.
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Case 1: The horizon of the FI-filter

As for the non-linear isolation filter, the behavior of the pre-filter augmented isolation filter is
simulated for different estimation horizons n. As a result, it is expected that there is only an
estimation error when a change in fault is initiated. The time for which this estimation error
is present is dependent on the estimation horizon n and the pole location of filter d(q). This
effect has been elaborated upon in Corollary 3-2.2. Figure 4-10 shows the simulation results
for estimation horizons n ∈ {10, 100, 500}. The faults are initialized at the same condition
as in the previous subsections fm = 0.5 and fa = 0.1deg, but are increased to fm = 0.6 at
t = 40s and fa = 0.12deg at t = 50s during the simulation, to demonstrate the effect of a
time-varying fault on the estimation error.
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Figure 4-10: The estimation error θ̃e and the performance bound Θ̃e (as given in (4.14)) of the
FI-filter with augmented pre-filter for n = 10, n = 100 and n = 500 for a fixed pole location of
q = 0.9048.

For all estimation horizons, it becomes clear that for a constant fault the error diminished
close to zero apart from a small numerical error. For all investigated estimation horizons, the
upper-bound again provides a tight fit on the estimation error, hence it can be seen that from
n = 10 to n = 100 and n = 500 the maximum estimation error keeps decreasing. However,
in contrast to previous simulations (where the time-varying faults were not investigated), the
estimation horizon directly affects the convergence time of the fault estimation as well. This
effect can be observed in Figure 4-10. For an estimation horizon of n = 500 it takes the fault
estimation much longer to converge (up to 6 − 7s) in comparison to an estimation horizon
of n = 10 which converges in roughly 2s and for which the convergence time is primarily
governed by the pre-filter and residual dynamics.
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Figure 4-11: Separate fault estimation errors of the FI-filter with augmented pre-filter for n =
10, n = 100 and n = 500 for a fixed pole location of q = 0.9048.

The separate estimation results are shown in Figure 4-11. In these results it is found that
the pre-filter has a striking effect with respect to the previous results. For n = 10 the faults
converge within 1 to 2s after which the fault estimate remains settled. For n = 500 the
estimation converges only after 5s. It becomes clear from these results a coupling is acting
between the additive and multiplicative fault. The coupling effect results in so-called “false
positives” for the detection of either the additive or multiplicative fault, whenever one or
the other change over time. The effect of this coupling can be reduced by increasing the
estimation horizon. Although, this will affect the convergence rate for time-varying faults
and thus it will also increase the time for which the coupling will occur. The next subsection
shows the effect of adjusting the polepairs of the FD-fiter and hence also of the pre-filter.

Case 2: The dynamics of the FD-filter

In Case 1, we came to the conclusion that for q = 0.9048 the convergence time to the true
fault is around 2s due to the dynamics of the filter. In the following case the poles are placed
further towards the origin to observe the effect on the convergence time and magnitude of the
estimation error. The simulation results can be found in Figure 4-12 where the simulation
case is the same as for the previous case in terms of time-varying faults.
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Figure 4-12: The estimation error θ̃e and the performance bound Θ̃e (as given in (4.14)) of the
FI-filter with augmented pre-filter for q = 0.9048, q = 0.6065 and q = 0.3679 and a fixed horizon
of n = 10.

For q = 0.6065 the estimation time decreases from 3s to 0.8s and the estimation error and its
bound decrease with it. After shifting the poles to q = 0.3679, it can again be seen that the
effect of placing the poles towards the origin shows an asymptotic behavior. The effect on the
convergence time and magnitude exponentially diminishes. Placing the poles further towards
the origin will again impose a sensitivity problem for which the filter will become less robust
to noise and potentially unmodeled disturbances. Following the performance of the pre-filter
with respect to the non-linear isolation filter the conclusion can be drawn that an estimation
method has been developed which can reject unknown disturbances while perfectly estimating
the fault parameters fm and fa. Furthermore, the guaranteed upper-bound provides a tool
to find ways to push down the estimation error. Additionally, it can provide a tool for active
fault isolation and fault tolerant control will be discussed in Chapter 6.

The separate estimation results are shown in Figure 4-13. In this final set of results, it
is found that a reduction of the polepairs towards zero results, as expected, in faster conver-
gence times. First, it can be seen that the convergence time exponentially decreases. The
effects are large from q = 0.9048 to q = 0.6065, reducing the convergence time from 0.75s to
0.25s. Placing the poles to q = 0.3679 from q = 0.6065 has a reduced effect. Additonally, the
trade-off that has previously been proposed still holds, a reduction towards the origin will
result in high sensitivity problems. However, in these results an additional effect of the re-
duction of the polepairs becomes apparent. As the polepairs decrease towards the origin, the
coupling effect during a change in multiplicative fault decreases. However, the coupling effect
of a time-varying additive fault increases on the multiplicative fault. This could be explained
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by the fact that the faults are implemented at the point where δset is highly time-varying. As
a result of this phenomenon a high time-variation of the fault has a larger chance of being
captured in the multiplicative fault (i.e., the cross-correlation between the input δset and the
change in fault of fa is high).
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Figure 4-13: Separate fault estimation errors of the FI-filter with augmented pre-filter for q =
0.9048, q = 0.6065 and q = 0.3679 and a fixed horizon of n = 10.

4-3-4 Conversion to a linear parameter-varying filter

During highway lane-keeping it can never be guaranteed that the vehicle is driving at the
same constant velocity, even though our developed filter only guarantees performance on the
velocity at which it is synthesized. For this reason, the LPV FD-filter is developed in the main
theorems. In Section 3-3 a LPV FD-filter synthesis method is given. Throughout this section,
the methodology of actually applying such a filter on a real system and how the conditions
of existence can be checked is provided. The section will end with simulations showing the
performance with respect to the LTI FD-filter. The LTI system (4.4) is recast to a LPV
system given that the longitudinal velocity is time-varying. When keeping the longitudinal
velocity Vx as a linear acting variable, the system can be discretized as a function of Vx using
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the notion of complete discretization analogous to the approach in [36]:

X(k + 1) = eA(Vx)h︸ ︷︷ ︸
Ak

X(k) +
∫ h

0
eA(Vx)sBds︸ ︷︷ ︸
Bk

δset(k) +
∫ h

0
eA(Vx)sBfds︸ ︷︷ ︸
Bfk

f(k) +
∫ h

0
eA(Vx)sBd(Vx)ds︸ ︷︷ ︸

Bdk

d(k),

y(k) =Cx(k).

As in (4.6) the discrete time-varying state-space representation (Ak, [Bk Bdk
], C,D) can be

used in the LPV DAE equation format (3.11)

[
−qI +Ak Bdk

C 0

]
︸ ︷︷ ︸

Hk(q)

 x
κ

sin(φ)

+
[

0 Bk
−I 0

]
︸ ︷︷ ︸

Lk


ψ̇
ye
ψe
δset

+
[
Bfk

0

]
︸ ︷︷ ︸
Fk

[fa] +
[
Bfk

0

]
︸ ︷︷ ︸
Fk

[(fm − 1)δset] = 0.

(4.17)

Following the condition (3.15), a LPV filter can be found for the system if and only if

Rank
([
H̄k F̄k

])
> Rank

(
H̄k

)
, ∀k.

This condition implies that for all possible feasible trajectories of the longitudinal velocity
this condition should be checked. A question not solved in the theorems, is the tractibility of
finding such a solution for the system in the case study. Using a symbolic solver, the state-
space matrices can be discretized while keeping the longitudinal velocity as a variable. By
defining for a third-order filter three variables ρi, i ∈ {1, 2, 3}, each representing a longitudinal
velocity Vx at a different time instance (i.e., ρ1 = Vx(k− 1), ρ2 = Vx(k− 2), ρ3 = Vx(k− 3)),
the rank condition can be rewritten as

Rank


H0(ρ1) H1 0 0 F0(ρ1) 0 0

0 H0(ρ2) H1 0 0 F0(ρ2) 0
0 0 H0(ρ3) H1 0 0 F0(ρ3)




> Rank


H0(ρ1) H1 0 0

0 H0(ρ2) H1 0
0 0 H0(ρ3) H1


 , ∀ρ1, ρ2, ρ3.

Using this condition, it is symbolically validated that for any non-zero combination ρ1, ρ2, ρ3 6=
0, a solution to the LPV FD-filter exists for any positive real longitudinal velocity trajectory
of the single-track model. As a result, the optimal filter can be found by the equation (3.17)
and is written as

N̄∗k (γ) = 1
2 F̄
ᵀ
kj

(I + γH̄kH̄
ᵀ
k )−1.

The scheduling parameter γ represents the Lagrange multiplier and governs the duality gap of
the filter with respect to the true optimal disturbance decoupling filter as has been discussed
in Theorem 3-3.4. The variable j selects a row from the fault polynomial matrix. In a
discrete-time scenario, it does not matter which row is chosen as long as it affects a part of
the polynomial present in the final representation Nk(q)Fk. Given that the relative degree of
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the output to the fault is equal to 1 and the deg(Nk(q)Lk) = 2, this implies that only the
first two rows of Fk play a role in the final transfer function Nk(q)Fk. Therefore, it can be
guaranteed, that this will result in a first-order transfer function. The last step remaining
for a fully functioning LPV filter for the case study, is multiplication by the inverse of the
DC-gain of the fault transfer function as this will guarantee that the residual always converges
to the magnitude of the true fault. As a result, the total implementation of the LPV filter
from input to output can be written as

Nk(q)Lk(q)
d(q)

−d(1)
Nk(1)Fk(1)

[
y δset

]ᵀ
=r, (4.18)

=Nk(q)Fk(q)
d(q)

d(1)
Nk(1)Fk(1) [(fm − 1)δset + fa]. (4.19)
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Figure 4-14: Effect on the variance accounted for of the LPV filter compared to an LTI filter for
varying Lagrange multipliers γ.

To provide an intuition behind the effect of the magnitude of the Lagrange multiplier on the
quality of the FD-filter, simulations have been performed over a range of numerically feas-
ibile Lagrange multipliers for which the results are shown in Figure 4-14. As a performance
measure, the Variance Accounted For (VAF) [37] is chosen in simulation conditions identical
to Subsection 4-3-1. It can be seen that for γ > 8 · 106 the LPV filter approaches the LTI
result. At γ = 107 it is found that VAF = 99.98%. Hence, throughout the remainder of
the simulations, this value for γ is chosen. Choosing a higher value will further increase the
VAF (up to 100% for the multiplier going to infinity) but may also face numerical limitations.
Now, a similar simulation study can be done as in Figure 4-3 but with a slowly time-varying
longitudinal velocity Vx. Identical simulation conditions are chosen for faults and disturb-
ances as in Subsection 4-3-3 but the longitudinal velocity is given a slowly varying sinusoidal
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behavior. Figure 4-15 provides the results for this simulation; note that the disturbances are
identical to Figure 4-3 and are hence omitted to avoid cluttered results.
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Figure 4-15: Simulation results of the detection of faults for a LTI FD-filter versus a LPV
FD-filter for a time-varying longitudinal velocity.

In the simulation results, it is found that the LPV filter is decoupling the change in longit-
udinal velocity and is tracking the true fault similar to the LTI filter in Figure 4-3. The LTI
filter has poor tracking behavior since it is synthesized at a velocity of 70km ·h−1 and is thus
continuously stepping out of its linearized range. A very important note to the functioning
of the LPV filter in this case study is related to the validity of the model under time-varying
conditions. Longitudinal accelerations and deccelerations are caused by a longitudinal force
acting on the tyres. However, the assumption has been made that this force is negligible and
thus does not affect the yaw dynamics and tyre limits in a significant way. We therefore relax
our assumption of constant longitudinal velocity to having a slowly time-varying longitudinal
velocity for which the assumption on yaw dynamics still hold.

4-3-5 Fault isolation and parameter-varying detection, a unifying approach

A final step towards full implementation of the developed methods in an experimental setting
lies in combining the best of both worlds. The non-linear FI-filter with the pre-filter can
be used in combination with the LPV FD-filter to enable fault detection and isolation of a
vehicle travelling at a non-constant longitudinal velocity. The approach is simple: as the
non-linear FI-filter receives a fault residual, which is decoupled from the parameter-varying
system behavior, this residual should be identical to the residual received from an LTI filter
at constant velocity. The only aspect changing in the LPV scenario is the format of the
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pre-filter, as this will also become an LPV filter with the I/O transfer function

δ̃set =Nk(q)Fk(q)
d(q)

d(1)
Nk(1)Fk(1) [δset]. (4.20)

As a result, a filter is created with a schematical representation as in Figure 4-16.

Lateral dynamics
Internal state: X FD-Filter FI-Filter

Pre-Filter

fa

d

δset

fm

y

δ̃set

r f̂a

f̂m

Vx

Vx

Figure 4-16: A visual representation of the LPV FD-filter and FI-filter with augmented LPV
Pre-Filter in the case study.

No new guaranteed upper-bound is proposed for the combination of the two theorems com-
bined. Regardless of the lack of a new upper-bound, the intuitions gained in the previous
chapters for pushing down the estimation error still hold (as only ẽ1 (3.10a) is affected by
the change of FD-filter). For this reason, the same simulations as in Subsection 4-3-3 are
applied with the time-varying velocity as in Figure 4-15 and the results are briefly discussed.
Instead now, since the awareness of adjustment of pole locations and estimation horizons is
already present, we look at the effect of the value of the Lagrange multiplier on the degree of
decoupling of the LPV filter. The results for this simulation can be found in Figure 4-17.
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Figure 4-17: Performance of the LPV filter together with the pre-filter augmented non-linear
isolation filter for varying Lagrange multipliers γ.
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These results give an intuition behind our findings in Figure 4-14: low value Lagrange mul-
tipliers provide poor detection results and as a result poor isolation performance. For the
previously chosen value γ = 107 it can be seen that the parameter-varying effect is not fully
decoupled as are not as close to numerical precision as in the previous results, this perform-
ance could be improved by further increasing the multiplier towards infinity, though this will
be limited by the numerical precision of the processor used. Nonetheless, this result shows
that our hypothesis on the plug and play behavior of replacing the LTI FD-filter with a LPV
FD-filter holds, fault isolation is achieved up to a high numerical accuracy.

4-4 Sensitivity analysis

A theoretical shortcoming of many model-based methods is that these rely on having accurate
knowledge on the description of the model. For controllers, inaccuracies of this information
could result in an unstable system, for observers it could result in poor estimates of the
desired signals. In our specific scenario, an unaccurate model description could result in false
positives or false negatives, i.e., detecting a fault occurence in the absence of one and vice
versa. Considering the LTI scenario without loss of generality, the uncertainty in the model
can be viewed in the DAE equation as

(H(q) + ∆H(q))[x] + (L(q) + ∆L(q))[z] + (F (q) + ∆F (q))[f ] = 0,

where ∆H(q), ∆L(q) and ∆F (q) are polynomial matrices caused by parameter or model
mismatch between the true system and the modeled system. Hence, by finding an FD-filter
satisfying conditions (2.4), the behavior of the system (2.3) is recast as

M = {z ∈ Wnz |N(q)L(q)[z] = −N(q)∆L(q)[z]−N(q)∆H(q)[x]}, (4.21)

and in the presence of a fault, the following description holds without and with uncertainty
respectively

N(q)L(q)[z] =−N(q)F (q)[f ],
N(q)L(q)[z] =−N(q)∆L(q)[z]−N(q)∆H(q)[x]−N(q)∆F (q))[f ]︸ ︷︷ ︸

∆f

−N(q)F (q)[f ],

such that ∆f represents the total fault bias due to parameter uncertainty. From here it can
be seen that not only is the uncertainty a function of the dynamics of the vehicle, it is also a
function of the trajectories of x, z and f . Chapter 6 discusses some future propositions for
this problem, though within the scope of this thesis it is only evaluated what the sensitivity
for certain parameter changes is on the detected fault. The results of this sensitivity analysis
can be used for tuning of the filter for the experimental work in the next chapter as well as
showing a degree of robustness against parameter uncertainty. In Chapter 5, it is argued that
the already occuring steering angle offset on the vehicle is 0.5deg, giving an idea how the false
induced faults in this chapter compare with a realistic fault in the system. The sensitivity
analysis is done by letting the single-track model drive in a steady-state cornering scenario at
a constant longitudinal velocity, subsequently a constant fault of fa = 0.1deg is injected and
the ∞-norm between the true fault and the residual is evaluated to find a worst case “false
fault”. This false fault is only evaluated at the residual from the FD-filter. The corner radius
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and banking angle are governed by the national legislation of highway construction [32] and
are shown for the velocities of our interest in Table 4-2.

Bank angle [deg] 120km ·h−1 90km · h−1 70km ·h−1

1.43 1500m 700m 350m
1.72 1350m 630m 315m
2.00 1200m 560m 280m
2.29 1050m 490m 250m
2.58 900m 420m 215m
2.86 750m 350m 180m
3.15 340m 175m
3.43 330m 170m
3.72 165m
4.00 160m

Table 4-2: Highway legislation [32] for cornering radii and bank angles at a constant velocity Vx.

The lateral acceleration of the vehicle with respect to the road, caused by the centripetal
force of the vehicle driving along a corner, can be denoted as

ay = V 2
x κ.

As a result, it can be found that the highest lateral accelerations during lane-keeping on a
highway occur at 70km · h−1, hence the set of cornering radii and bank angles for this velocity
is used for simulation and extrapolated at the maximum bank angle of 4 degrees to allow a
lateral acceleration up to 3m · s−2. For the sensitivity analysis the effects of separately chan-
ging parameters is considered, hence the coupling of changing a specific parameter and its
effect on another parameter is omitted as this will give better insight of the sensitivities of
the single-track model in general.

First, the effect of a changing front and rear cornering stiffness is investigated. A loss or
increase in tyre cornering stiffness can be induced by a loss of tyre-road friction, a change in
tyre pressure or an increased or decreased vertical load (hence changing the friction coefficient
following the effect tyre load sensitivity [31]).

The false fault is defined as the infinity norm of the residual over the simulation time. As
a result, the false fault is not directional. The cornering stiffnesses have been increased and
decreased up to 10% , the results of this set of simulations can be found in Figure 4-18. Note
that for this simulation, only the front cornering stiffness Cf has been given an uncertainty. It
has been found that the sensitivity for a change in rear cornering stiffness Cr is approximately
the same and thus the result is omitted.
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Figure 4-18: Sensitivity plot of the induced faulse fault by introducing an uncertainty in the
cornering stiffness.

From Figure 4-18 it can be observed that for higher lateral accelerations the false fault has an
increasingly larger sensitivity for parameter uncertainty. A maximum false fault of 0.14deg is
introduced at a lateral acceleration of 3m · s−2 for a 10% increase in cornering stiffness. A lower
faulse fault is introduced for a percentualy decreasing cornering stiffness, this phenomenon
can be explained using the definition of the understeer gradient

Ku = mr

Cr
− mf

Cf
, (4.22)

where in (4.22) mr represents the mass on the rear axle of the vehicle and mf represents the
mass on the front axle of the vehicle. An understeered vehicle (Ku > 0) provides in theory
and practice a stable system and an oversteered vehicle (Ku < 0) results in an unstable vehicle
above a critical longitudinal velocity defined by [31]

Vcrit =
√
g(lf + lr)

Ku
.

The vehicle is initially understeered and thus stable, hence if the magnitude of the front
cornering stiffness becomes larger it results in a decreased understeer gradient. As a result,
the vehicle becomes more unstable and thus results in more oscillatory state responses and
thus higher false fault extrema, explaining the difference in an increase or decrease of the
cornering stiffness. In the next simulation the yaw-inertia is increased and decreased with 10%
while keeping the center of gravity at the same location, the results are shown in Figure 4-19.
In Figure 4-19, it can be observed that the result of an increasing or decreasing yaw-inertia on
the center of gravity location has a minor impact on the introduced faulse fault. This can be
explained from the perspective that a higher yaw inertia results in a slower lateral response of
the vehicle and as a result lower state extrema and lower faulse fault extrema, from a different
perspective a change in yaw inertia results in the scaling of a row in the continuous time A
matrix, hence it could result in a small or negligible effect on the null-space of the discrete
time H(q) polynomial matrix.
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Figure 4-19: Sensitivity plot of the induced faulse fault by introducing an uncertainty in the yaw
inertia.

Sensitivities for increasing or decreasing the mass of the vehicle at the center of gravity have
been evaluated, but have been found to result in differences of 10−11deg at a maximum of 10%
uncertainty and is hence omitted from the results. A more realistic scenario is an addition
of a point-mass on a different point than the center of gravity. For the following and final
sensitivity simulation a point mass of 200kg, representing the addition of persons or luggage
in the vehicle, is added from an increasing distance from the center of gravity towards the
rear of the vehicle. The results for this analysis are shown in Figure 4-20.
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Figure 4-20: Sensitivity plot of the induced faulse fault by introducing an uncertainty in the
center of gravity location.

The vehicle grows further to instabillity as it’s understeer gradient (4.22) decreases for a
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higher mass towards the rear axle, furthermore looking at the appearance of the center of
gravity location in the lateral dynamics (4.4) it can be argumented that a shift of center of
gravity location results in a non-trivial change in the nullspace ofH(q), resulting in a relatively
high sensitivity for this parameter. The results from this sensitivity analysis show that for
high parameter deviations the false induced fault can grow up to 0.1 − 0.2deg. Comparing
this to a realistic offset of 0.5deg from Chapter 5 makes it an acceptable error dependent
on the purpose of the estimated faults, using it in a form of feedback control could result in
steady-state errors, while for pure detection purposes it could be rejected as being a true fault
due to its potentially highly time-varying behavior as a result of the sensitivity for the state,
disturbance, output, input and fault signals. All of these arguments are extended in Chapter 6
as a proposition for future works towards useful applications of the developed methods in this
thesis.

4-5 Discussion on the case study

In this chapter, the developed theoretical framework from Chapter 3 has been applied on the
case study as proposed in the introduction in Chapter 1 (fault detection and isolation in the
lateral control of an autonomous vehicle).

First, the boundary conditions and system parameters have been defined for the autonomous
vehicle. The boundary conditions and parameters provided a set of admissible inputs for the
simulations in the remainder of the chapter. Subsequently, the system model was introduced
which was shown to be easily adaptable to the developed framework in Chapter 3.

In the following section, a baseline FD-filter was created with the provided system model.
The developed FD-filter was to fullfil the criteria set for an appropriate FD-filter in Chapter 3
(i.e., the rejection of unkown states and disturbances while remaining sensitive to the fault).

Following the applied design methodology of the FD-filter, the FI filter has been demon-
strated. By applying the theorems of the non-linear isolation filter to the case study system,
combined with the valid FD-filter design, a full combined filter could be demonstrated. The
performance bound was shown to be valid and was shown to be a useful tool in tuning of the
filter for different purposes. Application of the filter combination showed a high sensitivity
for the pole-placement of the FD-filter, as was expected from the performance bound shown
in Section 3-1. This problem was shown to be solved in the subsequent section.

In the next section, the pre-filter was designed for the case study. Simulation of the isol-
ation flter with augmented pre-filter showed that for a constant fault scenario the estimate
converges to the true fault in finite time (approximately as fast as the estimation horizon is
long, dependent on the pole location). An increasing horizon decreased the convergence rate
while also decreasing the maximum amplitude of the error. The simulation results further
showed that a coupling occurs between the additive and multiplicative fault if either of them
are time-varying. The effect of this coupling can be manipulated by changing the estimation
horizon or pole location.

In the following section, the LPV FD-filter was created for the case study system, where the
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parameter variation is caused by a time-varying longitudinal velocity. Simulations showed
that the parameter-varying effect is fully decoupled for the LPV filter whereas the quality of
the residual of the LTI filter was dramatically reduced. Following up this result, the LPV
filter was combined with the non-linear isolation filter with augmented pre-filter. No new
upper-bound was generated for this case. These simulations for this case yielded positive
results, for a parameter-varying system the additive and multiplicative fault were correctly
detected and isolated. The aforementioned results lead to the conclusion that a method has
been developed wiich satisfies the problem statement.

Finally, a sensitivity nalysis has been applied on the FD filter to find the primary sensit-
ivities for model deviations in the filter design. The sensitivities have been determined by
using a physically intuitive test-case, showing that the main sensitivities were governed by
balance of the vehicle (i.e., the longitudinal center of gravity location and the front and rear
lumped cornering stiffnesses).
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Chapter 5

Experimental Results

In the previous chapters, theorems have been created that solve the main problem statement
of the thesis research. Subsequently, these theorems have been applied in the the case study
in lateral control for autonomous vehicles. Additionally, an elaboration has been given on the
case study under investigation and how the proven theorems can be applied in this case study.
Using simulations for the case study, promising results were shown for the fault detection
and isolation for lateral control of autonomous vehicles. To strengthen the conclusions from
these simulations, the developed methods were experimentally validated on a Toyota Prius
(model 2010). This chapter will start with overview of the experimental setup in Section 5-
1. Subsequently, in Section 5-2, a set of methods is given to incorporate the sensor and
actuator delays delays and measurement inaccuracies in the filter. Finally, in Section 5-3 the
experimental results of the tests are shown and discussed.

5-1 Experimental setup

A modified front-wheel driven Toyota Prius from 2010 has been used to perform the experi-
mental tests. The vehicle is a modified version from the original, as it is equipped with Rapid
Control Prototyping (RCP) hardware to enable on the fly testing of controllers and observ-
ers. All the measurements mentioned in (4.4) are available over the vehicle Controller Area
Network (CAN) bus and can thus be used for the testing of our filters. First, the equipment
of the vehicle and the vehicle itself are elaborated upon and subsequently the test area and
the experiments are elaborated.

5-1-1 Vehicle and sensors

The FDI-filter is implemented on a Speedgoat Real-Time Target Machine (Figure 5-2). Use
of this platform allows building a Simulink model and Matlab code directly on the vehicle
using code generation. All the required actuation for the Toyota Prius, i.e., the driveline and
the Electrical Power Steering (EPS) steering actuator, are originally manufactured by Toyota
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and are identical to the standard actuation in commercially available vehicles. The lateral
controller is toggled through the Human Machine Interface (HMI) (Figure 5-1) and the faults
are injected through the external mode Simulink interface.

Figure 5-1: Interior of the vehicle. Figure 5-2: Controller platform of the
vehicle.

The model outputs used in the design of the filter are either measured or estimated by the
internal hardware of the vehicle and a Mobileye camera. The measurements and their sources
are given as

• Yaw rate ψ̇, measured internally by the vehicle using the original yaw-rate sensor of the
vehicle,

• Longitudinal velocity Vx, estimated internally using the velocity of the non-driven rear
wheels,

• Heading error with respect to the lane ψe, measured by the Mobileye camera,

• Lateral error with respect to the lane ye, measured by the Mobileye camera,

• Controller setpoint δset before fault injection, provided as an output from the lateral
controller,

• Ground truth of the injected faults fa and fm.

The accuracy and delay of the sensors introduce a few fundamental problems in the correct
functioning of the FDI-Filter. These problems are solved using the methods from Section 5-2.

5-1-2 Testing location

Ideally, the tests are performed in a highway scenario. In such a scenario, the robustness
of the filter can be tested at a high velocity with bank angle and curvature disturbances,
although this could introduce dangerous scenarios. Not only are the lateral control methods
of the vehicle not yet homologated for public road use, it would be irresponsible to delib-
erately introduce faults on the vehicle in these public scenarios. Therefore the tests have
been performed at an isolated test area behind the VeHIL lab at TNO Automotive location
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Helmond. A 100 meter long straight with ISO road lining is used such that the Mobileye
lane measurements can be taken and thus lateral control can be applied. These conditions
make the use of the FDI method slightly more complex as the maximum velocity during the
tests is limited to 30km ·h−1 to 40km · h−1. With respect to the design case (4.2) this results
in a significantly lower excitation (i.e. lower Vn [δset] (k)) of the vehicle in a lateral control
scenario, which could deteriorate not only the isolability of the FI-filter but also the meas-
urement accuracy of the sensors. Moreover due to a limited distance and minimum required
time for the Mobileye camera to detect the lanes, a limited distance is available to introduce
and detect the fault. As a result of these last few remarks, the functioning of the filter is
tested in challenging conditions.

Figure 5-3: Test trajectory for the experimental tests (source: Google Maps).

Figure 5-3 shows the trajectory driven during the experimental test. The red line shows the
trajectory without lane-marking, used to get the vehicle up to the desired starting velocity.
The white line represents the side markings of the lane and the green line represents the center
marking and thus the reference path for the vehicle. At point 1, the Mobileye module of the
vehicle has detected the lanes and thus the vehicle can switch to autonomous lane-keeping
through the HMI interface. At point 2, the fault is introduced in the reference steering angle
of the vehicle through the Simulink interface. At point 3, the vehicle has to slow down to a
halt as the end of the test-track is approaching. Under braking action the vehicle aborts the
autonomous lane-keeping. As a result, controller setpoints are no longer given and therefore
the fault estimatio algorithm is switched off.

5-2 Implementation, problems and solutions

In the experimental tests, it was found that real-life uncertainties such as sensor delay and
inaccuracies caused poor results in the detection and isolation algorithms. As a result, in
this section a systematic framework is proposed and applied to mitigate the effects of these
uncertainties and take them in to account in the design of the filter itself. This section will
cover systematic proposals for mitigating delays and for improving measurement quality.
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5-2-1 Measurement delay

The camera measurements have been identified by TNO to have a measurement delay of
0.15s. On a sampling frequency of 100Hz this is a significant delay of 15 samples and thus
it could cause inaccuracy in the residual signals, leading to poor isolation results. This delay
is caused by the perception of the camera, i.e., converting the images of the road to physical
distance or heading quantities. To mitigate the effect of measurement delay, a systematic
approach is given to take into account the effect of this delay. The measurement delay is
incorporated by modelling the effect in the state-space equations of the single-track model.
To prevent clutter of the equations, the modeling approach is given using a scalar system
with minimal realization (a, b, c, 0) in the absence of disturbances and faults. The delay can
be modeled as

X(k − w + 1)
X(k − w + 2)

...
X(k − 1)
X(k)

X(k + 1)


=



0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
... . . . ...

...
0 0 0 . . . 1 0
0 0 0 . . . 0 1
0 0 0 . . . 0 a





X(k − w)
X(k − w + 1)

...
X(k − 2)
X(k − 1)
X(k)


+



0
0
0
...
0
b


u(k),

y =
[
c 0 0 . . . 0 0

]


X(k − w)
X(k − w + 1)

...
X(k − 2)
X(k − 1)
X(k)


,

where w represents the total output delay in the system. The delay augmented state-space
matrices can be used in the FD-Filter synthesis, resulting in a filter with a minimal order of
deg(d−1(q)N(q)L(q)) = 3+w. The order of the filter increases since the relative degree of the
disturbance κ to the output increases by t timesteps and thus requires a higher order filter to
be rejected.

5-2-2 Measurement accuracy

The available measurements are assumed to have a perfect accuracy in Chapter 4. In the ex-
perimental scenario this assumption unfortunately does not apply. The camera measurements
are logged at a sampling frequency of 10Hz and internally interpolated and resampled to a
sampling frequency of 100Hz. The yaw rate sensor can be accurate for relatively high yaw
rates, but in the low excitation scenario the magnitude the measurement is highly affected by
amplitude quantization (see Figure 5-4). To condition the signals to better correspond to the
true dynamics of the vehicle, a simple first-order low-pass filter is applied to the measurement
data

G(q) = a0
q + a1

, (5.1)

where the DC-gain of this filter is set to 1 (such that a0 − a1 = 1). As a result, the original
measurements and filtered measurements can be shown as in Figure 5-4.
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Figure 5-4: Original vehicle measurements and their filtered versions.

Group delay is an inherent effect of signal filtering. For this reason, the low-pass filter dynam-
ics can be modeled in the FD-filter as well to take in to account these frequency dependent
delays. A scalar system with minimal realization (a, b, c, 0) in the absence of disturbances
and faults is chosen to support these results. The low-pass filter from (5.1) is practically
implemented using a series state-space representation as[

X(k + 1)
G(k + 1)

]
=
[
a 0
a0c −a1

] [
X(k)
G(k)

]
+
[
b
0

]
u(k),

y =
[
0 1

] [X(k)
G(k)

]
,

where the signal G ∈ R represents the state of the low-pass filter G(q). Incorporating the
dynamical effects of the first-order low-pass filter increases the degree of the filter by one, as
it requires an additional past measurement of the plant output to maintain causality of the
filter.

5-2-3 Input delay

The third and final uncertainty to incorporate in the filter design is caused by the I/O behavior
of the EPS of the Toyota Prius. As discussed in [38], the EPS system of the Toyota Prius has
an input output delay of 0.1s. The delay can be modeled in the scalar minimal realization
(a, b, c, 0) as 

X(k + 1)
u(k − d+ 1)
u(k − d+ 2)

...
u(k − 1)
u(k)


=



a b 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0
...

...
...

... . . . ...
0 0 0 0 . . . 1
0 0 0 0 . . . 0





X(k)
u(k − d)

u(k − d+ 1)
...

u(k − 2)
u(k − 1)


+



0
0
0
...
0
1


u(k).

Since the input at time instance k is modeled to be dependent on the fault at time instance
k, a delay of the input results in the delay of the fault. An additional delay of the fault of 10
samples results in an increase relative degree of the fault to the output. Therefore, the minimal
order of the filter increases by the number of sample delays added for the steering input.
This final uncertainty augmentation gives us, combined with the other model techniques, a
systematic methodology to adapt the FDI techniques to the experimental uncertainties.
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5-3 Results

Following the results from Section 5-2, the uncertainty augmented vehicle model can be used
to estimate the faults introduced in the steering control signal of the vehicle. Due to the
many degrees of freedom for the filter design, it is chosen to freeze the model parameters
and the FD-filter settings. The only remaining degrees of freedom are the pole locations
for the first-order low-pass filters for the measurements of the vehicle. The settings for the
filter, used for each experimental dataset, can be found in Appendix C. After evaluation
of the experimental results, which were limited by the maximum time-span of the available
measurements (imposed by the testing location as elaborated in Section 5-1-2), the FI-filter
horizon is frozen at n = 200 steps. The FD-filter pole location is set to q = 0.9.
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Figure 5-5: Experimental results for a testing velocity of 30km · h−1 and no injected fault.

In the experimental tests it is assumed that the vehicle parameters from Table 4-1 correspond
to the true parameters of the test vehicle. Furthermore, it is assumed that no physically
related multiplicative fault is acting on the vehicle throughout the tests, though it can not
be assumed that the additive fault is equal to zero. In previous tests done by TNO with the
same testing vehicle, it has been found that the vehicle has a steering angle offset of around
0.36deg acting on the system. Calibration tests have been done with the vehicle at a constant
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velocity. During this test, no external faults are introduced. As a result, the initial vehicle-
related offset and multiplicative fault can be determined. The results of this test can be found
in Figure 5-5. The results without measurement filtering and I/O delays do not give much of
an insight as the residual drifts over the entire measurement. After compensation, it is found
that there is an additive fault acting on the system wth a mean of 0.34deg (see fa estimation
in Figure 5-5). This value is fed back into the vehicle as a compensation to prevent this static
offset from showing in the experimental results where the fault are artificially injected.
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Figure 5-6: Experimental results for a testing velocity of 30km · h−1 and an injected fault of
fa = 0.2deg.

Further remarks about the results can not be made as the fault is constant and the excitation
is low. For this reason the non-linear isolation filter, with or without pre-filter, isolates the
additive fault fa. The first three experimental results are obtained at a longitudinal velocity
of 30km · h−1. The first test experimental test shows the introduction of an additive fault
in the system during lane-keeping and is shown in Figure 5-6. The isolation result of the
multiplicative fault from Figure 5-6 shows that without augmentation of the input-/output
delays and signal filters the isolation performance is affected by disturbances. Despite the poor
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estimation of fm, the residuals provide a distinct detection signal of the additive fault and the
isolation performance of the additive fault tracks the true additive fault. After modification
of the single-track model with I/O delays and low-pass filters on the plant measurements, the
isolation performance of the multiplicative fault is improved and only deviates from its true
value once a change in the additive fault is detected. Once the estimation of the additive
fault is complete, the multiplicative fault returns to its original value. It can be observed that
due to a low excitation, the coupling between fa and fm is high in the transient behavior.
Following the lessons learned in Chapter 4, this could be solved by increasing the variance of
the input signal or increasing the estimation horizon. Although, neither of the two options
were feasible in the experiment due to a limited distance to drive. Not many conclusions can
be drawn regarding the performance of the pre-filter in this set of results, as the dynamical
content of the input signal is very low and thus the error induced by the dynamics of the
FD-filter is small. The next experimental data set shows the introduction of a multiplicative
fault in Figure 5-7.
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Figure 5-7: Experimental results for a testing velocity of 30km · h−1 and an injected fault of
fm = 0.8.
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A change of the multiplicative fault fm is more difficult to observe dependent on the mag-
nitude of the control input as is shown in Figure 5-7. Before the FD-filter modifications it
seems no change of fault is detected at all. The unmodeled disturbances govern the residual
and hence the FI-filter is unable to isolate a fault. After modifications to the FD-filter, the
change in multiplicative fault is detected and the isolation filter converges to the true injected
multiplicative fault. The additive fault returns to a value of 0.2rad or 0.0086deg, showing the
fault is negligible with respect to the actual system input. Disturbances are still observed on
the fault estimates between 3 and 4s. This can be explained by the decreasing excitation of
the input, resulting in an amplificatication of unmodeled disturbances or model mismatch.
Following the performance of the fault estimation of fa and fm separately, the next experi-
mental set involves the estimation of both faults acting in the same set. The results of this
experimental test are shown in Figure 5-8.
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Figure 5-8: Experimental results for a testing velocity of 30km · h−1 and injected faults of
fm = 0.8 and fa = 0.2deg.

The detection of the additive fault is clear in both residuals in Figure 5-8, as well as showing
a clear shape of the input caused by the multiplicative fault fm. Without delay and filter
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augmentation adjustments, the estimation of the multiplicative fault fm oscillates around the
true fault whereas the additive fault estimation seems more precise. After taking into account
the I/O delays and filtering the measurements, the isolation results show different behavior for
the filter with and without pre-filter. An increased dynamical content of the input combined
with the relatively slow poles of the FD-filter introduce high disturbances in the non-linear
isolation filter without pre-filter. With pre-filter, however, the estimates converge to the true
faults fa and fm, showing that the non-linear filter with pre-filter performs best of the two,
as expected. The final experimental result set is the testing of the LPV FD-filter with a
time-varying velocity. After approaching the test-track and activating the lateral controller,
the longitudinal velocity of the vehicle is increased through the HMI up to 40km ·h−1. The
velocity trajectory for the next experimental dataset is shown in Figure 5-9.
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Figure 5-9: Velocity trajectory of the time-varying fault detection experiment, varying from a
velocity of 30km · h−1 to 40km · h−1.

The results of detecting fm and fa for a time-varying velocity are shown in Figure 5-10.
It can be observed that without I/O delay and filter augmentation the residual is again
governed by noise. The isolation results show that the noise is captured in the multiplicative
fault, although the magnitude of the additive fault is captured correctly. After adjusting
the filter by adding low-pass filters to the output measurements and taking into account the
I/O delays, the results improve significantly. It can be seen that the residual captures the
magnitude of the faults fm and fa with a minimal effect of noise. This increase in estimation
quality can be explained by the higher magnitude of the yaw-rate with respect to the previous
measurements, resulting in more accurate measurements. Furthermore, the results show that
the augmentation of the pre-filter results in a more steady convergence towards the true fault.
Both the additive and multiplicative fault estimations converge to the ground truth faults in a
time span of 2−3s after the fault has been fully applied. Whether or not this is an acceptable
time of convergence, is of course fully dependent on the magnitude of the fault and the state
of the vehicle at that specific point in time. Too large offsets can result in steady-state errors
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in the lane-keeping or path-following scenario. Too large multiplicative errors could result in
unstable vehicle behavior due to for example actuator saturation.
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Figure 5-10: Experimental results at a time-varying testing velocity of 30km · h−1 up to
40km · h−1 and injected faults of fm = 0.8 and fa = 0.2deg.

In the previous set of experimental results it is ignored that the velocity is time-varying, since
no different effects in the isolation behavior can be seen with respect to the previous results.
The previous result set has been made by using the LPV FD-filter as detection filter. The
following result set in Figure 5-11 shows a back to back comparison of the use of the LTI
FD-filter (linearized at 30km ·h−1) compared to the use of a LPV FD-filter. Both of the
experimental results have been obtained by implementing the I/O delay and low-pass filters.

From the results of Figure 5-11, combined with the velocity measurement in Figure 5-9,
it can be seen that the LTI FD-filter has a poor robustness against the velocity change. Both
the additive and the multiplicative fault estimation do not converge to the true faults, for
both the non-linear isolation filter and the pre-filter augmented isolation filter. As is shown
before, the LPV FD-filter does converge to the true faults and hence outperforms its LTI
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alternative, showing that the results are as was expected.
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Figure 5-11: A comparison of the LTI FD-filter and LPV FD-filter performance at a time-varying
testing velocity of 30km · h−1 up to 40km · h−1 and injected faults of fm = 0.8 and fa = 0.2deg.

5-4 Discussion on the experimental results

In this chapter, the developed theoretical methods have been applied in an experimental scen-
ario. The experimental scenario, driving a real autonomous vehicle in a lane-keeping scenario,
involved challenges that have first been identified and have subsequently been solved.

The first part of this chapter has introduced the experimental setup of the vehicle. In this
part, the vehicle and its equipment has been shown and how the developed software can
easily be implemented on this platform. Furthermore, it is shown that the testing area had a
limited space for testing. This limited area imposed boundary conditions on the longitudinal
velocity at which the vehicle could drive. Additionally, it shown which additional steps have
been taken during the test sequence to actually be able to measure the vehicle states, i.e.,
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waiting for valid camera measurements and activating the autonomous controller.

After analysis of the experimental setup, challenges were proposed that have been faced
during the tests with the vehicle. The first source of error was proposed to be the delay of the
camera measurements, caused by perception-processing steps that are taken after the camera
images have been made. The second source of error was due to the accuracy of the measure-
ments, particularly of the yaw-rate sensor. Quantization of the sensor measurements due to
the low resolution of the sensors caused the measurements to be ill-conditioned. As a result,
the measurements have been augmented with an extra low-pass filter. The third source of
error was proposed to be an input delay, caused by the system dynamics of the electric power
steering of the vehicle. All the aforementioned effects have been modeled and augmented in
the vehicle model. Using this methodology, the developed framework could compensate for
this effect and therefore increase the performance of the estimation methods.

Finally, the experimental results were shown. In these results, it was shown that the de-
veloped framework is able to estimate the faults acting on the system. Due to the low variance
of the input signal (during lane-keeping at a relatively low velocity), the estimation horizon
and the FD-filter poles had to be adjusted to reduce the performance bound and as a result
the estimation error. As a result, reduced convergence times with respect to the case study
have been observed. Furthermore, the transient behavior of especially a single time-varying
additive fault acting on the system has shown interesting results. The transient behavior can
be taken into account by further tuning of the framework, based on the results obtained in
the case study. It is worth noting, that the results have been obtained on a velocity more
than twice as low than the velocity proposed in the case study. It is expected that at a higher
velocity, the excitation of the steering system is higher and as a result the estimation error
would decrease further (as shown by the performance bounds).
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Chapter 6

Conclusions and Future Directions

Following the work of this thesis, this chapter provides a brief overview of the conclusions
that can be drawn from the theoretical framework, the simulation results on the automotive
case study and experimental results of this thesis research. These conclusions are drawn in
Section 6-1. Over the course of this research several different trajectories of extension have
been found for the contributions of this thesis. These inspirations for future research will be
briefly elaborated with a small theoretical and mathematical background in Section 6-2.

6-1 Conclusion

This thesis has proposed a set of novel methods for the fault detection and isolation of additive
and multiplicative appearing faults in both discrete-time LTI and LPV systems. The research
started by introduction of the research problem in the case study background (lateral control of
an autonomous vehicle). Following this background a short state-of-the-art analysis showed
a lack of a methodology for our specific research goals, i.e., the specific appearance of the
additive and multiplicative fault combined with exogenous disturbances in a potentially LPV
environment. Throughout the thesis research, it was found that developed methods were
not only suitable for the case study, but for a wider set of applications. For this reason,
the methodologies developed in this thesis research have been developed to accomodate more
generalized set of models to which the case study belongs.

• In the first theoretical contribution, it was shown that the specific structure of the null-
space computation based FD-filter combined with the non-linear isolation filter allowed
us to decouple the additive and multiplicative fault by using information over a past
measurement horizon. The main problem in this methodology was uncovered in the
case study simulation, showing that the dynamical effects of the known signals com-
bined with the dynamical content of the FD-filter could induce large asymptotic errors
(even in constant fault scenarios).
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• In the second theoretical contribution, the main source of error in the non-linear isolation
filter was incorporated in the design of the isolation filter using the pre-filter, showing
that the dynamical effect of the FD-filter could be fully decoupled in a constant fault
scenario but also showed that the filter settles in finite time in case of a change in fault
signals. Both the first and the second contribution were given a guaranteed performance
bound which in linear simulations showed to be tight on top of the estimation error,
hence providing a useful tool for finding the main sensitivities for error reduction.

• In the third theoretical contribution, a tractable synthesis approach for a LPV FD-filter
was proposed. Given that the parameter measurements were measurable, simulations of
this method showed that following the weak duality of the problem we could decouple
the faults from the disturbances up to a numerical accuracy.

After development of the theoretical contributions, a systematic approach was devised to
implement these methods on the fault detection in lateral control for autonomous vehicles.
Based on a linearization of the lateral dynamics, the contributions were shown to fulfill the
research goal. At least, in the linearized scenario which was assumed to approach the true
non-linear model given a set of assumptions. The linearized approach was applied in an ex-
perimental setting, showing the systematic approach of adopting the filter to real-life effects
such as measurement quantization and delays. The experimental results showed that the
aforementioned methods of this thesis proved to be effective even in a low excitation scenario
at a low longitudinal velocity.

As a result, the main objectives of this thesis research have been fulfilled. A generalized
set of theorems has been developed that allows detection and isolation of the additive and
multiplicative fault, while rejecting unmeasured exogenous disturbances in lateral control for
autonomous vehicles for non-constant slowly time-varying longitudinal velocities. Further-
more, the suitabillity of the framework is proven in an experimental setting.

6-2 Proposals for future directions

Throughout the research, trajectories for future research that were outside of the scope of
this thesis have been found as an extension to this research. These ideas find their purposes
in the area of active fault isolation and fault tolerant control, as well as in the area of residual
evaluation and threshold computation. The extensions are shortly introduced with a controller
or filter schematic and if applicable a short mathematical background.

6-2-1 Proposals for extensions to fault tolerant control

Compensating for fa in absence of fm

Assuming there is no multiplicative fault acting on the system, the additive fault can be fully
compensated using linear controller methods. This proposal shows that residual from the null
space computation based parity-space filter from (2.6) can be used in a feedback law to fully
compensate for this additive fault. Figure 6-1 shows the proposed schematic for feedback
control of the additive fault using a Lyapunov stability-based FD-controller.

C.J. van der Ploeg Master of Science Thesis



6-2 Proposals for future directions 69

System dynamics
Internal state: X FD-Filter

Controller

fa

d

ucu

y

u

Figure 6-1: A visual representation of the proposed methodology for the Lyapunov stable additive
fault feedback controller.

The following equations will provide a baseline in designing an additive fault feedback control-
ler. Assume the FD-filter has already been created, the selection of polepairs for the transfer
function d(q) is not trivial; there can exist a stable FD-filter combined with a closed-loop
stable plant resulting in an unstable system. Suppose the minimal realization of the plant is
written as [

A1 B1
C1 D1

]
,

and the minimal realization of the filter dynamics (2.6) is written as[
A2 B2
C2 D2

]
.

By placing these two minimal realizations in series the total system description reads

Aseries =
[
A1 −B1D2C1 −B1C2

B2C1 A2

]
.

Therefore, a stable feedback controller can be found for closed-loop feedback if there exists a
polepair d(q) such that there exists a matrix P for the following feasibility problem

P � 0,
P = P T ,

ATseriesPAseries − P ≺ 0.

Compensating for fa in presence of fm

Given that the linear system dynamics are fully known, following Theorem 3-1.3 and The-
orem 3-2.1 it is given that we have full knowledge of the mapping ‖r(fa, fm)‖Ln2(k) 7→∥∥∥[(f̂a(k)− µn [fa] (k)) (f̂m(k)− µn [fm] (k))

]ᵀ∥∥∥
2
. Following the proofs in Appendix A it

is straightforward to find a guaranteed performance bound for the mapping ‖r‖Ln2(k) 7→∥∥∥[f̂a(k) f̂m(k)
]ᵀ∥∥∥

2
which bounds the mapping ‖r‖Ln2(k) 7→ ‖f̂a(k)‖2. By extending this

bound to infinite horizon and combining it with a bound on the transfer function of the
plant, closed-loop stability of the system in Figure 6-2 feeding back the additive fault can
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be evaluated using the small-gain theorem [39]. It may require restrictive assumptions on
the stochastical properties of signal E(z) and hence should be investigated further to find
feasibility and tractibility of this idea.

System dynamics
Internal state: X FD-Filter

Controller

FI-Filter
fa

d

u

fm

y

u

z

r f̂m

f̂a

Figure 6-2: A visual representation of the proposed methodology for the small-gain controller.

6-2-2 Proposal for extension to active fault isolation

As emphasized in Remark 3-1.4, the estimation error from the non-linear isolation is highly
dependent on some controllable and some uncontrollable factors. To briefly summarize, these
factors are, for both the original algorithm and the extension to the pre-filter:

• The variance and mean of the known or filtered known signals E(z) and Ẽ(z),

• The estimation horizon length n,

• The speed of the dynamics of the mapping (fa, fm) 7→ r,

• The variance of the uncontrollable faults fa and fm.

The first three factors are in our control, although the last one, assuming it is an exogenous
fault over which we do not have control, is not within our scope of influence. As has also been
proposed in Section 3-1, adjusting the dynamical content of the mapping from the fault to the
residual results in a difficult trade-off since it poses a direct compromise between reduction
of the estimation error and a higher sensitivity for unknown disturbances and measurement
noise. The estimation horizon n can be influenced, although this directly penalizes the con-
vergence time of the estimates and could also deteriorate Vn [E(z)] (k), due to its dependence
on the horizon. The variance of the known signals is a topic for which we have made large
assumptions in for example (4.2). It is assumed that the system has a natural form of per-
sistency of excitation due to measurement noise and the presence of exogenous disturbances
and faults. In an ideal scenario (assuming no measurement noise or disturbances acting and
assuming ideal camera measurements during lane-keeping for instance), there is a good chance
that the lack of excitation deteriorates the estimation result. Referring back to Theorem 3-
1.3 and Theorem 3-2.1, we find that for the non-linear isolation filter the estimation error
upper-bounded with the multiplication factor√

1 + |µn [E(z)] |
nVn [E(z)] . (6.1)
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Notice that this expression is very similar to the condition of persistence of excitation in the
field of adaptive control [34], where the covariance of the regressor provides a leading condition
in the decay rate of the estimation error. In theory, the bound is fully measurable, but having
knowledge on how this bound affects the magnitude of the estimation error, this relation
can be exploited in the field of active FDI. Since the magnitude of the upper-bound could
speak for the conditioning of the estimation error, minimum and maximum thresholds for the
bound can be set as a constraint for an optimization-based controller (e.g., Model Predictive
Control (MPC)). Through this method, the estimation bound and thus the true estimation
error lies underneath the performance bound while keeping the system under appropriate
control.

System dynamics
Internal state: X FD-Filter

Active Isolation

FI-Filter
fa

d

u

fm

y

u

z

r
f̂a

f̂m

C(Vn [E(z)])

Figure 6-3: A visual representation of the proposed methodology for active isolation.

Figure 6-3 depicts the proposed schematic for such a controller where the Active Isolation
controller block represents the MPC or other type controller exciting the system whenever
the condition number C(Vn [E(z)]) of the estimation is below a certain threshold.

6-2-3 Proposal for extension to residual evaluation

As has been shown in the experimental results, it is unlikely that for model-based methods
there is an availability of a perfect model. As a result, false positives or false negatives may
occur, giving us a false idea of the presence or absence of a fault. Often systems implement
a decision making process that as a consequence of the presence of a fault undertake action
(for instance the autonomous vehicle case study), it would be highly undesirable to undertake
this action as a result of false alarms, due to inaccurate model knowledge. To robustify the
detection of the additive or multiplicative fault, further evaluation of the fault signals from
the FI-filter is needed. A widely used approach (and therefore the proposed approach for
future work) is the residual eveluation using the comparison with a threshold. If the fault
surpasses this threshold, the fault is recorded as a detection and otherwise rejected. The
general approach can be depicted as in Figure 6-4.
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System dynamics
Internal state: X FD-Filter FI-Filter Evaluation

fa

d

u

fm

y

u

z

r
f̂a

f̂m
i(f̂a)

i(f̂m)

Figure 6-4: A visual representation of the proposed methodology for fault evaluation.

Where the binary signals i(f̂a) and i(f̂m) indicate the presence or absence of an alarm. In [40]
several approaches are proposed that are given in more deterministic or more stochastic
settings. Generally, the problem to be solved is to find a threshold, above this threshold it
can be said with certainty that a fault is detected. Therefore, the challenge is to find two
fault thresholds Jth,fa and Jth,fm such that

‖f̂a‖Lnp(k) >Jth,fa =⇒ Alarm, additive fault detected,
‖f̂a‖Lnp(k) ≤Jth,fa =⇒ No alarm, fault-free,
‖f̂m‖Lnp(k) >Jth,fm =⇒ Alarm, multiplicative fault detected,
‖f̂m‖Lnp(k) ≤Jth,fm =⇒ No alarm, fault-free,

Given Section 4-4, it is shown that the uncertainty could be from a deterministic source,
e.g., parameter uncertainty. By defining these parameter uncertainties as a polytopic set, i.e.,
a set of system matrices with minimum and maximum uncertainties according to [40] this
information can then be used to find an optimal residual threshold given the deterministic
uncertainties (using for instance an SDP based optimzation).
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Appendix A

Technical Proofs

A-1 Proof of Theorem 3-1.3

Rewriting the non-linear input output filter in (3.4) leads to[
f̂a(k)
f̂m(k)

]
=Φn[E(z)](k)rn(k),

=Φn[E(z)](k)
(
rn(k) +

(
µn [fa] (k)1ᵀ + µn [fm] (k)En(z(k))

)
−
(
µn [fa] (k)1ᵀ + µn [fm] (k)En(z(k))

))
, (A.1)

Note, that for the constant vectors of mean values of fa and fm, the following vector identity
holds

Φn[E(z)](k)
(
µn [fa] (k)1ᵀ + µn [fm] (k)En(z(k))

)
=
[
µn [fa] (k)
µn [fm] (k)

]
,

which, in turn, for (A.1) results in:[
f̂a(k)− µn [fa] (k)
f̂m(k)− µn [fm] (k)

]
=Φn[E(z)](k)

(
rn(k)− µn [fa] (k)1ᵀ − µn [fm] (k)En(z(k))

)︸ ︷︷ ︸
en(k)

. (A.2)

Taking the 2-norm from both sides results in:∥∥∥∥∥
[
f̂a(k)− µn [fa] (k)
f̂m(k)− µn [fm] (k)

]∥∥∥∥∥
2

=‖Φn[E(z)](k)en(k)‖2. (A.3)

For the RHS we find, through the induced matrix 2-norm, that:

‖Φn[E(z)](k)‖2 = sup
en(k) 6=0

‖Φn[E(z)](k)en(k)‖2
‖en(k)‖2

,
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hence we find the condition:

‖Φn[E(z)](k)en(k)‖2 ≤‖Φn[E(z)](k)‖2 · ‖en(k)‖2, (A.4)
=‖Φn[E(z)](k)‖2 · ‖e‖Ln2(k). (A.5)

This two part upper-bound for the combined estimation error in (A.3) can be reduced further
to a more intuitive and useful upper-bound. The regressor-bound can be further reduced as
described in the following lemma.

Lemma A-1.1 (Regressor upper-bound). The induced 2-norm of the regressor operator
Φn[E(z)](k) is upper bounded by the following term defined for a time-horizon of n at time
instance k:

‖Φn[E(z)](k)‖2 ≤
√

1 + |µn [E(z)] (k)|
nVn [E(z)] (k) ,

Proof. The induced 2 norm of regressor pseudo-inverse Φn[E(z)](k) is defined by the spectral
norm of matrix Φn[E(z)](k), i.e., its largest singular value:

‖Φn[E(z)](k)‖2 =σ(Φn[E(z)](k)),

=
√
λ (Φn[E(z)](k)Φᵀn[E(z)](k)),

=
√
λ
(
(φᵀn[E(z)](k)φn[E(z)](k))−1

φᵀn[E(z)](k)φn[E(z)](k) (φᵀn[E(z)](k)φn[E(z)](k))−1
)
,

=
√
λ
(
(φᵀn[E(z)](k)φn[E(z)](k))−1

)
.

The matrix φᵀn[E(z)](k)φn[E(z)](k) can be rewritten in the following matrix form:

φᵀn[E(z)](k)φn[E(z)](k) =
[∑n−1

i=0 (E(z)(k − i))2 ∑n−1
i=0 E(z)(k − i)∑n−1

i=0 E(z)(k − i) n

]
,

=n
[
σ2
n [E(z)] (k) µn [E(z)] (k)
µn [E(z)] (k) 1

]
,

which is a symmetric positive definite matrix assuming that σ2
n [E(z)] (k) 6= 0 (an assumption

made in Section 3-1). Hence, the spectral norm can be recast as:

‖φn[E(z)](k)‖2 =
√

(λ (φᵀn[E(z)](k)φn[E(z)](k)))−1
,

=
√√√√√ 2

n

(
(1 + σ2

n [E(z)] (k))−
√

(1 + σ2
n [E(z)] (k))2 − 4Vn [E(z)] (k)

) ,

=

√√√√√2
(

(1 + σ2
n [E(z)] (k)) +

√
(1− σ2

n [E(z)] (k))2 − 4µ2
n [E(z)] (k)

)
n4Vn [E(z)] (k) ,

which can be rewritten by the use of the Cauchy-Schwarz inequality as:

‖Φn[E(z)](k)‖2 ≤

√√√√√2
(

(1 + σ2
n [E(z)] (k)) +

√
(1− σ2

n [E(z)] (k))2 +
√

4µ2
n [E(z)] (k)

)
n4Vn [E(z)] (k) ,
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=
√

1 + |µn [E(z)] (k)|
nVn [E(z)] (k) ,

concluding the proof of Lemma A-1.1.

The following lemma provides a proof for the upper bound of the error signal in (A.4), showing
that it can be split up in three parts with three different dependencies (3.6a),(3.6b),(3.6c).
Lemma A-1.2 (Three-stage error bound). The total error term en(k) (A.2) is upper-bounded
by

‖e‖Ln2(k) ≤ e1(k) + e2(k) + e3(k),

where the three error terms can be defined as

e1(k) =‖Tn
(
fmE(z) + fa

)
+ OnxF (k − n+ 1)‖Ln2(k),

e2(k) =
√
nVn [fm] (k) · ‖E(z)‖Ln∞(k),

e3(k) =
√
nVn [fa] (k).

Proof. The norm of the term en(k) can be expanded as:

‖e‖Ln2(k) =‖(r − µn [fm]E(z)− µn [fa]‖Ln2(k)
=‖r − (fmE(z) + fa) + (fa − µn [fa]) + (fmE(z)− µn [fm]E(z))‖Ln2(k)

Using the Cauchy-Schwarz inequality, we find:

‖e‖Ln2(k) ≤‖r − (fmE(z) + fa)‖Ln2(k) + ‖fa − µn [fa] (k)‖Ln2(k)
+ ‖fmE(z)− µn [fm]E(z)‖Ln2(k)

and using the Definition 3-1.2 for the restricted state and input transfer function, for the
minimal realization of the mapping G(q)− I (where G(q) is defined in (2.7)), leads to

‖r − (fmE(z) + fa)‖Ln2(k) =‖Tn(fmE(z) + fa) + ÕnxF (k − n+ 1)‖Ln2(k)
=e1(k)

Errors e2(k), e3(k) can be found by observing that the remaining terms are related to the
variance of the faults:

‖fa − µn [fa]‖Ln2(k) =
√
nVn [fa] (k) (A.6)

=e3(k)

‖E(z)(fm − µn [fm])‖Ln2(k) ≤‖En(z)�(k)‖2 ·
√
nVn [fm] (k) (A.7)

(A.8)

where En(z)�(k) is the diagonalized vector of n-steps for the signal E(z) as defined in the
notational section. By use of the induced 2-norm for a diagonal matrix it simply follows that

‖E(z)(fm − µn [fm])‖Ln2(k) ≤‖En(z)�(k)‖2 ·
√
nVn [fm] (k) (A.9)

≤‖E(z)‖Ln∞(k) ·
√
nVn [fm] (k), (A.10)

=e2(k),

concluding the proof of Lemma A-1.2.
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A-2 Proof of Theorem 3-2.1

The proof for Theorem 3-2.1 is partly analogous to the proof of Theorem 3-1.3. First, the
filter equation (3.8) can be expanded as[

f̂a(k)
f̂m(k)

]
=Φn[Ẽ(z)](k)rn(k),

=Φn[Ẽ(z)](k)
(
rn(k)+(

µn [fa] (k)1ᵀ + µn [fm] (k)Ẽn(z(k))
)
−
(
µn [fa] (k)1ᵀ + µn [fm] (k)Ẽn(z(k))

))
,

resulting in[
f̂a(k)− µn [fa] (k)
f̂m(k)− µn [fm] (k)

]
=Φn[Ẽ(z)](k)

(
rn(k)− µn [fa] (k)1ᵀ − µn [fm] (k)Ẽn(z(k))

)︸ ︷︷ ︸
ẽn(k)

. (A.11)

Analogous to (A.3), (A.4) and the results from Lemma A-1.1 it is found that the upper-bound
of (A.11) can be written as

∥∥∥∥∥
[
f̂a(k)− µn [fa]
f̂m(k)− µn [fm]

]∥∥∥∥∥
2
≤

√√√√√√1 +
∣∣∣µn [Ẽ(z)

] ∣∣∣
nVn

[
Ẽ(z)

] · ‖ẽ‖Ln2(k), (A.12)

Lemma A-2.1 (Three-stage error bound). The total error term ẽn(k) (A.11) results in an
upper-bound for the total estimation error which can be expressed by the following three terms:

ẽ1(k) =‖ÕnXM (k − n+ 1)− f�mn
(k)ÕnXE(k − n+ 1)‖2 + ‖ÕnXA(k − n+ 1) + T̃nfan(k)− fan(k)‖2

+ ‖(T̃nf
�
mn

(k)− f�mn
(k)T̃n)‖2‖En(z(k))‖Ln∞(k)

ẽ2(k) =
√
nVn [fm] (k) · ‖Ẽ(z)‖Ln∞(k),

e3(k) =
√
nVn [fa] (k).

Proof. The norm of the term ẽn(k) can be expanded as:

‖ẽ‖Ln2(k) =‖(r − µn [fm] Ẽ(z)− µn [fa]‖Ln2(k)
=‖r − (fmẼ(z) + fa) + (fa − µn [fa]) + (fmẼ(z)− µn [fm] Ẽ(z))‖Ln2(k)

Using the Cauchy-Schwarz inequality, we find:

‖ẽ‖Ln2(k) ≤‖r − (fmẼ(z) + fa)‖Ln2(k) + ‖fa − µn [fa] (k)‖Ln2(k)
+ ‖fmẼ(z)− µn [fm] Ẽ(z)‖Ln2(k)

and using Definition 3-1.2 for the restricted state and input transfer function and the triangle
inequality, we find

‖r − (fmẼ(z) + fa)‖Ln2(k) =‖Õn(XA(k − n+ 1) +XM (k − n+ 1)) + T̃n(f�mn
(k)En(z(k)) + fan(k))
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− f�mn
(k)ÕnXE(k − n+ 1)− fan(k)− f�mn

(k)T̃nẼn(z(k))‖2
≤‖ÕnXM (k − n+ 1)− f�mn

(k)ÕnXE(k − n+ 1)‖2
+ ‖(T̃nf

�
mn

(k)− f�mn
(k)T̃n)‖2‖En(z(k))‖Ln∞(k)

+ ‖ÕnXA(k − n+ 1) + T̃nfan(k)− fan(k)‖2

where the signals xA and xM represent the internal states of the systems with restricted state
and input matrices T̃n and Õn with inputs fa and fm respectively. The diagonal matrix
f�mn

(k) represents the diagonalized vector of the sampled signal vector fmn(k) as defined in
the notational section. Finally, XE represents the initial condition for the pre-filter mapping
of E(z) 7→ Ẽ(z) (3.7). Error ẽ2(k) can be found analogously to (A.10) and the remaining
term ẽ3(k) is exactly equal to (A.6), concluding the proof of Lemma A-2.1.

A-3 Proof of Theorem 3-3.4

Recall the conditions for the linear parameter-varying filter Nk(q) (3.12), given that the stable
LTI filter d(q) does not cancel the zeros of the filter equations, these conditions are equivalent
to

Nk(q)Hk(q) =0, (A.13a)
Nk(q)Fk(q) 6=0. (A.13b)

This can be posed as a strongly convex quadratic optimization problem as in (3.16) given
that the constraint

‖H̄ᵀk N̄
ᵀ
k ‖

2
2 = 0.

is equivalent to statement (A.13a). Furthermore, the objective function

max
N̄k

N̄kF̄kj
,

is equivalent, if not more strict with respect to (A.13b). Finally, the constraint

‖N̄ᵀk ‖
2
2 ≤ 1

ensures that the optimization variable N̄k remains bounded. Without loss of optimality, this
strongly convex and quadratic optimization problem can be recast as{

minN̄k
−N̄kF̄kj

+ ‖N̄ᵀk ‖22,
s.t. ‖H̄ᵀk N̄

ᵀ
k ‖22 = 0.

(A.14)

Additionally, the dual problem can be denoted as{
max g(γ),
s.t. γ ≥ 0,
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where γ ∈ R represents a Lagrange multiplier and g(γ) represents the dual function for (A.14)

g(γ) = inf
N̄k

γ‖H̄ᵀk N̄
ᵀ
k ‖

2
2 + ‖N̄ᵀk ‖

2
2 − N̄kF̄kj︸ ︷︷ ︸

L(N̄k,γ)

,

such that L(N̄k, γ) is the Lagrangian in the dual problem. The dual function can be rewritten
by finding the infinum of the Lagrangian

∇L(N̄k, γ) =0,
−F̄ ᵀkj

+ 2N̄k + 2γN̄kH̄kH̄
ᵀ
k =0.

N̄∗k = 1
2 F̄
ᵀ
kj

(I + γH̄kH̄
ᵀ
k )−1.

Substitution into the dual function yields

g(λ) =γ‖H̄ᵀk N̄
∗ᵀ
k ‖

2
2 + ‖N̄∗ᵀk ‖

2
2 − N̄∗k F̄kj

,

=− 1
4 F̄
ᵀ
kj

(I + γH̄kH̄
ᵀ
k )−1F̄kj

,

hence, the dual problem is rewritten asmax −1
4 F̄
ᵀ
kj

(I + γH̄kH̄
ᵀ
k )−1F̄kj

,

s.t. γ ≥ 0,

the quadratic objective is by definition negative definite, hence the duality gap goes to zero
for limγ→∞ N̄

∗, thus concluding the proof.
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Appendix B

Derivation of the Single-Track Model

This appendix describes the derivation of the single-track linear bicycle model. First, the
equations of motion are formally derived, analogous to the approach proposed in [41]. Sub-
sequently the single-track model is linearized. Finally the disturbance models used throughout
this thesis are given and augmented to form a total state-space equation for the system.

B-1 Equations of motion

Figure B-1 provides a schematic overview of the single track model including the physical
parameters.

δ

lf

lr

Vx

−Vy
−→
V

−β
ψ̇

αfFy,f

Fx,f

αr

Fx,r
Fy,r C

Vr

Vf

Oy

OxO

y

x

rc

Figure B-1: Schematic diagram of the single-track bicycle model

The forces Fi, i ∈ {xf , xr, yf , yr} represent the directional force vectors acting upon the front
and rear tyres of the vehicle and thus acting on the center of gravity of the vehicle C. The
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80 Derivation of the Single-Track Model

velocities Vx, Vy represent velocities of the center of gravity for which V represents the com-
bined x, y velocity in its local coordinate frame, whereas the velocities Vf , Vr represent the
magnitude and phase of the velocity of each tyre. The symbols αf , αr represent the front
and rear sideslip angles of the tyres and the symbol β represents the bodyslip angle of the
vehicle. The distances lf , lr represent the distance of the front and rear tyre with respect to
the center of gravity location. Finally, the symbol δ represents the steering angle of the front
wheel, we assume a purely front-wheel steered vehicle.

The symbol O represents the fixed reference frame and rc represents the vector from the
fixed frame O to the single-track center of gravity node C. Let Ox, Oy and Cx, Cy represent
a set of unit vectors in the x and y direction of their respective coordinate frames O and C.
The position of coordinate frame C with respect to frame O can be found with a rotation
matrix R(ψ) such that [

Cx
Cy

]
=R(ψ)

[
Ox
Oy

]
,

=
[

cos(φ) sin(φ)
− sin(φ) cos(φ)

] [
Ox
Oy

]
. (B.1)

where ψ represents the yaw angle around the z-axis. Additonally, the position of C can be
defined as

rc =
[
x y

] [Ox
Oy

]
.

Now, the velocity of frame C with respect to O can be found as

ṙc =
[
ẋ ẏ

] [Ox
Oy

]
,

=
[
Vx Vy

] [Cx
Cy

]
.

The acceleration can subsequently be found as

r̈c =
[
Vx Vy

] [Ċx
Ċy

]
+
[
V̇x V̇y

] [Cx
Cy

]
. (B.2)

Using the rotation matrix in (B.1) it is found that[
Ċx
Ċy

]
=Ṙ(ψ)

[
Ox
Oy

]
+R(ψ)

[
Ox
Oy

]

=ψ̇
[

0 1
−1 0

] [
cos(φ) sin(φ)
− sin(φ) cos(φ)

] [
Ox
Oy

]

=
[

0 ψ̇

−ψ̇ 0

] [
Cx
Cy

]
(B.3)
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Hence, by substitution of (B.3) in (B.2) the final expression for the acceleration can be
obtained

r̈c =
[
V̇x − ψ̇Vy V̇y + ψ̇Vx

] [Cx
Cy

]
. (B.4)

As a result of (B.4), the equations of motion can be derived using Newtons second law as

mr̈c =
∑

Fi.

Under the assumption that small steering angles δ are applied to the vehicle, it is found that
this force equilibrium can be expanded in longitudinal and lateral force equilibria as

m(V̇x − ψ̇Vy) =Fx,f + Fx,r,

m(V̇y + ψ̇Vx) =Fy,f + Fy,r.

These forces create a moment around the z-axis of the vehicle that can be calculated using
the moment equilibrium again assuming a small steering angle δ)

Izψ̈ = lfFy,f − lrFy,r.

Hence the equations of motion for a single track vehicle under low steering angles can be
denoted as

m(V̇x − ψ̇Vy) =Fx,f + Fx,r,

m(V̇y + ψ̇Vx) =Fy,f + Fy,r,

Izψ̈ =lfFy,f − lrFy,r.

B-2 Derivation of the linear model

In this section, the equations of motion derived from the previous section are linearized for
use in a state-space equation. Subsequently the disturbances are modeled and augmented,
resulting in the total model description as depicted in Figure B-2.
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δ
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lr
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−Vy

κ = 1
R

ye

ψe

−→
V

−β
ψ̇

αfFy,f

Fx,f

αr

Fx,r
Fy,r Fb

A

B

A B

φ

Figure B-2: Schematic diagram of the 2-DOF bicycle model with lane error dynamics

The following subsections show the derivation of the full model in terms of lateral dynamics,
error dynamics of the camera and the faults and disturbances.

B-2-1 The linear single-track model

Following the previous section, the equations of motion for a single-track vehicle model can
be denoted as

m(V̇x − ψ̇Vy) =Fx,f + Fx,r, (B.5a)
m(V̇y + ψ̇Vx) =Fy,f + Fy,r, (B.5b)

Izψ̈ =lfFy,f − lrFy,r. (B.5c)

The front and rear lumped lateral tire forces are assumed to have linear slip characteristics
due to the low steering angle δ, hence the lateral force components can be written as

Fy,f =Cfαf , (B.6a)
Fy,r =Crαr, (B.6b)

where Cf ∈ R− and Cr ∈ R− represent the lumped cornering stiffnesses of the front and rear
axle respectively. From Figure B-2 the following expressions for the slip angles αf , αr can be
found

αf =δ − arctan
(
Vy,f
Vx,f

)
,
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=δ − arctan
(
Vy + lf ψ̇

Vx

)
,

αr =− arctan
(
Vy,r
Vx,r

)
,

=− arctan
(
Vy − lrψ̇
Vx

)
.

Now, since we assume that Vx � Vy and a small yaw-rate ψ̇, the slip-angles can be approx-
imated as

αf ≈δ −
Vy + lf ψ̇

Vx
, (B.7a)

αr ≈−
Vy − lrψ̇
Vx

. (B.7b)

Since the assumption of constant longitudinal velocity has been made, the assumption results
in approximately zero longitudinal forces, i.e., the rolling friction and drag force is neglected.
As a result of substituting (B.6) and (B.7) in (B.8), the linear single track model is derivedV̇y

ψ̈

 =

 Cf +Cr

mVx

Cf lf−Crlr
mVx

− Vx
lfCf−lrCr

VxIz

l2fCf +l2rCr

VxIz


Vy
ψ̇

+

 −Cf

m

−lfCf

Iz

 . (B.8)

For which the yawrate ψ̇ is available for measurement.

B-2-2 Camera model, bank angle and fault modeling

For the autonomous vehicle in a lane-keeping scenario, measurements of the vehicle with re-
spect to the lane are available. These measurements are then converted to error measurements
of the vehicle with respect to the center of the lane. The objective of the lateral controller is
then to control these variables to zero. Figure B-2 shows the error states (denoted as ye and
ψe) where the first represents the lateral error of the vehicle with respect to the center of the
lane and the latter represents the heading error of the vehicle with respect to the direction
of the lane. The lane is described using the notion of curvature [8] defined as a constant κ
representing the inverse of the radius of the lane (defined as unit m−1). Using the geomet-
rical model of the vehicle from Figure B-2 the equations of motion of the error states can be
defined [33]. Let the heading error be given as

ψe = ψL − ψ,

where ψL is the heading of the lane with respect to the global coordinate frame O. The
time-derivative can therefore be defined as

ψ̇e =ψ̇L − ψ̇,
=Vxκ− ψ̇. (B.9)

The second derivative of the lateral error ye can be defined as

ÿe =V̇y,L − V̇y,
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84 Derivation of the Single-Track Model

=V 2
x κ− (V̇y + Vxψ̇),

=− V̇y + Vx(ψ̇L − ψ̇).

Assuming that the longitudinal velocity is constant, we find

ẏe =− Vy + Vxψe, (B.10)

hence giving a set of linear differential equations for the camera model. The bank angle as
shown in Figure 4-2 introduces a lateral force on the center of gravity of the vehicle. Hence,
in the lateral force equilibrium (B.5b), an additonal lateral force, Fb, is acting on the vehicle

m(V̇y + ψ̇Vx) =Fy,f + Fy,r + Fb,

=Fy,f + Fy,r +mg sin(φ), (B.11)

where φ represents the banking angle of the road and thus of the vehicle and g represents the
gravitational coefficient. Finally, recall the the fault model as introduced in (1.3)

δ = fmδset + fa.

Substitution of steering angle δ in (B.8) with the fault description shows the appearance of
the faults in the lateral dynamics. Now, the new error states ye (B.10) and ψe (B.9), the new
found disturbances κ (B.9) and sin(φ) (B.11) and the faults fm and fa can be augmented
in (B.8) to form the total linear state-space form of the linearized system under investigation



V̇y

ψ̈

ẏe

ψ̇e


︸ ︷︷ ︸
Ẋ

=



Cf +Cr

mVx

Cf lf−Crlr
mVx

− Vx 0 0
lfCf−lrCr

VxIz

l2fCf +l2rCr

VxIz
0 0

−1 0 0 Vx

0 −1 0 0


︸ ︷︷ ︸

A



Vy

ψ̇

ye

ψe


︸ ︷︷ ︸
X

+



−Cf

m

−lfCf

Iz

0

0


︸ ︷︷ ︸

B

(fmδset + fa) +



0 g

0 0

0 0

Vx 0


︸ ︷︷ ︸

Bd

 κ

sin(φ)


︸ ︷︷ ︸

d

,

(B.12a)

y =


0 1 0 0

0 0 1 0

0 0 0 1


︸ ︷︷ ︸

C



Vy

ψ̇

ye

ψe


︸ ︷︷ ︸
X

. (B.12b)

This vehicle model is an LTI state-space model. As proposed in [33], given that the longit-
udinal velocity is slowly time-varying, it can also be used as a LPV state-space model.
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Appendix C

Experimental Validation Parameters

In this appendix the testing matrix and the model- and filter parameters for the experimental
validation Chapter 5 are given. Using these parameters, the experimental results have been
created. Table C-1 shows the testing matrix with the longitudinal velocities at which the
vehicle is driven and the faults that are manually injected.

Test no. Velocity [km · h−1] fa [deg] fm [-]

1 30 0 0
2 30 0.2 0
3 30 0 0.8
4 30 0.2 0.8
5 30→ 40 0.2 0.8

Table C-1: Test matrix for the experimental results in Chapter 5.

Table C-2 shows the filter parameters used for each of the tests from Table C-1. The filter
parameters include the pole location of the low-pass filter, the input delay and the output
delay.
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86 Experimental Validation Parameters

Test no. a0 a1 b0 b1 c0 c1 δset delay ψe, ye delay Filter degree

1 0.02 -0.98 0.05 -0.95 0.05 -0.95 10 ·h 15 ·h 31
2 0.03 -0.97 0.05 -0.95 0.05 -0.95 10 ·h 15 ·h 31
3 0.03 -0.97 0.05 -0.95 0.05 -0.95 10 ·h 15 ·h 31
4 0.03 -0.97 0.05 -0.95 0.05 -0.95 10 ·h 15 ·h 31
5 0.04 -0.96 0.05 -0.95 0.05 -0.95 10 ·h 15 ·h 31

Table C-2: Filter parameters for the experimental results in Chapter 5 (h=0.01).

The polynomial coefficients a0, a1 (5.1) belong to the filter of the yaw rate measurement ψ̇,
the coefficients b0, b1 belong to the filter of the measurement of ψe and finally the coefficients
c0, c1 belong to filter on the measurement of ye.
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