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Abstract

Introduction: Magnetic Resonance Imaging is a commonly used technique for the initial
diagnosis of gliomas. T1, T2, T2-FLAIR, and post-contrast T1 with gadolinium-based contrast
agents (GBCAs) can show tumor characteristics. However, using this contrast agent poses a risk
to patients with kidney failures, has environmental impact, and increases cost. To address these
issues, we aimed to evaluate the potential of deep learning in generating synthetic post-contrast
T1 images without using contrast agents.

Method: The project investigates the potential of using deep learning (DL) to generate syn-
thetic post-contrast T1 images based on T1, T2, and T2-FLAIR provided by the Erasmus Glioma
Database. Exploring different model architectures, loss functions, and input sizes to discover the
optimal approach.

Results: Results show that individual loss functions, input size, and model complexity slightly
impact the accuracy of synthetic post-contrast T1 images. Combining loss functions, however, was
the most promising approach for image generation. Models trained with L£xs could generate low
detail enhancement. Resulting in 0.0478 + 0.0076, 0.0139 4+ 0.0036, and 0.879 + 0.024 for MAE,

MSE, and SSIM, respectively.

Conclusion: The study’s findings indicate that DL is promising for generating synthetic post-

contrast T1 images without using GBCAs.

However, further research is required to generate

realistic synthetic post-contrast T1 images. The study, however, provides a basis for future work
and highlights the importance of reducing the use of GBCAs in clinical practice.
Index terms— U-Net, gliomas, post-contrast T1, synthetic, enhancement, GBCAs. MRI,

deep learning

1 Introduction

In 2019, almost 120,000 new cancer cases were
diagnosed in the Netherlands, of which 1.2% con-
cerned a form of brain cancer [1]. Brain cancer
patients have a relatively low survival, ranging
from less than a year to 10+ years [2, 3]. Conven-
tionally, the applied treatment is based on disease
characteristics [4]. In the case of gliomas (a type
of brain cancer), treatments are based on charac-
teristics such as detected genetic mutations and
pathological inspection. The same characteristics
are also used to classify gliomas into grades II to
IV, which standard was set by the World Health
Organization (WHO) [5], with higher grades cor-
responding to more aggressive tumors and lower
survival rates. In literature, it has become a con-
vention that grades II and III are also classified
as low-grade gliomas (LGG) and IV as high-grade
gliomas (HGG). An initial distinction between
LGG and HGG could be determined based on
MR imaging.

Magnetic Resonance Imaging (MRI) is used for
initial glioma diagnosis by acquiring T1, T2,
T2-FLAIR, and post-contrast T1 images (cT1),

shown in figure 1. The ¢T1 modality is acquired
after gadolinium injection and is known to be par-
ticularly useful for assessing the aggressiveness of
gliomas [6, 7, 8]. HGG gliomas grow more ag-
gressively, compared to LGG, causing blood-brain
barrier leakage [9]. As such gadolinium-based
contrast agents (GBCAs) can transcend the BBB
and deposit in the extravascular space, resulting
in an enhancement in the c¢T1 images. However,
in rare cases, LGG can also show enhancement on
c¢T1 images. That is why a biopsy is essential for
accurate diagnosis. While gadolinium is essential
during initial diagnosis, clinical doctors aim to re-
duce or even replace gadolinium due to observed
side effects.

Importantly, GBCAs were shown to impact both
patients and the environment negatively. Recent
studies show that the linear form of GBCAs can
deposit in the skin, bone, liver, and other or-
gans, although the implications of this deposition
remain to be investigated [10, 11, 12]. For pa-
tients with kidney failure, gadolinium can, in rare
events, cause nephrogenic systemic fibrosis [13].
Another problem of GBCAs is the environmental
impact [14, 15]. Approximately 95-98% of GB-
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Figure 1: Different modalities, each containing specific information, utilized for brain tumor diag-
nostics. a) T1 shows the general structure, b) T2 shows fluids, ¢) T2-FLAIR shows inflammation
in tissues, and d) ¢T1 shows leakage of blood vessels caused by tumor aggression, which is the most
significant difference between enhanced and non-enhanced.

CAs are excreted in the sewerage system within
24h[14]. Furthermore, several studies have shown
that GBCA deposits, via the sewerage, in the wa-
ter, soil, and living organisms [15]. Just as the
deposition in the body, the implications of this
remains unknown. Another problem of gadolin-
ium is financially related. Taking an extra cT1
comes with a higher cost, due to the additional
scan time and material use of GBCAs. In or-
der to avoid inducing kidney failure, to reduce
gadolinium deposition in the body, to reduce the
discharge of GBCAs in the environment, and to
reduce the cost, an alternative to ¢T1 with GB-
CAs is highly preferred.

Enhancing images with deep learning (DL) is a
promising approach to reduce or even avoid the in-
take of GBCAs. In the past, DL has been utilized
to generate different modalities. For example,
Bahrami et al. proposed a method that translates
3T images to 7T-like images [16]. Furthermore,
Conte et al. focused more on translation between
modalities by generating T1 and T2-FLAIR im-
ages based on cT1 and T2 with two generative
adversarial networks (GANs) [17]. Similar to our
work (see below), Gong et al. proposed a U-
Net-based model to reduce the injection volume

by 90% [18]. The model could generate full-dose
c¢T1 images based on T1 and cT1 data with only
10% of the original injection dose. To avoid using
GBCAs, Chen et al. proposed a fully connected
network (FCN) [19]. The network generated cT1
images based on T1, T2, and apparent diffusion
coefficient maps (ADC). The inclusion of ADC
proved to have a slight advantage over only utiliz-
ing T1 and T2.

Further research is needed, however, to explore the
possibility of completely excluding gadolinium. As
such, we propose to apply different U-Net-based
models that generate synthetic ¢T1 (scT1) images
based on T1, T2, and T2-FLAIR images. We do
so as the latter images are conventionally already
at the basis of a comprehensive assessment of low-
grade glioma.

2 Methods

This project investigated the potential of using DL
to generate scT1 images based on T1, T2, and T2-
FLAIR from the EGD dataset (2.1). To do so, we
explored using different loss functions, model ar-
chitectures, and input sizes. Different methodolo-
gies were studied regarding data processing (2.2),
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Figure 2: Detailed workflow from the original data to the generation of scT1 images. The original data
is already registered to the MNI152 atlas. Normalization was applied to remove variations in intensity.
Removal of the skull and cropping was applied to remove non-relevant voxels. Then only T1, T2, and
T2-FLAIR are fed to the model to generate scT1 images. The scT1 images are then compared to the
orginal cT1 images to evaluate and train the model.

data augmentation (2.3), model architecture (2.4),
optimization (2.5), loss functions (2.6), evaluation
metrics (2.7), and radiomics (2.8). Our data work-
flow is visually represented in figure 2.

2.1 Data

We used T1, T2, and T2-FLAIR images, from the
Erasmus Glioma Database (EGD), that were ac-
quired during routine clinical practice. The EGD
is a database collected retrospectively from pa-
tients treated for gliomas at the Erasmus MC be-
tween 2008 and 2018. It consisted of 774 patients
(281 female, 492 male, 1 unknown) ranging from
19 to 86 years of age [20]. T1, T2, T2-FLAIR, and
c¢T1 images were acquired preoperatively for every
patient. The images were obtained with scanners
from four vendors: Siemens (347), Phillips (254),
GE (172), and Toshiba (1). The field strength var-
ied as follows: 3T (83), 1.5T (571), 1T (110), 0.5
(6), and unknown (4). While the patients were
treated at the Erasmus MC, a fraction of the im-
ages were acquired at other institutes. After image
acquisition, a biopsy or resection was performed to
determine gene mutation and codeletion for pre-
cise diagnosis. A pathological assessment of the
biopsy or resection specimen determined the tu-
mor grade based on the WHO 2016 grading, re-
sulting in: II (135), III (79), IV (502), and un-

known (58) [5]. A tumor segmentation was avail-
able for each image, either manual (374) or auto-
matic (400).

2.2 Data pre-processing

Pre-processing involved preparing the data for
learning by registration, cropping, filtering, and
cleaning it in various ways to reduce non-relevant
variations between images. Registration is applied
to remove variations in spatial coordinates and
resolution between acquisitions and patients. All
images were registered to the MNI152 brain atlas,
with a size of 197 x 233 x 189 with voxels of 1 mm?
[21]. To remove non-relevant voxels, the skull was
removed and then cropped to 160 x 192 x 160 vox-
els. Subsequently, intensity differences between
images were compensated by applying Z-score
normalization, with a 40 cut-off, and scaled be-
tween [-1, 1]. To further improve data quality, 313
images with artifacts were removed after a visual
assessment of all data. Such artifacts in images
consisted of low signal-to-noise (SNR), insufficient
field-of-view (FOV), Gibbs artifacts, and signs of

movement.

Based on the remaining 461 images, we imposed
an even 50% split between enhancing and non-
enhancing tumors, so that 298 images remained.
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Figure 3: Overview of the U-Net architecture based on the pix2pix generator interpretation of Tensor-
Flow. T1, T2, and T2-FLAIR were utilized as input for the model to generate synthetic cT1 images.
Further referred to as our baseline model or model 0.

This even distribution should prevent biases in the
model prediction. Cohen et al. highlighted the
issue of hallucinating tumors in their generated
T1 and FLAIR images due to this imbalance [22].
In this way, the model might generate tumors that
are not there. The resulting balanced dataset was
subsequently partitioned into training, testing,
and evaluation datasets of 208, 45, and 45 images,
respectively.

To focus our attention on the tumor, we imple-
mented patching. This patching involved reducing
the data into smaller regions, or so-called patches,
centered around the tumor segmentation’s center
of mass (COM). We took this approach for two
reasons. First, it facilitated a reduction of vox-
els during training, so that the computation time
was reduced. Second, non-relevant voxels were dis-
carded, and a focus on the tumor and its surround-
ings was created. As such, centering around the
tumor and decreasing the volume would increase
the influence of enhancing voxel during training.
Based on this approach, three additional datasets
were created by making patches of sizes 643, 963,
and 1283 voxels. The influence of patch-size on
performance was explicitly studied in several ex-
periments.

2.3 Data augmentation

Due to removing images with artifacts and lim-
iting the influence of biases during training, the
dataset contained 298 samples. Data augmenta-
tion was performed by flipping the brain along its
sagittal axis to increase the number of samples. In
effect, this doubled the number of samples to 596.

2.4 Model architecture

As a DL model, we focused on convolutional neu-
ral networks (CNN) because of their good per-
formance in many image processing applications.
The U-Net, a particular type of CNN, has, besides
segmentation applications, proven its capabilities
in image-to-image (I2I) translation [23]. 12 aims
to transform images from one domain to another.
In our case, this would be from T1, T2, and T2-
FLAIR to a synthetic ¢T1 image. As a baseline
U-Net model, we used a modified version of the
pix2pix generator implemented by TensorFlow, as
shown in figure 3 [24, 25]. Instead of using 2D con-
volution filters, 3D convolution filters were used
to allow the model to capture 3D information.
3D models can include information of neighboring
slices, which is known to increase classification
accuracy [19]. Model input and output channels
were changed to 3 (T1, T2, and T2-FLAIR) and
1 (scT1). Furthermore, due to the output range
([-1, 1]), the sigmoid activation function at the
end was replaced by a tanh.

Four other model architectures were created to
study the efficiency of variations of the baseline
model ("Model 0°) further, as follows.

Model 1: fine-tuned baseline

Model 1 addresses some bottlenecks in the model
by varying the parameter initialization, upsam-
pling, kernel size, and high-resolution skip connec-
tion. Parameter initialization changed from nor-
mal initialization to Xavier initialization to im-
prove learning [26]. He-initialization was also con-
sidered but performed worse after some initial



testing [27]. Upsampling in the last layer con-
sisted of only 3 filters. We suspected that the
lack of filters caused checkerboard artifacts in the
generated images. Therefore, additional filters (3
— 64) and a convolution layer with 3 filters were
added after the last upsample layer to prevent
this. Additionally, the filter size was adjusted
from 4 to 3, decreasing learning time. Also, a
full-scale skip connection was included to transfer
high-resolution information over the U-Net archi-
tecture. To achieve this, an additional convolu-
tion layer was added at the start with 64 filters to
match the last upsampling layer. The full archi-
tecture of the model is shown in appendix A.

Model 2: modality specific

Further building on the adaptations of model 1,
model 2 includes additional modality-specific con-
volutional layers at the front of the model [28].
The input is split in T1, T2, and T2-FLAIR and
fed to modality-specific convolution layers. Each
convolution layer learns a set of modality-specific
filters to extract modality-specific features rather
than applying the same filters irrespective of the
modality. A convolutional layer of 32 filters was
added for each modality, followed by batch nor-
malization and a ReLU activation layer. The lay-
out of this model is presented in appendix B.

Model 3: attention-based

In model 3, based on model 2, attention layers are
implemented before concatenating the upsampled
information and skip-connection [29]. In these lay-
ers, the model learns to focus its attention, in our
case, on the tumor to increase model accuracy.
The architecture of this model is presented in ap-
pendix C.

Model 4: residual-based

For model 4, based on model 2, architecture com-
plexity was increased to be able to learn more
complex connections within the data. Increas-
ing complexity is achieved by implementing resid-
ual layers before the current convolution and de-
convolutional layers. Residual layer design is
based on the work of He et al. [30]. The prin-
ciple of residual layers is to learn the difference,
or residual, between the input and output, rather
than the full transformation. The model is pre-
sented in appendix D.

2.5 Optimization

During training, the Adam optimizer was used
for all models with hyper-parameters copied from

the pix2pix model (betal=0.5, beta2=0.99, and a
learning rate of 2e-4)[24, 31]. Alternative hyper-
parameter configurations were tested but did not
improve accuracy. A maximum of 300 epochs was
set for each model. We implemented a stopping
criteria to stop the model after 20 consecutive
epochs without improvement.

2.6 Loss functions

It is our aim to transform from T1, T2, and
T2-FLAIR to synthetic post-contrast T1 images
(s¢T1) through our generator. Therefore, ¢T1
(ground truth) and scT1 are compared by a loss
function that evaluates the model’s performance.
Three types of loss functions were evaluated:
pixel-, area-wise, and a combination. The loss was
determined based on either a single voxel, or an
area surrounding a voxel. As such, the pixel-wise
loss focuses on individual errors between images,
while the area-wise approach reflects human per-
ception.

We applied the £; and L4 as pixel-wise loss func-
tions, also known as the mean absolute error
(MAE) and mean squared error (MSE), respec-
tively. The loss functions are defined as:

L(X,Y;S)is = ﬁ Y IGX)u —Yul (1)
uesS
L(X,Y: S)as ﬁ S EX)u -V (2)
uesS

in which G(X) corresponds to the generation of
synthetic ¢T1 images, based on the input images
X, Y are the ground truth cT1 images, and S is
a binary mask. The loss functions were applied
to the full images (£; and L), and regions re-
stricted to the brain (£1p, Lap), the tumor (L17
and La1), and the enhancing part (£15 and Log)
using masks. The brain and tumor masks were
readily available from a previous study. Brain
segmentation was based on the MNI152 atlas,
while the tumor mask was either manually or au-
tomatically segmented. The enhancement mask
was made by subtracting the registered T1 image
from the ¢T1 image, as in the work of Chen et al.
[19]. Positive differences larger than 0.3 were con-
sidered to represent enhancement. The threshold
of 0.3 was empirically determined (through visual
inspection). Observe that by limiting the loss
functions as such, we increasingly set a focus on
the region of interest (ROI).



For the area-wise loss functions, Structural Sim-
ilarity Index Metric (SSIM) or Lgsra. Essen-
tially, Lssras evaluated the similarity of ¢T1 and
scT1 in contrast, structure, and illumination over
a 11x11x11 area as described in [32]:

L(X.Y;S)ssim = ‘S|Z|1 SSIM(G(X.), V)|
3)

SSIM has a minimum value of 0 and a maximum
of 1 when X equals Y. We subtracted SSIM from
1 to define a minimizing problem similar to the
previously described loss functions £; and Ls.

Finally, a combination loss function takes advan-
tage of both voxel- and area-wise loss functions,
combining individual voxel errors and human per-
ception. This loss was based on the work of Chen
et al. and was defined as [19]:

Ly =ML+ XoLssiv + A3Lig (4)

with A1, A2, and A3 parameters that can be used
to adjust the contribution of each individual loss
function. Chen et al. initially applied an even
distribution of 1 for A;, Ag, and A3

Clearly, the optimal loss functions, as with many
parameters in deep learning, may be highly prob-
lem specific. To cope with this, a study was con-
ducted to evaluate the different loss functions. Re-
sults were evaluated using evaluation metrics and
visual inspection.

2.7 Evaluation metrics

For assessing the model performance, quantita-
tive and qualitative evaluation metrics were used.
Specifically, we applied the mean absolute error
(MAE), mean squared error (MSE), and struc-
tural similarity index metrics (SSIM) to do so,
which are commonly used metrics in image-to-
image translation. In addition, similar to the loss
function, a brain and tumor mask was imposed to
focus these metrics. To assess the images qualita-
tively, I myself inspected the images regarding the
presence of artifacts.

2.8 Radiomics

In addition to the above deep learning techniques,
we implemented a radiomics approach. Radiomics
analyzes quantifiable features from medical images
intending to predict disease progression, treat-

(e) Lssim

(f) L2

Figure 4: Qualitative assessment of the baseline model with different loss functions.

(g) L2B (h) Lor

These images

were generated based on a already seen sample from the training dataset and compared to the ground

truth a).



(f) L2

(e) Lssrm

(8) L28

Figure 5: Qualitative assessment of the baseline model with different loss functions. These images
were generated based on a new sample from the Fvaluation dataset and compared to the ground truth

a).

Table 1: Quantitative comparison between the different loss functions with the same baseline model
with the evaluation dataset. Full table is in appendix E.

MAEs] MSEr] SSIMst MAEr]

MSEr] SSIMst MAEz] MSEs]  SSIMyt

Ly 0,0474  0,0138 0,874 0,1207  0,0352 0,727 0,1655  0,0647 0,632
Lo 0,0481  0,0136 0,872 0,1214  0,0345 0,724 0,1715 0,0644 0,624
Lip 0,0476  0,0139 0,875 0,1215 0,0356 0,729 0,1675  0,0657 0,633
Lop 0,0480  0,0137 0,875 0,1224  0,0349 0,728 0,1738  0,0661 0,622
LiT 0,0670  0,0236 0,822 0,1710  0,0603 0,618 0,1692  0,0674 0,610
Lor 0,0678  0,0239 0,822 0,1730  0,0611 0,619 0,1781 0,0662 0,609

Lssivy  0,0470  0,0140 0,878 0,1200 0,0358 0,737 0,1621  0,0687 0,642

ment, or diagnosis. Based on T1, T2, and T2- 3 Results

FLAIR, we aimed to merely predict if a post-

contrast T1 weighted image would show enhance- 3 1 T,0ss functions comparison

ment, not the actual appearance. We utilized the

radiomics software package WORC to achieve this Initially, we investigated subjectively if the

[33, 34]. WORC is a standardized, modular frame-
work that automatically optimizes the workflow
for an application.

model generated enhancement within the training
dataset, an example of which is shown in figure
4. The figure confirms that the model can learn
enhancement based on T1, T2, and T2-FLAIR.
For further model assessment, samples from the
evaluation dataset were used, shown in figure 5.
The figure shows that the method cannot pre-
dict enhancement in the validation dataset. The
images were also objectively evaluated, of which
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Figure 6: We visually compared models 0-4 trained with either £15, Lo, or Lgsra to the ground

truth a).

Table 2: Quantitave comparison for the different models and loss functions with a focus on the tumor

region. Full table is in appendix F.

£1B £2B ‘CSSIM
Model MAE| MSE] SSIM{ MAEz|, MSEp] SSIMpt MAErl MSEr] SSIMgt
0 0,167 0,066 0,633 0,174 0,066 0,622 0,162 0,069 0,642
1 0,164 0,064 0,631 0,173 0,064 0,616 0,165 0,071 0,644
2 0,160 0,068 0636 0,173 0,064 0619 0,161 0,064 0,648
3 0,168 0,064 0,622 0,175 0,064 0,617 0,163 0,070 0,643
4 0,164 0,063 0,639 0,172 0,064 0,620 0,169 0,068 0,651

results are presented in table 1; the full table of
this assessment is in appendix E.

To focus our research Ly, Lo, L17, and Lo were
excluded from further research. £; and Lo were
omitted because L£1p, and Lop performed slightly
better on visual inspection. Lqi7, and Lo were
not considered for further research due to overall
poor performance. Lggrp was included because it
yielded high overall values in any evaluation per-
formed; however, simultaneously, it did not gener-
ate enhancement in the images.

3.2 Model comparison

In this section, the performance of five models
trained with three loss functions is reviewed based

on all evaluation metrics. To set our focus, only
tumor-specific loss functions are presented in table
2. Complementary to this, a full table is in ap-
pendix F. Additionally, the models were evaluated
based on visual assessment, as shown in figure 6.

3.3 Input size comparison

By decreasing the input size around the tumors
COM, we effectively increase the relative number
of enhancing voxels. Again, as in section 2.6, we
aimed to focus on enhancing voxels. As described
previously, we selected patch-sizes of 128, 96, and
64 centered around the COM of the mask. The
results were evaluated based on visual assessment
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Figure 7: Model 1 trained with £1p for different input sizes (full, 128, 96, and 64). As example the
model was fed a training and evaluation samples and compared to the ground truth a).

Table 3: Quantitative comparison between the different input sizes with the same baseline model. Full

table is in appendix G

Lip Lop Lssim
Model MAEgr, MSEr) SSIMyt MAEp, MSEp, SSIMpt MAEp, MSEp)  SSIMpt
full  0,1641 0,0639 06307 01727 00644 0,6157 0,1651 0,0710 0,6441
128 0,1621 0,0670 0,6369 0,1759 0,0644 0,6140 0,1710 0,0772 0,6436
96 0,1627 0,0658 0,6314 0,1722 0,0628 0,6127 0,1689 0,0763 0,6409
64 0,1718 0,0714 0,6201 0,1799 0,0671 0,6108 0,1802 0,0865 0,6214

and evaluation metrics, shown in figure 7 and table
3.

3.4 Combined loss functions

A combination of loss functions (L), as defined
in formula 4, was used to generate synthetic ¢T1
images. By combining different loss functions, the
distortion, visible in figures 5d) and 5h), could
be solved when including the loss of the overall
brain structure. For comparability, experiments
were performed in the same way as in 3.1, en-
abling a comparison of the best-performing loss
functions (L1p, Lop and Lgsrar) to Lpy. Table 4
and figure 8 show the quantitative and qualitative
assessment.

3.5 Enhancement prediction

A WORC experiment was implemented to verify
that the data holds the necessary information for
enhancement prediction. T1, T2, and T2-FLAIR
were considered as input for WORC, with labels 0
and 1, for non-enhancing and enhancing, respec-

tively. To simplify the problem, grade IV tumors
were considered enhancing, while grades IT and ITT
were assumed to be non-enhancing. This holds for
the vast majority of the cases, but there are ex-
ceptions.

Receiver operating characteristic
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Figure 9: Receiver operating characteristic (ROC)
curve of the radiomics package WORC with an av-
erage AUC of 0.79.
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Figure 8: Qualitative comparison of model 0 trained with either L5, Lo, Lssiam, or Ly to the

ground truth.

Table 4: The models trained with different loss functions are evaluated with different evaluation met-
rics. The scores are the average of 45 evaluation samples generated by the different models.

MAE | MSE] SSIM+ MAEg] MSEg| SSIMpt MAE;] MSEp]  SSIMpt
Lip 00476 00139 0,875 011215 00356 0,729  0,1675  0,0657 0,633
Lop  0,0480 0,0137 0875  0,1224 0,0349 0,728 01738  0,0661 0,622
Lssia 0,0470  0,0140 0878  0,1200 0,035 0,737  0,1621  0,0687 0,642
Ly 00478 00139 0,879  0,1220  0,0356 0,740  0,1716  0,0696 0,630

4 Discussion

This study investigated whether deep learning can
simulate contrast weighted T1 images based on
(non-contrast weighted) T1, T2, and T2-FLAIR
images. Various models, loss functions, and patch-
sizes were employed to explore their effects. The
findings and potential issues related to these meth-
ods are discussed in this chapter.

4.1 Loss focus

The conventional loss functions (£;, L2, and
Lssrar) appeared to lack focus on enhancement,
as seen in figures 4 and 5. Essentially, the enhanc-
ing voxels are outnumbered by the healthy voxels,
leading to an uneven contribution of inputs to the
loss function. As a result, the models particularly
learns from healthy voxels. Importantly, a model
that learns mostly from healthy voxels appears to
generate a healthy brain, as was previously also
observed in the work of Cohen et al. [22]. By
implementing brain and tumor-specific loss func-
tions (L1p, Li7, Lap, and Lor) the weight of the
enhancing voxels implicitly increased. In this way
we enhanced the focus on diseased tissues, po-
tentially improving accuracy in these regions. A
model was trained with the different loss functions
to test this hypothesis and was evaluated based
on visual assessment and evaluation metrics.

Initially, figure 4 confirmed the capabilities of
generating enhancement based on the training

samples. Additionally, the experiment using the
WORC environment confirmed that information
on enhancement is contained within the input im-
ages, see figure 9: the mean AUC (0.79) is signif-
icantly different from random guessing. However,
the model could not generate enhancement in the
tumor based on evaluation samples. The only gen-
erated enhancement was in the great longitudinal
fissure (fissure between both hemispheres), as seen
in figure 5. Compared to tumor enhancement, the
fissure enhancement is visible in most cases, so
that it can be efficiently learned by the networks.
In a few cases, however, this enhancement was not
visible in the true contrast enhanced images. In
those cases the predicted enhancement of the fis-
sure should be considered a hallucination.

Both qualitative and quantitative assessments of
the synthetic ¢T1 images confirmed that focusing
the loss did not improve accuracy in the brain
nor tumor, see figure 5 and table 1. The ap-
plied loss Lssrar (figure 5e) resulted in relatively
sharp images compared to the other loss functions
but at the cost of enhancement in the training
samples, as shown in figure 4e. For that reason,
L1p and Lop (figures 5¢ and 5g) were considered
the best-performing model that could generate en-
hancement on training samples. In the same way,
we compared all these metrics on the evaluation
dataset (table 1). The loss function Lggrar gen-
erally showed the best performance, which corre-
sponded with the visual assessment. Only Lo per-
formed better regarding MSE, MSE g, and MSEr,
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which we attribute to the close mathematical re-
lation of Lo and MSE. Models trained with either
L1 or Lo performed poor, as shown in figures 5d
and 5h. These images demonstrate that excessive
focus caused distortions due to insufficient infor-
mation about brain structures. In conclusion, the
models trained with different loss functions unfor-
tunately could not generate enhancement in the
tumors. However, slight differences between the
loss functions were noticeable. In general, £p,
Lop, and Lggry were the best performing loss
functions.

4.2 Model complexity

The results in section 4.1 showed no significant
differences between loss functions. Therefore, we
shifted our attention to variations in model ar-
chitecture. Model architecture could limit model
performance by being too shallow or non-specific.
Specifically, shallow models may have insufficient
parameters to precisely capture a problem, while
non-specific models may not focus on the ROL
Both issues were addressed by implementing dif-
ferent attributes, as described in section 2.4.
These different models were trained with £,
Lop, and Lgsry and evaluated with the evalua-
tion metrics from section 2.7, with a focus on the
tumor-specific metrics.

The scT1 images generated by the different mod-
els lacked enhancement. Only subtle differences
were visible between models, as presented in table
2 and figure 6. Models were qualitatively assessed
based on visual markers, such as overestimation
of tumor area, under- and overestimation of en-
hancement in the great longitudinal fissure, high-
intensity distortion, and presence of checkerboard
artifacts. As can be seen in figure 6, the lower
intensities around the tumor were overestimated
compared to the original image in model 0. This
Too high intensity decreased in the other mod-
els, becoming more similar to the ground truth,
improving visual accuracy. With most models,
there were cases of hallucinated enhancement in
the great longitudinal fissure, for the same rea-
son as described previously (4.1). In the case of
the attention model, trained with L£sp, distortion
arose around high-intensity enhanced areas. The
reason for this artifact could not be identified by
us. A checkerboard artifact was visible in figure
4b and 5c¢ for which additional convolutional lay-
ers were applied to prevent this. However, with
models 2 and 3, this artifact was still visible in
some generated images. Adding even more addi-
tional layers still did not solve this problem. At
the same time, these artifacts were not visible in
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the results generated by models 1 and 4. To sum-
marise, model complexity did not significantly im-
prove overall model performance. Based on the
shallow architecture and the lack of checkerboard
artifacts, model 1 could be considered as the best-
performing model.

4.3 Volume focus

Section 4.1 introduced brain and tumor-specific
loss functions to cope with the lack of focus on
enhancing voxels. Another approach was to imple-
ment patches to decrease the influence of healthy
tissues. By selecting patches around the tumors,
the model focus was targeted on the tumor and
its close surrounding rather than the full image.
We considered patch sizes of 643, 963, and 1283 to
investigate the influence of patching compared to
exploiting the full images.

Unfortunately, visual inspection showed no im-
provement compared to the full image, and rather
a decrease in performance. Figure 7c shows no en-
hancement in the tumor or great longitudinal fis-
sure, checkerboard artifacts, and intensity differ-
ences between different results. Evaluation met-
rics confirm this decrease in performance, as seen
in table 3. The decrease in the evaluation perfor-
mance was inversely proportional to the patch size.
By patching, we essentially selected the area sur-
rounding the tumor containing the enhancement.
However, these areas, due to the inability of gen-
erating enhancement, contained the largest error,
resulting in a decrease in evaluation metric scores.
In the end, using the full image size as input out-
performed the other input sizes as reflected by the
quantitative metrics.§

4.4 Mix loss function

In section 4.1, we concluded that models trained
with a tumor-specific loss function did not im-
prove model accuracy and introduced distortions
in healthy tissues. Inspired by Chen et al., we im-
plemented a mixed loss function that could focus
on enhancement, preventing distortions as seen in
figure 4d and 4h [19]. To reproduce the work of
Chen et al. and compare it to our previous results,
we trained model 0 with the same settings as in
4.1.

In figure 8, the model trained with the £; was
compared to the best-performing models from
4.1 (L1, Lop, and Lgsrar). It is visible that
the model trained with Lj;; could generate a
coarse representation of enhancement. In some
cases, however, the model generates enhancement



on non-enhancing samples, creating false posi-
tives. While the figures clearly show differences,
these are not noticeable in the evaluation metrics
in table 4. While £;; outperforms in terms of
SSIM and SSIM g, SSIMt did not improve. Given
the enhancement in figure 8, we expected im-
provements in tumor-specific evaluation metrics.
However, due to the coarse representation of the
enhancement, a large area is essentially overesti-
mated, decreasing the evaluation metric score.

4.5 Noise

Scanning through the samples, we noticed that
some input images contained a significant amount
of noise. Noise in images degrades the image’s
quality, in effect often limiting model performance.
Deep learning models rely on large amounts of
data to learn image patterns. However, when
the images are degraded by noise, the model may
learn incorrect patterns. Importantly, the level
of noise also limits the approximation precision of
the model. This limit can be determined from the
variance in areas with ”constant” intensity. These
areas were selected based on visual inspection.
The average variance over the evaluation samples
was 0.029. This indicates that we are close to the
limit with an MAE of ~ 0.05. The limit may be
decreased by implementing denoising techniques.
However, it is essential to note that reducing the
noise can go at the expense of removing fine detail
that should actually be predicted. Thus, a trade-
off must be made between reducing the limit and
preserving important features.

4.6 Registration

During the evaluation of synthetic ¢T1, it became
clear that some errors were caused by the non-
ideal registration of images. Therefore, it could
be that structures between input and output did
not align well. The model relies on the overall
structure of the input to make an accurate predic-
tion of ¢T1 images. However, the model cannot
predict these random and unpredictable misalign-
ments, limiting our model accuracy. An example
of such misalignment can be found in appendix I,
in which the image has a rotation difference and a
right ventricle misalignment between T'1 and cT1.
To cope with this, the registration should be im-
proved, or such images should be excluded during
training and evaluation.
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4.7 Evaluation metric limit

In most of our experiments, we would have pre-
ferred that the evaluation metrics were more con-
clusive, to enhance decision-making. Now we
depend (too much) on visual assessment, making
the results subjective. This was most evident in
the results of 3.4. Apparent enhancement was
visible in figure 8, but the evaluation metrics did
not increase significantly in table 4.

A previous literature study showed that the most
used evaluation metrics are MAE, MSE, and
SSIM. No other evaluation metrics were found
that were fitting with our data, and that ampli-
fied differences between models.

4.8 Loss complexity

In section 3.1, we showed that the models could
initially not learn any enhancement. However,
in section 3.4, the model was able to generate a
coarse representation of the enhancement. One
may observe that L1, Lop, and Lgsras are rel-
atively simple loss functions for a complex prob-
lem like ours. It could be the case that these loss
functions by themselves can not capture the detail
needed to generate enhancement. Alternatively,
potentially due to the increased complexity, the
model trained with a combination of loss functions
could generate enhancement, 3.4. However, the
resolution was poorer than might be preferable.

5 Conclusion

We showed that it was possible to generate
contrast-weighted T1 images using T1, T2, and
FLAIR with model 0 and a mixed loss function.
Compared to the work of Gong et al., our model
performed slightly better regarding mean absolute
error on training data:0.879 £ 0.024 compared to
0.85 £ 0.08, respectively. However, the proposed
model by Gong et al. could also generate accu-
rate enhancement in synthetic scans. Overall, the
model previously proposed by Chen et al. had the
best performance: 0.923 + 0.041. An important
aspect to note, however, is that our results were
based on a weight of 1 for each loss function. Dif-
ferent weight combinations might be explored to
optimize the accruacy.

Despite the efforts to optimize the models and loss
functions, the results did not meet the desired per-
formance. Further research and development of
deep learning models and loss functions is needed
to improve the accuracy and reliability of contrast-
weighted T1 image generation. This might in par-



ticular require establishment of larger databases
for training.

6 Further work

During the project, I implemented various ap-
proaches to achieve high-accuracy generated vcT1
scans. Some strategies could have further im-
proved accuracy. Examples are EGD potential,
Mix loss function, and model architecture.

The EGD dataset, in section 2.1, contains more
than only MR images and masks. Sex, age, grade,
gene mutation, and codeletion were known for
each patient. Including these features during
training could improve the model’s performance
and use the EGD dataset to its full potential.

During the project, the £, outperforms all other
loss functions without proper fine-tuning, as de-
scribed in 4.4. For now, the implementation only
considered an even weighing between loss func-
tions. Performing an empirical study could lead
to a more optimal weighing and increase model
performance.

In section 4.2, we concluded that increasing model
complexity did not improve accuracy. However,
during the project, only U-Net was considered as
a model. Another approach would have been a
GAN-based architecture. Compared to the pre-
defined loss function in U-Net, a GAN can learn
its loss function during training. This approach
could find more complex correlations in the data
than a predefined loss function.
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Appendix A Figure: Model 1
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Figure 10: U-Net architecture based on the pix2pix interpretation of TensorFlow. The number above
the blocks represent the number of filters in each layer. Compared to model 0, we parameter initial-
ization, upsampling, kernel size, and high-resolution skip connection.
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Appendix B Figure: Model 2
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Figure 11: U-Net architecture based on the pix2pix interpretation of TensorFlow. The number above
the blocks represent the number of filters in each layer. Compared to model 1, we added modality
specific convolution layers to learn model-specific features.
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Appendix C Figure: Model 3
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Figure 12: U-Net architecture based on the pix2pix interpretation of TensorFlow. The number above
the blocks represent the number of filters in each layer. Compared to model 2, we added attention
blocks to focus our attention on the tumor
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Appendix D Figure: Model 4
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Figure 13: U-Net architecture based on the pix2pix interpretation of TensorFlow. The number above
the blocks represent the number of filters in each layer. Compared to model 2, we residual layer to
learn the residual between the input and output, rather than the complete transformation.

17



81

Appendix E Table: Loss functions

Table 5: Quantitative comparison, with the standard deviation, between the different loss functions with the same baseline model with the evaluation dataset.
Lo and Lgsra were, based on quantitative metrics, the best performing models.

MAE | MSE | SSIM 1t MAEg | MSEp | SSIMp 1 MAFEr | MSEr | SSIMr t
Ly 0,047 (0,007) 0,014 (0,003) 0,874 (0,025) 0,121 (0,018) 0,035 (0,008) 0,727 (0,056) 0,165 (0,062) 0,065 (0,045) 0,632 (0,132)
Lo 0,048 (0,007) 0,014 (0,003) 0,872 (0,024) 0,121 (0,017) 0,034 (0,008) 0,724 (0,056) 0,171 (0,059) 0,064 (0,042) 0,624 (0,131)
Lip 0,048 (0,007) 0,014 (0,003) 0,875 (0,024) 0,122 (0,017) 0,036 (0,008) 0,729 (0,056) 0,167 (0,061) 0,066 (0,046) 0,633 (0,131)
Lop 0,048 (0,006) 0,014 (0,003) 0,875 (0,024) 0,122 (0,016) 0,035 (0,008) 0,728 (0,056) 0,174 (0,057) 0,066 (0,041) 0,622 (0,125)
Lir 0,067 (0,005) 0,024 (0,004) 0,822 (0,027) 0,171 (0,013) 0,060 (0,010) 0,618 (0,062) 0,169 (0,063) 0,067 (0,046) 0,610 (0,129)
Lor 0,068 (0,006) 0,024 (0,004) 0,822 (0,025) 0,173 (0,016) 0,061 (0,010) 0,619 (0,058) 0,178 (0,060) 0,066 (0,041) 0,609 (0,124)
Lssiy 0,047 (0,007) 0,014 (0,003) 0,878 (0,024) 0,120 (0,018) 0,036 (0,009) 0,737 (0,055) 0,162 (0,068) 0,069 (0,052) 0,642 (0,135)
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Appendix F Table: Model comparison

Table 6: Quantitative comparison, with the standard deviation, between the different loss functions and models. These metrics are based on 45 evaluation
samples.

Model MAE | MSE | SSIM 1 MAEg | MSEg | SSIMp 1 MAEy | MSEr | SSIMyp 1
Lip
0 0048 (0,007) 0,014 (0,003) 0,875 (0,024) 0,122 (0,017) 0,036 (0,008) 0,729 (0,056) 0,167 (0,061) 0,066 (0,046) 0,633 (0,131)
1 0,047 (0,007) 0,014 (0,003) 0,874 (0,025) 0,120 (0,017) 0,035 (0,008) 0,728 (0,057) 0,164 (0,065) 0,064 (0,045) 0,631 (0,136)
2 0,048 (0,006) 0,014 (0,003) 0872 (0,025) 0,121 (0,017) 0,036 (0,008) 0,722 (0,057) 0,160 (0,070) 0,068 (0,052) 0,636 (0,137)
3 0,048 (0,006) 0,014 (0,003) 0,869 (0,025) 0,122 (0,016) 0,036 (0,008) 0,717 (0,058) 0,168 (0,063) 0,064 (0,043) 0,622 (0,135)
4 0,047 (0,007) 0,014 (0,003) 0,873 (0,025) 0,121 (0,018) 0,035 (0,008) 0,724 (0,058) 0,164 (0,063) 0,063 (0,044) 0,639 (0,137)
Lop
0 0,048 (0,006) 0,014 (0,003) 0,875 (0,024) 0,122 (0,016) 0,035 (0,008) 0,728 (0,056) 0,174 (0,057) 0,066 (0,041) 0,622 (0,125)
1 0,048 (0,006) 0,014 (0,003) 0,869 (0,025) 0,124 (0,016) 0,035 (0,008) 0,716 (0,058) 0,173 (0,062) 0,064 (0,043) 0,616 (0,134)
2 0,048 (0,006) 0,013 (0,003) 0,870 (0,024) 0,123 (0,016) 0,034 (0,007) 0,718 (0,057) 0,173 (0,062) 0,064 (0,042) 0,619 (0,132)
3 0,048 (0,007) 0,014 (0,003) 0,871 (0,025) 0,123 (0,019) 0,035 (0,008) 0,720 (0,057) 0,175 (0,061) 0,064 (0,041) 0,617 (0,134)
4 0,048 (0,007) 0,013 (0,003) 0,872 (0,025) 0,121 (0,017) 0,034 (0,008) 0,720 (0,058) 0,172 (0,062) 0,064 (0,042) 0,620 (0,134)
Lssim
0 0047 (0,007) 0,014 (0,003) 0878 (0,024) 0,120 (0,018) 0,036 (0,009) 0,737 (0,055) 0,162 (0,068) 0,069 (0,052) 0,642 (0,135)
1 0,048 (0,009) 0,015 (0,004) 0,876 (0,026) 0,122 (0,022) 0,039 (0,011) 0,731 (0,059) 0,165 (0,067) 0,071 (0,053) 0,644 (0,137)
2 0,046 (0,008) 0,014 (0,004) 0,880 (0,025) 0,118 (0,021) 0,035 (0,009) 0,740 (0,058) 0,161 (0,063) 0,064 (0,045) 0,648 (0,133)
3 0,047 (0,007) 0,014 (0,004) 0,878 (0,025) 0,120 (0,018) 0,036 (0,009) 0,736 (0,057) 0,163 (0,070) 0,070 (0,053) 0,643 (0,138)
4 0048 (0,008) 0,014 (0,004) 0879 (0,025) 0,122 (0,022) 0,037 (0,010) 0,739 (0,058) 0,169 (0,062) 0,068 (0,049) 0,651 (0,132)
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Appendix G Table: Input size comparison

Table 7: Quantitative comparison, with the standard deviation, between the different loss functions and input sizes trained with model 2. These metrics are

based on 45 evaluation samples.

Size MAE | MSE | SSIM 1 MAEg |

MSEgp | SSIMpg 1+ MAE7 | MSEr | SSIMyg +

Lip

full 0,047 (0,007)
128 0,077 (0,015)
96 0,097 (0,021)
64 0,136 (0,046)

0,014 (0,003)
0,023 (0,008)
0,031 (0,012)
0,050 (0,032)

0,874 (0,025)
0,798 (0,042)
0,747 (0,065)
0,663 (0,125)

0,120 (0,017)
0,123 (0,023)
0,133 (0,024)
0,153 (0,043)

0,035 (0,008)
0,037 (0,012)
0,043 (0,016)
0,056 (0,033)

0,728 (0,057)
0,710 (0,064)
0,683 (0,075)

0,647 (0,109)

0,164 (0,065)
0,162 (0,068)
0,163 (0,067)
0,172 (0,073)

0,064 (0,045)
0,067 (0,050)
0,066 (0,048)

0,071 (0,056)

0,631 (0,136)
0,637 (0,140)
0,631 (0,137)
0,62 (0,147)

Lop

full 0,048 (0,006)
128 0,081 (0,013)
96 0,101 (0,021)
64 0,142 (0,045)

0,014 (0,003)
0,023 (0,007)
0,031 (0,011)
0,049 (0,028)

0,869 (0,025)
0,787 (0,043)
0,741 (0,066)
0,656 (0,122)

0,124 (0,016)
0,128 (0,021)
0,139 (0,024)
0,159 (0,041)

0,035 (0,008)
0,037 (0,011)
0,042 (0,014)
0,054 (0,029)

0,716 (0,058)
0,694 (0,065)
0,674 (0,076)
0,639 (0,105)

0,173 (0,062)
0,176 (0,066)
0,172 (0,064)
0,180 (0,064)

0,064 (0,043)
0,064 (0,042)
0,063 (0,041)
0,067 (0,046)

0,616 (0,134)
0,614 (0,135)
0,613 (0,136)
0,611 (0,140)

Lssrm

full 0,048 (0,009)
128 0,078 (0,016)
96 0,096 (0,025)
64 0,140 (0,055)

0,015 (0,004)
0,026 (0,009)
0,034 (0,016)
0,061 (0,042)

0,876 (0,026)
0,803 (0,048)
0,759 (0,069)
0,659 (0,128)

0,122 (0,022)
0,124 (0,025)
0,132 (0,031)
0,158 (0,054)

0,039 (0,011)
0,041 (0,015)
0,047 (0,021)
0,068 (0,044)

0,731 (0,059)
0,716 (0,069)
0,694 (0,080)
0,646 (0,114)

0,165 (0,067)
0,171 (0,073)
0,169 (0,075)

0,180 (0,088)

0,071 (0,053)
0,077 (0,059)
0,076 (0,059)

0,086 (0,071)

0,644 (0,137)
0,644 (0,141)
0,641 (0,142)
0,621 (0,153)
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Appendix H Table: Mix loss function

Table 8: Quantitative comparison, with the standard deviation, between model 1 trained with either £15, Lo Lssra, and L. These metrics are based
on 45 evaluation samples.

MAE | MSE | SSIM 1 MAEg | MSEg | SSIMp + MAET | MSE7 | SSIMyp 4

Ly 0,048 (0,007) 0,014 (0,003) 0,875 (0,024) 0,122 (0,017) 0,036 (0,008) 0,729 (0,056) 0,167 (0,061) 0,066 (0,046) 0,633 (0,131)
Lop 0,048 (0,006) 0,014 (0,003) 0,875 (0,024) 0,122 (0,016) 0,035 (0,008) 0,728 (0,056) 0,174 (0,057) 0,066 (0,041) 0,622 (0,125)
Lssiv 0,047 (0,007) 0,014 (0,003) 0,878 (0,024) 0,120 (0,018) 0,036 (0,009) 0,737 (0,055) 0,162 (0,068) 0,069 (0,052) 0,642 (0,135)
Ly 0,048 (0,008) 0,014 (0,004) 0,879 (0,024) 0,122 (0,019) 0,036 (0,009) 0,740 (0,054) 0,172 (0,064) 0,070 (0,046) 0,630 (0,127)




Appendix I Figure: Misalignment figure

(c) T2-FLAIR (d) cT1

Figure 14: Registration error between the different modalities. In d) is clearly a slight rotation visible
compared to a), b), and ¢). Other differences are the sulci on the left side of the brain and the ventricle
at the right posterior side. The model is unable to correct for these errors, decreasing evaluation
metrics.
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