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Microwave driving is a ubiquitous technique for superconducting qubits, but the dressed states
description based on the conventionally used perturbation theory cannot fully capture the dynamics in the
strong driving limit. Comprehensive studies beyond these approximations applicable to transmon-based
circuit quantum electrodynamics (QED) systems are unfortunately rare, as the relevant works have been
mainly limited to single-mode or two-state systems. In this work, we investigate a microwave-dressed
transmon coupled to a single quantized mode over a wide range of driving parameters. We reveal that the
interaction between the transmon and resonator as well as the properties of each mode is significantly
renormalized in the strong driving limit. Unlike previous theoretical works, we establish a nonrecursive and
non-Floquet theory beyond the perturbative regimes, which excellently quantifies the experiments. This
work expands our fundamental understanding of dressed cavity QED-like systems beyond the conventional
approximations. Our work will also contribute to fast quantum gate implementation, qubit parameter
engineering, and fundamental studies on driven nonlinear systems.

DOI: 10.1103/PhysRevLett.131.193605

Dynamically driving systems is a common methodo-
logy in physics [1–9]. Qubits or oscillators driven by time-
periodic potentials are the most typical type of such systems.
In circuit quantum electrodynamics (QED) platforms, a
prototypical system for exploring and understanding light-
matter interactions in the quantum regime [10], applying
time-periodic potentials through charge or flux lines is a
major means to perform quantum gate operations [11–19] or
engineer the qubit’s properties in situ [20–23].
In the strong driving limit, the significantly renormalized

eigenbasis of multilevel qubits cannot be captured by
low-order perturbation theory (PT) and two-state (TS)
description. These can modify the quantum dynamics
quantitatively and qualitatively. Unfortunately, investigat-
ing circuit QED or even general cavity QED-like systems in
this direction has remained unexplored, although periodi-
cally driven quantum systems in the strong drive limit have
been explored in various platforms [24–41].
Here, we perform a study on the renormalization of a

transmon [42] coupled to a resonator. In-depth investigations
of the driven transmon-resonator configuration have been
intensively performed [43–50]. Recently, the efforts to
break conventional approximations are also being actively
reported [51–60]. Unlike most of the previous studies, we
derive a nonrecursive and non-Floquet formula, advanta-
geous for multilevel systems and nonperturbative problems.
We identify a nonperturbatively modified qubit-resonator
interaction in the experiments through Lamb shifts and
cross-nonlinearities. The theory is cross-checked through
the observed renormalized Rabi frequencies and energy

relaxation times. We clearly see the breakdowns of the PT
and TS model as well as rotating wave approximation.
Theoretical description.—The Hamiltonian of a bare

transmon reads Ĥq ¼ 4ECðN̂ −NgÞ−EJ cos ϕ̂ðEJ ≫ECÞ,
where EC, EJ, andNg are the charging, Josephson energies,
and offset charges, respectively. N̂ and ϕ̂ are the Cooper-
pair number and phase operators, respectively. Let us set En
and jniq as the nth eigenvalue and eigenstate, respectively,
of Ĥq. The fundamental transition frequency and self-
nonlinearity of the transmon is then given by ωq ¼ E1 − E0

and χq ¼ ωq − ðE2 − E1Þ. We define d̂ as a normalized
dipole operator given by ηN̂, where η ¼ −ið32EC=EJÞ1=4
(see Supplemental Material, Sec. A1 [61]). It is important
to note that d̂ is an anti-Hermitian operator.
A microwave drive adds an additional term ĤdðtÞ ¼

Ωdd̂ sinωdt. Here, Ωd and ωd are the drive amplitude and
frequency, respectively. We then invoke a unitary operator
ÛqðtÞ that satisfies ÛqðtÞ½Ĥq þ ĤdðtÞ − i∂=∂t�Û†

qðtÞ ¼ K̂q,
where K̂q denotes an effective static “Kamiltonian,” which
captures only the slow dynamics of the system. The nth
eigenenergies of K̂q will be expressed by Ẽn. K̂q should be
set such that Ẽn is adiabatically connected to En asΩd → 0.
It is also useful to define the renormalized dipole elements

d̃ð�Þ
nm , which satisfy (see Supplemental Material, Secs. A1

and A2 [61])

ÛqðtÞd̂Û†
qðtÞ ≅

X
n;m

∓ d̃ð�Þ
nm eiðm−n�1Þωdtσ̂nm: ð1Þ
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Here, σ̂nm ¼ jniqhmjq. The sign distinguishes whether the
elements originally concern the absorption or emission
processes. Equation (1) concerns the renormalization of
Rabi frequencies and energy relaxation times.
The renormalization can also be explored for the

interaction between a microwave-dressed transmon and
the quantized field of a dispersively coupled readout
resonator. We define ĤðtÞ like below:

ĤðtÞ ¼ Ĥq þ ĤdðtÞ þ ωrâ†â|fflffl{zfflffl}
Ĥr

þ gd̂ðâ − â†Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
ĤI

: ð2Þ

Here, â and ωr denote the field operator and frequency of
the resonator, respectively. ĤI denotes the interaction
between the transmon and resonator. g refers to the
coupling constant. The renormalization of the transmon-
resonator interaction can be nicely captured by the expres-
sion below:

ÛqĤðtÞÛ†
q ¼ K̂q þ ωrâ†âþ g½Ûqd̂Û

†
q�ðâ − â†Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ˆ̃HI

: ð3Þ

The effects of the renormalized interaction terms ( ˆ̃HI)
and renormalized bare transmon (K̂q) are disentangled in
Eq. (3), whereas they have been ambiguated in the
theoretical descriptions of previous works [52]. We better

define ˆ̃HSI by collecting only the static components of
ˆ̃HIðtÞ to distinguish purely static effects from ˆ̃HIðtÞ.
We also define K̂ as an effective static form of ĤðtÞ,
related by ÛðtÞ satisfying K̂ ¼ ÛðtÞ½ĤðtÞ − i∂=∂t�Û†ðtÞ.
See Supplemental Material Sec. A3 [61] for how to
derive ÛðtÞ.
Table I summarizes all the Hamiltonian models and

their effective static forms used in this work. K̂1 and K̂2

describe the transmon-resonator system with interaction

terms ĤI and ˆ̃HSI , respectively. We also define a corre-
sponding TS system by ĤTS ¼ ðω0;TS=2Þσ̂z. Its interaction
with the resonator is expressed by ĤI;TS ¼ gTSσ̂xðâþ â†Þ.
Experimental results and analysis.—A graphical

description of this system is presented in Fig. 1(a), which

shows a dispersively coupled microwave-dressed transmon
(blue) and resonator (red). Figure 1(b) shows the energy
diagram of K̂. The energy levels are probed through
resonator transmission and qubit two-tone spectroscopy.
The resonator is used to read out the qubit states in the
two-tone spectroscopy. See Supplemental Material Sec. E
[61] for the details. Here, nq;r denote the excitation
numbers of the transmon and resonator, respectively.
Each horizontal line represents an eigenstate of K̂. ω̃nr

q

(ω̃
nq
r ) refers to the transmon (resonator) frequency when

the resonator (transmon) is in the nr (nq) energy state.
We additionally introduce symbols Lq ¼ ω0

q − ωq and
χqr ¼ ω0

q − ω1
q, which refer to the Lamb shift and cross-

nonlinearity in the fundamental transition of the transmon.
From the two-tone spectroscopy [70,71], we observe
ω0
q=2π ¼ 5.867 GHz, ω0

r=2π ¼ 4.289 GHz, χ0q=2π ¼
149 MHz, and χqr=2π ¼ 6 MHz. From this observation,
we extract the parameters EJ=2π ¼ 28.6 GHz, EC=2π ¼
149 MHz, ωr=2π ¼ 4.334 GHz, g=2π ¼ 245 MHz, and
Lq=2π ¼ 33 MHz. Both ω0;TS and gTS in ĤTS are properly
adjusted such that they yield the same χqr, ω0

q, and ω0
r

compared to those of the transmon.

TABLE I. Hamiltonians and their effective static forms used in
this work. See the main text for their definitions.

Hamiltonian Effective static form

Ĥq þ ĤdðtÞ K̂q

K̂q þ ĤI þ Ĥr K̂1

K̂q þ ˆ̃HSI þ Ĥr
K̂2

Ĥq þ ĤdðtÞ þ ĤI þ Ĥr (K̂q þ ˆ̃HI þ Ĥr) K̂

ĤTS þ Ĥd;TSðtÞ þ ĤI;TS þ Ĥr K̂TS

FIG. 1. Renormalized interaction between the transmon (blue)
and resonator (red) for ωd=2π ¼ 5.89 GHz. (a),(b) Circuit and
energy level diagrams. A blue wavy arrow indicates a micro-
wave drive to the transmon. (c)–(e) Lamb shift (L̃q) and cross-
nonlinearity (χ̃qr) divided by the unnormalized values (Lq, χqr).
ωd is 5.89 GHz in the experiment. Circles: experimental data.
Black, blue, green, and red solid lines refer to theoretical
calculations based on K̂, K̂1, K̂2, and K̂TS, respectively. The
dashed line refers to fully numerical calculation based on
Eq. (2). See Table I and the corresponding main text for the
description of each model. Statistical errors in data are negli-
gible and, thus, not presented in the plots.
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In Figs. 1(c)–1(e), we present experimentally observed
Lamb shifts and cross-nonlinearities of the transmon from
two-tone spectroscopy. ωd=2π is 5.89 GHz, sufficiently
near ω0

q=2π. We explore both renormalized cross-
nonlinearity and Lamb shift, denoted by χ̃qr and L̃q, in
Figs. 1(c)–1(e). χ̃qr alone is not sufficient to fully com-
prehend the renormalized interaction between the transmon
and resonator, since it also largely depends on χ̃q. Since L̃q

is almost independent of χ̃q, it can be used to investigate the
renormalization effects that originate from the transmon-
resonator interaction.
The discrepancy between the predictions by the K̂1

model (blue lines) and the experimental data indicates
significant renormalization of ĤI. This can be translated
to the breakdown of the low-order PT, which assumes
negligible renormalization of the eigenbasis. The differ-
ence between the green line (K̂2) and experimental data
throughout Figs. 1(c)–1(e) strongly suggests that dynami-

cal components in ˆ̃HI have significant effects. The approxi-
mation used in K̂1;2 often appears when describing the
interaction among quantized modes even in the recent
studies [47–50]. In addition, we separately discuss the
effect of the rotating wave approximation in Supplemental
Material, Sec. A5 [61].
Although the transmon-drive detuning Δ0

qd=2π ¼
23 MHz is substantially smaller than the self-nonlinearity
χ0q=2π ¼ 149 MHz, the experimental results deviate
remarkably from the predictions based on a driven TS
system (red lines). We confirm that the ratio between Lq

and χqr is invariant with respect to drive fields as seen in the
red lines (K̂TS) in Figs. 1(c)–1(e). This shows negligible
dynamical effects for the TS system under drive fields.
For dressed TS systems, dynamical effects are

expected to be negligible unless d̃10 ∼ d01 or ωd meets
the matching conditions for two-photon sideband transi-
tions (Supplemental Material Sec. A4 [61]). For transmons,
there are possibilities for the fundamental transition to be

affected by the dynamical part of ˆ̃HI due to the higher
energy levels. Particularly, the diagonal elements of the
renormalized dipole matrix d̃nn are the major contribu-
tion in the case of near-resonant drive fields. For a TS
system, jd̃00j ¼ jd̃11j always holds, and, therefore, the
dynamical effects originating from these components do
not induce any energy level shift. For a transmon, however,
jd̃00j ≠ jd̃11j due to higher energy levels, and then one
should also seriously take the diagonal elements into
consideration. See Supplemental Material Sec. C [61] for
the calculated d̃nn.
In Fig. 2, we present the observed Lamb shifts (a) and

cross-nonlinearities (b) as functions of corresponding Stark
shifts (δω0

q ¼ ω̃0
q − ω0

q) for various ωd from near- to far-off-
resonant regimes. The investigated range of drive ampli-
tudes are regulated differently for each ωd, such that the

ranges of jδω0
q=2πj become similar. The theoretical model

based on K̂ (black lines) agrees well with the experimental
values (circles) for all ωd. Meanwhile, theories based on
K̂TS (red), K̂1 (blue), and K̂2 (green) fail to explain the
experimental data, in general. We do not use any free fitting
parameter in all the theoretical plots.
For large detunings (ωd=2π ¼ 3.3 and 10 GHz), the K̂1

model nicely explains the experiments, suggesting

ĤI ≈ ˆ̃HI . As ωd approaches ω0
q, we can clearly see that

the deviation of the K̂1 model from the experimental
data grows significantly. When ωd=2π is near 6.0 GHz,
however, we see an exception for the cross-nonlinearities.
We attribute this coincidence to the dynamical effects.
It is interesting to remark that the data with ωd=2π ¼
3.3 GHz exhibit significant renormalization of the cross-
nonlinearities but not of the Lamb shifts. This sug-
gests that the change in χ̃qr for ωd=2π ¼ 3.3 GHz
mainly originates from the change in χ̃q. It is also bene-
ficial to discuss the discrepancy between the predictions
from the two-state model and the experiment results.
For large jΔqdj (ωd=2π ¼ 3.3 and 10 GHz), both L̃q and
χ̃qr are nearly invariant from the TS model, indicating

FIG. 2. Renormalized interaction between the transmon and
resonator with various ωd. We present renormalized Lamb shifts
L̃q and cross-nonlinearities (χ̃qr) for given absolute values of
Stark shifts (jδω0

qj ¼ jω̃0
q − ω0

qj). The circles refer to the observed
Lamb shifts and cross-nonlinearities. Theoretical calculations
based on several models are denoted by lines. The color legend is
identical to that in Fig. 1. Insets give magnified views of the areas
enclosed by the boxes. Various tendencies can be seen with
respect to the transmon-drive detunings. See the main text for
detailed descriptions. Errors in data are negligible and, thus, not
presented in the plots.
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˜̂HI;TS ≈ ĤI;TS under the investigated range of drive ampli-
tudes. The discrepancy becomes larger when jΔqdj → 0,
and this result is already expected from Fig. 1. For
ωd=2π ¼ 5.88 GHz, the corresponding Δqd=2π is only
13 MHz, which is tenfold smaller than χ0q. Nonetheless,
we still see the dramatic failure of the K̂TS model.
In the following, we investigate the renormalization

effects using different approaches, through Rabi frequen-
cies and coherence properties of the transmon. When we
introduce an additional Rabi tone that induces resonant

transitions fj0i ↔ fj1i of the dressed transmon, the Rabi
frequency Ω̃R satisfies

Ω̃R ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κexðω̃0

qÞγðω̃0
qÞPR

ω̃0
q

s
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Γ

× d̃0ð−Þ01 : ð4Þ

Here, d̃kð�Þ
nm are matrix components of ÛðtÞd̂Û†ðtÞ when

nr ¼ k. We assume that the frequency of the Rabi tone is
adjusted to ω̃0

q for resonant Rabi oscillations. PR is the
power of the Rabi tone measured at the output of the
microwave source, κex refers to the transmon’s external
coupling to the drive line, and γ is the transfer function
between the microwave source and device. Both κex and γ
are unknown without additional calibrations.
In Fig. 3(a), we present Ω̃R for ωd=2π ¼ 10 GHz (gray

circles) with respect to absolute values of Stark shifts
(jδωqj ¼ jω̃0

q − ω0
qj). The dashed line refers to the Rabi

frequencies when Γ ¼ 1 for both the transmon and TS
models. For such far-off-resonant drive fields, under the
explored range of ac Stark shifts, the renormalization of
the transmon’s dipole elements is negligible as found in
Fig. 2 for both the transmon and TS models. Hence, the
changes in Ω̃R should be attributed to the changes in Γ.
Based on this, we can extrapolate the experimental Γ. By
dividing the measured data by the experimental Γ,
we obtain the dark circles in Fig. 3(a). In Fig. 3(b), we
explain the data with ωd=2π ¼ 5.89 GHz by using the
same experimental Γ as in Fig. 3(a). In Fig. 3(b),
the corrected values (dark circles) show a much
better agreement with transmon-based theory than TS
theory.
The theoretical investigation of renormalization of trans-

mon coherence times is reported recently [59] for suffi-
ciently off-resonant drive fields using perturbative
expansion. In this work, we obtain the nonperturbative
solution by applying Ûq to Ĥst ¼ λkðtÞn̂þ λ⊥ðtÞd̂ that
describes the interaction between the system and noise
environment. Please recall that we did the same job for ĤI
to resolve the renormalized Lamb shift and cross-non-
linearities. n̂ ¼ P

i

ffiffiffiffiffiffiffiffiffiffi
iþ 1

p jiiqhijq is the transmon number
operator. λðtÞ is a stochastic variable describing the
environmental noise. We find the relations below (see
Supplemental Material Sec. B [61]):

1

T̃1

¼ π
h
Sλ⊥ðω̃0

qÞðd̃0ð−Þ201 Þ
i
;

1

T̃φ

¼ π
h
Sλkð0Þðñ011 − ñ000Þ2 þ Sλ⊥ðωdÞðd̃0ð−Þ11 − d̃0ð−Þ00 Þ2

i
:

ð5Þ

T̃2 is the renormalized pure dephasing time satisfying
T̃−1
2 ¼ ð2T̃1Þ−1 þ T̃−1

φ . Here, SλðωÞ ¼ ð1=2πÞ R dτe−iωτ ×
hλ�ðtÞλðtþ τÞi. ñknm are the matrix elements of ˆ̃n ¼ Û n̂ Û†,
when nr ¼ k. Only the fluctuations in the transmon’s
resonant frequency are taken into account in this expres-
sion. Equation (5) becomes identical to Eqs. (42) and (45)
in Ref. [38] in the two-state approximation.
In Fig. 4(a), we present T̃1=T1 with respect to jδω0

qj for
ωd=2π ¼ 10 GHz (circles). The theoretical estimation
under the ideal situation (Sλ⊥ ¼ const) is given by the gray
dashed line. The flatness of the gray line is due to the fact

that d̃0ð−Þ01 ≈ d0ð−Þ01 should hold for far-of-resonant drive
fields. Thereby, we can draw a conclusion that the change
in T̃1=T1 is attributed to the ω0

q dependence of Sλ⊥ .
Therefore, we can extrapolate Sλ⊥ðω̃0

qÞ=Sλ⊥ðω0
qÞ by low-

order polynomial fitting (dark dashed line). Based on this
extrapolation, we fit the data with ωd=2π ¼ 5.89 GHz
in Fig. 4(b). Unfortunately, we cannot thoroughly verify
the second equation in Eq. (5) due to experimental
limitations. See Supplemental Material Sec. F [61] for

FIG. 3. Renormalized Rabi frequencies (Ω̃R) for given jδω0
qj.

Here, ΩR indicates the Rabi frequency when Ωd ¼ 0. (a) Ω̃R=ΩR

versus jδω0
qj for ωd=2π ¼ 10 GHz. The gray circles refer to the

observed values. When Γ ¼ 1, Ω̃R ≈ΩR should hold for large-
detuned drive fields for both the transmon and TS system (dashed
line). Based on this, we extract the experimental Γ and obtain
black circles that correspond to the gray circles. (b) Ω̃R=ΩR

versus jδω0
qj for ωd=2π ¼ 5.89 GHz. We divide the observed

values (gray circles) by the experimental Γ [Eq. (4)] obtained
from (a) and obtain corrected values with Γ ¼ 1 (black circles).
The solid lines refer to the approximate theoretical curves under
Γ ¼ 1. The black and red lines denote transmon and TS system
theories, respectively. Errors in data are negligible and, thus, not
presented in the plots.
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our investigation on the renormalized dephasing times (T̃2).
See Supplemental Material Sec. G [61] for the calculated
Ω̃R, T̃1, and T̃2 based on our formula with various drive
frequencies.
Conclusion.—In summary, we have verified the non-

perturbative renormalization of a coupled transmon-
resonator system. The significant renormalization of
the transmon-resonator interaction is identified from the
changes of Lamb shifts and cross-nonlinearities. The
results are also consistent with the renormalized Rabi
frequencies and energy relaxation times observed sepa-
rately. Without using recursive formulas and Floquet
theory, we quantitatively explain the experiments. Our
work represents a significant step from the previous
relevant works confined to single-mode or two-state
descriptions.
Although the performed experiments are confined to a

weakly anharmonic circuit QED system, overall strategies
to account for the renormalization will concern a broad
range of cavity QED-like systems or, more generally, even
to coupled multimode systems. Furthermore, transmons are
also well-known examples of Duffing oscillators or pen-
dulums in quantum regimes, and, thus, our work will also
contribute to fundamental understanding on driven non-
linear systems.

Data supporting the plots within this paper are available
through Zenodo [72]. Further information is available from
the corresponding author upon reasonable request.
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