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Abstract—A machine learning model can often produce biased
outputs for a familiar group or similar sets of classes during
inference over an unknown dataset. The generalization of neural
networks have been studied to resolve biases, which has also
shown improvement in accuracy and performance metrics, such
as precision and recall, and refining the dataset’s validation set.
Data distribution and instances included in test and validation-set
play a significant role in improving the generalization of neural
networks. For producing an unbiased AI model, it should not only
be trained to achieve high accuracy and minimize false positives.
The goal should be to prevent the dominance of one class/feature
over the other class/feature while calculating weights. This
paper investigates state-of-art object detection/classification on
Al models using metrics such as selectivity score and cosine
similarity. We focus on perception tasks for vehicular edge
scenarios, which generally include collaborative tasks and model
updates based on weights. The analysis is performed using cases
that include the difference in data diversity, the viewpoint of
the input class and combinations. Our results show the potential
of using cosine similarity, selectivity score and invariance for
measuring the training bias, which sheds light on developing
unbiased AI models for future vehicular edge services.

Index Terms—Biases, Data Diversity, Feature Similarity, Gen-
eralization, Selectivity Score

I. INTRODUCTION

Private organizations, government agencies, and public en-
tities have widely deployed artificial intelligence (AI) algo-
rithms and models to make decisions or automate a manual
process [10]. The automation and decision-making process
influences current and future users by offering solutions and
services. However, there is a possibility of offering false
classifications, predictions, and denial of services based on
the AI model’s data processing and decision-making ability.
The perceptive impact of Al-based decision-making has been
observed in specific services and use cases for certain popu-
lation groups [1], [27], [34]. Examples of gender and racial
biases in healthcare, banking, and the hiring process have been
discussed by providing potential mitigating strategies [27]. In
another use case, self-driving car object detection algorithms
failed to predict specific user groups as the datasets used for
training the AI model consisted of class representation from
humans with white race [1]. Similarly, self-driving vehicles
may also show biased results during the classification and
detection of women and mobility-impaired individuals, as the
datasets, especially the validation set, lack such representation
of classes [34]. These observations have led to the inclusion of
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Fig. 1. Future vehicular ecosystem with edge-cloud infrastructure

bias mitigation strategies while developing an Al model and
for the datasets used for training.

Biases in the decision-making process are mainly inherited
in Al models because of close-world assumption (CWA),
which is generally used for knowledge representation in the
datasets [34]. In CWA, the test/validation set samples are
assumed to be similar to the training set. However, it has
been observed that Al models trained with these assumptions
show degradation in performance when tested in a real-
world environment. This drop in performance for the Al
models may be tolerable for applications and services, such
as recommendations of products/features and personalization
strategy. However, it can have a negative effect by increasing
the existing bias when deployed for the intolerable application
and domains, such as manufacturing, robotics, medicine, and
fully autonomous systems. These concerns have also led to the
design of Al models by addressing fairness [11], [12], [39].

Autonomous vehicle tasks include sensing, perception, lo-
calization, path planning, control, and acceleration [2], [16],
[19]. A fully-connected autonomous vehicle in the future
can be envisioned using a vehicle-edge-cloud setting [31],
as shown in Figure 1. Vehicular tasks can be performed
using distributed devices, transmitting data and model weights
in these settings [8], [36]. Federated learning (FL) and
communication-efficient approaches have been proposed to
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facilitate the deployment of the Al model at the Edge while
countering the computation and latency demands. As these
methods also promote privacy-preservation by processing the
data near the source, and sometimes in the presence of ground
truth labels, it is necessary to consider the negative effects,
measurement methods and mitigation approach for the data
and algorithmic bias in a vehicle-edge-cloud setting using bias
and similarity metrics [26], [29], [44]. These issues can be
exacerbated in the future FL-as-a-Service platforms (e.g., [18],
[20]) that are expected to enable third-party developers to
jointly build FL models on locally stored data. Such data, can
be bias-prone due to different generation and quality assurance
processes taking place on each device, due to diversity in
type of device (vehicles, etc.), sensors, third-party applications,
environmental conditions, etc.

Object classification and detection are fundamental per-
ception tasks performed using convolutional neural networks,
deep neural networks, and recurrent neural networks [2], [17].
Some filters/channels perform better than others in these neural
networks, and the reason behind this is unknown, as neural
networks are generally described as black-box models. The
performance of these neural networks is measured based on
the accuracy, precision score, and loss measured against a
validation set/sample of the images or test data. From these
statements, the following concern arises: If the training set
contains imbalanced distributed images of cars, buses, trucks,
and trailers, can the AI model accurately classify images
with out-of-distribution? Secondly, what is the activity of the
neurons during such classification?

Detecting biases in an Al model performing object detection
and classification in an imbalanced dataset is challenging, as
some objects may have many “common” features and can
influence the feature recognition. Therefore, choosing a neural
network that can generalize and is unbiased when trained on
an imbalanced dataset is essential. To address the existing
biases on similar sets of classes, we study the following: bias
existing or occurring in the popular AI models that are trained
on familiar datasets, trained using transfer-learning, or cross-
validated on the driving datasets. The datasets used in this
study are biased cars dataset [24], nuScenes [2], and MNIST
dataset [37], as these datasets can be grouped with sets of
classes that have common features. In this work:

o We investigate the Al models used for object classifi-
cation/detection tasks, and we provide insights on the
accuracy in relation to the data diversity.

« We investigate selectivity score, accuracy, and minimum
average precision metrics over the data diversity.

o We analyze the bias metrics and compare them with the
model performance parameter using cross-validation and
transfer-learning approach.

II. MOTIVATION AND BACKGROUND

A. Object Detection using Edge in Autonomous Vehicles

An autonomous vehicle’s essential task is object detection,
which helps the vehicle to identify (classify) and estimate the

other objects in the surrounding area [3], [17]. These objects
can be other vehicles, pedestrians, traffic signs, signals, lane
markings, and other roadside information [2], [38]. Based on
the abilities of the sensors to imitate the vehicle’s environ-
ment, current possible approaches include 2D, and 3D object
detection [2], [17]. In 2D object detection, a rectangle-shaped
bounding box is estimated across the classified object, and in
3D object detection, a cube-shaped bounding box is predicted
for the classified object. Several driving datasets have been
released in recent years to perform classification and detection
for objects possibly present in the vehicle’s environment [14].

Connected Vehicles: In future autonomous vehicles, an
object detection task can be performed collaboratively using
distributed computing or joint training and inference [18],
[20]. Methods proposed in this category include deploying
Al models through edge computing, fog computing, cloud
computing or their respective combinations [3], [22], [31],
[33], [36]. As the AI model, such as DNN, can be dense
in size and may require high computational resources, it is
practically challenging to deploy them on Edge devices. To
counter this challenge, federated learning methods that focus
on resource allocation schemes, split model training, hetero-
geneous computing, data aggregation, and privacy-preserving
techniques have also been proposed for vehicular applications
[41]. In such methods, the Al model is generally distributed
between the participating edge devices as local models, and
the incoming data is processed at these distributed devices to
calculate the weights (locally). The model weights are then
sent to the central device (consisting of global model and
weights) that updates the parameters of the model [32].

Bias Perspective: Edge-cloud computing, federated learn-
ing, and other distributed computing approaches bring scal-
ability to applications such as object detection by solving
the computational, energy consumption, privacy, and secu-
rity challenges [32], [41]. However, the disparity of class
within a dataset, imbalanced labeling, and the presence of
biased ground truth labels, which can further result in biased
object detection within a vehicle-edge-cloud environment,
has been so far overlooked. An empirical study to observe
and understand the performance of convolution layers in the
neural network was carried out by Rafegas et al. [28]. The
authors studied the selectivity of specific properties (colour
and class) of the input images by the convolution layers.
The experiments in this study show that with the increase in
convolution layers, the colour selectivity decreases, and the
class selectivity increases. An investigation using bias metric
and model performance parameter is performed by Madan et
al. [23]. The authors studied the problem of generalization
of neural networks for distributions and different view-point
combinations using a newly proposed photo-realistic biased
car dataset [24]. Leavitt et al. investigated the object/class
selectivity of neurons in deep neural networks to improve
the DNN performance, especially the test accuracy of these
models [21]. However, based on the data samples, it was
observed that class selectivity during training could further
degrade the model performance.
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B. Dataset, Models and Biases

Dataset Bias is an overlooked problem for real-world
environment Al applications, such as autonomous driving [34].
Bias in datasets can be caused due to unfair distribution of
classes within the training and testing sets, out-of-distribution
samples, limited availability of samples in different conditions
(e.g., weather, daylight), inaccurate labeling, and viewpoint
combinations [24]. An example of bias in datasets in the form
of annotation bias is explained in [4]. In this work, authors
described label bias as an issue that can further magnify the
algorithm and model bias. To mitigate such biases during the
training of DNN, a re-weighting scheme can be used [15].
Training the Al model with the re-weighted scheme implies
using the pre-processing approach on the dataset, such that
the unobserved and unbiased labels are used to train a DNN
model. Robinson et al. [30] proposed a balanced dataset with
sub-group specific threshold. The authors measured the ver-
ification performance through subgroups studies that created
biases in the datasets. An approach to tackle bias in the dataset
from labels is proposed by Cui et al. [5]. The authors proposed
a Bayesian architecture to learn label generation for the dataset
by using MAP inference to improve data annotation on the
local and global levels (e.g., object and frame).

Another example of bias in the dataset can be realized
from the Berkeley autonomous driving dataset [42]. It consists
of visual annotations, namely classification, segmentation,
and bounding boxes for 40 different classes. The visuals
are collected from four different cities across the United
States. Considering the large demographics of the country,
an object detection model trained on such a dataset is likely
to suffer selection bias when tested in unfamiliar conditions
(e.g., urban vs. rural, with socio-economic differences). Here,
the real-world conditions may have a different representation
than the trained set of classes. The mentioned selection bias
within a dataset can also have an adverse effect in an Al
model designed for pedestrian detection or mobility-impaired
individuals [27]. A framework to identify and mitigate bias
for object detection applications in autonomous vehicles is
proposed by Marathe et al. [25]. The authors proposed an
approach to detect bias using a two-step process and transfer
learning. In the first step, the AI model is trained on the
perfect weather dataset, and evaluation is performed on the
respective validation set. In the second step, the baseline model
is again trained on the perfect weather conditions. However,
the evaluation is performed on the validation set consisting
of adverse weather conditions. Al model performance of both
steps is compared, and if the model performs poorly for the
second step, robustness in the training set and re-training for
the second step is recommended. The bias for object detection
is measured using each object’s minimum average precision
and average precision score.

Al Model Bias can be described as unfair classification
or prediction for certain groups of classes due to unreliable
modeling practices. An example of such modeling practices
creating bias is using a biased estimator, which helps minimize

variance on a small sample size of data by providing robust-
ness for future use cases [6]. Another example of creating bias
in an Al model is using the overlaying data that is not directly
related to classification or prediction and sometimes not using
the significant data from the annotated ground truth crucial
for regression or prediction. An example of such a case is a
forward collision warning application based on radar, camera
or a combination of both. Here a neural network or prediction
algorithm may use input values other than separation distance,
acceleration, and velocity [16]. This scenario can also be
studied with a dataset consisting of object detection/tracking
using camera and radar values by experimenting with static
(parked) and dynamic (moving vehicles). In Al models, high
bias occurs because of missing connections between input data
features and the predicted output, described as underfitting.
Comparably, high variance in an Al model shows the model’s
ability to perform well on the training data but shows poor
performance on validation or new data, also described as
overfitting [44]. To overcome such a dilemma, balancing the
dataset with equal class representation and training the Al
model/learning algorithm by observing the neurons and layer
activity is essential [28].

Generalization is an approach to enable Al model learning
across unseen samples of classes. Al models are generally
trained with the assumption that the classes present in the
training and testing distributions are similar. Preparing a
test dataset with all possible distribution combinations is an
intensive process. Therefore, neural networks and Al models
are generalized to overcome existing bias from the dataset and
perform fair for practical applications [35]. Several generaliza-
tion approaches to overcome dataset bias have been proposed
in recent years, which include transfer learning, covariate
shift, domain adaptation, adversarial mitigation, and out-of-
distribution generalization [35]. Hardt et al. [9] proposed a
fairness measure with demographic parity to train an Al
classifier over a dataset using supervised learning. In this work,
unfairness measurement during the model training and post-
processing step is proposed, which can also be applied as
privacy-preserving methods in Al applications.

III. B1AS DETECTION IN Al MODELS

The success of convolutional and deep neural networks
for perception has led to the belief that AI models should
be designed to achieve high accuracy and precision over
the dataset. This direction has led to the development of
benchmark architectures with several model performance pa-
rameters. However, the understanding of variables used for
classification or prediction in the training/testing process is
unknown. Believing the performance and results of such
models bring entrust to the statistical equation the algorithm
uses, and also to the data and annotation the model is trained
with [28]. These practices can result in biased AI models
trained on a biased dataset. As discussed in Section II, having
a most complete dataset is an expensive process; therefore,
the focus should be given to bias detection and mitigation
approaches during the Al model development process.
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A. Bias Identification

Al models, especially deep neural network evaluation and
validation, generally measure performance parameters. There-
fore to study the biases in an AI model, it is essential
to consider the explainable metrics that provide information
about the learning process of the neurons or layer over
the object feature. This process can also be expressed as
neuronal activity. Selectivity of neurons towards the class-
colour and class-label have been investigated to understand
the model learning ability against the input class/object [28].
Here selectivity can be defined as a measure of identifying
the image and features that are not transformations of each
other. If a neuron is activated for a particular class category,
it can be assumed that it will have the maximum sum for this
particular category. This property is expressed as the preferred
category for the neuron for learning [45]. The selectivity score
“S(m,n)” thus computes the difference between the average
activity (Z;,) in the neuron for the preferred category with
the average activity of the remaining categories (z,,"). In this
paper, the selectivity score has been used and integrated with
the DNN models, namely ResNet, DenseNet, and SqueezeNet
[13], [43]. Inspired by Zhou et. al [45], the selectivity score
is expressed as:

f" _ ffn

m m

S(m,n) P ()
The value of “Selectivity score: S(m,n)” is generally mea-
sured between (0, 1). If the measure is 1, the neuron is active
for a single class, and if the measured value is O, the neuron
is identically active for all category-class. Embedding this
approach for object detection can help to understand individual
class comparisons (e.g., truck vs trailer) for a particular class’s
features that may influence the prediction or classification of
a similar present class or distribution. When embedded within
the deep neural network model training process, selectivity
returns a vector that has a dimension equal to a number of
classes [23], [45]. Another approach that can help measure
the two objects’ common/similar features is cosine similarity.
This metric has regularly been used in statistics to measure
the distance between high dimensional feature-based vectors

[7]. The general expression for the cosine similarity is:

a.b
laf . [b]

As the representation of image or video frames in matrix
form consist of high-dimensional feature vector maps, soft co-

sine similarity or soft similarity can be used. This is generally
described as follows:

Cosgim(a,b) = 2)

> | Si A;.B;j
\/ZZJS'LJAA \/ZZJSZJBB

Here A is the un-normalized (raw vector) of the classifi-
cation, B is the mean vector also embedding the most likely
prediction of class according to the estimator or distribution,
and s; ; is the similarity of features. If there exists a similarity

3)

softcosgim(a,b)

between two feature vector maps, then equation 3 gives an
equal output as equation 2. Comparable images with many
similar features (e.g., red colour SUV and Sedan car with the
same viewpoint) will have a high score, i.e. in the range of
0.6 - 0.9, and in case of no similarity between images (e.g.,
car, pedestrian), the score will be in the range of 0.0 - 0.1.

Model: ResNet and DenseNet are amongst the most popular
deep learning-based object detectors. Several recent deep
learning models also use their architecture as a backbone [43].
ResNet has been explored in several variants, thus providing
options to implement the architecture with different mem-
ory and computational abilities. The most popular variants
used in autonomous driving applications are ResNet-18 and
ResNet-34. The number (18 and 34) represents the layers
in the neural network [17], [43]. Compared to the previous
benchmark architectures, ResNet additionally consists of an
“identity connection” between two layers and the standard
convolutional, pooling, and activation layer. It is also described
as a neural network with a residual block.

On the contrary, DenseNet is also a feed-forward neural
network with fully connected connections between the layers.
The modules in the DenseNet are described as dense blocks.
All layers with matching feature-map sizes in DenseNet are
connected with each other [43]. These connections provide
a gradient flow amongst the layer by ensuring feature reuse
within the dense blocks. SqueezeNet is a relatively newer
architecture as compared to ResNet. It became prevalent
because of its smaller model size, with fewer parameters, and
high accuracy with operability on embedded devices. The de-
velopment of SqueezeNet also provided direction towards deep
compression strategies for neural networks by still maintaining
the benchmark accuracy [13]. Such compression strategies
have been widely adopted for deploying large Al models on
the Edge, and embedded devices [32], [33]. As the nuScenes
dataset is complex and consists of annotation from several
sensors such as (camera + LiDar + Radar), BIRANet [40]
architecture is used to train and test the nuScenes dataset.
This architecture uses a region proposal network approach for
detection using camera and radar data, which also allows the
analysis of other data (in this case, radar values) influencing
an object detection for a particular class.

Dataset: The model evaluation is performed on the biased-
cars, and nuScenes dataset [2], [24]. The biased-car dataset
consists of approximately 30000 images of cars (five different
models) with different car colours having a common back-
ground in the frame. It further includes different viewpoints
combinations, allowing out-of-distribution generalization by
studying the measure metrics. nuScenes is an extremely large
and one of the most complete datasets, developed using several
vehicular sensors across Boston (USA) and Singapore [2]. As
the dataset is extensive and consists of several classes, a split
approach is used to train and test the model. Classes such as
bicycle, bus, car, construction vehicle, motorcycle, and pedes-
trian are used for measuring selectivity. Since the nuScenes
dataset consists of 3D bounding box annotations, to have a
comparative study, they are transformed into 2D bounding
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Fig. 2. Selectivity Score on Biased-Car dataset wrt data diversity

boxes before being utilized on the BIRANet architecture. The
model performance is recorded for class: car and pedestrians.

IV. EXPERIMENTS AND RESULTS

This section describes the model training process and testing
results. All three models were first trained on the biased-
cars dataset, which was followed by training on the nuScenes
dataset for the classes mentioned in Section III. For a fair
comparison of all models on the biased-car dataset, the models
adapted to a common development environment using the Py-
Torch framework and are trained using the same loss function,
ReLu activation function, learning rate, and optimizer. Adam
optimizer with a learning rate of 0.001 is used for training
these architectures, with a cross-entropy loss, which can be
described as:

Lee = —Z P(x)log(q(z:)) )

Here p is the probability distribution of the object label,
q is the prediction, and j represents the number of samples
present. The models are trained with 3000 train images, 390
validation, and 750 test images. All models are trained for 150
epochs. As the nuScenes dataset is relatively large and consists
of several test images, the approach proposed by Caesar et al.
is adapted to train the models [2]. The model is trained for
300 epochs with the learning rate and optimizer mentioned
above. In the case of the biased-cars dataset, data diversity
with respect to distribution combinations has been considered
to train the Al model, which allows capturing the selectivity
and model performance measure during the model training.

TABLE I
PERFORMANCE OF SOTA Al MODEL ON THE BIASED-CAR DATASET
SOTA Al Model | Data Distr. | Average-Similarity | Accuracy(%)
ResNet18-cos OOD .38 74.1
SqueezeNet-cos [e]0))) .36 74.8
DenseNet-cos OOD .57 71.5

% Accuracy
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Fig. 3. Accuracy on Biased-Car dataset wrt data diversity

Data Diversity

As both datasets are exclusive with different distributions
and labels for classes, an independent approach is used for
varying data diversity in the datasets. The biased car dataset
can be separated into category and viewpoint combinations for
each class. For a fair comparison, the number of images is kept
constant during the training of all models. Experiments are
carried out by alternatively varying the category and viewpoint
combinations for these classes. This process is carried out to
check the selectivity of neurons and the model’s accuracy,
which is also very useful for understanding the model’s
generalization ability over an unseen dataset. Figure 2 shows
the selectivity score of neurons on the biased-cars dataset with
respect to the data diversity of classes. As the distribution
combinations are increased for a fixed number of train-test-
validation images, data diversity and class distribution make it
difficult for the neural network to learn a challenging category
or viewpoint. When the combination of train-test images is
diverse, it leads to a drop in the neural network’s performance
(accuracy). The selectivity score shows a similar trend for
SqueezeNet and ResNet once the data diversity is varied more
than 50%. A little drop in accuracy (Figure 3) is observed for
all neural networks between a data diversity of 40 - 60 %.

Table I shows the cosine similarity analysis over the biased
car dataset. For the equally distributed samples, the cosine
similarity results for ResNet, SqueezeNet, and DenseNet were
0.38, 0.36, and 0.57. Depending on the test sample and model’s
selectivity towards a category and class labels, SqueezeNet and
ResNet could generalize better for the given input data. Figure
4 shows the selectivity score of neurons on the nuScenes
dataset. To vary data diversity in the nuScenes dataset using
existing annotations, Al model [40] is trained in different
conditions, which include day, night and rain situations. This
approach is used to ensure the presence of data diversity for
the above-mentioned classes while capturing selectivity scores
and average precision (also shown in Table II). Similar to
the biased car dataset, as the distribution combinations from
different weather conditions are increased for a fixed number
of train-test images, data diversity leads to a significant drop
in the current model performance (precision). The selectivity
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TABLE II
PERFORMANCE OF THE MODEL ON THE NUSCENES DATASET

Model Dataset AP(car) | AP(ped) | mAP(0.5)
BIRANetl | nuScenes 64.1 46.4 55.2
BIRANetl | nuScenes (Night) | 49.7 32.5 40.8
BIRANetl | nuScenes (Rain) 60.2 44.3 52.1
BIRANet2 | nuScenes 64.8 46.1 56.3
BIRANet2 | nuScenes (Night) | 48.5 31.7 39.2
BIRANet2 | nuScenes (Rain) 59.8 42.4 51.6

score shows a similar trend for the two versions of the
BIRANet architecture. BIRANet1 uses cross-entropy loss, and
BIRANet2 uses joint loss. It is important to note that the
selectivity score shows a similar trend for the two versions
in data diversity, irrespective of separate loss functions. The
models are trained using a train-validation split of 52-48%.
The models show performance degradation in adverse condi-
tions compared to normal conditions.
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Fig. 4. Selectivity on nuScenes dataset wrt data diversity

Edge Al and Bias Mitigation

Investigating metrics such as the selectivity of the neurons
(to a particular category, class, or viewpoint) and similarity
score can provide insights to prevent bias in an Al model.
However, the challenge remains of adding bias through selec-
tive and imbalanced distribution while developing a dataset.
This problem intensifies when Al practices and techniques
such as Edge-Al and federated learning are proposed col-
laboratively (i.e., to be used while processing raw data in
conjunction with already present ground truth labels at the
device). A common framework measuring bias parameters and
selectivity of neurons towards unseen data can be proposed
for the vehicle-edge-cloud environment by using efficient
communication and computation. To prevent bias inheritance
from ground truth labels in an Al model at the Edge, diverse
data near the edge devices is essential, and hybrid learning
approaches combining supervised and active learning can be
used. This process can help in bias mitigation by updating the
ground truth with newly generated labels.

V. CONCLUDING REMARKS

The topics and methods covered in this paper show ap-
proaches to identify and detect bias in an Al model used

for real-world applications, such as autonomous driving. The
focus given to the biased-car dataset shows the requirement
to have wide distributions of the objects in the training/testing
set. It provides an unbiased dataset and further helps in the
generalization of the Al model, thus preventing algorithmic
bias. We investigated bias detection using metrics such as
selectivity score and cosine similarity during the learning
process by varying the data diversity of the test set. The
learned model is further used on the nuScenes dataset to
detect pedestrians and cars. A further investigation can be
carried out using distributed machine learning at the vehicle-
edge-cloud for the vulnerable pair of classes such as pedes-
trians and cyclists. With respect to the other class (such as
vehicles or traffic signs), the vulnerable classes generally
has less representation within the dataset. As the self-driving
domain advances, studying metrics such as cosine similarity,
selectivity score, and invariance can provide an approach to
measure bias during the training process and further develop
an unbiased AI model for inference. Exploring such metrics
on a layer and block level for a neural network by having
a direct comparison with a similar object (e.g., pedestrian,
cyclist, motorcyclist) can help understand the interpretability
of the neural network, which further helps in generalization
and preventing biases.
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