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Abstract. Intravascular optical coherence tomography (IVOCT) is an imaging technique that is used to analyze
the underlying cause of cardiovascular disease. Because a catheter is used during imaging, the intensities can
be affected by the catheter position. This work aims to analyze the effect of the catheter position on IVOCT image
intensities and to propose a compensation method to minimize this effect in order to improve the visualization
and the automatic analysis of IVOCT images. The effect of catheter position is modeled with respect to the
distance between the catheter and the arterial wall (distance-dependent factor) and the incident angle onto
the arterial wall (angle-dependent factor). A light transmission model incorporating both factors is introduced.
On the basis of this model, the interaction effect of both factors is estimated with a hierarchical multivariant linear
regression model. Statistical analysis shows that IVOCT intensities are significantly affected by both factors with
p < 0.001, as either aspect increases the intensity decreases. This effect differs for different pullbacks. The
regression results were used to compensate for this effect. Experiments show that the proposed compensation
method can improve the performance of the automatic bioresorbable vascular scaffold strut detection. © The
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1 Introduction
Cardiovascular disease (CVD) is a major cause of death
worldwide.1 One of the underlying processes that cause CVD
is atherosclerosis, which is the long-term accumulation of
plaque in the vessel wall. The extent and composition of athero-
sclerosis can be visualized in vivo with intravascular optical
coherence tomography (IVOCT) at a higher resolution of 10
to 20 μm2–4 compared to other in-vivo imaging modalities,
such as intravascular ultrasound (IVUS), computed tomography
angiography or magnetic resonance imaging.

IVOCT is an optical imaging modality using near-infrared
(NIR) light as the imaging source. The images are acquired
using a catheter, which is inserted into the coronary artery.
Images of arterial cross-sections are reconstructed from the
echo time delay and the intensity of backscattered light. Due
to the high scattering of NIR light in blood caused by red
blood cells, the artery is flushed with saline or a contrast
medium to clear the blood inside the artery. The image intensity
is assumed to be only tissue dependent, thus different types of
tissue appear different.2

In practice, however, the signal magnitude may not be
dependent only on the tissue type but also on the position of
the catheter with respect to the vessel wall, which causes

nontissue-related effects on the IVOCT image intensities.5,6

An example is given in Fig. 1. The average intensities are
calculated within the thin superficial uniform tissue layer of
a nonpathological artery segment. Nevertheless, there is a clear
variation in the profile of the average intensities [Fig. 1(b)].

The importance of analyzing the effect on intensities caused
by the position of the catheter has been well depicted in the field
of IVUS. Courtney et al.7 showed that the IVUS image inten-
sities are significantly related to the catheter position. Their
study concluded that when the distance or the angle toward the
luminal wall increases, the intensity will decrease for both intima-
media tissue and adventitia tissue. Earlier work8–10 shows that the
reflected ultrasound signal is critically dependent on the angle of
incidence and varies for different types of arterial plaques.

In the literature of IVOCT image analysis, statistical values
of the intensities are commonly used as key features for both
automated detection algorithms and the quantitative studies.
For example, mean intensity has been applied as one of the tex-
tural features for automated tissue characterization.11 Recently,
a stent strut detection algorithm has been proposed by training
a supervised artificial neural network classifier with statistical
features including the maximum, mean, median intensities, and
so on.12 Furthermore, percentile values of intensity distributions
are often used as thresholds. For example, the fifth percentile
has been used as a threshold for noise removal.13–16 Other
percentiles were used as cutoff values to determine the trailing*Address all correspondence to: Jouke Dijkstra, E-mail: j.dijkstra@lumc.nl
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shadows15,17 for metal strut detection, or the black core regions18

in the detection of the bioresorbable vascular scaffold (BVS)
strut. With the assistance of the BVS strut detection, median
and peak intensity values within the black core regions were
quantitatively analyzed to track the resorption of the BVS struts
over time in IVOCT images at 6, 12, 24, and 36 month poststent-
ing, respectively.19

The distributions of the intensities can appear different due to
the catheter position, which may increase the variation of those
statistical numbers. To the best of our knowledge, only one
study with respect to this issue on OCT image intensities has
been reported which was about nonperpendicular incident
light causing a significant variance in the measurement of the
articular cartilage.6 In the followup studies of the bioresorption
progress of the BVS strut, the bias in light intensity caused by
the eccentric catheter was claimed to be minimized with nor-
malization by manual selecting reference regions.20 Results
from IVUS cannot be applied directly to IVOCT, due to the
differences in physical properties between both modalities.

The aim of this work is to analyze the effect of the catheter
position, with regards to both the distance to the vessel wall and
the incident angle of light, on IVOCT image intensities. Based
on this analysis, a compensation algorithm is proposed to reduce
this effect. As an application of compensated images, images with
foam cells have been enhanced and compared with histological
cross sections. Furthermore, the compensation algorithm is used
in combination with an existing BVS detection algorithm.

The general structure of the paper is as follows. In Sec. 2.1, a
light transmission model incorporating both distance-dependent
and angle-dependent factors is introduced. In Sec. 2.2, a hier-
archical multivariant linear regression model is proposed to
further investigate the relationship and estimate both factors.
The regression result is further used in Sec. 2.3 to propose a
method to compensate images. Results are presented in Sec. 3.
Furthermore, a BVS struts detection experiment with the com-
pensated images was carried out in Sec. 4. All the experiments
and results are discussed in Sec. 5 with limitations and future
works given as well. Conclusions are drawn in Sec. 6.

2 Materials and Methodology
Images of nonpathological segments from nine IVOCT pull-
backs recorded with a C7XR swept-source OCT system and

a C7 Dragonfly Imaging Catheter (St. Jude Medical, Minnesota)
were used. The technical details are listed in Tables 1 and 2.

2.1 Distance and Incident Angle Extended Light
Transmission Model

A schematic overview of light propagation for IVOCT imaging
is shown in Fig. 2. The light emitted from the catheter first trav-
els through the flush medium before reaching the arterial wall
with a distance denoted as xt. At the interface between the flush
medium and the arterial wall, both reflection and refraction
occur. θ represents the incident angle of the light entering the
arterial wall. Δx represents the light transmitting distance of
the refracted light beam inside the arterial tissue. For the con-
venience of explanation, we introduce x ¼ xt þ Δx.

2.1.1 Light transmission model

As the light propagates inside the arterial wall, the intensity of
an OCT signal is typically modeled as the first-order scattering
function of x and Δx as21

EQ-TARGET;temp:intralink-;e001;326;527IbðxÞ ≅
1

2
IinμbTðxÞ · e−2μtΔx; (1)

where Iin denotes the light intensity upon entering the arterial
wall, IbðxÞ denotes the backscattered light intensity from the
distance x, μb represents the backscattering coefficient, and μt

Fig. 1 (a): An IVOCT image of a nonpathological artery wall: the
artery has a regular and almost circular shape; three arterial layers,
intima (I), media (M), and adventitia (A), are clearly visible (as shown
in zoomed-in top-left corner). (b): Polar representation of the image in
(a) sampled clockwise along radial A-lines from the catheter center
shown as a bright line on the top of the image. For each A-scan,
the average intensity within a superficial thin layer (≈50 μm) is calcu-
lated and shown as the green profile. The white curve is the smoothed
green profile.

Table 1 Technical details of the IVOCT system.

Swept laser
source

Center wavelength 1310 nm Wavelength
range

110 nm

Sweep rate 50 kHz Output power 20 mW

Coherence length 12 mm

Pullback Pullback speed 20 mm∕s Pullback length 54 mm

Frames Image frames 271 Frame rate 0.2 mm

Table 2 Number of selected frames in each pullback.

Pullback No. 1 2 3 4 5 6 7 8 9 Total

No. of frames 28 17 33 21 5 13 14 29 9 169

Fig. 2 Light transmission. x t denotes the distance between the light
source and the arterial wall, θ is the incident angle of the light beam.
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is the total attenuation coefficient (summation of scatter and
absorption). TðxÞ is the confocal function, which is defined
as follows:22

EQ-TARGET;temp:intralink-;e002;63;719TðxÞ ¼
��

x − z0
zR

�
2

þ 1

�
−1∕2

; (2)

where z0 and zR are the beam waist and the Rayleigh length,
respectively.

The intensity entering the luminal wall is affected by two
factors: (1) the attenuation in the flush medium region (FMR)
and (2) the reflection and refraction at the interface of flush
medium and the arterial wall. In a well-flushed artery, the
FMR region can be regarded as homogeneous, nonscattering
and weakly attenuating, obeying Lambert–Beer law.23 With
a constant attenuation, μf, the light decay is determined by
the distance from the catheter to the lumen wall, xt.

The interaction of the light is more complex at the interface
between FMR and the lumen tissue due to the relative irregular
surface of the arterial wall. To analyze the effect of the incident
angle on image intensities, the total effect of the incident angle is
normalized into 0 to 1 by using a term similar to the Fresnel
transmission ratio. Thus, Iin is modeled as

EQ-TARGET;temp:intralink-;e003;63;499Iin ∼ I0 · Trðθ; ni; ntÞβ2 · e−μfxt ; (3)

where β2 is the parameter to be estimated. Trðθ; ni; ntÞ is the
Fresnel like function, which is calculated with the incident
angle θ, index of refraction of the incident medium ni and trans-
mission medium nt, respectively.

23 With Eq. (3) substituted in
Eq. (1) and taking the logarithm from both sides results in

EQ-TARGET;temp:intralink-;e004;63;412 ln IbðxÞ ≅ −μfxt þ β ln Trðθ; ni; ntÞ þ ln Tðxt þ ΔxÞ
− 2μtΔxþ CðI0; μbÞ; (4)

where CðI0; μbÞ ≅ lnðI0 · μbÞ is a constant term.

2.2 Parameter Estimation of the Linear Model with
Hierarchical Linear Regression

2.2.1 Hierarchical linear regression

Hierarchical linear models are specifically utilized for data with
hierarchical structures.24 Here, a hierarchical linear model is
designed to analyze the potential relationship between OCT
image intensities and three factors: distance, ðxÞ; angle,
ln Trðθ; ni; ntÞ; and the constant term CðI0; μbÞ. The linear
model for regression is

EQ-TARGET;temp:intralink-;e005;63;225 ln IbðxÞ ¼ β0 þ β1 · xþ β2 · ln Trðθ; ni; ntÞ: (5)

In order to keep the consistency of the notations, the parameters
were denoted as β0, β1, and β2. The A-lines can be hierarchized

into different frames, which in turn can be hierarchized into
different pullbacks. Based on this observation, a three-level
linear model is considered for this study (see Fig. 3).

2.2.2 Implementation

The lumen border in the Cartesian images was used to estimate
the incident angle. To compensate for the polar to Cartesian
transformation, the lumen border points were resampled with
respect to the depth. The angle was calculated in a window
of nine points.

The index of refraction of the flush solution is 1.449 (read
from the stored data). The refraction index of intima is
about 1.358.25 Therefore, the incident angle is the only variable
during the calculation of the transmission ratio for each
point.

Intensities of only a thin inner layer of the arterial wall are
used for the statistical analysis, then Δx ≈ 0, and thus x ¼
xt þ Δx ≈ xt. The general trend of the signal regards to the dis-
tance xt is decreasing due to both the attenuation of the flush
medium and the confocal function. Approximating this term
as linear, the object model for hierarchical linear regression
can be written as

EQ-TARGET;temp:intralink-;e006;326;502 ln IbðxÞ ¼ CðI0; μbÞ þ β1 · xt þ β2 ln TrðθÞ: (6)

This can be equalized to the hierarchical linear regression model
if we denote β0 ¼ CðI0; μbÞ; thus, the linear regression can be
used to investigate the linear relationship regarding the distance
and the incident angle.

2.3 Compensation

The linear model that describes the effect of the catheter position
can also be used for the compensation of this effect.

Based on the linear regression model, the primary goal for
the compensation is to normalize the IVOCT image intensities
within the superficial layer of the nonpathological artery. This
can be achieved with the following equation involving the
regression result:

EQ-TARGET;temp:intralink-;e007;326;320IcompensatedðyÞ ¼
IoriginalðyÞ · eβ̂0

IbðxÞ
: (7)

As defined, IoriginalðyÞ and IcompensatedðyÞ denote the original and
the compensated IVOCT signals at the depth y. β0 is the esti-
mated constant term in the regression model. With a thin layer
with thickness Δx selected, IbðxÞ is the average intensity within
the superficial thin layer:

EQ-TARGET;temp:intralink-;e008;326;217IbðxÞ ¼
Z

xtþΔx

y¼xt

IoriginalðyÞ∕Δx: (8)

Noting that the following mathematical equation holds

EQ-TARGET;temp:intralink-;e009;326;162IbðxÞ ∼ β̂1 ·
Z

∞

x
IbðtÞdt; (9)

where β̂1 is the estimated parameter. The intensities can be
normalized as follows:

Level 3 

Level 2 

Level 1 pullbacks 

frames 

A-lines A-lines 

frames 

A-lines 

Fig. 3 Multilevel linear model.
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EQ-TARGET;temp:intralink-;e010;63;752IcompensatedðyÞ ¼
IoriginalðyÞ · eβ̂0
β̂1 ·

R
∞
x IbðtÞdt

≅
IoriginalðyÞ · eβ̂0
β̂1 ·

P
M
x IbðtÞ

; (10)

where M is a large depth selected far enough away from the
lumen border. Noting that

EQ-TARGET;temp:intralink-;e011;63;689

XM
y¼x

Icompensated ¼
eβ̂0

β̂1
¼ constant; (11)

the principle of this compensation method is to normalize the
summation of intensities behind the lumen border. Since arterial
tissues are strong scattering and weak absorbing, the summation
of the IVOCT intensities should be approximately constant (lin-
early related to the total emitting energy from the catheter) for
most arterial tissue types; thus, this method is not limited to
compensate only the IVOCT images of nonpathological arteries.

3 Results

3.1 Hierarchical Linear Regression

The hierarchical linear regression considers three fixed effects
and two random effects. The F-tests result for each of the
fixed effects specified in the model indicate that all three effects
contribute to the model statistically significantly with p < 0.001.

Table 3 shows the results of the fixed model. It was found
that the constant related to light source (β0 ¼ 6.5121, SE ¼
0.1615, p < 0.001), the distance between catheter and artery
wall (β1 ¼ 0.0023, SE ¼ 0.0000, p < 0.001) and the logarithm
of “Fresnel” transmission ratio (β2 ¼ 2.8178, SE ¼ 0.0725,
p < 0.001) were significant predictors.

Table 4 shows the results for the two random factors and
residual covariance matrices. Results indicate that both the
defined random effects—the frame number (Nu ¼ 0.0060,

SE ¼ 0.0007, p < 0.001) and pull-back number (Nu ¼ 0.2342,
SE ¼ 0.1173, p < 0.05)—contribute to the covariance sta-
tistically significantly with almost two thirds of the total
variance. However, the influence of the frame number is rela-
tively very small (∼1.6%) compared to the other contributors.
Based on this observation, this random effect can be ignored
during modeling.

The histogram of the residual (ε ¼ 0.1276, SE ¼ 0.0006,
p < 0.0001) is distributed symmetrically around zero with a
mean value of −2.01E − 11 and a standard deviation of 0.3568,
thus indicating the model can fit the data well.

3.2 Compensation

With the results of the linear regression, images can be compen-
sated using Eq. (10) proposed in Sec. 2.3. Figure 4 demonstrates
the compensation of IVOCT images of nonpathological arteries.
The nonuniform image intensities behind the lumen border
and even a small shadow artifact on the lumen wall were com-
pensated. The nonuniform image intensities and even a small
unusual shadow on the lumen wall were compensated.

4 Application of the Compensated Images
Regarding the application of the compensation algorithm, two
experiments were carried out. In the first experiment, compen-
sated IVOCT images with foam cells are compared with the
original images assisted with the histological images. In the sec-
ond experiment, the compensation algorithm was applied to
IVOCT images with BVS struts, followed with the strut detec-
tion and the evaluation.

4.1 Foam Cells Visualization

The compensated images are compared with histological cross
sections. Selected frames from two ex-vivo OCT pullbacks on

Table 3 Estimates of fixed effects.a

Parameter Estimate Standard error df t Sig.

95% confidence interval

Lower bound Upper bound

β0 6.512 0.162 8.013 40.318 0.000 6.140 6.884

−β1 −0.00227 0.000 79838 −279.2 0.000 −0.00229 −0.00226

β2 2.818 0.073 80041 38.848 0.000 2.676 2.960

aDependent variable: natural logarithm of intensities.

Table 4 Estimates of covariance parameters.a

Parameter Estimate Standard Wald Z Sig.

95% confidence interval

Lower bound Upper bound

Residual 0.128 0.001 199.864 0.000 0.126 0.129

Intercept (frame) Variance 0.006 0.001 8.541 0.000 0.005 0.008

Intercept (pull-back) Variance 0.234 0.117 1.997 0.046 0.088 0.625

aDependent variable: natural logarithm of intensities.
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explanted hearts26 were used. OCT imaging was performed with
the Ilumien PCI Optimisation system and a C7 Dragonfly
Imaging Catheter of LightLab Imaging, St. Jude Medical,
Minnesota. The proximal 5 cm of the vessels were cut out and
standard paraffin embedding was performed. For every 200 μm,
3-μm-thick sections were cut and stained with haematoxylin–
eosin. These slices were annotated by a pathologist and matched
with the corresponding OCT frames based on anatomical
landmarks.

Two examples with bright spots are given in Fig. 5. In
Figs 5(a)–5(c), the image intensities marked with red arrows
were darkened due to the residual of blood within lumen. In
the compensated image, the darkened regions were compen-
sated and the edges between the calcified region and the fibrous
region are more clear. In Figs. 5(d) and 5(e), the image regions
near side branches were darkened due to the eccentric catheter
position. The foam cells, marked with the red arrows, are more
accentuated in the compensated image than in the original
image.

4.2 Bioresorbable Vascular Scaffold Strut Detection

In order to examine the impact of compensating images on auto-
mated image segmentation, it is tested on the BVS strut detec-
tion, as proposed by Wang et al.18 For this purpose, eight
pullbacks were used, which were acquired with a C7XR swept-
source OCT system and a C7 Dragonfly Imaging Catheter
(St. Jude Medical, Minnesota) at 6 to 12 months poststenting.
All the stents are the ABSORB 1.1 BVS (Abbott Vascular, Santa
Clara, California). The manual drawn ground truth (GT) data
contains 7933 black cores in total. The experiment is carried

Fig. 4 (a and c) The images before compensation and (b and d) the
compensated images. The image in (a) is a clear example of the
effects caused by the eccentric position of the catheter, the compen-
sated image (b) shows more evenly distributed intensities around
the artery wall. In the second example (c), the light intensities are
more or less homogeneous but there is information missing at
1 o’clock. (d) After compensation, the shadow region is removed.

Fig. 5 Demonstration of the effect of compensation. (a–f) From right to left are histology images, original
IVOCT images, and compensated images. In the histology images, red arrow indicates the location with
form cells, and stars mark the calcified lesions as landmarks. The original and the compensated images
are displayed at the same contrast and brightness level, and the red arrows mark noticeable regions for
comparison.
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out with the in-house developed software QCU-CMS (LUMC,
Leiden, The Netherlands).

The compensated pullbacks were rescaled linearly by align-
ing the 99.5 percentile value of the histogram to that of the origi-
nal pullbacks, thus the same detection scheme can be applied, as
it is described in the work of Wang et al.18 The results were
evaluated by counting the true positive (TP), the false positive
(FP), and false negative (FN), and the F-score was calculated as
the measurement of the detecting performance.27

With the described data and experimental settings, the com-
pensated images were used for automatic BVS strut detection.
The detection results can be seen in Table 5, where the outper-
formed F-score is marked with bold font. The compensation
algorithm improves the BVS struts detection for 6 out of
8 pullbacks by 1.0 to 6.6 percent in F-score. An example of
an improved BVS detection image can be seen in Fig. 6. In
QCU-CMS, all the delineations are displayed in the original
image. In order to make a clear distinction, the delineations
of the GT, the detection results with the original images, and
the detection results with the compensated images are shown
separated in A, B, and D. The box-and-whisker plot in C
shows the intensity percentile within 10 BVS black core regions.

5 Discussions
The aim of this work is to investigate the influence of the posi-
tion of the catheter on IVOCT intensities and to use this knowl-
edge to compensate for it. Two aspects of the catheter’s position
were analyzed: (1) the distance between the catheter and the
arterial wall and (2) the angle of incidence of the light entering
the arterial wall.

5.1 Hierarchical Linear Regression

The statistic analysis focuses on intima-media regions on the
artery wall, thus the tissue-dependent effects were minimized
in the study. Similar region selection criteria have been used
by Courtney on IVUS images.7 The statistical results show
that the amount of light that enters the artery wall is significantly
related to the catheter position. In the linear model, an angle-
related transmission ratio has been used to model the trend.
The trend of this transmission ratio is conforming to empirical
observations.

As the angle of incidence increases, the IVOCT intensities
decrease accordingly. The more the angle of incidence
approaches to a critical angle, the faster the IVOCT intensities
decrease. When the angle of incidence approaches this critical
angle, light propagation into the tissue in the artery wall is lim-
ited. This can explain the “signal dropout” reported by van Soest

Table 5 The stent struts detection results.

Pullback No. of GT

Original pullback (%) Compensated pullback (%)

TP FP FN F -score TP FP FN F -score

1 776 86.5 21.4 13.5 83.2 88.9 27.3 11.1 82.2

2 891 94.2 8.5 5.8 92.9 95.2 6.7 4.8 94.3

3 1158 82.6 2.7 17.4 89.1 83.9 2.3 16.1 90.1

4 910 78.2 1.4 21.8 87.1 88.8 0.8 11.2 93.7

5 1389 91.9 8.9 8.1 91.5 95.2 6.9 4.8 94.2

6 847 85.0 22.8 15.0 81.8 89.7 19.4 10.3 85.8

7 1059 81.7 17.2 3.6 88.7 80.6 9.3 4.6 92.1

8 903 96.6 4.3 3.4 96.1 96.1 4.1 3.9 96.0

Total 7933 87.2 10.4 10.9 89.1 89.8 8.8 8.3 91.6

Note: F -score ¼ 2TP∕½2TPþ ðFNþ FPÞ�.

Fig. 6 An example of image with improved BVS detection. (a) The
cross section with GT BVS delineated with cyan color. (b) Detection
results with the original image delineated with white color.
(d) Detection results with the compensated image delineated with
white color. (c) Within each black core of the GT, the percentile of
both original and compensated image can be seen.
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et al.5 When the incident angle becomes equal or even larger
than a critical angle, there is hardly light entering the artery
wall, and the transmission ratio will approximate to zero. This
results in the appearance of disconnecting tissue along the
arterial wall, which has been reported as dissection artifacts
in an IVUS study by Mario et al.10 Due to the lack of valid sig-
nal, these artifacts cannot be compensated.

As random variables, the pullback number and frame number
contribute to the hierarchical linear model significantly in terms
of covariance. The covariance contribution of frame number is
relatively small enough to be ignored. The covariance of the
pullback number occupies almost two thirds of the total covari-
ance. Since the same flush medium was used, this suggests that
the distance-dependency can differ between IVOCT imaging
catheters. This confirms the statement of van Soest et al. that
the parameters of catheters differ from each other.22

The range of the estimated incident angles in the experiment
is relatively small due to the elliptical shape of the artery wall,
which is an inevitable issue of in-vivo IVOCT data. Since the
angle related term is between 0 and 1, the logarithm operation
can enlarge the range of the transmission term in the linear
model. Another potential issue related to the angle estimation
is that the angle of incidence has been estimated with 2-D
IVOCT images: the best estimation that can be achieved at
present. The estimation can approximate the spatial angle well
because the imaging catheter has elasticity to resist over-bend-
ing and can thus be assumed parallel to the longitudinal direc-
tion of the artery. Nevertheless, it would be interesting to
measure the angle of incidence in 3-D in a future study.

5.2 Compensation

The compensation of the intensities in the OCT images can
enhance the visualization of arterial tissues in IVOCT images.
An eccentric position of the catheter can result in inhomo-
geneous intensity in homogeneous tissue, which requires the
contrast and brightness levels to be constantly adjusted during
visual inspection. Our proposed compensation algorithm
improves the visualization by balancing the signal levels within
each pullback, which can be seen in both in-vivo (Fig. 4) and
ex-vivo images (Fig. 5).

The principle of the algorithm is that for each pixel at the
lumen boundary, the same amount of light enters the tissue,
such that further analysis can be carried out without the bias
caused by the catheter position. It is designed to overall enhance
the absolute intensities for each A-line rather than changing the
relative trend. Therefore, it will not affect the parameters like
attenuation and backscatter. This is why the proposed algorithm
preserves the dark trend within regions with weak backscatter-
ing (calcified lesion, dark square inside BVS stent struts, etc) or
behind tissue with high attenuation (foam cells, e.g.).

Noting Figs. 5(b)–5(d), shadow artifacts caused by the
residual blood in the protective sheath were compensated as
well. This is because our compensation algorithm compensates
the total energy behind the lumen border for each A-line. The
shadow artifacts caused by factors within the lumen, e.g.,
residual blood and thrombosis, may be the result of a sudden
drop of the total energy compared to A-lines in the neighbor-
hood. Therefore, normalizing the total energy can compensate
such local shadow artifacts as well.

In the BVS strut detection experiment, the overall result
shows that the compensation algorithm can improve the perfor-
mance of the BVS struts detection. As it is shown in Fig. 6(c),

the box-and-whisker plot of the percentile values within the
black cores, we can observe that the percentiles in the compen-
sated image are lower than those in the original images. Further-
more, it is worth noting that the lower percentiles over all the
black cores are more condensly distributed. This can be the main
reason that the proposed algorithm improves detection, since
the lower percentiles are used as thresholds in the BVS strut
detection.18

Meanwhile, there are two pullbacks with lower F-score, pull-
back 1 and 8. The first pullback was from a patient with a pre-
viously implanted metal stent strut followed by a BVS stent
treatment, which results in multiple artificial layer structures.
This also explains the large amount of the FP in the detection
results on the original images in Table 5. The FP ratio on the
compensated images is even higher, and this may be because
the deeper layer structures are enhanced. Despite a higher FP
ratio, the detection with the compensated images gives a higher
TP rate. In the eighth pullback, the F-score with the compen-
sated image is slightly lower than that with the original images,
but it should be noted that both F-scores are already very high.

5.3 Limitations

There are two catheter-related terms for modeling the IVOCT
signal. One is the confocal function and the other is the spectral
coherence term. Both terms can be different for different cath-
eters. This can be the reason for the variation that lies in
the estimated intercept for the hierarchical regression results.
As a result, the compensation factor can be different as well.
Noting that the compensation factor serves mainly to normalize
the total energy of the incident light onto the arterial tissue, this
difference causes only a shift of the histogram of the compen-
sated pullback rather than the shape of the histogram. In these
situations, it would be sufficient to apply the compensation algo-
rithm with a fixed “average” factor to remove the bias caused by
the catheter position. For the quantification analysis on the data
from different pullbacks,19,20 the compensating images with
fixed factor can be still useful to remove the bias caused by
the catheter position, but for further comparison of the statistical
numbers, the differences caused by different catheter parameters
should be taken into account using statistical tools, such as hier-
archical models and so on. It can be useful to characterize the
variance caused by different catheters and model it into the com-
pensation method. However, in practice, this will be difficult
since most hospitals will not do additional calibration measure-
ments of the catheter before or after the procedure.

Another limitation regarding the catheter-related parameters
is that the overall distance-dependent decreasing trend is imple-
mented as a linear regression model after taking the logarithm.
So, the algorithm is designed to compensate the general
descending trend rather than the Gaussian-shape variation
in the confocal function. Taking the numbers reported in
the work of Ughi et al.11 as an example, z0 ≈ 1.5 mm (focal
point) and zR ≈ 2 mm (Rayleigh length), the confocal function
TðxÞ at depth x ¼ 4 mm equals to 0.625. After the overall lin-
ear decreasing trend is compensated, the variation of this term
should be around 1 with a variation of �18%. That is to say,
the total incident light is ether overestimated or underesti-
mated by about 18%. For a full depth of 2 mm, the variation
of intensities of each pixel can be 0.045%, which is rela-
tively small.
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5.4 Future Directions

In this paper, the compensation algorithm shows its potential to
be a preprocessing step for automatic BVS stent strut detection.
For further incorporating the algorithm into the standard BVS
detection workflow, more validation studies are needed, thus
the parameters can be further optimized with the compensated
images. Meanwhile, it is interesting to see if the compensation
algorithm can improve the automatic detection of metal stent
struts15 as well. Further experiments will be carried out for
the metal stent strut detection in the future.

6 Conclusions
Both aspects regarding the catheter position, the distance from
the catheter to the artery wall and the angle of light incident
upon the artery wall, significantly affect IVOCT image inten-
sities. The hierarchical linear regression result shows that as
either aspect increases the intensity decreases. Using the hierar-
chical linear regression result, a compensation algorithm is pro-
posed to enhance the IVOCT images and improve the BVS strut
detection. Using the pathological images as a gold standard, it is
illustrated that the foam cells appear more accentuated in the
compensated image than in the original image. Quantitative
evaluation results of the BVS strut detection with the compen-
sated images show that the proposed method improves the per-
formance for the BVS struts detection.
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