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Preface

This document presents the master thesis "A Semi-Automated Framework for
Launcher Remodelling that Handles Uncertain Data”. With this thesis, | fulfil all
requirements to graduate with my MSc in Aerospace Engineering diploma at TU Delft.

This master’s thesis was carried out at the German Aerospace Center (DLR), within
the Space Launcher Systems Analysis (SART) department, between February 2025
and October 2025. The work was conducted as part of the Space Sustainability and
Sustainable Development (S3D) project, which aims to improve the understanding
of the environmental impact of rocket launches by developing an accurate and
comprehensive emissions inventory.

The motivation behind this research stems from the growing global awareness
of the environmental footprint of space activities. Accurately remodelling rocket
launches and their emissions is an essential step toward assessing and reducing
their atmospheric impact. Within this context, the thesis focuses on developing a
semi-automated framework for launcher remodelling capable of handling incomplete
or uncertain input data. The outcome of this work contributes directly to DLR’s ongoing
efforts to make space transportation more sustainable.



Abstract

The increasing number of rocket launches has intensified concerns about the
environmental effects of spaceflight. Quantifying rocket emissions at different altitudes
and locations within the atmosphere is essential to assess these impacts. This
requires realistic launcher models, but much of the publicly available technical data
is incomplete or inconsistent. This research aimed to develop a semi-automated
framework for launcher remodelling that can handle uncertain or missing input
parameters while producing reliable and efficient results.

The framework was developed at the German Aerospace Center (DLR) and
integrates a flexible input data structure, statistical estimation methods, and trajectory
optimisation tools. Three statistical techniques — Monte Carlo, Latin Hypercube,
and Approximate Bayesian Computation — were evaluated to estimate unknown
parameters and define their valid ranges. Their performance was tested using several
expendable launch vehicles with liquid propulsion.

Results showed that Latin Hypercube sampling achieved the best balance between
accuracy and computational cost. When applied to real rockets, the framework
produced configurations with payload estimates within 2% of reference values, even
when up to five input parameters were uncertain.

Overall, the developed framework demonstrates that launcher remodelling can be
automated while effectively handling uncertainty. It facilitates the generation of
realistic launcher models and supports ongoing efforts to quantify the environmental
impact of rocket emissions.
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Introduction

The number of global rocket launches has been growing in the past few years
[1]. Consequently, the propellant mass used during these launches has increased
on a large scale, as seen in Figure 1.1. This rise has intensified interest in the
environmental footprint of spaceflight. Rocket launches are unique, as their exhaust
of gases and particles is directly injected into the middle and upper atmosphere. No
other transport has such a characteristic. As a result, they have a huge potential
to be a major contributor to the climate impact of space transport activities. However,
there are still many uncertainties regarding the exhaust’s chemical composition, plume
behaviour and the formation of particles such as soot [2].

Current and past research highlights several concerning atmospheric effects of rocket
launches. Their emissions have been shown to cause stratospheric warming, affect
the atmosphere’s chemistry, disrupt the ozone layer’s regeneration, and increase
radiative forcing [3-8].
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Figure 1.1: Total propellant mass used by rockets per year for the five most used propellants.



Despite these findings, the literature consistently stresses that current knowledge
remains limited. In particular, there is a strong need for a more detailed qualification
and quantification of rocket emissions during their launches, in terms of species
composition and their distribution across the atmosphere.

A central element in assessing the impact of rockets is their emission profile. This
profile includes the emissions’ distribution, mass, and chemical composition. It
depends on several launch vehicle (LV) characteristics, including the engine cycle,
propellant choice or ascent trajectory [3, 5, 9]. Since different fuels and design
choices produce distinct combustion products, an accurate LV remodelling is required
to quantify species such as carbon dioxide, water vapour, and soot at varying altitudes.

To address the significant knowledge gap regarding the impact of LV emissions in the
atmosphere, the German Aerospace Center (DLR) is currently working on the Space
Sustainability and Sustainable Development (S3D) project. This initiative aims to
advance the assessment of sustainability in the space sector by developing a tailored
Life Cycle Sustainability Assessment (LCSA) framework. Unlike the traditional Life
Cycle Assessment (LCA), which focuses more on the environmental effect, LCSA
adds the social and economic dimensions, broadening its perspective. Within S3D, a
global launch emission inventory is being built. It consists of detailed LV models with
the corresponding flown ascent and recovery trajectories for all launches conducted in
2024. This inventory enables the calculation of the exhaust species and distributions
through the atmosphere. Thus, once this database is complete, the obtained emission
data can be used for advanced atmospheric modelling, enhancing the understanding
of spaceflight’s impact.

Early S3D results already indicate substantial differences in emissions between
hydrogen and methane-fuelled systems. They also highlight how reusable LV designs
may increase total exhaust mass due to recovery manoeuvres. However, these
outcomes come from a conceptual LV with different configurations and propellants,
engine types and reuse methods [10]. To obtain the preliminary results, many
trajectories with various architectures of this vehicle were simulated (see Figure 1.2).
Therefore, even though they are a good reference point for the real results, they do
not exactly represent them.

The global emissions exhaust inventory’s flagship is the precise and realistic modelling
of the individual launch systems. To address the inaccuracies from the predecessor
exhaust inventories, the real LVs and their launch trajectories are needed. This way,
one can extract their exhaust at the different altitudes and locations of the atmosphere
where they occur. The actual rockets need to be remodelled to obtain their launch
trajectories and combustion processes.

However, there are two main problems with this remodelling process: the time it takes
and the uncertainties. To get a realistic model for an LV, one needs to build a mass
model and an aerodynamic model first, based on the LV’s technical data. Afterwards,
the trajectory has to be manually optimised. This requires much time since it is a very
complex task. On the other hand, extensive research is needed to acquire all the
data necessary from publicly available information. The issue lies in the contradicting
data frequently found, as often multiple sources suggest a different value for a certain



1.1. Outline 3
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Figure 1.2: Example of a test result for S3D: H20 emissions for different trajectories using a default
launch vehicle [11].

parameter. Furthermore, for other parameters there are no sources at all. Both
situations induce a high degree of uncertainty, making it hard to define a value to
be used in the remodelling process.

To solve these problems, this thesis will introduce a semi-automated framework
capable of handling incomplete or uncertain input data while guaranteeing efficiency
and reliability in the remodelling process. This approach will provide probabilistic
estimates of unknown parameters to reduce the dependence on manual work and the
uncertainty barriers by integrating computational statistical methods. This will improve
the scalability and flexibility of this process, allowing for a larger number of rockets to
be remodelled and included in DLR’s database.

1.1. Outline

Figure 1.3 shows the flowchart for the remodelling framework. It begins with an input
data sheet (IDS), which stores the data from the research required for each LV. It
will be flexible, adaptable, and organised in a user-friendly manner. The user can
enter a specific value or a range between the estimated minimum and maximum
values for each input parameter necessary for the remodelling process. Additionally,
a payload range must be provided for each rocket’s mission being analysed, usually
based on information supplied by the LV’s manufacturer. The mission(s) and the
payload range(s) will be used to validate the launcher. Subsequently, statistical
sampling methods will be applied to these data. Parameters without a specific value
will undergo a sampling process to generate multiple combinations of possible LV
configurations. Afterwards, their mass and aerodynamic models will be created,
and their optimised trajectories and related payload capacities will be automatically
evaluated using the Complex Model (CM). The CM uses a genetic optimiser wrapped
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Input Data | Sample
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o \\
Complex
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Final Rocket ; | Statistical | Configuration
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Figure 1.3: Flowchart of the major steps of the remodelling framework. The Test Model has a
different colour because it is not part of the final loop, only of the testing phase, although the flowchart
is the same for both methods.

around a trajectory optimiser to find the maximum payload for that LV configuration.
Validation involves checking whether the payload result for each LV configuration falls
within the pre-defined range. Finally, the user will select one or multiple configurations
that meet the requirements.

Furthermore, it is important to explain that the final statistical method chosen will
be the result of a comparison done as part of this work. Its goal is to determine
the most adequate statistical sampling method for this application. Since it requires
an intensive testing phase with hundreds of thousands of samples, a faster model
was developed. This was necessary because the CM is very time-consuming, given
its optimisation algorithm. Thus, this comparison between methods uses a simpler
model, denominated as the Test Model (TM). The TM uses equations based on the
LV input parameters to quickly estimate the payload to a certain orbit. Due to its
simplified nature, it is not as accurate and overarching as the CM. During this testing
phase, three LVs were used as test cases (see Section 3.2.6). They had different
numbers of stages, which is directly related to the number of unknowns and, hence,
complexity. Multiple scenarios were created for each of them, which allowed several
results and conclusions to be drawn. These test cases were also later used to validate
the CM.

1.2. Company Background

The thesis documented in this report was performed at DLR. DLR is the German
national research centre for aeronautics, space, energy, transport, security, and
digitalisation. It was founded (with the current name) in 1969. However, its
predecessor organisations are more than 115 years old [12]. During this time, it has
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become one of the most prominent research centres for aerospace. DLR’s mission
mostly addresses sustainable innovation in order to have a positive impact on society
without disregarding the environment and our future. They also participate in multiple
missions in many sectors, collaborating with partners such as the European Space
Agency (ESA) or the National Aeronautics and Space Administration (NASA) [13, 14].

This thesis was done in collaboration with the DLR’s Space Launcher Systems
Analysis (SART) department, which dates back over 25 years. It is part of the
Institute of Space Systems, in Bremen (see Figure 1.4), which researches innovative
design methods, space technologies, and space systems. The SART department
narrows the scope to analysing and designing future space launch systems. In
particular, it looks beyond the classic LVs, investigating all kinds of transporters for
orbit transfer, atmospheric re-entry or hypersonic flight [15]. It mostly focuses on
concept vehicles in the early phases of development, assessing their performance,
cost, and environmental impacts.

Figure 1.4: DLR facilities in Bremen (retrieved from [16]).



Literature Review and Project Plan

This chapter presents the literature study’s results to assess the current state of
research relevant to this project. The need for this work has already been established
in Chapter 1. Therefore, the focus here is on determining whether similar approaches
have been developed, either directly for launcher remodelling or in related fields such
as vehicle modelling more broadly. Particular attention is given to two core areas: the
remodelling process itself and statistical methods for parameter estimation and model
validation under uncertainty. By examining existing work in these domains, this review
aims to identify knowledge gaps, discover transferable methodologies, and determine
to what extent current solutions address the challenges outlined. The findings of this
chapter will serve as the foundation for formulating the final research objective and
research questions.

2.1. Remodelling Process

This section focuses on existing approaches to launcher remodelling. The goal is
to identify the different methods employed by other researchers. In many cases,
launcher remodelling is closely related to trajectory optimisation. This occurs because
reconstructing a realistic LV model often requires accurately replicating the flight
trajectory it would take to deliver a payload to orbit. In the DLR context, trajectory
optimisation is an integral part of the remodelling process (see Section 3.1.3). It
provides a way of validating whether a given configuration can achieve the target
orbit with a payload capacity close to its technical specification. For this reason, part
of this literature review will also examine trajectory optimisation methodologies.

The optimisation of rocket trajectories (ascent or descent) is not a new advance
in science. Many people have tested various methods to achieve the ideal result.
However, most examples focus only on the trajectory optimisation part alone or
integrate a bit of rocket design without considering every factor at play. Others
are only tailored for specific types of rockets, and some are used for optimising
current launchers with all the necessary data/information available. At the time when
this literature review was conducted, no overarching, multi-disciplinary, and flexible
optimisation and remodelling tool was found.
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As previously mentioned, the optimisation of a rocket’s launch trajectory has been
done in different ways and by multiple people. A few examples of work revolve mostly
around the optimisation of the descent part of the trajectory, taking into account the
throttling changes and the complex and shifting aerodynamic forces [17, 18]. Other
research works address full trajectory optimisation [19, 20].

Another case uses an optimisation algorithm that does not require any initial guess
and can simultaneously improve trajectory and thrust profile [21]. This last work is
designed for liquid rockets in particular, so it's not as global as it is desired for this
thesis. Comparably, there is also the case where the research focuses on solid
propellant rockets [22]. The proposed algorithm is not only able to optimise the
selected LV’s launch trajectory, but it also refines the grain geometry for maximum
payload capacity.

In [23], the authors present a software tool to optimise both the ascent trajectory
and the mass distribution among stages of a multi-stage rocket. The created model
incorporates structural design, aerodynamics, control and propulsion systems and
stage sizing. The ultimate goal was to maximise the payload-to-lift-off ratio while
complying with every safety constraint. The authors of [23] developed an optimisation
process that includes variables such as propellant and structural mass or attitude
angles. It also involves an optimal stage-sizing part. The propellant and stage
masses are computed using parameters such as the mass fraction or the effective
exhaust velocity. Simultaneously, a non-linear optimisation is solved, helped by the
discretisation of the flight time into multiple intervals as well as some of the parameters.
Overall, this procedure shares some resemblances with the one used by DLR (see
Section 3.1.4).

Another example is defined in the work developed by Unal, E. in [24]. The goals of
this research project are closely aligned with those in the LV design, modelling, and
trajectory optimisation framework presented in this thesis. It provides an approach to
the integration of mass modelling, aerodynamic modelling, and trajectory optimisation
similar to what was done in [23] and what will be used in this work. The multiple-stage
sizing algorithm is identical and relies on the same type of inputs as the previous
research work mentioned. However, the final formulas are different.

Concerning the aerodynamic model, there is a simplification of the forces acting on
the LV. Only lift and drag are included, so side forces and aerodynamic moments
are ignored. This is different from the model used by DLR, which can affect the final
results. Still, the way Unal, E. calculates the aerodynamic coefficients does not differ
much from the one used in this thesis and by DLR. In a summarised way, the external
shape and volume of the LV define these values. The thrust model is based on rocketry
equations and relationships, as is done with the model used in this research project
(see Section 3.2.3). Furthermore, the work explores a particle swarm optimisation
strategy. Itis used to find the optimal LV trajectory and performance based on specified
mission constraints. Finally, the whole algorithm is validated with a real case example.
Overall, the structure and methodology of Unal’'s work and what is done in this thesis
are identical.

A similar work was developed by Civek, E. in [25]. A simplification is also made
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around the aerodynamic forces (only drag is considered). The optimisation is done
for thrust profile, vehicle mass, and trajectory planning, all at the same time. This is
one of the key contributions of this work to the literature. It maximises the payload
that a certain LV can carry while minimising the gross lift-off mass. The work
is also interesting because it compares the results with known configurations and
performances. Moreover, it can be applied for the preliminary mission design of a
current rocket or to develop a concept design for an LV with certain requirements.
However, some aspects to be improved are mentioned, such as controllability or
integration of more external factors (wind or other aerodynamic forces, for instance).
In addition, further enhancements are desired when it comes to solid rocket motors.
All these suggestions are either already included in DLR’s tools or will be applied to
this thesis.

DLR has also developed a previous model capable of optimising LV trajectories [26].
This work has the particularity of opting for an object-oriented modelling approach.
That is the same technique used in this thesis.

There is one more work where trajectory optimisation considering both physical and
structural constraints was performed with stage mass sizing [27]. As part of this
research project, the authors also improved the LV’s configuration to reduce its gross
lift-off mass. They applied this to a couple of real examples. The authors of [27]
point out that the ultimate goal should be to combine rocket design with achieving the
optimal trajectory. That is done in this thesis, aided by DLR’s software toolbox.

In [28], Morgado, F. M. P. et al. developed a procedure for coupled rocket design and
trajectory optimisation. It minimises the LV’s weight while achieving the optimal ascent
trajectory. It is a viable tool to design a rocket in a preliminary phase, given a set of
mission requirements. However, the results are not close enough to the precision
desired for this thesis. This tool seems to be better for designing and not remodelling.
Nonetheless, its rationale is relevant and is related to what will be developed in this
research project. Finally, an interesting approach proposes a way of sizing several
rockets belonging to the same family, that is, sharing commonalities, while optimising
their trajectories [29]. This approach eases the design of a set of similar rockets and
lowers their development and production costs. However, once again, it is more suited
to designing more than simply remodelling existing configurations.

In conclusion, a review of the existing literature on LV remodelling reveals a strong
focus on trajectory optimisation and vehicle design, with particular emphasis on
stage sizing, aerodynamic modelling, and propulsion system integration. While some
studies address uncertainties within optimal control and trajectory planning, these
efforts are largely confined to variations in predefined design parameters. They don’t
deal with incomplete or missing input data. No work was identified that offers the full
set of capabilities sought in this research project: the ability to perform complete LV
remodelling while handling unknown input parameters.

2.2. Statistical Methods to Handle Uncertainties

In LV remodelling, handling uncertainties in the input parameters is an important
challenge, as incomplete or inconsistent data can significantly impact the accuracy
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and reliability of the output results. Fortunately, many statistical methods have been
developed to enable robust modelling and optimisation even when information is
lacking. Examples such as Bayesian computation, Monte Carlo (MC) simulations, or
uncertainty quantification frameworks allow systematic incorporation of data variability
into computational models, improving their predictive capability. This section explores
relevant research work that has addressed uncertainties.

One method that has proven to be successful when dealing with uncertainties in
the input parameters is Approximate Bayesian Computation (ABC). It is a powerful
methodology for parameter estimation in complex models, especially when traditional
likelihood-based methods are infeasible due to a lack of knowledge or computationally
expensive likelihood functions [30].

This has been used with a positive impact in many cases. For instance, one work
investigating galactic cosmic rays was completed using ABC to estimate values for
unknown parameters. They were important to calculate the final value of the desired
variable. They allowed the modelling of the parameters that lacked information, similar
to the issues faced during this thesis, thus allowing the research to be conducted [31].
Moreover, some authors demonstrate an ABC approach for flow parameter estimation
using laser absorption spectroscopy, a technique commonly used in combustion
diagnostics. Their method combines experimental spectroscopy data with ABC-based
inference to estimate key flow parameters, such as temperature, pressure, and
species concentrations, without requiring an explicit likelihood function. This work
suggests that ABC can be successfully applied to experimental and computational
models where traditional estimation techniques struggle [32].

Furthermore, some authors developed a probabilistic framework using ABC to
estimate genome rearrangement rates, allowing them to infer key evolutionary
parameters without requiring an explicit likelihood function [33]. Their method relies
on generating simulated data, comparing it with observed genome arrangements,
and iteratively refining model parameters using ABC. Although their research is
in molecular evolution, the core principle of using ABC to estimate unknown
parameters can be applied to this thesis. In another example, ABC was applied to
a different field than rocket remodelling [34]. The focus was on structural integrity
assessment, and it required estimating unknown parameters in pipe-like structures
using ultrasonic-guided wave signals. Again, despite being applied to a different
purpose, the used framework can be adapted to accurately predict some uncertain
input parameters in the work developed throughout this thesis.

Another developed work compares two Bayesian methods: Bayesian Model Updating
and ABC [35]. The study highlights the strengths of ABC when dealing with complex,
high-dimensional models. A similar challenge will be dealt with in this thesis, given
the vast amount of parameters that can be unknown.

One variation of the traditional ABC was developed to reduce computational cost [36].
This research presents an approach around the traditional ABC to improve parameter
inference in models where the likelihood is hard to deal with. The method enhances
the efficiency of ABC by lowering the variance and thus the errors, making it suitable
for complex dynamic models with uncertain parameters.
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Also, an improved version has been developed [37]. This study introduces an
enhanced ABC Sequential Monte Carlo (ABC-SMC) algorithm aimed at improving
efficiency in model selection and accuracy in parameter estimation. The proposed
methodology addresses challenges associated with the more traditional ABC, such
as low efficiency in model selection and estimation inaccuracies, making it applicable
to complex systems where input parameters are uncertain.

Overall, these studies illustrate the versatility of ABC in handling parameter
uncertainties across various fields. This method can enhance the robustness of the
LV remodelling process by effectively addressing the lack of complete input parameter
information.

The last investigated methods to deal with the uncertainties in the input parameters for
the rocket remodelling process are MC algorithms. It is a more "brute force” way since
it relies on a large amount of random samples to generate the probability distribution
of outcomes.

A study employed this strategy to assess performance variations in liquid rocket
engines with gas-generator cycles [38]. By accounting for uncertainties in parameters
like the turbine and pump efficiencies or the nozzle geometry, this research provides
a method of generating output results based on multiple random combinations of
the input values. This is useful when there is a lack of information about the input
parameters, as will happen in this thesis.

In another field, MC was used to estimate uncertainty in rising sewer models,
where input parameters, such as fluid properties, boundary conditions, and structural
variations, can be hard to measure directly [39]. Although the work is not related
to rockets, the methodology can be applied to this thesis, as it is an efficient way
to handle incomplete input data. Moreover, another study presents a probabilistic
mid-air collision risk model to integrate uncrewed aircraft into unsegregated airspace
[40]. Here, an MC method is used to reconstruct a probable traffic scenario for the
aircraft. Input parameters like traffic density are unknown. Hence, implementing this
strategy helps attenuate this issue. One final example of MC implemented to solve
uncertainties within input parameters in a subject other than rockets is in [41]. The
author uses MC simulations to evaluate the robustness of guidance, navigation and
control algorithms across diverse scenarios. Parameters like wind field, sensor errors
or magnetic fields vary according to the random values generated. This way, the
reliability of the results is enhanced. The lack of knowledge about these parameters
is thus bypassed.

In another case, MC was used to predict the internal ballistic performance of a solid
rocket motor under the influence of numerous random factors [42]. These results were
then compared to a limit deviation design method. They turned out to be better, which
strengthens MC'’s position as a strong valuable way to mitigate the lack of information
in input parameters.

A modified version of MC was used in [43]. The author applied Latin Hypercube (LH)
sampling to analyse kinetic and inertial soil-foundation-structure interactions. The idea
was to overcome the uncertainties from the structural and geotechnical properties.
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The LH method was implemented to reduce the computational cost compared to the
traditional MC sampling. Therefore, it might be useful for this research project, given
the limitation in computational power. In addition, in [44], the authors use LH sampling
to generate samples while handling uncertainties. Zhang et al. go even further, by
adding an optimisation after the sampling is performed [45], similar to what will be
done in this thesis. Thus, despite being applied to different research areas, these
examples demonstrate how MC and its variations can tackle uncertain data.

From all the examples above, the MC method and its variants can be inferred to be a
good way to deal with the lack of input parameters. Its versatility allows it to be used
in multiple fields and problems, as the one dealt with in this thesis.

2.3. Research Gap

Based on the literature review, there have been significant advancements in works
related to rocket remodelling or dealing with a lack of information/uncertainties in input
parameters. However, to the best of the author’s knowledge, nothing simultaneously
addressing both topics has been proposed in literature yet.

On the one hand, prior works related to rocket remodelling have only dealt with known
parameters when reconstructing and designing these vehicles. Usually, these studies
assume complete datasets, missing out on the uncertainty part that is often found in
real-case scenarios. On the other hand, extensive research has been conducted on
dealing with uncertainties and unknown parameters in various fields. ABC, MC, and
LH methods have proven to be useful in some way when it comes to this. However, no
literature has implemented any of these when remodelling rockets. This thesis aims
to bridge this gap.

This research will provide a novel approach for remodelling LVs, even in the
absence of complete technical specifications, by integrating methods to handle
unknown parameters in the remodelling framework. It will combine physical modelling,
trajectory optimisation, and advanced statistical methods to handle uncertainties.
This will enable the generation of mass, aerodynamic, and trajectory models from
incomplete datasets. By covering the research gap and addressing the need for such
a tool, this thesis intends to facilitate the creation of a more complete exhaust inventory.
Once a database with the recently launched rockets’ models is built, this exhaust
inventory can be computed, and further conclusions can be drawn through the S3D
project.

A detailed explanation of the steps undertaken in this thesis is available in Appendix A.
There, it is possible to visualise a Gantt chart showing the duration and sequence of
each task, as well as a description of each work package.

2.4. Research Goals

This section presents the research goals. It will help the reader understand the thesis’s
focus and relevance and the questions it addresses. In the first place, the research
objective will be presented, followed by the research question and sub-questions.



2.4. Research Goals 12

2.4.1. Research Objective
This research’s objective is:

“To build a semi-automated rocket remodelling framework that integrates data
management, model generation and validation while handling incomplete
or uncertain input parameters, creating the mass and aerodynamic models
along with an optimised trajectory for each launch vehicle, and defining the
possible ranges for the unknown technical characteristics with computational
statistics.”

To better understand the research objective, it is better to divide it into several
sub-objectives:

» To establish a data management methodology by organising and processing
available technical input data while identifying missing or uncertain parameters.

* To automate aerodynamic, mass, and trajectory models generation by
implementing and adapting existing DLR software tools to the research’s needs.

» To implement a validation process that determines the possible ranges of
technical characteristics by using computational statistics methods to cover their
full range.

» To develop a method to select the most valid/realistic models based on the
validation process and the range of the technical characteristics.

2.4.2. Research Question
Now that the research goals are defined, the research question will be elaborated.

‘How can the remodelling process for launch vehicles be automated to
create mass and aerodynamic models and optimise their trajectories,
while handling incomplete or uncertain input parameters?”

Additionally, given the complexity and scope of the problem at hand, the research
question was split into several sub-questions, similar to what was done with the
research objective. The resultant sub-questions are:

1. What are the key challenges in managing and processing incomplete or
uncertain input parameters for rocket remodelling?

(a) What data structure or input data sheet format can be used to handle
varying levels of data availability?

(b) What is the minimum set of input parameters required to realistically
remodel a launch vehicle?

2. How can mass, aerodynamic, and trajectory models be constructed with a
shortage of input parameters?

(@) How can mass and aerodynamic models be developed when some
technical characteristics of the launch vehicle are unknown?

(b) What influence does each uncertain input parameter have on the final
result?
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3. Which statistical and computational method(s) is(are) best suited to define the
possible ranges of unknown parameters?

4. How can the proposed rocket framework have the same accuracy for launch
vehicles with varying data quality and complexity?

2.5. Requirements

This section will list and briefly explain the requirements for this project. They
are grouped into key areas to ensure a structured and comprehensive project
development.

1. Functional Requirements
(a) The framework shall support two rocket modelling paths:

i. A test model based on analytical rocketry equations.
ii. A complex model using DLR’s trajectory optimisation tools.

(b) The input data sheet shall dynamically assess which parameters are still
required based on the user’s input.

(c) The input data sheet shall use the already written inputs to calculate others.

(d) The input data sheet shall notify the user when some combinations of
parameters are inconsistent.

(e) The input data sheet shall contain all the parameters required by the
remodelling tools.

(f) The input data sheet shall be flexible and capable of dealing with any type
of expendable rocket.

(g) The input data sheet shall handle both exact values and ranges in case of
an unknown parameter.

(h) The framework shall store all relevant results for future reference or
additional processing.

(i) The architecture shall support future extensions, including new models or
functionalities.

2. Performance Requirements

(a) The test model shall run in under 20s.

(b) The complex model shall run in under 48h.
3. Interface Requirements

(a) The input data sheet shall have a user-friendly interface.

(b) The input data shall be readable by Python code.

(c) User’s interference shall be minimised while the algorithm runs.
4. Visualization and Output
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(a) The user shall visualise intermediate and final results for both the test and
complex models.

i. The user shall be able to access all valid configurations and the
corresponding parameters.

ii. The algorithm shall update or write a new Excel sheet with completed
or revised data fields, especially for previously unknown parameters.

5. Validation and Selection Criteria

(@) The framework shall validate all model outputs to guarantee they
correspond to physically and technically feasible launchers.

(b) The user shall be able to choose criteria to select the final model (e.g.,
lowest mass, highest thrust).

(c) The system shall include a sensitivity analysis module to assess how input
uncertainties influence output performance and model feasibility.



Methods

This chapter presents the background and overall picture of the thesis by combining
both theoretical principles and their practical implementation. On the one hand,
it introduces the underlying theory required to build the framework. On the other
hand, it describes how these principles are applied in practice through the proposed
workflow. The chapter is therefore structured to move from theory to application.
Firstly, all the auxiliary theoretical concepts are explained. Then, the methodology
for integrating them into a semi-automated launcher remodelling process is outlined.
Finally, the expected results of the workflow are defined, together with the verification
and validation strategy that will ensure the reliability of the proposed approach.

3.1. Theory

The following section lays the theoretical foundations for the framework developed in
this thesis. It presents the auxiliary methods, equations, and tools used. The goal is
to provide the necessary context to understand the principles behind the developed
LV remodelling framework that handles uncertain data.

The section covers both the remodelling aspects, such as rocketry equations, and the
statistical approaches used for uncertainty quantification and parameter estimation. It
also describes the two models used to analyse LV configurations. Finally, it details
the software tools that form the backbone of the workflow. They ensure seamless
integration between remodelling components and statistical methods.

3.1.1. Rocketry Equations

As shown in Section 1.1, the remodelling process starts with the input data sheet
(IDS). As a preliminary step in the methodology, a set of rocketry equations will be
implemented within it. These equations allow the computation of key input parameters,
such as the masses or the performance variables of the engines, based on some
available subset of input variables. Their purpose is twofold: first, to identify which
known parameters are sufficient to infer others through rocketry equations; second,
to assist in estimating unknown values before starting the remodelling process.

15
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The implementation in the IDS is based on core equations, mostly from rocket theory
found in literature [46]. These include, but are not limited to, the following:

F=m-w (3.1)

which relates thrust (F') with the mass flow rate (m) and the exhaust velocity (w);

F
I, = v (3.2)
90 m - go

this equation shows the relationship between the specific impulse (/,,) and the exhaust
velocity (and thus the thrust and mass flow rate due to Equation 3.1;

F=m-w+ (pe— Pa) - Ae (3.3)

which shows the correlation of thrust with linear momentum through the nozzle exit (m-
w) and a pressure-related term ((p. — p..) - Ac), Where p, is the pressure of the gas flow
at the nozzle exit, p, is the constant ambient pressure (atmospheric pressure), and A,
is the exit area of the nozzle; this equation is used at sea-level whereas Equation 3.1
is a simplification for vacuum conditions;

Fsea—level — Fvacuum — DPa - Ae (3-4)

this expression is used to estimate the engine diameter based on the thrust values,
or the other way around; it results from rewriting Equation 3.3 for both sea-level and
vacuum conditions and then combining the expressions;

SI = (3.5)

an equation that is used to correlate the dry and propellant masses through the
structural index (SI) [47];

Mtotal — Mdry + Mpropellant - Mdry + Mpropellantascem

(3.6)
+Mpropellantdescent + MpTopellantreserve + Mpropellantresidual
this last expression displays the relationship between the different masses considered
in this remodelling process. Only the most relevant equations are listed here. The
other are easily traced back to the variables already mentioned here.

This equation-driven structure present in the IDS also plays a pivotal role in the
statistical estimation of unknown parameters. Once a sufficiently large subset of inputs
is provided, the embedded equations identify which values are missing and which can
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be estimated. For cases where key parameters are unavailable from public sources,
the IDS will accept lower and upper boundaries. Additionally, in case the user has
provided ranges for other inputs that can be combined to calculate another one, they
will be used to calculate not a single value, but a minimum and maximum values.
These will define the two extremes of the range used for sample generation. More
details about how the IDS behaves are available in Section 3.2.1. Thus, the analytical
foundations laid by these equations serve not only to complete the IDS but also to
start the uncertainty-handling strategy of the overall methodology.

3.1.2. Statistical Methods to Handle Uncertain Parameters

This research assesses three main statistical techniques to address the challenge
of incomplete or uncertain input parameters. The central aim of these methods is
to generate and assess samples for each unknown variable, thereby enabling a
systematic exploration of the full unknown parameter space. This way, one can
achieve the desired valid ranges for each initial unknown variable. Monte Carlo
simulations, Latin Hypercube sampling, and Approximate Bayesian Computation are
considered, each offering a different way to capture and manage uncertainty.

In brief, Monte Carlo simulations are commonly used to generate multiple random
samples that can create an output probability distribution. Latin Hypercube sampling
is a method similar to MC, but it aims to spread the sample points more evenly across
all possible values. The last procedure is Approximate Bayesian Computation. It
can be used to estimate unknown parameters by comparing simulation outputs with
observed data.

These statistical methods are useful tools for alleviating the problems that arise from
the lack of input parameters. They will be applied to make sure that the remodelled
LVs remain consistent and as close as possible to the real configurations, despite data
availability limitations. Chapter 2 provided some context on prior applications of these
procedures.

Monte Carlo

Monte Carlo methods are a class of statistical algorithms that rely on consecutive
random sampling to obtain numerical results [48]. These techniques are commonly
used to solve deterministic problems that are too complex for analytical solutions.
Some examples include high-dimensional integration, optimisation, and uncertainty
quantification. The core idea is to model the problem mathematically and then
generate random samples from the relevant probability distributions. Afterwards,
these samples are used to estimate quantities of interest. As the number of samples
increases, the approximation generally converges to the true value. Therefore, the
accuracy improves as more iterations are performed. MC methods are especially
valued for their ability to handle problems involving randomness, uncertainty, or a large
number of variables. These are all types of situations where traditional deterministic
approaches may be infeasible [49, 50].

MC simulations are usually highly flexible. However, they may require a large number
of samples to achieve convergence, especially when dealing with high-dimensional
problems.
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Latin Hypercube

In this research project, two MC-based methods will be tested: random sampling
and Latin Hypercube (LH) sampling. The first one refers to the idea of randomly
generating samples. On the other hand, LH is an advanced form of stratified sampling.
It improves the efficiency of MC simulations by ensuring that the entire input space is
sampled more uniformly. Introduced by McKay et al. [51], LH divides the probability
distribution of each input variable into equally probable intervals and draws one
sample from each. This way, it guarantees that the space is populated more uniformly,
avoiding clustering and redundancy. Unlike purely random sampling, LH guarantees
that each portion of the input distribution is represented (see Figure 3.1 for better
visualisation). Thus, it is more suitable for high-dimensional problems and it reduces
the number of simulations needed to obtain accurate statistical estimates (as already
described in the literature review in Chapter 2).
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Figure 3.1: Monte Carlo-based sampling methods visualisation (retrieved from [52])

LH sampling is widely used for sensitivity analysis, design of experiments, and
uncertainty propagation. Its advantages are its computational efficiency, improved
space coverage, and compatibility with linear and non-linear models [53]. This makes
it appealing to the LV remodelling framework presented in this thesis, where multiple
input parameters may be uncertain, and a balance between fidelity and computational
cost is required.

Approximate Bayesian Computation

Approximate Bayesian Computation (ABC) is a type of likelihood-free inference
method. In statistics, inference refers to drawing conclusions about a complete system
based on a sample taken from it. It derives from the Bayes theorem [54]:



3.1. Theory 19

p(o 1) = "L, 37)

where ¢ denotes the parameters of interest; f(y|0) is the likelihood: the probability of
observing the data y given a parameter 0; = () is the prior: the knowledge/assumptions
one has before observing the new data; and p(6 | y) is the posterior distribution, i.e.
the updated knowledge about the parameters after incorporating the new data.

However, it is often the case that the likelihood function cannot be derived or is
too computationally expensive to calculate. This is where ABC provides a solution,
avoiding its explicit calculation, hence being designated as a likelihood-free inference
method. ABC relies on the ability to simulate data from a selected model, given
a set of input parameters. The simulated data are then compared to observed or
reference data using summary statistics and a predefined distance metric. If the
distance between the simulated and observed data is sufficiently close, usually below
a certain tolerance, the corresponding parameter values are accepted as samples
from the approximate posterior distribution [55, 56].

Bayesian inference relies on updating prior beliefs about parameters 6 given observed
data through the posterior distribution [57]:

- f(yobs ’ 6)71-((9>
O o) = g | B)m(6)d0 (5:8)

where, as before, f(y.s|0) is the likelihood and 7 (6) the prior.

This prior distribution may be based on our previous understanding of likely values for
6. If one knows that a parameter is more likely to be in a certain range of values, its
distribution can be defined to represent this situation. On the other hand, one might
know nothing about the distribution of 4. In that case, its prior should be uninformative
or spread widely over the allowable range for . Overall, it should represent the
previous belief one has in the parameter’s probability of a random value generation.
In addition, the likelihood function is used to update the prior belief based on the new
observations made. It represents the probability of observing the given data under a
set of parameters.

This method is particularly beneficial when it is computationally expensive or infeasible
to compute this likelihood function [58, 59]. To overcome this problem, ABC is based
on the following procedure (generic version):

1. It generates a parameter (or set of parameters if it is a multi-dimensional
problem) from the prior distribution: 6;. This sample is highly influenced by the
type of distribution chosen.

2. Using the generated sample, a new result (y;) is computed through the
implemented model.

3. The distance between the generated result and the observed data is calculated:
d = [[Yobs — Yill
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4. If the distance is smaller than a pre-defined threshold value (¢), the sample is
accepted as valid: d < e. If not, the sample is rejected by the algorithm.

5. The previous steps are repeated until enough valid samples are produced
(chosen by the user).

6. Lastly, the prior distributions are updated based on the samples that produced
a valid result.

The accepted samples (6;) approximate the posterior 7(6 | y.,s) with an accuracy that
improves as ¢ tends closer to 0.

Approximate Bayesian Computation - Sequential Monte Carlo

A particular variant of the ABC method was selected for this thesis: the Sequential
Monte Carlo method (SMC). An already implemented library was available for Python
at the time of this choice [60]. Since the main scope of this work was not to develop
new statistical methods, but to implement them, this allowed for considerable time
saving. ABC-SMC builds upon ABC fundamentals but adds SMC techniques, which
enhance the efficiency of the parameter space’s exploration and the convergence to
the target posterior distribution.

In ABC-SMC, a population of parameter samples is propagated through a sequence
of intermediate distributions, each defined by a progressively stricter tolerance
threshold (¢). The process begins by sampling parameters from the prior distribution.
Afterwards, one has to simulate data from the model. The simulated data is then
compared to the observed data using a distance metric, and only those parameter
samples that produce simulated data close enough to the observed one are retained
[61-63]. The tolerance definition involves a trade-off between computational efficiency
and accuracy of the posterior distributions. While the former increases with higher e,
the latter is improved as the tolerance decreases [64]. Defining this threshold depends
on the specific model, statistical choices and distance function, and it may require
intuition or experimentation.

Unlike the simple ABC rejection method, ABC-SMC introduces a sequence of
decreasing tolerances (¢; > ¢; > ... > ¢,). These threshold values gradually guide the
population of particles from the prior towards the posterior distribution. At each stage,
the surviving particles are perturbed (for example, using a kernel) and reweighed
according to their prior probability and distance results (a more detailed explanation
can be found in [65]). Then, the process is repeated with a tighter tolerance until
the lowest chosen tolerance value is achieved. This sequential approach allows
ABC-SMC to focus computational effort on regions of high posterior probability
efficiently. Consequently, it reduces the risk of getting trapped in low-probability areas
and improves the overall sampling efficiency.

This method has multiple possible applications, such as updating the uncertainty of
the parameters over time, sequential addition of new information to the model, or
Bayesian calibration [66]. In the context of this rocket remodelling project, ABC offers
a powerful framework for estimating unknown parameters based on partially available
or uncertain input data. By comparing the outputs of simulated LV configurations
to known performance metrics (e.g., payload capacity), it becomes possible to infer



3.1. Theory 21

plausible parameter ranges. The biggest advantage is that the method doesn’t require
a complete rocket specification or an explicit likelihood function. Hence, it is well
aligned with the needs of LV remodelling while handling uncertain data, as explored
in this thesis.

3.1.3. Calculation Models

As outlined in Chapter 1, once the IDS is fully developed, the remodelling process
can proceed through two paths: the Test Model or the Complex Model, according
to Req. 1a. The main rationale behind this choice is to reduce the computational
time. A faster model was needed since the statistical methods testing phase
requires calculating and assessing millions of samples, and the complex model is too
computationally expensive. This section will describe the theory behind both models.

In essence, the models aim to evaluate the performance of the LVs by calculating
parameters, such as the payload, which can be used for verification and validation
(VV). Within the framework, these models are crucial. Without them, it would be
impossible to bridge the gap between raw input data and the LV configurations that
will be used for the exhaust inventory that motivates this research.

Test Model

The Test Model plays a vital role in the overall project. It serves as a tool for
quick analysis. It was developed to support fast statistical evaluation and parameter
exploration, due to Req. 2a. Because of its low computational cost, it is particularly
well-suited for applications such as uncertainty quantification, parameter sweeps, or
statistical estimation of missing inputs.

The TM relies exclusively on simple mathematical equations, avoiding complex
numerical optimisations. In this framework, the required velocity change (Av) for the
launch vehicle to reach its target orbit is estimated using classical rocketry equations.
Several simplifying assumptions are introduced to streamline the model, which may
affect accuracy but allow fast calculations. From these calculations, key performance
indicators such as the maximum payload capacity can be derived. This enables this
model’'s VV as described in Section 3.4. Additionally, the TM serves as a testing
platform for the statistical methods. Due to its high computational speed, it can
evaluate multiple computational statistics methods and identify the one that most
effectively handles incomplete input parameters.

This section describes the TM’s structure and main functionalities and assumptions
in more detail. Starting with the structure, the idea was to develop a model that could
calculate the required Av for a LV to reach its target orbit without complex calculations.
In order to do so, the author first had to find the main components that are part of the
Av budget equation. Once gathered, one could think of how to estimate each using
exclusively the rocket’s input parameters, plus the target orbit and the launch site’s
characteristics. After some research, the expression to calculate this budget was
found [67]: Equation 3.9.
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AUrn,argin = AUrocket + Aanrth - (Avpotential + AUorbz’t
+lgrcw + ldrag + lthrust)

where Av,....: IS the velocity change that the rocket can achieve; Avg,., is the
velocity contribution due to the Earth’s rotation; Av,,...i0 IS the orbit’s potential energy
term; Awv,.,;; refers to the orbital velocity of the target orbit; and the final three parts
correspond to the gravitational losses, drag losses and thrust losses, respectively.
Avpargin cOrresponds to the difference between the terms that positively contribute to
the velocity change that LV can produce and the terms that negatively contribute to it.

(3.9)

At its core, the TM is trying to determine whether a given LV configuration can deliver
a payload to a specified orbit. This requires balancing the velocity the rocket can
generate against the velocity demands imposed by the target orbit and the various
physical losses that occur during ascent. In other words, the model evaluates if
the propulsion system provides sufficient Av to overcome gravity, drag, and thrust
inefficiencies while still reaching the required orbital velocity.

Complex Model

Contrary to the TM, the Complex Model depends on DLR’s software to test
the performance of a LV. In particular, it uses a trajectory optimisation tool
(Section 3.1.4) with mass and aerodynamic models. DLR’s software programs
are comprehensive and account for, among others, gravitational and aerodynamic
losses, the complexities of Earth’s shape and atmosphere, or the feasibility of a given
trajectory. This last one refers to visualising the trajectory and the values of certain
parameters, such as dynamic pressure or heat loads, and judging if they are realistic,
even if the rocket was mathematically capable of reaching the target orbit. Therefore,
its results are far closer to reality than those from the TM. However, this comes at the
cost of significantly higher computational efforts. Therefore, the statistical sampling
methods are first tested in the TM before being implemented in the CM. Its detailed
description and implementation are laid out in Section 3.2.4.

3.1.4. Tools

This section introduces the computational tools employed in this thesis. Most of the
tools are part of the DLR software, complemented by Python-based implementations
developed by the author. Python acts as the central interface, enabling the automation
of workflows, the transfer of data between modules, and the integration of statistical
methods with the remodelling framework. Together, these tools form the technical
foundation on which the methodology of this thesis is built.

STSM - Space Transportation System Mass

Space Transportation System Mass (STSM) is a computational tool designed for mass
estimation and analysis of single and multi-stage space transportation systems. It is
particularly useful in the preliminary design phase, providing essential data for the
early-stage evaluation process.

The tool uses empirical formulas and methods from different sources [68—70] to
estimate the mass of individual vehicle components and their overall distribution.
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Internally, it iteratively modifies the mass of individual components to guarantee a
consistent global mass value, particularly when certain elements are defined as a
percentage of the vehicle’s total mass. Additionally, STSM allows the inclusion of
design margins, which are crucial in the conceptual design phase.

The user inputs a limited set of parameters related to vehicle subsystems, such as
thrust level, propellant mass, engine mass or fairing mass. Then STSM calculates
the mass of various subsystems for each stage, using one of two methods. The first
one is when the user specifies the mass of a certain component. The other option
is to provide auxiliary parameters that the program uses to calculate the actual mass
of the component through embedded equations. One example is the fairing mass,
which is often hard to find. The user can define the maximum dynamic pressure faced
by the LV and the fairing’s surface area. Then, STSM computes the mass. Beyond
mass estimation, STSM can compute the centre of gravity variation along the vehicle’s
trajectory. This is possible for the complete vehicle and for a single stage.

CAC - Calculation of Aerodynamic Coefficients

Calculation of Aerodynamic Coefficients (CAC) is a computational tool used to
estimate the aerodynamic properties of space transportation systems, mostly during
the preliminary design phase. It provides rapid calculations of aerodynamic
coefficients, including lift (C.), drag (Cp), and moment (C),,) coefficients, in the
subsonic, transonic, and supersonic regimes in ascent, re-entry, and cruise flight
conditions.

This tool is based on semi-empirical methods similar to those used in Missile
DATCOM [71], offering fast computational performance while relying on approximate
aerodynamic models. Instead of generating a computational mesh, CAC decomposes
the vehicle’s geometry into its primary components, such as bodies, wings, flaps, etc.
Then, it assesses their aerodynamic coefficients separately based on their exterior
geometry/shape. The general aerodynamic characteristics are then obtained by
superimposing these individual contributions [72].

Despite its simplified approach, CAC delivers results that align well with more complex
computational fluid dynamics (CFD) simulations and wind tunnel experiments [73]. It
can also compute the centre of pressure as a function of the angle of attack, Mach
number, and control surface deflections.

In this study, CAC will provide the aerodynamic coefficient data necessary for
trajectory simulations and stability analyses. For the tool to work accurately, a
simplified representation of the complete geometry of the vehicle is needed. In turn,
this requires some data about the LV, such as stages’ lengths and diameters, or fairing
dimensions.

TOSCA - Trajectory optimisation and Simulation of Conventional and Advanced
Spacecraft

The Trajectory Optimisation and Simulation of Conventional and Advanced Spacecraft
(TOSCA) tool is a numerical tool used to simulate and optimise the ascent and descent
trajectories of spacecraft. It integrates the point-mass dynamics equations in three
dimensions, making it well-suited for trajectory analysis [72]. However, it does not
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account for six-degree-of-freedom (6-DOF) motion, as rotational dynamics are not
included. Nonetheless, it includes some trajectory control values that simulate them,
such as angles of attack or bank angles.

Despite this limitation, TOSCA offers extensive flexibility by incorporating various
trajectory control mechanisms, such as angle of attack, bank angle, and thrust vector
control.

TOSCA is used primarily to determine the optimal trajectory to maximise the insertion
of the payload mass into a given orbit. It can also be used only to simulate a
trajectory, without optimising it, based on the user’s inputs. These inputs have to
be provided in both cases. They include some of the launcher’s characteristics
(propulsion, aerodynamics, and mass properties), the launch site coordinates, and
the target orbit characteristics (e.g. perigee and apogee altitude). Once an optimal
solution has been found, an output file is generated. It contains multiple plots showing
important parameters that allow an overarching trajectory visualisation, as shown in
Figure 3.2.

The optimisation process considers initially defined parameters, such as the pitch rate
after vertical ascent, the angles of attack during powered flight, or the burn duration
of each stage. It is often the case that these parameters need different values after a
first manual optimisation attempt does not converge. This is one of the reasons why
this process is so time-consuming.

Moreover, TOSCA can handle different orbit insertion modes, depending on the
desired boundaries and constraints. Additionally, in cases where the upper stage can
be re-ignited, the tool can support transfer orbit calculations, followed by a secondary
burn to achieve circularisation.

Together with STSM and CAC, TOSCA is one of the tools encompassed in what is
designated by SART toolbox.

CMA-ES optimiser

This thesis uses a genetic algorithm wrapped around TOSCA to perform the
trajectory/payload optimisation in the CM. The algorithm is the Covariance Matrix
Adaptation Evolution Strategy (CMA-ES). CMA-ES iteratively adapts the sampling
distribution of candidate solutions based on their performance. It is well-suited
for problems with complex, high-dimensional search spaces such as trajectory
optimisation. For more details about the theory behind it, see Hansen [74].
The genetic algorithm serves as a global optimiser, iteratively searching for input
configurations that maximise payload-to-orbit performance. At the same time, they
must satisfy physical and operational constraints.

The optimisation process begins by defining search bounds for TOSCA's initial
condition parameters, such as azimuth and pitch rate; the payload also needs defined
search bounds. Additionally, the launch site coordinates have to be specified; the
stage-specific control points, including angle of attack and thrust control profiles, are
also specified. For each stage, the user can decide which of these parameters are
to be optimised (usually, one wants to optimise the angles of attack for the upper
stages). Additionally, target orbit tolerances (e.g., perigee altitude, inclination) and
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flight constraints (e.g., maximum dynamic pressure and acceleration) are imposed to
ensure the feasibility of candidate trajectories. They will dictate which trajectories the
optimiser should accept or reject.
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Figure 3.2: TOSCA output visualisation example - Long March 2C Low Earth Orbit (LEO) mission.
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During optimisation, the genetic algorithm generates a population of candidate
solutions by sampling within the predefined bounds. Each sample is evaluated by
simulating the corresponding trajectory in TOSCA with a certain payload mass. If the
resulting trajectory satisfies all constraints, the configuration is considered valid, and
the optimiser attempts to increase the payload for that configuration. If the trajectory
violates one or more constraints, the solution is discarded. Moreover, the feedback is
used to steer future sampling toward more promising regions of the search space.

A solution is deemed acceptable if it reaches the target orbit perigee with a valid
inclination, and any apogee above the pre-defined one is allowed. This flexibility
makes the optimiser faster than if the apogee altitude were a constraint, since it
enables more trajectories to be explored, increasing the potential to find a more
efficient one. In addition, this does not compromise its accuracy, since the results
are still very close to the original target orbit. If the apogee were much higher than
the desired one, the payload would be lower, as the orbit would require a higher Awv.
Hence, this would not be the optimal case. The optimisation process continues until
the convergence criteria are satisfied or a maximum number of generations is reached.

CLAVA

DLR has developed the Concurrent Launch Vehicle Analysis (CLAVA) tool to support
the design and analysis of launch vehicles [75]. It acts as a centralised data structure
and single source of truth for all relevant rocket data. By concentrating all required
information in one place, CLAVA eliminates the risk of inconsistencies between input
files, formats, and software components, as long as the data it stores is accurate. This
approach improves the robustness of the overall remodelling framework. It ensures
that all simulations and models, whether related to aerodynamics, mass, or trajectory,
are driven by the same set of validated inputs.

Beyond consistency, CLAVA enables automation and integration across various
stages of the launcher analysis workflow. Once the configuration is defined, it can
be accessed and reused seamlessly by multiple software tools, such as the ones in
the SART toolbox used in this project (e.g. TOSCA). This reduces the need for manual
intervention and reformatting. Thus, it increases the overall efficiency by minimising
human errors.

CLAVA's structure reflects the hierarchical nature of a LV. At the top level, it models
the rocket as a whole. Each rocket includes a main body composed of one or
more stages, as well as additional components such as payload fairings. Moreover,
a rocket can have other bodies, for instance, to represent the boosters. Each
stage, in turn, has a certain number of specified engines and is characterised by its
structure parameters. The stage can then be linked to a particular engine containing
the propulsion parameters. This modular and extensible structure makes CLAVA
well-suited for supporting both simple and highly complex LVs. Such a feature is what
makes this tool so useful for this thesis and the general DLR’s rocket analysis process.

In this project, CLAVA will be used as the central repository for each rocket’s
parameters read from the interactive IDS. These inputs will be integrated into a valid
CLAVA model once the user provides the necessary parameters, either as fixed values
or ranges. It will then be combined with an Uncertainty Quantification (UQ) model.
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When the sampling is finished, multiple CLAVA files will be generated, one for each
set of parameters. Furthermore, without additional data preparation, an adapter will
use this information to create the SART toolbox files, such as the STSM input file.
CLAVA will be the "source” of all data, and it will store it in an organised format that is
easily read.

uQ

In the context of launcher remodelling, managing uncertainties is a critical step to
ensure realistic and reliable predictions. In particular, given the variable public data
availability for LVs, this plays a vital role in this thesis. The DLR has developed the
UQ framework [76] adopted in this thesis. It systematically captures and propagates
input uncertainties through the launcher remodelling process.

The adopted framework follows a modular and flexible architecture (similar to CLAVA),
allowing it to be applied consistently across both the test and complex remodelling
approaches. It begins by defining the uncertainties in the input parameters. These
uncertainties are typically caused by incomplete information, ranges of reported
values in literature, or engineering estimates. In the pre-processing step, these
uncertain parameters are represented using probability distributions or bounded
intervals, which are then propagated through the rocket performance models. Each
variable is saved, along with its lower and upper bounds.

For the propagation itself, statistical methods are used. These define how the samples
are generated. Afterwards, they are used to calculate the outputs. In this work, the
outputs will be the payloads achieved for each mission.

By integrating this UQ approach into the remodelling workflow, the developed
methodology not only delivers accurate estimates for rocket performance parameters
but also provides ranges and samples for the uncertain inputs, offering more realistic
outputs.

Adapters

A set of adapter scripts was used to easily transfer data from the Python/CLAVA/UQ
framework to the SART toolbox framework. These adapters act as intermediaries,
handling the formatting, transfer, and parsing of data between Python and the SART
software environment. This approach allows the output of the statistical sampling
process, such as parameter sets generated, to be directly used as an input for
trajectory simulations. Due to these adapters, the whole remodelling framework is
smooth and modular, and it functions efficiently across different tools.

3.2. Practical Implementation

This section presents how the proposed launcher remodelling framework that handles
uncertain data is implemented. |Its structure reflects its modular nature. Firstly,
the storage of input data and the determination of unknown parameter ranges are
described. Then, the integration with external software tools and adapter functions is
detailed. Finally, the two modelling paths are introduced, showing how each one is
applied depending on computational requirements. By bridging theory and execution,
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this section demonstrates how the framework can be effectively applied to remodel
LVs while handling incomplete or uncertain data.

3.2.1. Data Collection

This section will address the process from collecting the data necessary for the
remodelling process to having it ready to be used for sample generation. The first task
of the whole remodelling framework is to gather all the information about the rocket.
Therefore, creating an effective interface to store all the data is crucial to guarantee a
solid starting point for a successful framework.

Input Data Sheet
This interface has to meet some requirements, as shown in Section 2.5. So, first of
all, it is relevant to break them down.

These requirements are the major drivers for the interface format choice. The first
one (Req. 1b) means that the IDS has to recognise the parameters that already have
values. Then, using pre-defined equations (see Section 3.1.1 for more details), it
should indicate which other parameters are redundant to fill in, by, for instance, greying
those fields out. This facilitates the research process and saves the user some time,
since it avoids looking for values that can be immediately obtained. Req. 1c is related
to the previous one, as the IDS not only has to identify the parameters that it can
compute, but also calculate them automatically. Furthermore, Req. 1d is important to
point out inconsistencies in the input values, avoiding errors later in the remodelling
process. Finally, Req. 1g is necessary to allow uncertain parameters to be dealt with.
The interface was developed to distinguish the known parameters from the unknown
ones.

When selecting the IDS format, two main options were considered: Excel and Python.
Excel offers numerous capabilities and user-friendliness, providing a clear and intuitive
way to visualise and edit input parameters. On the other hand, Python would
naturally integrate with the rest of the framework since the SART software tools have
interfaces in this language. Besides, the data would eventually need to be transferred
to a Python environment. However, usability and accessibility for future users of
the framework was also considered. A purely Python-based script, while efficient,
would likely be harder to interpret for future users, unfamiliar with this framework.
In contrast, an Excel-based solution provides a more straightforward and readable
interface (Req. 3a), making it easier to use. For these reasons, Excel was selected
as the primary platform for the IDS, with Python handling the subsequent processing
and integration steps.

The final decision was to develop an IDS with Excel and assess whether all
requirements were satisfied. Before that, the relevant parameters to be included were
identified. This selection process involved analysing the CAC, STSM, and TOSCA
tools and extracting parameters corresponding to rocket data typically available
in public sources. These primarily consisted of geometric characteristics (e.g.,
dimensions and masses) and engine performance data (e.g., thrust and I,,). Their
complete list is available in Appendix B.

Besides the requirements already mentioned, this format choice complied with
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Req. 1e and Req. 1f. Specifically, the IDS was designed to incorporate all necessary
parameters while remaining adaptable to different types of expendable launch
vehicles (see Section Excel Input Data Sheet for further details). Furthermore, extra
parameters can be added, which complies with Req. 1i. Finally, Excel files can be
easily read by Python code, fulfilling Req. 3b.

Excel Input Data Sheet

After selecting the parameters needed as input for the framework, the next step is to
organise the Excel file. It is preferable to split the information into several Excel tabs,
given the amount of data required. This way, the IDS is cleaner and more organised.
Hence, the following tabs were created; only the main Excel tab that handles the
uncertain parameters has a picture in this section (Figure 3.3). The remaining ones
are shown in Section B.2:

* Rocket: This tab is used only for the LV identification. It contains the rocket’s
name and ID (used for CLAVA). It also includes a cell for the IDS version.
This is important because the whole software that reads the Excel file might
need changes if there are modifications to the IDS. Thus, this cell is read as a
checkpoint to guarantee that the software that will read the IDS is up to date with
its version.

* General: This tab contains some general rocket parameters, not specific to
a particular stage. For instance, it encompasses the number of stages, the
number of boosters, and some information about the fairing and booster nose
(dimensions and mass). Additionally, it contains a few constants, such as
gravitational acceleration, atmospheric pressure and the Excel tolerance. This
last value is not used for any SART software tool but is a comparison factor.
The Excel data sheet knows which other parameters are redundant to fill in, and
it calculates them automatically. However, if the user finds a source for those
parameters, they can be written in the file and compared to the Excel-computed
value. The Excel value has infinite decimal digits, which will never match a user’s
input. To address this, the tolerance allows the user to define the acceptable
margin of error. The IDS verifies whether the difference between the values
falls below the user-defined tolerance. This mechanism provides flexibility by
letting the user adjust the strictness of the comparison depending on the desired
precision.

» Stage Template: This tab contains the information about a stage in particular
(Figure 3.3). The template is the same for every stage. One tab is generated for
each stage, according to the information provided in the "General” tab. Likewise,
if the rocket that is being remodelled has boosters, an extra tab is created for
them. Each of these tabs has the same structure and parameters to be filled in.
Some examples are the stage’s length and maximum diameter, the number of
engines and the propellant type. Moreover, the user defines if there is a thrust
profile, and writes the engine performance parameters (e.g., [,,) and the mass
information (e.g., total propellant mass).
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General Sources (PLEASE ADD THE
[Parameter Value Lower Boundary Upper Boundary [Calculated Value Calculated Lower Boundary  Calculated Upper Boundary | CORRECT REFERENCE NUMBER!)
Length (m)
Diameter (m)
Structural Index
Surface Quality Factor

Comments/Notes

Propulsion Sources (PLEASE ADD THE
Parameter Value Lower Boundary Upper Boundary |Calculated Value Calculated Lower Boundary  Calculated Upper Boundary | CORRECT REFERENCE NUMBER!)
Number of Engines
Propellant Type (TRUE=Liquid, FALSE=Solid) TRUE
Thrust Profile (TRUE=Yes/FALSE=No) FALSE
Engine Name

Single Engine Mass (kg)
Single Engine Dameter (m)
Mix Ratio

Max Mass Flow Rate per Engine (kg/s)

Comments/Notes

Vacuum Max Exhaust Velocity (m/s)
Vacuum Total Max Thrust (kN)

[Vacuum Max Isp (s) ‘ ‘

Sea Level
Sea Level Max Isp (s) ‘ ‘

Sea Level Max Exhaust Velocity (m/s)
Sea Level Total Max Thrust (ki)

Structure Sources (PLEASE ADD THE
|Parameter Value Lower Boundary Upper Boundary |Calculated Value Calculated Lower Boundary  Calculated Upper Boundary | CORRECT REFERENCE NUMBER!)
Total Mass (kg)
Dry Mass (w/o payload) (kg)
Ascent Propellant (kg)
Descent Propellant (kg) 0
Reserve Propellant (kg)
Residual Propellant (kg)
Total Propellant Mass (kg)

Comments/Notes

Propulsion Mass (kg)

Structure Mass (kg)

Reserve Propellant Percentage (%)
Residual Propellant Percentage (%)

Figure 3.3: Excel stage template tab: contains the main technical data about a rocket stage needed
for the remodelling process.

» Stage Thrust Profile Template: This tab is used for LVs with a thrust profile for
a certain stage. After selecting that option in the "Stage Template” tab, the user
now defines the thrust/mass flow profile in this tab. Afterwards, it will be used
by the trajectory optimisation tool to model the thrust/mass flow of that stage.

* Validation Cases: This is the last tab. It contains information about the orbits
and missions flown by the rocket. This information will be used as validation for
the remodelling process. Each column represents a different mission. The user
has to write the orbit type (e.g., LEO), the launch site’s name and coordinates,
the target orbit details (apoapsis, periapsis and inclination) and the minimum
and maximum payloads. These last two entries represent, respectively, the
minimum value that the rocket has to be able to carry to the specified target
orbit, and the maximum payload value. This is important for the algorithm to
know the range of payloads in which to search for valid configurations. The
maximum threshold is important to avoid unrealistic LV configurations with an
overestimated performance.

This structure was defined to comply with this thesis’s requirements and goal: to define
the range of unknown parameters that yields a valid rocket model. Therefore, it was
paramount to make sure the IDS could handle these uncertain parameters.

Looking at the "Stage Template” Excel tab, six columns are provided for entering
parameter values. In the first three — “Value”, “Lower Boundary” and “Upper Boundary”
—the user is allowed to write. The first one is used when the parameter’s exact value is
known. If so, the other two should be left empty. If there are ambiguous values or only
arange is known, the user should write the lower and upper limits in the corresponding

columns, leaving the first one blank.

The three columns on the right — “Calculated Value”, “Calculated Lower Boundary”,
and “Calculated Upper Boundary” — are outputs. The first one shows the parameter’s
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value if it can be estimated based on other inputs. The other two show the computed
parameter range, considering other values and ranges from different input parameters.
This way, as the user fills in the IDS, some parameters might be immediately
calculated, saving some research time. Whenever the user is confident in the values
that originated the “Calculated Value”, they can write that result in the “Value” column,
which might trigger other embedded equations, thus helping with the data gathering
process.

Additionally, as previously mentioned, this IDS is highly flexible and automated. It
adapts to any kind of expendable rocket and can calculate some of the parameters
based on others. However, this feature is "limited” to the formulas chosen by the
developer. Nonetheless, because of the chosen format, new formulas can be easily
added if necessary.

This calculation process starts with the IDS checking whether all the cells needed
for an equation have a value inside. If this condition is met, it computes the desired
parameter’s value based on them. Moreover, if more than one equation can be used,
the algorithm first checks whether every cell required for all equations has a value. If
so, it compares the results of all equations through the absolute error and the Excel
tolerance. If they are within the defined tolerance value, one of the formulas is used
to get the desired parameter. Otherwise, there is an error message. If not all values
for all formulas are available, it applies the equation for which the parameters are
obtainable, if that is the case. This versatility makes it capable of dealing with some
uncertainty scenarios. It can compute an unknown value through different formulas
according to what is available. The only downside is that the author has to write the
formulas to be tested a priori. Still, a thorough research was conducted to find the
maximum possible relationships between the input parameters. The major ones are
listed in Section 3.1.1.

In the end, once the calculation process is over, the IDS can be updated with the new
valid ranges obtained, complying with Req. 4(a)ii.

3.2.2. CLAVA Conversion
The next step is to transfer all the information to a CLAVA model. The CLAVA model
stores the Excel data and is used to bridge the IDS and the SART Toolbox software.

As described in Section 3.1.4, CLAVA has a lot of flexibility. Its structure allows for
any type of expendable rocket to be analysed. This is important to facilitate the data
transfer from Excel. This part can be done in a methodical, highly adaptable way. All
this process is done regardless of the number of stages or engines, since the same
methodology is applied to define each.

The missions are also created cyclically since they always have the same structure
and required parameters. So, there is no limit on the number or type of missions that
can be used. The overarching data conversion process can be seen in Figure 3.4.
It starts with loading the Excel file into the Python environment. Thereafter, all the
necessary parameters are read to create both the rocket object” and the missions it
flies.
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Figure 3.5 demonstrates the flow of commands the
code executes. The first thing to do is create the Excel to CLAVA
engines. [Each engine is assigned to one or more

/ Input: Excel /

stages. Then, the fairing is created, with its mass and
dimensions/geometry. The next step is to assess if there
are boosters and build their engines and stages in the
file. Afterwards, the bodies are established. There are Loading the excel
usually the "main” body and the booster bodies. Finally, file

all bodies are aggregated under a larger object, creating
the rocket. This is the method used to build the rocket
itself. However, CLAVA can also save the LV’s missions. LV data loaded into
This is the next step. Python environment

data sheet

The values used in the creation of the rocket "object
are gathered following a certain logic (see Figure 3.6
for more details). In summary, the code tries to read
a single value for a certain parameter in the IDS. If it
cannot find one in the two columns for specific values, \
it looks for a range for the parameter in the columns Creating Missions
for boundaries. If this is the case, the code tags this
parameter as "unknown” and thus appends it to the \
"uncertain parameters” list, which includes a connection / Output: CLAVA /

Creating Rocket

to the UQ model. This is how the whole framework and UQ (.xml)
knows to which parameters the sampling method needs files

to be applied. Since the CLAVA file needs a single value,
not a range, for all parameters, the mid-value of the Figure 3.4: Structure of the
range is assigned to the CLAVA object. Later, when the conversion from Excel to
sampling process generates a new CLAVA file for each CLAVA.

sample, this value will be replaced by the sampled one.

The illustrative flowchart (Figure 3.5) shows that the rocket’s missions are set up
separately. The data required for this are read from the "Validation Cases” tab of
the IDS. Firstly, the algorithm gets the launch site coordinates and creates a launch
site in the CLAVA model that can be reused for other missions. Subsequently, it takes
the orbit parameters to generate an orbit. This orbit is then combined with a launch
site to form a mission. Lastly, trajectories are formed by joining the rocket with the
missions. Once all this is completed, the CLAVA file is created. It consists of a .xml
file with all the data structured as explained in Section 3.1.4. Itis very easily accessed
for further processing. Moreover, the UQ file is created to complement the CLAVA one.
It contains the uncertain parameters, their lower and upper boundaries, the number
of samples and the sampling method. It is also a .xml/ file.

3.2.3. Test Model

The TM was implemented as a faster tool to estimate LV performance with a lower
computational effort. While its theoretical foundations were outlined in Section 3.1.3,
this section details its practical implementation.

Figure 3.7 shows the workflow of the TM. The first step is to retrieve the necessary
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Figure 3.5: Excel to CLAVA conversion detailed in the two branches combined to generate the file:
the rocket object and the trajectories.

information from the input CLAVA file. The parameters read are the launch
coordinates, the target orbit’s apoapsis, periapsis, and inclination, and the minimum
target payload. These will be useful in calculating some elements of the Av budget
(Equation 3.9).

Afterwards, the user defines the losses. A suggested default value will be predefined,
but it is always possible to alter it. They will also be different depending on the mission
type (e.g. LEO, SSO, etc.). An elaborate explanation for this is available in the
Section Losses.
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Figure 3.6: Structure of the procedure to read values from the IDS and assign them to the CLAVA
and UQ files.

Then, the orbital Av (Av,+:), the Earth’s rotation contribution Av (Avge.) and
the potential energy Av (Avpuentiar) @re calculated. At this point, the components
independent of the final payload have already been defined. The remaining ones
depend on the payload, thus they cannot be estimated yet.

Finally, a root-finding algorithm is implemented to compute the maximum possible
payload that the rocket configuration can carry to the target orbit. The result is written
in an updated UQ file, which is the output of this workflow. Now that the structure of
the TM is defined, each component will be explained in more detail.

Orbital Velocity

This section describes the calculation of the most significant component, in absolute
value, of the Av budget that does not depend on the LV: the orbital velocity. This
corresponds to the velocity that the LV needs to be in the target orbit. It was assumed
that the launch would be directed to the target orbit’s perigee, since it is the easiest
point to achieve in terms of required velocity increment.

The orbital velocity can be calculated through the vis-viva equation [77]:
Equation 3.10.
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Figure 3.7: Flowchart that demonstrates how the Test Model’s algorithm is implemented.

2 1

AUorbit - 1% (_ - _) (310)
T a

where r is the current LV’s altitude, including the Earth’s radius, and « is the orbit’s

semi-major axis. In this particular case, r is the perigee’s altitude.

Rocket's Av

This section explains how to compute the Av that the LV can produce. As mentioned
in Section 3.1.3, the TM relies on simple calculations involving the input parameters.
One of the most important equations in rocket science is Tsiolkovsky’s equation [46]:

M,
AU?"ocket - Isp *gdo- In (ﬁ;) (311)

where M, is the mass at the beginning of the impulsive manoeuvre and M, is the
mass at its end.
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Figure 3.8: Calculation algorithm to obtain the Av that the rocket can produce.

This equation computes the Av that a rocket can produce using some of its parameters.
This is the idea behind the TM. However, it needs to be broken down into the different
stages, which slightly increases its complexity.

Figure 3.8 shows the flowchart of actions to calculate the total velocity change that
the LV can achieve. Equation 3.11 is applied to calculate the contribution of each
stage. The difference in the two paths of the rocket's Av flowchart occurs when the
LV has boosters. If this is the case, then an average I, is computed for the first
burning phase. Initially, the average I, is calculated for the boosters and the first
stage separately. It consists of a normal average between the sea-level and vacuum
I,, values. Subsequently, a weighted average is defined, based on the mass flow rate,
to achieve the overall average I, of the impulsive manoeuvre in which both stages
fire simultaneously. This way, one accounts for the larger influence that the boosters
have in this initial burning phase, since they are usually two or more, against the single
core stage. Equation 3.12 contains the formula used.
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I _ '[SpavgboosteT " Mpooster 1 ]spm,gsmgel * Mstage, (312)

SPavg
Mpooster + mstage1

where m corresponds to the stage’s total mass flow rate (so the sum of all engines’
mass flow rate), whether it is the boosters or the core one.

After the initial phase, the remaining propellant available for the first stage is used
to calculate the next Av. At this point, the vacuum I, is assumed to be the current
one, since the LV is already at a very high altitude. Once this stage runs out of fuel,
before moving to the following one, the fairing is assumed to be jettisoned. This means
that, besides the dry mass and the residual and reserve propellant mass, one has to
subtract the fairing mass from the final mass of the previous stage (this part is done
both for LVs with and without boosters).

Regarding the calculation of the different masses needed, Figure 3.9 shows the
commanding flowchart for this part of the code. Usually, the final mass after an
impulsive manoeuvre is equal to the initial one minus the propellant mass used.
Afterwards, the stage’s dry mass is subtracted to compute the initial mass for the
following impulsive manoeuvre. This loop continues for all stages.

Losses Mass calculation
In real launch scenarios, the ideal Av_required Input CLAVA/ U0
to reach the target orbit, as predicted by {.xml) files

Tsiolkovsky’s rocket equation (Equation 3.11), is
not enough. One must account for additional —

terms, hereinafter referred to as losses, which Emmng”}':al massand
increase the necessary Av to getto orbit. These l

losses highly affect the actual performance
requirements of an LV.

| Subtracting propellant mass |4—

In the TM, three main typeS of losses | Final mass computed |
are considered: drag (aerodynamic) loss,

gravitational loss, and thrust loss. They are [ ompigdy |
the same ones that TOSCA accounts for in its J,
optimisations. To integrate them into the TM, |
they had to be simplified, as they are difficult
to compute without an actual trajectory. Still,
these components are essential to ensure the
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remaining mass
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correlations between the three types of losses Subsequent stage’s initial
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and specific rocket parameters. The idea was
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retrieve the losses from TOSCA's optimisations. Checkingifit wasthelast | |
Then, the author tried to find a correlation ok
between several of the rockets’ parameters and
the different losses. A meaningful correlation

yes

/ Output: Rocket’s Av /

Figure 3.9: Mass calculation procedure.



3.2. Practical Implementation 38

was identified for drag losses, while the other two showed less conclusive trends.
The losses for each rocket used in this research are in Appendix C. In the following
sections, each type of loss will be explained in more detail.

Gravitational Loss

Among the different types of losses, the gravitational loss is the most relevant one.
It represents the portion of a rocket’s available energy that is expended simply to
counteract gravity’s pull. It occurs when the LV accelerates against gravity, such as
during a launch from Earth’s surface.

When a rocket fires its engines during the ascent’s initial phase, a significant fraction of
its thrust must be directed upward to oppose gravity. As a result, not all of the rocket’s
propulsive effort contributes to increasing its velocity. Some energy is continually "lost”
to maintain its position against gravity.

Mathematically, gravity loss can be defined as:

iy
AVg:/ sin~y go dt (3.13)
0

where t, is the burn time, v is the flight path angle and ¢, is the gravitational
acceleration. Based on Equation 3.13, the more vertically a rocket is firing its engines,
the larger the gravitational loss. However, no trajectory is available in this test model.
This means it is impossible to know the flight path angle over time. Thus, another way
to estimate gravity losses had to be found.

As previously mentioned, the author tried to find a correlation between the gravitational
losses and some of the rockets’ parameters. Forinstance, T/W or burn time combined
in different ways were tested. The higher the former and the lower the latter, the
lower the gravitational losses, since the rocket accelerates faster and in a shorter
time. However, no good correlations were found (see Section C.2 of Appendix C).

Therefore, always keeping in mind that this model’s main goal is to test the statistical
models, a fixed value was defined. After carefully analysing the collected data, the
range for the gravitational losses was quite wide. Therefore, it was decided to adjust
this value according to the type of mission (e.g. LEO, SSO, etc.). For instance,
LEO missions generally have lower gravitational losses than an SSO. However, the
ranges were still large. Hence, for each kind of mission, the minimum value of the
gravitational loss among all studied trajectories was taken. This way, there was no
risk of discarding realistic trajectories due to a "false lower payload configuration”. In
the end, the gravitational losses for each kind of mission will have a default value of:

« LEO: 1300 m/s
SSO: 1300 m/s
LSS: 2000 m/s
MEO: 1350 m/s
GTO: 1450 m/s
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However, it is important to note that the user can change these values as needed.
They are only to be used as a reference.

Drag Loss

Another type of loss is the drag loss. It is a consequence of the aerodynamic drag
that a rocket experiences as it accelerates through the Earth’s atmosphere. This loss
is particularly impactful in the early phases of flight, because the atmospheric density
is higher at lower altitudes [78], thus creating further aerodynamic resistance.

For the drag losses, some parameters were tested, such as the cross-sectional area,
the length, the drag coefficient, the flight time or combinations of all these, among
others. However, the (combination of) parameter(s) that yielded the best correlation
was the ballistic coefficient. It is defined as:

M
Cy = = 3.14
V=G (3.14)

where C}, is the ballistic coefficient, M is the rocket’s initial mass, Cj is the initial
drag coefficient, and A is the cross-sectional area of the rocket. The maximum drag
coefficient was also tested for the ballistic coefficient’s estimation. However, it did not
show such a good correlation. The final results are shown in Figure 3.10

The coefficient of determination (R?) was around 0.77. Although this is not a great
result, it shows a clear correlation between the ballistic coefficient and the drag losses.
The higher the former, the lower the latter. The larger deviations could be explained
by more uncommon orbits, such as to space stations (LSS), or by possible mistakes
in the LV models used. The final expression used to compute the drag loss was

Drag Loss = —0.0013C}, 4+ 202.87 m/s

Drag Loss vs. Ballistic Coefficient
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Figure 3.10: Drag Loss vs Ballistic Coefficient correlation.
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The initial drag coefficient was computed by combining the nose drag coefficient with
a constant factor. Since the velocity is approximately null in the first instant of the LV’s
launch, another formula had to be selected (see Section C.3 in Appendix C) instead
of the traditionally used one [79].

Thrust Loss

The last category of losses to consider during a rocket’s launch is thrust loss. It refers
to the reduction in the effective propulsive force delivered by a rocket engine. It is
primarily caused by misalignments between the engine’s thrust vector and the LV’s
intended direction of motion. This is how these losses are defined in TOSCA, since
other factors, such as nozzle and combustion inefficiencies, can also impact real case
scenarios.

Similar to the two previous types of losses, the author tried to find a correlation
between some of the input parameters and the thrust loss. T/W, burn time, or I,
among others, were tested in several ways. For instance, a longer burn time leads to
a higher thrust loss because the LV spends more time with its thrust vector potentially
misaligned relative to its velocity or desired trajectory. However, no satisfactory results
were achieved (see Section C.4 for more details). Thus, a fixed value was used, since
it doesn’t vary as much as the gravitational loss, and it is one order of magnitude
smaller than it. Additionally, it can always be changed by the user. The default value
selected was slightly below the average value for all models assessed in this study:
100 m/s, for the same reason as the gravitational loss.

At this point, all the losses have been defined. The following sections address and
explain the remaining components for the Av budget.

Earth's Rotation

Earth’s rotation is another important factor that influences the overall Av budget. It
provides an extra boost for LVs launched in the direction of our planet’s revolution.
As a result, rockets launched eastward require a smaller self-generated velocity
increment to achieve orbital speed.

The magnitude of this contribution depends on the target orbit’s inclination and the
launch site’s latitude. Equatorial launches benefit the most because of the higher
tangential speed at lower latitudes. The formula to precisely compute this value is (a
more detailed explanation is found in [67]):

AV, = Vg cos(i) (3.15)

where ¢ is the target orbit’s inclination and V corresponds to Earth’s rotation speed
at the equator, which is given by:

Ve 21 - RE
E23.934472 h - 3600 s/h

(3.16)

where Ry is Earth’s radius (6378 km). This yields V5 = 465.091 m/s.
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Potential Energy

Finally, the last part of the Av budget is the potential energy’s contribution. This effect
is particularly important when dealing with higher orbits. Without it, launching to a
higher orbit requires a smaller velocity increment compared to lower orbits (e.g. SSO
vs LEO). This is misleading if one only considers the orbital velocity, since higher orbits
have lower orbital velocities. The potential energy contribution solves this issue. It is
calculated by comparing the energy state at the launch altitude with that at the perigee
of the target orbit. According to [67], this can be calculated by:

24 Iz I
AV = — — 3.17
poten \/RE + hlaunch RE + h RE + h ( )

where h;..., IS the launch site’s altitude and £ is the perigee’s altitude.

Root finding
The root finding algorithm is a crucial part of the TM. All the aforementioned Av budget
components are combined to obtain the maximum payload through it.

There are multiple root-finding algorithms. They have different characteristics, such
as reliability and speed. In this work, the adopted methodology was defined by R. P.
Brent in [80]. Considering that this project’s main goal was not this small optimisation
and given all the priority tasks, little time was spent investigating all the root-finding
methods. However, some research was done. According to some sources [81],
Brent's Method combines "the sureness of bisection with the speed of a higher-order
method”. This means that it is fast and reliable [82]. Furthermore, the problem in
question uses a few simple equations. Thus, the computational power needed is
considerably low. Therefore, no further improvement was considered necessary after
testing this method and its speed and results.

The idea behind this algorithm is to optimise the payload, given the velocity budget
for that LV and mission. This is done based on Equation 3.9 for the Av margin. This
relationship and all its components are based on the description provided by Prof. Arif
Karabeyoglu [67]. It encompasses all the elements described throughout this section.
Some depend on the payload value, such as the rocket’s Av and the drag loss. This
is why they are computed inside the root finding loop, as seen in Figure 3.11. At every
iteration of this algorithm, new values are calculated for both. They are then used to
update the margin function, based on the newly generated payload.

Figure 3.11 shows the structure inside this method. The idea is to start with a range
for possible payloads, for which the margin function results will be symmetric. So, if a
is the minimum and b is the maximum: f(a) - f(b) < 0. The values used in this model
were 0 kg and 1000000 kg, respectively, for a and b. This way, it was sure that the
results would comply with the symmetry requirement, as every rocket can carry a null
payload to a target orbit it has flown to (hypothetical scenario just used as a lower
boundary). Besides, no rocket can take 1000000 kg of payload to any orbit, as of
the date of this document’s writing. Afterwards, a payload value between this value is
generated, and thus, the rocket’'s Av and the drag loss. Then the margin function is
computed, and the updated payload value will be higher or lower based on whether



3.2. Practical Implementation 42

Input: all Root flndlng
velocity (Brent’s method)

components

Estimating a payload
value

Calculating the drag
loss

y

Computing the AV +
margin
l Calculating rocket’s

Iterating until AV ezl

margin is null

Output:
maximum
payload

Figure 3.11: Brent's method structure applied in this thesis. It calculates the maximum payload
based on all velocity budget components.

its result is positive or negative. The iterations run until a defined tolerance value is
achieved (10~% was used, so approximately 0). That final payload is the maximum that
the tested rocket’s configuration can take to the target orbit.

Validation

This section describes the steps used to validate the TM. The approach involved
comparing the maximum payload given by the model to the result from TOSCA's
optimisation. After verifying some rockets, the author noticed that there was an error
margin for the calculated Av, and thus the payload. The TM’s velocity gain results
were within 5% of the optimised ones. Although this might seem rather small, the order
of magnitude for the Av is around 10* m/s. So, the error is still significant enough in
absolute value to affect the final payload.

To circumvent this issue and test whether the logic behind the payload calculation was
correctly implemented, another version was created. The difference was that the total
required Av was given by the user, instead of only defining the losses. This way, one
could use the exact velocity gain needed by the manually optimised trajectory and
check if the TM’s payload results were still accurate. After testing a few rockets, the
results were still different. Three main reasons for this were identified:

* I,, averaging: assuming the exact average between vacuum and sea-level I,
is not correct. After analysing the results from the optimised trajectories and
extracting the average I, it was different from the average one from the TM,
which alters the output of Equation 3.11.

+ Fairing jettisoning: assuming that the fairing is jettisoned immediately after the
first stage is dropped is incorrect. After examining the optimised trajectories’
results, one can see that this usually occurs at a different point in time, usually
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slightly later. Thus, Equation 3.11 will have a different result, because the
masses are affected.

» Simplifications: TOSCA’s algorithm contains complex calculations that are
dynamically changed at every optimisation point. That makes it very robust
and reliable, but the complex mechanics of an LV ascent are hard to simplify
accurately. The TM completely disregards the LV’s ascent trajectory, a vital part
of these calculations. For instance, the gravitational and the drag losses depend
onit[67]. The formula in Equation 3.9 was the most comprehensive one found in
the literature. Still, it cannot replace more sophisticated and accurate trajectory
optimisation tools, like TOSCA, due to all the simplifications it has.

Again, itis relevant to emphasise that the TM’s main goal is to investigate the statistical
sampling methods. Therefore, despite probably being possible to mitigate these
error causes, it would require additional time. However, it was decided not to invest
more time in this task and rather focus on the main goal. The assumptions and
simplifications done in this work were always kept in mind to get the best possible
result, while being fast and computationally cheap. Ideally, this model could be used
as a pre-filtering step before the CM. This way, one could immediately reduce the
number of samples needed to be run with the more expensive model. However, given
the achieved error margin, this is not feasible.

In order to validate the TM despite these problems, a new method was implemented.
The author adapted an existing LV by assuming the same I, at sea-level and vacuum
conditions, and by assuming an almost null fairing mass. This way, the interferences
caused by two of these problems were eliminated. Then, an optimised trajectory was
computed for the chosen rocket. The same strategy was implemented here. One
retrieved the total Av required and applied that to the TM. The payload results are
shown in Table 3.1.

The obtained error was below 0.5%, which validates the logic behind the maximum
payload calculation. To make this test model even more robust, the aforementioned
problems should be addressed.

Table 3.1: Validation results comparing TOSCA and Test Model outputs.

Results | TOSCA [kg] | Test Model [kg] | Error [%]
LM2C 2816 2809 0.25
LM4C 4300 4318 0.42

Having validated the TM, assessing the performance of the statistical methods
became possible. Those results are shown in Chapter 4.

3.2.4. Complex Model

The CM represents the core of this rocket remodelling framework, enabling the most
realistic representation of LV trajectories and performance. Unlike the TM, the CM
directly integrates with DLR’s SART Toolbox software to create mass, aerodynamic,
and trajectory models. At its heart lies TOSCA, which optimises feasible trajectories
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consistent with real-world launch conditions, wrapped by a CMA-ES optimiser. Its
implementation considers having the least interference from the user as possible, as
stated in Req. 3c.

In particular, the CM employs the CMA-ES as a genetic optimiser around TOSCA. The
whole process is shown in Figure 3.12. It starts by defining:

» Setup parameters for TOSCA: some of them are specific to a certain stage, such
as thrust control points or the angle of attack profile. Others are general, such
as initial pitch rate, initial launch azimuth, and initial payload. A range is defined
for each. They bound the space that the CMA-ES optimiser will explore.

+ CMA specific parameters: the population size factor, the stagnation tolerance,
the function value tolerance, the history tolerance, and the number of parallel
processes. More details about each can be found in the Python documentation
for this library [83].

» Constraints: maximum dynamic pressure, maximum acceleration, and target
orbit’s perigee and inclination tolerances.

Complex Model

/ Input: Parameters /

v

Generating population with multiple
samples within the defined bounds

v

| Samples |

v

| Running TOSCA simulation mode |

| Trajectories with constraints and payload |

Checking if optimization criteria are
satisfied

no

yes

| Optimized trajectory |

/ Qutput: TOSCA output file /

Figure 3.12: Workflow of the CMA-ES optimiser wrapped around TOSCA as part of the Complex
Model.

Once everything is defined, the CMA optimiser generates a population of samples
within the ranges for the TOSCA setup parameters. Then, it runs TOSCA in simulation
mode for each sample and chooses the one with the highest payload from the ones
that respect the constraints. These constraints can be read from the TOSCA output.
Based on that best sample, it generates others and explores the sampling space until
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finding the absolute minimum for the cost function. So, TOSCA does not perform the
optimisation; the CMA-ES optimiser does.

This combined CMA-ES-TOSCA workflow allows the CM to converge towards launch
trajectories that maximise payload capacity while respecting all defined constraints.
By doing so, the CM serves as the validation backbone of the framework. More details
regarding the CM’s results are available in Chapter 4.

The integration of the CM in the overall framework is similar to the TM one. All the
steps of the remodelling procedure from the IDS until the creation of the CLAVA and
uQ files are identical. However, the SART Toolbox files are generated before the
optimisation begins, in order to be able to run TOSCA. Then, the statistical methods
generate samples to be evaluated. Afterwards, the CMA optimiser starts the loop
shown in Figure 3.12 for each of these samples generated. In the end, the valid
samples are saved for further analysis. This integration is shown in Figure 3.13.

Finally, the CM implementation was made to comply with Req. 2b. A balance between
the number of samples and the accuracy was achieved. This means that the results
shown in Chapter 4 used as many samples as possible to obtain better results while
complying with the time requirement.

Complex Model
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v

| Parameters |

v

| Creating SART Toolbox files |

v

| Defining optimizer initial settings |

| All necessary inputs |

| Applying statistical method for sampling |

| Multiple samples |

| Executing Complex Model for all samples |

[ Valid samples |

v

I Output: updated UQ (.xml) file I

Figure 3.13: Flowchart of the integration process of the Complex Model in the overall framework.

Final Sample Selection
Besides the CM integration in the whole framework, explaining how the final samples
are selected is important. After the sampling procedure, each sample is tested. Then,
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there will be a set of valid samples, regardless of the chosen statistical method.
However, a single configuration is desired for DLR and the overall purpose of this
LV remodelling framework. Hence, it is important to have a good strategy for this step
of the process.

The list of valid samples is always available, even for the TM, as needed per Req. 4a.
This means the user has the possibility of filtering, ordering or rearranging the results
in any possible way. For instance, in case the goal is to use the sample with the lowest
achieved payload, the highest propellant mass, or the highest I, this is all possible,
as long as these last two parameters are part of the unknown ones (as needed per
Req. 5b). These options are part of a more targeted sample selection approach. On
the other hand, a broader sample selection method was used during the testing phase
and as a general procedure.

The method implemented here is based on the mean distance between each sample
and all the others. The mean pairwise Euclidean distances between samples in the
normalised parameter space are computed. Then, a percentage of the samples with
the lowest mean distance are selected as the final ones, from which the user can
retrieve the unknown parameters values. Samples with the smallest mean distances
lie in the densest regions of the space, i.e., the most representative of the population.
Using squared Euclidean distances would have artificially inflated the influence of
outliers, making the chosen option more appropriate.

3.2.5. Statistical Methods to Handle Uncertain Parameters

To apply the modelling approaches described in the previous sections, the statistical
methods were integrated into the framework to address the cases where the input
parameters were incomplete or uncertain. Their role is to generate possible values
for unknown inputs and assess the feasibility of the resulting launcher configurations.
In practice, the statistical methods connect the IDS and the models. Once the known
parameters are defined, they provide the generated samples for the unknown ones.
These are then passed to the TM or CM for evaluation.

Monte Carlo-based Methods

The first type of methods integrated were the MC—based ones: normal MC and LH.
Their shared principle is the generation of large numbers of input samples that cover
the entire space of uncertain parameters. Each sample corresponds to a possible
LV configuration, which is then passed to the simulation model for validation. The
differences lie in how the samples are distributed, as explained in Section 3.1.2.

A summary of the sampling and analysis process for MC-based methods is given.
This can be better visualised with the aid of Figure 3.14. After filling in the IDS and
once the CLAVA and UQ files are created, the Python code reads the data. Based
on user-defined settings, V samples are generated at each step. This results in N
different LV configurations. Each of them is run through the simulation model to be
evaluated. Afterwards, the resulting maximum payload will be computed, and the
validation criteria will be verified. In case they are fulfilled, that sample/configuration
is valid. Otherwise, it is rejected. In the end, one wants to focus on the accepted
samples.
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Figure 3.14: Integration of the sampling process for Monte Carlo-based methods in the overall
framework.

Approximate Bayesian Computation

ABC was implemented as a smarter approach compared to the sampling methods
described above. Instead of simply generating samples across the entire parameter
space, ABC adopts a filtering process that evaluates how close the simulated
outcomes are to the observed values.

Figure 3.15 illustrates the implementation of ABC in the overall framework. The
starting point are the CLAVA and UQ files generated after reading the IDS. In this
case. the UQ file is only used to identify the uncertain parameters, since its sampling
functionality will not be used. The algorithm then determines the missing parameters
and locates their positions in the CLAVA file. Once this mapping is complete, the
sampling process begins: the unknown values are replaced with sampled ones,
resulting in a complete LV configuration that can be passed to the simulation model.
Recalling Section 3.1.2, the fundamental idea of ABC is to compare simulated outputs
(produced by an approximate model) to observed or reference results.
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Figure 3.15: Integration of the sampling process for the Approximate Bayesian Computation method
in the overall framework.

After the LV configuration is run through the model, the corresponding payloads for
the rocket’s missions are obtained. The next step is to calculate the distance between
these simulated results and the observed ones. If the results fall within the predefined
acceptance bounds, a very small distance value (e.g. 0.1) is assigned. Otherwise, the
distance to the closest boundary is calculated and used as the ABC distance metric.
This value determines whether the configuration is accepted or rejected, depending
on the current tolerance threshold.

Once this number is reached, the threshold is updated, as prescribed by the ABC-SMC
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procedure (see Section 3.1.2). If not enough valid samples are obtained, additional
configurations are generated until the quota is satisfied. With each new generation,
the threshold gradually decreases, improving the quality of the approximation. The
process continues until the final user-defined tolerance is reached. At this stage, the
algorithm outputs the probability distributions of the previously uncertain parameters,
which represent the ranges of values most consistent with realistic LV behaviour
across all tested cases.

At the start of the sampling procedure, the user defines the number of valid samples
required per generation. Once this number is reached, the threshold is updated (see
Section 3.1.2). If not enough valid samples are obtained, additional configurations
are generated until the quota is satisfied. With each new generation, the threshold
gradually decreases until the final user-defined tolerance value is reached. At this
stage, the sampling process ends, and one obtains the probability distributions for
each sampled parameter. This will most likely indicate the range of values that appear
realistic for each tested parameter.

3.2.6. Test Cases

This section describes the test cases used throughout this thesis. They were used to
test the statistical methods, and to validate the CM, in the end. The idea was to have
three LVs with different levels of complexity, in order to assess whether the CM would
only work with simpler rockets. In this case, complexity translates into the number
of stages. Since each stage requires additional optimisation points, more complex
rockets take longer to converge. Therefore, the following LVs from the Long March
(LM) family were selected:

1. Long March 2C (Figure 3.16a): it is the oldest LM rocket still active. It is a
medium-lift LV that has two stages, and it uses hydrazine as fuel and has a
lift-off mass of 233 t [84]. It is used for multiple types of missions and its engines
are the baseline for the improved versions on board of the subsequent LVs [85];

2. Long March 4C (Figure 3.16b): it is one of the most recent hydrazine fuelled
Long March rockets to be developed [86]. Itis a medium-lift LV with three stages,
all fuelled by hydrazine, and it has a lift-off mass of around 249 t. It is most
commonly used for LEO and SSO missions;

3. Long March 3B/E (Figure 3.16c¢): itis an extended version of the heaviest variant
of the Long March 3 family, the LM 3B. It has larger boosters and a larger first
stage. It is a medium-lift LV with three stages and four strap-on boosters. All
stages use hydrazine as fuel, except the third one, which uses liquid hydrogen.
It has a lift-off mass of around 456 t and it is mostly used for GTO missions [87];



3.2. Practical Implementation 50

(a) Long March 2C (b) Long March 4C (c) Long March 3B/E

Figure 3.16: Images of the three rockets used as test cases throughout this thesis.

Additionally, different numbers of unknown parameters were tested for each LV. This
was very important to understand if the results are only accurate for a limited number
of unknowns, or if this factor doesn’t have much influence. For the LM 2C, a larger
number of unknown parameters were tested. For the others, there are fewer test
cases because the results had a similar behaviour regardless of having 3, 5, 7, or 10
unknown parameters (see Section 4.3). Table 3.2 summarizes all test cases.

It is important to note that the unknown parameters for each test case were chosen
in a way that all were tested at least once. Moreover, the configurations with more
unknowns are identical to the ones with fewer unknown parameters, but with additional
ones. The input ranges also remain the same when adding more unknowns. For
instance, test case LM2C 2U is the same as LM2C 1U but with the structure mass of
stage 2 as an extra unknown. The only exception is test case LM3BE 5U because it
includes the maximum mass flow rate per engine. This parameter was not used in the
TM, so it is excluded from the other two test cases from this LV. However, during the
CM’s testing phase, one test case had to include it to be sure that this parameter could
also be used as one of the unknown ones. Lastly, the number of missions translates
to more payload values to be estimated, providing a more comprehensive validation.
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Table 3.2: Summary of test cases and corresponding unknown parameters.

Test case Labels| Parameters treated as unknown
1U vacuum max. I, of stage 2.
2U vacuum max. [, of stage 2; structure mass of stage 2.
LM2C (1-2 3U vacuum max. I, of stage 2; structure mass of stage 2;
missions) sea-level max. I, of stage 1.
vacuum max. [, of stage 2; structure mass of stage 2;
5U sea-level max. [,, of stage 1; sea-level max. I, of
stage 2; structure mass of stage 1.
7U same as 5U, plus engine mass of stage 1; engine
mass of stage 2.
10U same as 7U, plus ascent propellant of stages 1 and 2;
reserve propellant of stage 2.
oU vacuum max. [, of stage 2; ascent propellant of stage
3.
L.M4.C (3 3U same as 2U, plus structure mass of stage 1.
missions)
5 same as 3U, plus ascent propellant of stage 2; vacuum
max. I, of stage 3.
same as 5U, plus engine mass of stage 1; reserve
10U propellant of stage 1; sea-level max. I, of stage 1;
structure mass of stage 2; vacuum max. I, of stage 1.
3U vacuum max. [, of boosters; sea-level max. I, of
LM3BE (1 stage 1; ascent propellant of stage 3.
mission) 5U same as 3U, plus maximum mass flow rate per engine
of stage 1; vacuum max. I, of stage 2.
same as 3U, plus ascent propellant of boosters; ascent
10U propellant of stage 1; sea-level max. I, of boosters;
structure masses of stages 2 and 3; vacuum max. I,
of stages 2 and 3.

3.3. Expected Results

This section outlines the different types of results that are expected to be generated
throughout the course of this thesis. Since the framework integrates multiple stages,
from data handling to model generation, there are multiple types of outcomes. The
expected results, therefore, include both intermediate outputs, such as parameter
estimates and validation metrics, and final products, such as reconstructed LV models
and optimised trajectories.

The first intermediate result is the IDS. This is an Excel file containing all the input
parameters, either as specific values or ranges. Afterwards, the CLAVA and UQ files
are generated, containing the Excel data in a more structured way, ready to be used
with the SART Toolbox. From here, the algorithm generates samples. Each one will
have its own CAC, STSM, and TOSCA files, which the CM uses for the optimisation.
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Table 3.3: Overview of data types, collection methods, and processing details.

Collection

Type of Data File Format Method Purpose Storage Access
LV - Excel file Research Model generation | DLR server DLR
Characteristics

LV - CLAVA file (.xml) | DLR Software Model generation | DLR server DLR
Characteristics

Uncertain .LY uaQ file (.xml) DLR Software | Model generation | DLR server DLR
Characteristics

Mass STSM file DLR software Traj. optimisation | DLR server DLR
Aerodynamic CAC file DLR software Traj. optimisation | DLR server DLR
Trajectory TOSCA file DLR software Validation DLR server DLR

The final results will be the updated Excel file with the valid parameter ranges, as well
as the SART Toolbox files for the chosen configurations.

The data collected and the results obtained are summarised in Table 3.3. It shows
the different types of files and data resulting from each type of model (e.g. mass).
Besides, it displays where the information is stored and who can access it.

3.4. Verification and Validation

In this section, the verification and validation (VV) method for this thesis work will be
addressed.

Ensuring the reliability of the semi-automated rocket remodelling framework requires
a solid VV methodology. This study adopts multiple validation techniques, combining
manual verification methods previously used during an internship with additional
computational and observational approaches. The aim is to assess if the generated
mass, aerodynamic, and trajectory models are realistic, as needed per Req. 5a, even
when handling uncertainties in input parameters.

The primary validation method relies on payload capacity estimation. It serves as a
good indicator of the accuracy of the remodelled LV. A payload distant from the one
given by the LV manufacturer indicates that something in the model is wrong. Either
the trajectory is sub-optimal, thus reducing the achieved payload, or something is
over/underestimated in the rocket parameters. In any case, the results would not be
realistic, thus it is not desired.

The VV process follows the same methodology applied in the previous manual
remodelling procedure during the internship that preceded this master’s thesis. After
finishing the development of the mass and aerodynamic models and optimising the
trajectory, the computed payload capacity is compared to the manufacturer’s claimed
payload for the given LV. If the difference between the estimated and actual payload
remains within £10%, the model is considered sufficiently accurate. However, if the
deviation exceeds this margin, refinements are needed. For instance, some strategies
that can be implemented might involve improving unknown parameters estimation,
particularly for cases in which there is a lack of data. This iterative refinement process
guarantees that the remodelling process produces trustworthy results that accurately
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reflect the real LVs.

Additionally, another strategy can be used for some rockets where publicly available
telemetry data is accessible. For example, usually SpaceX’s launches are recorded
and show telemetry on the streaming video [88]. This other validation step might
include comparing key flight parameters, such as altitude, velocity, and acceleration,
with the results of the optimised trajectory. Significant disparities between the
computed and the provided telemetry data indicate that further refinements in the initial
conditions/assumptions or the mass or aerodynamic models may be necessary. This
approach strengthens the exactness of the remodelling framework by combining it
with real flight performance data from the LV’s operating company.

However, it is often hard to find the telemetry data for rocket launches. Therefore,
another strategy imposes itself in scenarios where LVs lack publicly available
telemetry data. By analysing the rocket’s launch video, its initial acceleration can be
estimated. This process implies knowing the height of the launch tower that supports
the LV before its take-off. The next step is to measure how long the lowest part of the
LV takes to be above the highest point of the launch tower. The acceleration can be
approximately obtained with that information and using:

s = 8¢ + vot + %at2 (3.18)

where s is the distance (launch tower height) s, is the initial altitude (null), v, is the
initial velocity (null), a is the average acceleration and ¢ is time. This is used to obtain
the acceleration. However, this is only the "visible” acceleration, since part of the total
value is used to overcome gravity. So, in reality, the LV’s acceleration is a,..; = a + go-

With the acceleration and the initial LV mass, one can estimate the initial thrust:

F = GLOM - ayey; (3.19)

where GLOM is the Gross Lift-Off Mass. Then, by comparing this to the LV’s thrust
found in the research, one can check if that value is realistic. While this method is
less precise than direct telemetry comparisons, it still provides an additional measure
to verify whether the remodelled rocket aligns with the observed launch behaviour.

To sum up, the validation process follows an iterative refinement strategy, ensuring
that the developed framework produces consistent and realistic results, given any
circumstances. Integrating multiple validation strategies in this work will ensure the
proposed methodology is reliable. To complement it, a sensitivity analysis will also be
performed (results are available in Section 4.1).



Results and Discussion

This chapter presents and analyses the outcomes of the methodology developed
throughout this thesis. The results are structured to illustrate how the proposed
framework performs across its different components, from the IDS to the
implementation of statistical methods and the application of the test and complex
models. Each set of results is critically discussed, highlighting their significance,
limitations, and implications for this launcher remodelling framework.

The discussion aims to connect the results to the research objectives and questions
defined in Chapter 1. In particular, emphasis is placed on evaluating whether
the framework can reliably handle incomplete datasets, generate feasible LV
configurations, and balance computational cost with modelling accuracy.

This chapter will have three main sections presenting results: a first one, a sensitivity
analysis section, which identifies the parameters with the most influence on the
payload result; a second one that compares the different statistical methods; and a
final one that shows the results with the CM for the test cases, validating the proposed
framework. To end the chapter, an overall discussion about all the results is done,
together with recommendations for future work. All the results presented were stored,
as needed per Req. 1h.

4.1. Sensitivity Analysis

To complement the statistical exploration of uncertain input parameters, a sensitivity
analysis is performed, complying with Req. 5c. It allows for the assessment of each
parameter’s relative influence on the remodelling framework’s final results. While the
statistical methods provide ranges of feasible values, sensitivity analysis helps identify
which inputs drive the most significant variations in payload capacity. This information
is critical for prioritising data collection and understanding the framework’s robustness
when confronted with incomplete or uncertain datasets.

The analysis not only highlights the most influential parameters but also reveals
their interactions. By quantifying how sensitive the model outputs are to variations
in specific inputs, the framework can provide users with clearer insights into which

54
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parameters must be known with higher accuracy and which can be approximated with
less impact. Ultimately, this step strengthens the overall methodology by ensuring that
uncertainty is strategically understood.

The Sensitivity Analysis Library in Python was used [89, 90]. It allows the user to
assess each component’s individual impact and their combined effect on the result.

The strategy was to go from the least complex LV, i.e., the one with the fewest stages,
to the most complex one. The idea was to use the test cases with ten unknown input
parameters to understand the impact of the largest number of parameters possible.
However, running such large simulations is impossible since the computational power
available is limited. For this reason, only one test case was run with the CM, and it
has five unknown parameters.

4.1.1. Test Model Results

The results for test case LM2C 5U are presented in Figure 4.1. The parameter with the
greatest influence on the payload result is the structure mass of the second stage. The
second parameter with the highest impact is the same stage’s vacuum maximum I,,.
Looking at Equation 3.11, these two parameters directly influence the Av produced.

The structure mass for this test case had a considerably wide range compared to its
real value. It had an upper limit of more than 30% of its lower value. Such variability
strongly impacts the rocket equation’s mass ratio, reducing the effective Av that the
stage can provide. Moreover, I, values are usually higher for upper stages, which
means that the same relative influence on the mass ratio will have an absolute impact
higher for these stages compared to the first one. These reasons explain the smaller
impact of the structure mass of the first stage.

The influence of the vacuum maximum I, is related to its role in measuring an engine’s
efficiency. A higher I, translates into more Av for the same propellant mass, and thus
improved performance. However, its relative effect is less pronounced than that of the
structural mass, since a typical variation in I, is proportionally smaller compared to
the potential variability in the mass ratio.

The remaining input parameters are significantly less relevant. Overall, if a parameter
has a large relative influence in Equation 3.11, it will have a great impact on the
result. This means that parameters like the engine’s mass, or the reserve or residual
propellant mass are mostly insignificant, because their relative importance in the
overall vehicle mass is low.

Additionally, the second-order indices are insignificant for this test case (see
Figure D.1 in Appendix D). This indicates that pairwise interactions do not contribute
significantly to payload variance. As described in Equation 3.11, Av, hence payload, is
driven mostly by independent contributions, whose behaviour is not influenced by the
remaining ones. For instance, a higher I, always increases the payload, regardless
of the masses. Thus, the payload variance is explained by first-order effects, meaning
that the contributions of the parameters add up rather than interact in a significant way.
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Figure 4.1: Sensitivity analysis first order results including confidence intervals for test case LM2C
5U using the Test Model.

Also, the estimated indices exhibit relatively wide confidence intervals. This could be
reduced with a larger sample size, but the computational resources were limited. In
addition, having more samples would likely only reduce the interval widths without
altering the conclusion, as the upper confidence limits remain small.

Since the goal was to analyse as many parameters as possible, the next step was to
run test cases with ten unknowns using the TM. The results are shown in Figure 4.2
and Figure 4.3. Both plots provide a more overarching picture of the influence of the
input parameters on the results. There are now more parameters that have a relevant
impact.

In the plot showing the results for test case LM4C 10U the vacuum maximum [,
of several stages is very important. On the other hand, for test case LM3BE 10U,
the structure mass has a very significant impact, similar to what happened for test
case LM2C 5U. It is hard to point out the parameters with the largest influence. As
discussed for test case LM2C 5U, having a large relative variation in one parameter
might increase its influence. On the other hand, having a small significance when
considering the whole LV, for instance, its overall mass, decreases the parameter’s
impact. This is visible when comparing upper stages with first or booster stages. Due
to their greater relative influence on the stage mass, the upper stages have more
influential mass-related parameters than the heavier ones.

For both test cases, the second-order indices were also insignificant and had large
confidence intervals, which suggests the need for larger sample counts.
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Figure 4.2: Sensitivity analysis first order results including confidence intervals for test case LM4C
10U using the Test Model.
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Figure 4.3: Sensitivity analysis first order results including confidence intervals for test case LM3BE
10U using the Test Model.



4.1. Sensitivity Analysis 58

4.1.2. Complex Model Results

It is interesting to compare the TM results to the ones achieved using the CM. It is
expected to find similar parameters with the highest and lowest impacts. At the same
time, the results might not be identical because the models used are different. Still, if
the results are very different from each other, it means that there is probably something
not being covered in one of the models. The CM results are available in Figure 4.4.

As predicted, the results are identical in terms of the most influential parameters,
despite the exact first-order indices being different. Before getting into more detail,
it is clear that the confidence intervals are relatively wide. Once again, it was not
possible to increase the sample size due to limited computational resources. For that
reason, it is harder to interpret the exact first-order indices results.

In any case, the second stage’s structure mass is the most influential parameter,
despite having a lower effect than in the TM. However, when looking at the maximum
bound for its confidence interval, it might be close to the TM result. The same
reasoning applies to the second stage vacuum maximum I,,.

Overall, the CM results are more distributed and have wider confidence intervals. This
occurs because although both models are based on the same physics, the TM relies
almost exclusively on Equation 3.11, while the CM is significantly more complex. For
instance, it considers an atmospheric model and the trajectory itself while analysing
the whole ascent instant by instant, not in a general way as the TM. Thus, it can
offset variations in some input parameters by adjusting the trajectory. This reduces
the visible direct influence of individual parameters.
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Figure 4.4: Sensitivity analysis first order results including confidence intervals for test case LM2C
5U using the Complex Model.
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The remaining parameters have a less significant impact, as occurred for the
TM. Similarly, the second-order indices are low (see Figure D.2 in Appendix D),
demonstrating how each parameter’s influence on the payload calculation is
independent. Again, an increase in the sample count could bring narrower confidence
intervals, which would result in a more accurate assessment.

4.2. Statistical Methods Performance

This section presents the results of the analysis conducted to the statistical sampling
methods. Its goal is to identify the most suitable method to address the research
question posed in this thesis. Three main algorithms are evaluated: random MC
sampling, LH sampling and ABC. The objective is to determine which method
integrates better with the CM. To enable this evaluation with minimal computational
cost, the TM will be employed as a fast environment for comparing each statistical
method’s performance and practicality. The primary selection criteria for a suitable
sampling method are accuracy and speed. In this context, accuracy refers more to
how well-covered the sampling space is rather than the payload results themselves,
since these are not influenced by the sampling method chosen.

4.2.1. Monte Carlo and Variants

MC sampling and its variants were the first statistical methods tested within the
framework. Their simplicity and general applicability made it a natural starting point for
exploring how uncertain input parameters affect the remodelling outcomes. Parameter
values were sampled from predefined distributions in this approach. Then, they were
propagated through the TM to evaluate the resulting LV performance. By running
several simulations, it was possible to identify feasible configurations and observe
how varying the inputs influenced the payload capacity. This section presents the key
findings from the MC-based methods. They will serve as a baseline for comparison
against more advanced methods such as ABC.

Monte Carlo-based Methods Comparison

As presented in Section 3.1.2, two main MC methods were tested in this thesis. Their
choice comes from Chapter 2, and their implementation was simplified since the UQ
framework described in Section 3.1.4 already integrates some sampling capabilities.
Additionally, while MC-based methods differ in their sampling techniques (ranging
from purely random to stratified or quasi-MC approaches [91]), they all fundamentally
rely on random or pseudo-random (something that appears to be random but is
deterministic) sampling to approximate solutions.

The first step in investigating the MC-based methods is to select one that covers the
space more uniformly. It is crucial to guarantee that the whole uncertain range of
possible values for each parameter is tested. This way, one avoids missing out on any
possible valid LV configurations. Simultaneously, clustering is also undesirable, since
it might overpopulate some areas, which could alter the final parameter’s probability
distribution.

Taking into account the criteria mentioned above, a test scenario was created. The
idea was to capture the distribution of the generated samples. This way, one could
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compare the different sampling methods regarding how well they cover the whole
unknown range. In order to verify this, the same analysis was run with the same
number of samples for each MC-based procedure. The test case used was the LM3BE
10U. All the parameters had a uniform probability distribution.

Figure 4.5 shows the results of the previously described procedure. Three different
MC-based sampling methods were tested with 100 samples. Sobol sampling was
included as a comparison here, since it was used for sensitivity analysis (Section
4.1). In the lower plots, each dot represents a generated sample corresponding to a
combination of two parameters: the vacuum maximum I, of the second stage and the
ascent propellant of the first stage. They are among the ten unknown parameters in
this test case. The upper plots display the distribution of samples across their sampling
space for a single parameter: the vacuum maximum I, of the second stage.

Starting with the random sampling (Figure 4.5a), one can see a significant gap in the
top right corner. As expected, random sampling does not cover the sampling space
uniformly. That is supported by the distribution plot, which shows a non-uniform shape
in its upper region. Similarly, Sobol sampling had a non-flat distribution. This method
was not further used for sampling purposes, as the results didn’t differ too much from
LH in terms of time consumed, while they were worse regarding coverage of the
sampling space. Lastly, no clear gaps are visible when looking at the LH sampling
results (Figure 4.5b). On top of that, the distribution plot is perfectly flat between the
sampled parameter’s boundaries. That demonstrates how effective this method is in
the coverage of the sampling space.
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Figure 4.5: Comparison between the results achieved by using different Monte Carlo-based sampling
methods with the Test Model - 100 total samples.
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Figure 4.6: Comparison between the results achieved by using different Monte Carlo-based sampling
methods with the Test Model - 500 total samples.

However, it is important to note that these problems may have arisen due to the low
sample count. Increasing the number of samples will likely lead to a better covered
sampling range. The same procedure was repeated to verify this, but with 500
samples. Figure 4.6 shows those results.

Overall, the sampling space has fewer gaps than for 100 samples. However, that
is mostly because the number of samples was increased. Random sampling has
a distribution plot with peaks and valleys again, which is undesirable. Sobol shows
an improvement compared to the lower sample count. Still, LH remains the sampling
algorithm with the best coverage of the sampling space. For this reason, it was chosen
as the MC-based method to be further tested and later compared to ABC.

4.2.2. Latin Hypercube Performance

After discarding the purely random sampling method due to its inefficiency, the next
step is understanding how fast and reliable LH is. As discussed at the beginning of
Section 4.2, the criteria for a suitable sampling method are coverage quality and speed.
The former has already been discussed, so the next step is to analyse the latter.

To verify how fast the statistical methods are, it is essential to identify how many
samples are needed before the optimisation process converges. A tailored test
procedure was conducted to get the required number of samples for LH. The same
simulation was run multiple times for each test case with increasing values of N,
representing the total number of samples. The results were then recorded and plotted
using summary statistics, such as minimum, maximum, median, etc. The goal was to
visualise how these metrics change by adding more samples. That way, one could
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Figure 4.7: Convergence behaviour of Latin Hypercube sampling for the vacuum maximum I, of
stage 2 in test case LM2C 2U. The curves show the evolution of three summary statistics (minimum,
median, and maximum) of the valid results as a function of the number of samples (logarithmic scale).

identify a convergence or stagnation point beyond which the outcomes remained
stable. That point would provide a sufficient sample size for practical use in the
remodelling framework. The output of these simulations was stored in tables identical
to Table D.1 of Appendix D.

Figure 4.7 shows the results for the vacuum maximum I, of the tested LV’s second
stage. At low sample counts, randomness and undersampling can lead to significant
outcome variability. By splitting the region into larger gaps, some valid samples
in between them are likely missed. Then, when the sample count increases, the
gaps between the samples are smaller, which better covers the sampling space and
encompasses the previously ignored ones. However, improvements are less visible
beyond a certain point. By then, there are already enough samples to fully cover
the sampling space and produce results that do not change when more samples are
added.

In concrete, most statistical summary parameters converge around 32000 samples.
However, some oscillations still occur around the highest sample counts. Besides,
there could be some randomness associated with the results. To better understand
whether this result would also be verified in other parameters, one needs an extra
plot. Thus, the equivalent plot for the structure mass of the second stage is shown in
Figure 4.8.

For this parameter, every summary statistic also converges at around 32000 samples.
There are slight oscillations afterwards, but the lines are practically horizontal from that
point onward. Given this new information, one could infer that 32000 samples would
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Figure 4.8: Convergence behaviour of Latin Hypercube sampling for the structure mass of stage 2 in
test case LM2C 2U. The curves show the evolution of three summary statistics (minimum, median,
and maximum) of the valid results as a function of the number of samples (logarithmic scale).

be the minimum value of samples needed to apply LH sampling with accurate results.
However, it is possible that the parameters’ sampling process had a peculiar/random
behaviour in this simulation. Doing a single run for each sample count does not
guarantee that the results will always be similar to the ones achieved so far.

To circumvent the uncertainties observed in the previous analysis, the author decided
to repeat the simulation ten times under identical conditions. Each run used the
same LV and sample sizes. This way, it allowed the effect of sampling variability
to be assessed. Rather than plotting a single line per statistical metric, this approach
resulted in a band around each summary statistic, such as the minimum, maximum,
etc.

For every combination of parameter and sample size, one set of summary statistics
was recorded per run. After completing all ten runs, there were ten values for each
metric at each sample size. For each run and each unknown parameter, there was a
table similar to Table D.1 of Appendix D. These tables were used to make the plots
analogous to Figure 4.9 that appear throughout this chapter. To better visualise the
spread and convergence behaviour, the minimum and maximum values from these ten
runs were used to define the upper and lower bounds for each statistic. These bounds
were then plotted as convergence bands across the increasing number of samples.
When these bands (coloured area in between the dashed lines) begin to flatten or
exhibit no significant change, it indicates that result stability has been reached. Thus,
further increasing the number of samples is unlikely to affect the results. This point can
be interpreted as the effective minimum required sample size for robust performance
under the given conditions. To aid in observing the results, the mean is also shown
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as a solid line.

These results can be seen in Figure 4.9 and in Figure 4.10. On the first plot, the results
are similar to the plot in which only a single run was shown (Figure 4.7). As before, all
statistical summaries converge around 32000 samples. On the second plot, a similar
stagnation point is found. Additionally, the randomness associated with lower sample
counts is visible. Forinstance, the maximum value oscillates before stabilising around
its final value.

By running the same simulation multiple times, the randomness factor is mitigated.
There is still a possibility that ten times is not enough. However, it is the maximum
possible/available given the computational constraints, even for the TM. With the CM,
simulating with 128000 samples once would have taken more than one month, so it
would not be feasible.

The results still show that 32000 samples would probably be an enough amount of
samples. This is more than desired, so the next step was testing the ABC method and
determining if this number could be reduced. Itis also important to add that the number
of samples needed for the final validation cases with the CM might be different from
the number needed for the TM. Therefore, the main goal in the following sections is
to assess which statistical method is better, rather than the exact number of samples.
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Figure 4.9: Convergence behaviour of Latin Hypercube sampling for the vacuum maximum I, of
stage 2 in test case LM2C 2U. The curves show the evolution of three summary statistics (minimum,
median, and maximum) of the valid results as a function of the number of samples (logarithmic scale).
Each simulation was repeated ten times to account for variability. The coloured regions represent the
convergence bands, defined by the minimum and maximum values across the ten runs for each
statistic.
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Figure 4.10: Convergence behaviour of Latin Hypercube sampling for the structure mass of stage 2
in test case LM2C 2U. The curves show the evolution of three summary statistics (minimum, median,
and maximum) of the valid results as a function of the number of samples (logarithmic scale). Each
simulation was repeated ten times to account for variability. The coloured regions represent the
convergence bands, defined by the minimum and maximum values across the ten runs for each
statistic.

4.2.3. Approximate Bayesian Computation Performance

This section presents the results of the testing procedure for the ABC method, with a
focus on its convergence behaviour. The testing process was very similar to the one
used for LH sampling. Starting from the same reference IDS, the ABC sampling was
executed ten times with multiple sample sizes. This repetition was implemented to
ensure that the results are not biased by randomness in a single run. The results for
the maximum vacuum I, for the second stage of LM2C are shown in Figure 4.11.

Before analysing the plot, it is important to clarify that all reported ABC results
correspond to the total number of generated samples, rather than only the valid ones.
These totals were estimated by averaging the number of samples across repeated
runs for each specified sample count, as slight variations occurred between runs.
Since the user can only define the number of valid samples per generation, one cannot
estimate how many total samples will be generated. Therefore, not all ABC results
will start in the same minimum number of samples.

That being said, the observed behaviour for ABC is similar to the one observed for the
MC sampling in Figure 4.9. The bands are wide for lower sample counts and tend to
narrow done as the number of samples increases. A more detailed comparison will
be made in Section 4.3, with more test cases, combined plots for both methods, and
a thorough discussion about the findings.
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Figure 4.11: Convergence behaviour of Approximate Bayesian Computation (ABC) for the maximum
vacuum I, of stage 2 in test case LM2C 2U. The curves show the evolution of three summary
statistics (minimum, median, and maximum) of the valid results as a function of the number of
samples (logarithmic scale). Each simulation was repeated ten times to account for variability. The
coloured regions represent the convergence bands, defined by the minimum and maximum values
across the ten runs for each statistic.

4.3. Comparison Between Latin Hypercube and

Approximate Bayesian Computation

This section presents the comparison plots and results between the two sampling
methods tested: LH and ABC. It consists mostly of plots similar to before, butinstead of
having one method separate from the other, the results are grouped into single plots for
easier visualisation. Due to the overlap of both sampling methods, the plots were split
into two. One contains the "Core Statistics”, such as the maximum (max), minimum
(min), and mean summary statistics. The other contains the "Extended Statistics”,
which include the median and the 25% and 75% quartiles (q25 and q75, respectively).
This way, interpreting the results is easier.

The main aspects to be considered throughout this comparative analysis are:
+ the sampling method that converges faster;
+ the influence that the number of unknowns has on the results;
+ the influence of the LV’s complexity on the results;

Due to the factors mentioned above, the overall strategy for this testing phase is based
on LV complexity. Initially, the rocket with fewer stages will be tested, with a test case
which has relatively few unknown parameters. Afterwards, the idea is to compare this
scenario to the test cases with more unknowns. Finally, the analysis is extended to
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the more complex rockets, again going from few to many unknown parameters. This
plan enables the assessment of the three points listed above by progressively building
from the simplest test case to the most complex one.

The first plot shown (Figure 4.12) is for the maximum vacuum I, for the second stage
of test case LM2C 2U. For this particular parameter, there are not many discrepancies
between LH sampling and ABC. All summary statistics represented there have an
identical width for the same number of samples.

Another fundamental detail is whether the maximum and minimum bands converge
to the same parameter value for both methods. If they don't, it suggests that one of
them is not behaving correctly, because they should achieve consistent results with
a sufficiently high number of samples. Ensuring the sampling methods adequately
cover the entire sampling space and find solutions near the boundaries is crucial. This
prevents the exclusion of potentially feasible LV configurations, which increases the
overall framework’s robustness. In this case, both methods stabilise around the same
values for the minimum and maximum metrics, which correspond to the sampling
boundaries.

To be able to better judge the results, it is important to look at the other parameter as
well. Figure 4.13 shows the results for the structure mass of this LV’s second stage.
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Figure 4.12: Convergence comparison of Latin Hypercube sampling and Approximate Bayesian
Computation for the maximum vacuum I, of stage 2 in test case LM2C 2U. The curves show the
evolution of three summary statistics (minimum, median, and maximum) of the valid results as a
function of the number of samples (logarithmic scale). Each simulation was repeated ten times to
account for variability. The coloured regions represent the convergence bands, defined by the
minimum and maximum values across the ten runs for each statistic.
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Figure 4.13: Convergence comparison of Latin Hypercube sampling and Approximate Bayesian
Computation for the structure mass of stage 2 in test case LM2C 2U. The curves show the evolution
of three summary statistics (minimum, median, and maximum) of the valid results as a function of the
number of samples (logarithmic scale). Each simulation was repeated ten times to account for
variability. The coloured regions represent the convergence bands, defined by the minimum and
maximum values across the ten runs for each statistic.

Once again, LH sampling is better than ABC since all its summary statistics flattened
out slightly earlier. Additionally, they are usually narrower or equally wide for the same
number of samples. This means that, as occurred with the maximum vacuum I, of
stage 2, LH'’s results surpass ABC'’s results in both speed and stability. However, this
was only one example of a rocket with two unknown parameters. To make an accurate
assessment of these methods’ performance, one has to analyse more test cases.

One of the main features to evaluate is the impact of the number of uncertain
parameters. The results shown so far were for a test case with two unknowns, so it is
interesting to compare them to a single unknown parameter case. Thus, the results
of test case LM2C 1U will be presented next.

The first observation from Figure 4.14 concerns the amplitude of the results. For test
case LM2C 2U the maximum vacuum I, was between 293 s and 303 s for valid
samples. On the other hand, when this was the only uncertain parameter, the valid
results were confined to between 297 s and 299.25 s. The difference is caused by
introducing a second unknown parameter. Their combined effect made it possible to
have a wider range of valid values for the I,,. In this case, a lower or higher structure
mass of the second stage allowed the same stage’s maximum vacuum I, to be lower
or higher, respectively, compared to when this mass was fixed. This clearly illustrates
that simply by adding a second unknown, the final ranges for both uncertainties can
be very wide.
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Figure 4.14: Convergence comparison of Latin Hypercube sampling and Approximate Bayesian
Computation for the maximum vacuum I, of stage 2 in test case LM2C 1U. The curves show the
evolution of three summary statistics (minimum, median, and maximum) of the valid results as a
function of the number of samples (logarithmic scale). Each simulation was repeated ten times to
account for variability. The coloured regions represent the convergence bands, defined by the
minimum and maximum values across the ten runs for each statistic.

Furthermore, LH sampling completely outperforms ABC in this test case. This
outcome was expected, since the easiest way to explore the sampling space for a
single unknown parameter is to split it and check the boundaries for the valid results.
This is what LH does. In contrast, ABC is a more complex method, which might not
be so helpful in this situation. Its iterative process of generating populations with
decreasing tolerance values takes longer to converge, as it requires more samples
in total. Thus, so far, LH sampling is performing better than ABC.

At this stage, one knows that two uncertain input parameters can yield very different
results compared to a single one. The next logical step is to assess what happens
when there are additional unknown parameters. After analysing those results, the
author noticed that there are not many differences between 3, 5, 7 or 10 unknowns.
Therefore, some of the results for test case LM2C 10U of the Long March 2C rocket
will be presented, since this is the example with more uncertainties.

Figure 4.15 shows the resulting valid range for the maximum vacuum I, of the second
stage, for the test case with ten unknown input parameters. The first thing to notice
is how the minimum and maximum values are more distant compared to test case
LM2C 1U. In fact, both summary statistics stabilise at the boundaries defined for this
parameter, as happened with test case LM2C 2U. The median value is also similar to
the scenario with two unknown parameters. This behaviour indicates one of two things:
having more than one unknown parameter always has a similar impact, regardless
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Figure 4.15: Convergence comparison of Latin Hypercube sampling and Approximate Bayesian
Computation for the maximum vacuum I, of stage 2 in test case LM2C 10U. The curves show the
evolution of three summary statistics (minimum, median, and maximum) of the valid results as a
function of the number of samples (logarithmic scale). Each simulation was repeated ten times to
account for variability. The coloured regions represent the convergence bands, defined by the
minimum and maximum values across the ten runs for each statistic.

of how many extra parameters; or one of these two parameters has such a large
influence that adding other uncertainties doesn’t significantly affect the results. In any
case, further test cases have to be assessed before one can be sure if it is only the
second option, as it was proven in Section 4.1.

Additionally, in this case, LH sampling also converges faster than the ABC method,
although the difference is not too substantial. Moreover, the convergence value does
not perfectly coincide for the median. However, this might be explained by a slight
difference in the results distribution for both methods. Figure 4.16 contains the final
distributions for the vacuum I, of the second stage for a single run of the ten made.
It compares the results of LH sampling and ABC.

The plot shows that the distributions for each method do not perfectly coincide,
even though they show the same tendency. The sampling strategies have different
algorithms, that is, they generate samples in different ways, as explained in Section
3.1.2. Thus, the resulting sets of samples do not completely overlap, leading to slight
discrepancies in the outcomes. This also explains why the median values do not
converge to the same value in Figure 4.15. The green surface, which corresponds to
LH, extends further into the region of higher values. Hence, the median is marginally
shifted upwards. The ABC results are more concentrated around the central region.
The results presented here correspond to a single run, but at the highest sample
counts the variance is small, making this run representative of the overall behaviour
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Figure 4.16: Comparison of the final distributions for one run of Latin Hypercube sampling and
Approximate Bayesian Computation for the maximum vacuum I, of stage 2 for test case LM2C 10U.

across multiple repetitions.

To better understand the difference that arises when dealing with two versus ten
unknown input parameters, it is useful to analyse the results for the structure mass of
the second stage. Figure 4.17 shows the comparison between the results of LH and
ABC for this parameter.

The first notable feature is that the maximum metric only stabilises at a very high
sample count. This suggests that the actual number of unknown input parameters
can affect the results. Besides, the maximum value is lower than in test case LM2C
2U, which means that the combination of the other parameters restricts the realistic
range of this one. In LM2C 2U, valid samples relied on the real LM 2C values for
the remaining parameters. With more unknowns, as in LM2C 10U, those parameters
deviate from their real values, and combinations that were previously valid may no
longer be so. This further suggests that the structure mass of the second stage is
particularly influential in determining the overall results. Otherwise, the full tested
range would remain valid. This has been demonstrated in Section 4.1.

Finally, the last note about Figure 4.17 concerns the median’s behaviour. Unlike
Figure 4.16, here both methods converge to virtually the same value. This observation
is supported by the distributions plot in Figure 4.18. It shows nearly identical shapes
with pronounced peaks around the same value. This close alignment explains why
the medians of the LH and ABC results match better than before.

Now that a 2-stage LV has been analysed, one already has a preliminary
understanding of how the number of unknown parameters influences the results.
Besides, LH has a better convergence speed than ABC. The next logical step is to
increase the LV’s complexity and check if this tendency remains. Therefore, the next
results concern the LM 4C.
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Figure 4.17: Convergence comparison of Latin Hypercube sampling and Approximate Bayesian
Computation for the structure mass of stage 2 in test case LM2C 10U. The curves show the evolution
of three summary statistics (minimum, median, and maximum) of the valid results as a function of the
number of samples (logarithmic scale). Each simulation was repeated ten times to account for
variability. The coloured regions represent the convergence bands, defined by the minimum and
maximum values across the ten runs for each statistic.
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Figure 4.18: Comparison of the final distributions for one run of Latin Hypercube sampling and
Approximate Bayesian Computation for the structure mass of stage 2 for test case LM2C 10U.

According to Figure 4.19, LH converges faster than ABC, and the median is slightly
different again. Figure 4.20 shows the distributions for a single run for both methods.
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Figure 4.19: Convergence comparison of Latin Hypercube sampling and Approximate Bayesian
Computation for the ascent propellant mass of stage 3 in test case LM4C 3U. The curves show the
evolution of three summary statistics (minimum, median, and maximum) of the valid results as a
function of the number of samples (logarithmic scale). Each simulation was repeated ten times to
account for variability. The coloured regions represent the convergence bands, defined by the
minimum and maximum values across the ten runs for each statistic.

Once again, they follow the same trend without perfectly coinciding. The LH
distribution has its peak at a higher value than ABC, thus explaining the difference
seen in the convergence bands plot.
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Figure 4.20: Comparison of the final distributions for one run of Latin Hypercube sampling and
Approximate Bayesian Computation for the ascent propellant mass of stage 3 for test case LM4C 3U.
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Figure 4.21: Convergence comparison of Latin Hypercube sampling and Approximate Bayesian
Computation for the ascent propellant mass of stage 3 in test case LM4C 10U. The curves show the
evolution of three summary statistics (minimum, median, and maximum) of the valid results as a
function of the number of samples (logarithmic scale). Each simulation was repeated ten times to
account for variability. The coloured regions represent the convergence bands, defined by the
minimum and maximum values across the ten runs for each statistic.

Given these results, adding complexity to the LV does not seem to alter the
best-performing sampling method. Still, testing the same rocket with more unknown
parameters will confirm whether this is true. Therefore, test case LM4C 10U was
assessed, and the results are shown in Figure 4.21. The valid range remained the
same. Only one plot is shown since the remaining parameters have an identical
behaviour.

The same pattern observed so far occurs again in this test case. Both methods
converge towards the same values, with LH doing so faster than ABC. This happens
for all summary statistics shown. Additionally, it is interesting to check how the
convergence is achieved earlier for the minimum value compared to test case LM4C
3U. This is due to more unknown parameters leading to a higher range of valid values
for each. This way, there will be more combinations of valid parameters, including
some values rejected for the test case with fewer unknowns.

At this point, one knows that LH sampling is better both for 2-stage rockets and 3-stage
rockets. Additionally, the number of unknown input parameters does not impact this
result. Then the next step is to assess whether this behaviour remains for even more
complex rockets, with three stages and boosters.

The LM3BE underwent an identical testing procedure as the previous LVs shown.
The vacuum maximum I, of the boosters stage was chosen to be presented. Since
all parameters showed a similar behaviour and relationship between both sampling
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Figure 4.22: Convergence comparison of Latin Hypercube sampling and Approximate Bayesian
Computation for the vacuum I, of the boosters stage in test case LM3BE 3U. The curves show the
evolution of three summary statistics (minimum, median, and maximum) of the valid results as a
function of the number of samples (logarithmic scale). Each simulation was repeated ten times to
account for variability. The coloured regions represent the convergence bands, defined by the
minimum and maximum values across the ten runs for each statistic.

methods, no other input parameter will be present in this section. Figure 4.22 and
Figure 4.23 show the results for both test cases with different numbers of unknown
input parameters.

In both cases, the ABC is outperformed by LH. Although the two methods converge
towards the same final value for the three summary statistics, LH sampling does
so faster. In addition, when comparing both plots, the final convergence value is
very similar. The difference happens because the introduction of extra unknown
parameters slightly changes the combinations of sampled values and, thus, the
distributions of valid samples.

In conclusion, LH is a better choice for this thesis. Besides performing better, it
has the advantage of allowing the post-processing to be changed. For ABC, once
the simulations are complete, the method does not allow flexible adjustments to
the acceptance criteria or tolerance definitions without rerunning the procedure. It
only saves the valid samples for the defined validation criteria. On the other hand,
LH sampling saves every sample, and then the payload ranges can be changed to
validate them in different ways. Consequently, in case the simulation is first run with a
wide payload range and later a more exact value is found, the post-processing can be
altered in a few seconds. Finally, for LH the user can define a total number of samples
based on an estimate of how long the simulation will take to run. Contrarily, for ABC
the user defines the number of valid samples and one cannot know how long that will
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Figure 4.23: Convergence comparison of Latin Hypercube sampling and Approximate Bayesian
Computation for the vacuum I, of the boosters stage in test case LM3BE 10U. The curves show the
evolution of three summary statistics (minimum, median, and maximum) of the valid results as a
function of the number of samples (logarithmic scale). Each simulation was repeated ten times to
account for variability. The coloured regions represent the convergence bands, defined by the
minimum and maximum values across the ten runs for each statistic.

take. This can ultimately lead to not complying with Req. 2b.

Now that the optimal sampling method is identified, the TM has fulfilled its role. The
next step is to apply the LH sampling to the CM and obtain real results. The aim is
to evaluate whether the method operates accurately and is effective across various
scenarios.

4.4. Complex Model Results

Having established the most suitable statistical method for handling incomplete and
uncertain input parameters, the next step is to apply the CM. This section presents the
results of combining the selected statistical approach with the trajectory optimisation
tool. By comparing the CM outcomes with known reference values, the reliability
of the proposed methodology can be assessed under more realistic and demanding
conditions.

The test cases listed in Section 3.2.6 were used again. The advantage in using
them is that they have already been remodelled. Thus, by defining some input
parameters as unknown and by defining a payload range that encompasses the one
already achieved, one can assess whether the valid results match the complete model
parameters. The results presented are the outcome of single runs and sampling
procedures. Since they took one or two days to be completed, there was not enough
computational power to run them ten times, as was done for the TM. The first test
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Figure 4.24: Combination of unknown parameters for all the valid samples of the Complex Model
with Latin Hypercube sampling for test case LM2C 2U with a payload margin of 7%. The highlighted
samples correspond to the top 5% samples with the lowest summed mean distance to the others.

case to be tested was the LM2C 2U. The results are shown in Figure 4.24.

In Figure 4.24, one can observe the unknown parameters values for each valid sample
of test case LM2C 2U. In this case, there is a relative difference of 7% between the
minimum and maximum payloads (payload margin) used to filter the valid samples.
One can see a clear correlation between the structure mass and the maximum vacuum
I,, of the second stage. LH makes sure that the whole sampling space is covered,
which means that the empty area corresponds to rejected samples.

The red dots represent the samples with the lowest mean Euclidean distance to all the
others. Instead of a single sample, the top samples with the lowest distances were
selected. The chosen percentage was 5%, but the user can change this if needed.
One observes that these highlighted samples are clustered in the central region. This
is expected as the use of this metric tends to disregard the outliers and the samples
close to the boundaries.

For this particular LV, the payload values for the mission used in the remodelling
process were found. For this reason, the final values for each unknown parameter
can be compared to the real ones. However, this is not always the case. Often one
cannot find a specific payload for a certain mission. Moreover, it is common to identify
a value for a standard LEO or SSO mission. The problem is that when researching
missions to use during the remodelling process, there are usually different LEO or
SSO orbits that the rocket has flown to. Thus, it can be hard to select a fine range for
the payload, ultimately leading to pre-defining a wide range. This makes the overall
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framework accept wider ranges of the unknown parameters, making it hard to select
the values for the final LV model. This will be discussed in more detail later in this
chapter.

Going back to test case LM2C 2U, one can compare the "real” values used in the
previous manual remodelling with the obtained ones (Table 4.1). They are very close.
Additionally, it is important to note that the minimum payload boundary defined is
approximately the same as the one obtained through the manual remodelling. This
way, the validation is similar in both cases.

Table 4.1: Comparison between the obtained results and the ones which are assumed to be real and
thus were used in the manual remodelling process for test case LM2C 2U.

Parameter CM Results | "Real” Results
Vacuum Max. [, (s) of Stage 2 298 298
Structure Mass (kg) of Stage 2 3300 3288

After the functioning of LH has been proven, it was assessed if the ABC method also
yields similar results to this one. So, a similar test was conducted with this sampling
strategy.

The results are in Figure 4.25. After analysing the plots, it is clear that the results are
very similar. Using the same initial unknown parameter ranges and the same payload
boundaries, both methods have identical final parameter ranges. Even though the
exact combinations of the sampled values for each parameter do not match, the results
are the same. This proves that both methods work.
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A similar reasoning to the TM was applied here. The idea was to assess, once again,
whether more complex rockets or more unknown input parameters would influence
the results. Given the computational resources available, testing all the test cases
listed in Section 3.2.6 was not possible. Therefore, only a few of those were tested.
The chosen ones were selected to try and cover as much as possible of the whole
spectrum of possibilities.

The next step was to add some complexity and run the CM for test case LM4C 2U.
On top of having an additional stage compared to the previous LV, this simulation was
run for three simultaneous missions. This means that a sample was only valid when
it obtained a payload within the pre-defined range for all missions tested. The results
are available in Figure 4.26.

When analysing the results for test case LM4C 2U, there is a difference compared
to the previous example. Firstly, this test case is one example for which it was hard
to find a concrete payload value for the missions being assessed. The author was
not confident about the most accurate payload values. Thus, instead of aiming for a
narrow range, a 20% margin was used between the lower and higher value. Since the
payload ranges were too wide, most of the sampled area for this test case is covered
with valid samples. Consequently, almost every sample was accepted. This situation
exposes of one of the problems of this framework. When the payload range is not
targeted enough for a certain mission, results like this can happen.
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However, a more selective sample validation will occur once these payload ranges are
tightened. For instance, when the payload ranges are reduced to a margin of 2%, the
results significantly change. Figure 4.27 shows them. The first thing to notice is how
these are not scattered throughout the sampling space. There is a clear correlation
between the ascent propellant and the maximum vacuum I, that yielded valid results.
Given the uncertainty surrounding the payload values, the focus here was not on the
final ranges for the unknown values. Rather, the author wants to highlight how the
pre-defined payload range influences these results.

Figure 4.28 shows the results for the same test case but with a different payload range.
By reducing the lower payload boundary by just 60 kg, the results have changed. The
top valid samples in terms of minimum mean distance have shifted to lower values for
the vacuum maximum I,,, despite remaining identical for the ascent propellant mass.
This demonstrates the influence that the pre-defined payload limits have in filtering the
valid samples. A slight change can have a great impact on the results. Therefore, it is
crucial to have an accurate payload value for the mission being analysed to achieve
realistic results for the unknown LV parameters.
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To continue evaluating the methodology and framework, an increase in the LV’s
complexity was introduced. This is a critical test because adding a booster stage
to a three-stage rocket results in the highest number of stages among existing LVs:
four. Among the vehicles analysed by the author that consume the most propellant,
none was found to have more than four stages. Therefore, the next logical step was
to assess the LM3B/E.

Besides adding an extra stage, this test case dealt with five unknown input parameters.
The reasoning was to explore the CM capabilities in handling more unknown
parameters. Since two unknown parameters work, it was decided to verify whether
this was also true with five. Figure 4.29 shows the results for this test case with a
payload margin of 7%.

Similarly to what happened with the first variant of test case LM4C 2U, there are valid
samples dispersed through the entire sampling region. Again, one of the reasons is
that the pre-defined payload boundaries are too wide, hence allowing most or even
all samples to be considered valid.

Furthermore, when there are more unknown input parameters, there is a higher
chance of having parameter combinations that compensate each other and yield a
valid payload result for that mission. Some parameters have a positive influence on
the payload, such as the maximum I,,. That is, the higher their value, the higher
the payload will be, considering that the other parameters remain the same. On the
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Figure 4.29: Combination of unknown parameters for all the valid samples of the Complex Model
with Latin Hypercube sampling for test case LM3BE 5U with a payload margin of 7%. The highlighted
samples correspond to the top 5% samples with the lowest summed mean distance to the others.

other hand, some parameters have a negative influence, as, for instance, the structure
mass. This means that when multiple variables are being simultaneously sampled,
their combined effect might be identical to a LV configuration with a completely
different set of sampled unknown parameters.

This particular example has multiple parameters, including several maximum I,
values for different stages. This leads to numerous combinations, some using higher
values of one parameter, others using lower. Their combined effect results in a broad
range of valid samples for all parameters. For instance, it might be that one sample
has a vacuum maximum I, higher than the real value for the second stage and
lower for the boosters stage. Another sample has the opposite. Both might yield
valid payloads. When this effect is scaled for all parameters, the results are scattered
around the sampling space. Looking at the plots in Figure 4.29, by fixing the value
of a certain parameter, one can see how there are valid samples for the entire range
of the others. This can be applied to all the unknown parameters. This situation is
another downside of the taken approach.



4.4. Complex Model Results 83

However, these results were obtained with a relatively wide payload range, which
provides some margin for the validation step. To further investigate this framework’s
capability of handling unknown parameters, it is important to check what happens with
tighter payload boundaries.

Figure 4.30 shows the results when the maximum payload is reduced to only 2% more
than the minimum payload. There is a significant difference, particularly in the vacuum
maximum I, of the second stage. Even though the other parameters remain mostly
unchanged, the valid region of this one is different. Now the valid samples are confined
to part of the sampling space if the outliers are ignored. One thing to infer from this
is that the vacuum maximum I, of the second stage is a very influential parameter
for the payload result, similar to test case LM3BE 10U discussed in Section 4.1. Most
valid samples have values in the lower half of this parameter’s range. Regarding
the remaining ones, either they do not have much influence, except for the ascent
propellant of the third stage, which indicates a subtle correlation with the vacuum
maximum I, of the second stage; or their combined contributions balance out.
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The method selected for identifying the final configurations also proves to be useful.
In this test case, the outliers are ignored, since they are too distant from all the other
samples. That is the advantage of using the mean distance strategy. Finally, since
the payload for this particular mission was known, one can compare the “real” values
to the obtained ones, using the average of the top valid results. This comparison is
in Table 4.2. These results demonstrate how the CM is accurate when the payload
ranges defined are narrow. lIts results are all within 2% of the "real” ones. Additionally,
it proves that the framework is working for five unknowns, although the final ranges
for most remain broad when not focusing on the top samples.

It should be emphasised, however, that this approach strongly depends on the
accuracy of the payload range. If incorrect payload values were used, artificially tight
payload boundaries would lead to misleading and inaccurate results (see Figure D.3
in Appendix D).

Table 4.2: Comparison between the obtained results and the ones which are assumed to be real and
thus were used in the manual remodelling process for test case LM3BE 5U.

Parameter CM Results | ”Real” Results
Vacuum Max. I, (s) of Stage 1 260 260.7
Max. Mass Flow Rate per Engine (kg/s) of Stage 1 288.5 289.6
Vacuum Max. I, (s) of Stage 2 299.8 298
Ascent Propellant (kg) of Stage 3 17483 17829
Vacuum Max. I, (s) of Boosters Stage 282.1 280

At this point, the CM is working for the most complex type of expendable LV, up to five
unknowns. The final test was to increase this value and check whether the results
are still accurate, to assess if there is a certain limit for the number of input unknown
parameters. Consequently, test case LM2C 10U was tested and the results are in
Figure 4.31. Only some of the total plots are shown, but they are representative of the
general behaviour and trends found in the remaining ones.

The payload margin used was 7%. After analysing the plots, it is clear that the
results are too broad. All the unknown parameters have valid samples throughout
their entire sampling ranges. Even the top samples with the lowest sum of mean
Euclidean distances are scattered around the plots, instead of being clustered around
a specific region. This indicates that the payload range used for validation might
be too wide. Another reason might be related to having such a high number of
unknown parameters. With ten of them, there is an elevated probability of generating
an LV configuration capable of delivering a payload within the pre-defined validation
boundaries. As explained when analysing Figure 4.29, the joint effect of each
parameter’s positive and negative contributions produces valid configurations with
varied parameter combinations.
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To further assess whether this test case with ten unknowns could be accurate, the
margin between the maximum and minimum payload values was decreased. This
way, the validation process would be more selective. However, even reducing this
margin to 2.5% revealed to be insufficient to achieve concrete results (see Figure D.4
in Appendix D).

Based on these results, having ten initial uncertain or unknown parameters is not
a good option if the user wants accurate or narrow final ranges for them. With so
many uncertainties, the probability of combining all parameters to create valid LV
configurations increases. Thus, the framework is not able to sufficiently narrow down
the initial ranges of the unknown parameters. Given the test cases used during this
work, five uncertain input parameters would be the limit.

4.4.1. New Test Case - Long March 7

This section presents a new test case that differs from the previous ones. Unlike
the earlier LVs, which had already been remodelled and could therefore serve as
reference points, this rocket is considered here for the first time. As such, it provides
a valuable opportunity to demonstrate how the framework performs when applied to a
new launcher. This makes the case particularly relevant for assessing the framework’s
capability to handle uncertain input data in a real case situation, where no validated
baseline exists. Therefore, the results obtained not only extend the test set but also
indicate how the methodology could be used in practice for new rockets.

The LV in the analysis is the LM 7. It is a two-stage rocket with boosters, which is used
to launch a spacecraft to resupply the Tiangong Space Station [92]. For this reason, it
has consistently flown to approximately the same orbit. Therefore, the payload it can
carry to this orbit is well-known: around 14000 kg.

After researching this LV to determine all the input parameters, two of them were
uncertain: the structure mass of the second stage and the engine mass of the second
stage. Thus, a range was assigned to each one of them. Afterwards, the CM was run,
and the results are in Figure 4.32.

First of all, it is important to note that the payload range for this mission was very
tight because this LV’s mainly flown mission is well-documented. Hence, a minimum
payload of 13950 kg was used with a maximum value 1% higher. This margin is
useful to accept tiny deviations, as selecting only a specific value would be hard to
match precisely. By contrast, the input parameters ranges were wide relative to their
absolute values. There was very little publicly available data, so it was difficult to
define narrower bounds with confidence.

The results highlight how the framework deals with these uncertainties. The two
unknown parameters jointly define the stage’s dry mass. As shown in the plot, a large
portion of the parameter space is empty. This reflects how the framework accurately
filtered out infeasible samples. The valid samples are those that successfully achieved
the intended payload capacity, meaning that they correspond to configurations that
could realistically represent this LV. Among these, the highlighted points indicate the
solutions with the lowest mean distance. They could be used for the S3D exhaust
inventory.
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Figure 4.32: Combination of unknown parameters for all the valid samples of the Complex Model
with Latin Hypercube sampling for the Long March 7 with a payload margin of 1%. The highlighted
samples correspond to the top 5% samples with the lowest summed mean distance to the others.

Overall, this test case demonstrates that the framework can accurately remodel a
new launcher even with limited and uncertain data. The ability to generate valid
configurations under such conditions illustrates the reliability of the methodology,
strengthening its potential to be extended to any expendable LV.

4.5. Concluding Discussion

This section summarises the results presented in the previous sections and discusses
their implications in the context of the research objectives. While the initial part of
this chapter focused on presenting findings and interpreting them within their specific
scope, this section consolidates these insights and addresses the research questions.
By doing so, it reinforces the coherence of this thesis and describes the contribution
of each step to the overarching aim of the work.

Before answering the research questions, it is important to check whether all the
requirements were fulfilled. Table 4.3 summarises this analysis and shows that all
requirements are met, with the corresponding sections in which they are validated.
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Table 4.3: Requirements with the corresponding sections where their VV is mentioned.

ID \ Requirement Summary \ Section Reference
1 (a) | Framework with two modelling paths. Section 3.1.3
1 (b) | IDS identifies missing parameters. Section 3.2.1
1 (c) IDS computes dependent parameters. Section 3.2.1
1(d) IDS finds inconsistent parameter combinations. Section 3.2.1
1 (e) | IDS has all parameters required by the tools. Section 3.2.1
1 (f) IDS is flexible for all expendable LVs. Section 3.2.1
1(g) | IDS handles exact values and parameter ranges. | Section 3.2.1
1 (h) | Framework stores all relevant results for reuse. Chapter 4

1 (i) Architecture supports future extensions. Section 3.2.1
2 (a) | TM runtime below 20 seconds. Section 3.1.3
2 (b) | CM runtime below 48 hours. Section 3.2.4
1 (a) | IDS provides a user-friendly interface. Section 3.2.1
3 (b) | Input data readable by Python code. Section 3.2.1
3 (c) User interaction minimised during execution. Section 3.2.4
4 (a) | User visualises results for both models. Section 3.2.4
4 (a)i | User can access all valid configurations. Section 3.2.4
4 (a)ii | Algorithm updates IDS with final data. Section 3.2.1
5(a) | Framework validates outputs for feasibility. Section 3.3

5 (b) User can choose selection criteria. Section 3.2.4
5(c) | System includes sensitivity analysis. Section 4.1

Then, the main research question and sub-questions will be answered in turn. For
each, the corresponding findings are outlined, and their significance is critically
examined. In addition, the strengths and limitations of the proposed framework are
considered.

Starting with the first research question, regarding the challenges of having uncertain
input data, the results of this thesis confirmed that incomplete or uncertain data
introduce some problems. The first is the variability of data availability across LVs.
While some rockets are well documented, for many, one can only find parts of the
technical data. Additionally, there are cases for which multiple sources indicate
different values for the same input parameter. In any case, these scenarios require a
flexible framework to accommodate different levels of detail and to operate with ranges
of unknown values. The IDS developed in this thesis directly addresses this issue by
allowing the user to input a specific parameter or a range to be explored when an
exact value cannot be found. Thus, it can deal with different levels of data availability.
Besides, due to the way it was built, the IDS can be used for all expendable LVs.

A second challenge lies in the propagation of the uncertainties. Small deviations
in stage mass or engine performance can significantly influence payload estimates,
as discussed in Section 4.1, or trajectory feasibility. The remodelling results risk
becoming unreliable without a mechanism to quantify and manage this uncertainty.



45. Concluding Discussion 89

Here, the integration of statistical sampling methods was essential, allowing ranges
of unknown parameters to be methodologically explored and validated.

Finally, the results highlight the computational burden of managing incomplete data.
Running thousands of simulations is expensive, even more when using complex
trajectory optimisation. For instance, each plot like Figure 4.14 required around two
or three days of simulations with the current computational resources. For each test
case run with the CM, it took around two days to be completed, using only one or two
thousand samples. This required a detailed plan for a strategy to approach the testing
phase, as testing every possibility was not possible. This justified the choice of having
test cases with increasing complexity. The goal was to cover as many scenarios as
possible with as few computational resources as possible. Still, some more testing
is recommended to improve this framework’s efficiency and reliability, but that will be
discussed in Section 4.6. Still, all the research done regarding statistical methods
was useful. It allowed the author to find the most efficient strategy to explore the
pre-defined ranges for the uncertain parameters within the available computational
power.

All these challenges together impose certain limitations on the framework. One cannot
have an LV with ten unknown input parameters because the results are not sufficiently
accurate. Looking at Figure D.4, the whole uncertain range was filtered as valid for
most unknowns. This means that the framework was not successful in identifying
a realistic LV configuration, not even for a narrow payload range, as desired. The
validation strategy using payload boundaries has proven reliable for most test cases
when these boundaries are tight. However, beyond a certain number of unknown input
parameters, their combined effect generates valid configurations across most of the
sampling space. Due to limited computational resources, it was not possible to test
every possible number of unknown input parameters. Nonetheless, test cases up to
five unknown parameters yielded narrow results when the payload range was below
3%.

Considering this, five is the maximum number of uncertainties needed to achieve
a final valid range for each parameter that differs from the entire sampling space.
However, the results have shown that the accuracy of this framework heavily depends
on how broad the pre-defined payload ranges are. Some cases with only two uncertain
input parameters produce results scattered throughout the entire sampling region.
Although precise outcomes were not obtained for more than five unknown input
parameters, the payload range must still be kept narrow for LVs with more available
data.

Regarding the second research question, about creating the various models without
accurate data, the findings demonstrate that even with incomplete information, reliable
LV models can be built. As seen with the LM 2C and the LM 3B/E, the obtained results
are within 2% of their real values when the payload range is known and below 3%.
Most of them were even within 1%. Compared to the traditional uncertainty associated
with LV remodelling, which is around 5% to 10%, it is a great improvement. Still, only
expendable liquid rockets were analysed, as it was not possible to test other types
of LVs (more details about this in Section 4.6). Thus, the remodelling framework
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developed in this thesis can make mass and aerodynamic models from uncertain input
parameters, by pinpointing the initial uncertain range towards the realistic value.

Sensitivity analyses revealed that not all parameters contribute equally to the outcome.
A subset of parameters, such as structural mass or vacuum maximum I,,, showed a
much higher influence on payload capability than others. Another conclusion was
that if a parameter has a relatively large uncertainty range, its influence is more
noticeable on the final result. The same occurs for parameters which are relatively
important when considering the terms of Equation 3.11. As a result, the more
impactful parameters will filter themselves out, as they will cause a higher variation
in the payload. This means that the user should particularly focus on finding close
boundaries for the less sensitive parameters. These will likely have a wide valid range,
even for tighter payload boundaries.

Finally, the integration with the CM preserves the feasibility of the trajectories. The
framework ensures that mass, aerodynamic, and trajectory models remain realistic,
even when based on incomplete input data.

Concerning the third research question, about the best statistical sampling method
for this remodelling framework, the comparative testing procedure showed clear
differences in their performance. LH sampling proved to be the most efficient one. In
the end, both methods work and yield similar results. However, ABC converges more
slowly, requiring more samples to achieve the same accuracy. It is also not possible
to predict the total number of samples required for the ABC to converge, as one
defines the number of valid samples. Thus, the simulation might run for longer than
the established limit of 48h (Req. 2b). Finally, as explained in Section 4.3, LH enables
the user to change the post-processing by, for instance, redefining the payload range.
This is particularly useful to remodel newer LVs, with less publicly available information.
As they are more frequently launched, more data can be gathered, and a tighter
payload range can be defined. Therefore, even if it was initially wide, it can be
narrowed down later to yield more realistic results. For these reasons, LH sampling is
the best statistical method for any type of LV and for any number of uncertainties. Thus,
it is the best-suited method to define the possible ranges of unknown parameters.

The last research question, regarding overall accuracy, has already been partially
answered. The whole framework, starting with the IDS, was developed to be as
flexible as possible. The main principle behind it was to have a final product able
to handle varying data availability and complexity levels. The test cases confirm that
the results can be accurate even for LVs with poor data availability.

Together, the research questions demonstrate that the proposed framework
successfully addresses the central goal of automating the LV remodelling process and
handling incomplete or uncertain data. By structuring the workflow around a flexible
IDS, dedicated statistical methods, and an overarching rocket trajectory optimiser, the
framework ensures reliability and accuracy even when some input parameters are
missing or uncertain. Thus, it provides a novel and practical solution to the main
research question. Still, a few limitations remain that should be acknowledged.

Firstly, estimating the payload before the remodelling process is difficult. In cases
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where only generic payload capacities are available (e.g., “to LEQO”), it is unclear
whether this refers to a lower-altitude or higher-altitude orbit. Such ambiguities can
significantly affect the outcomes. As seen in Section 4.4, wide payload ranges
negatively impact the accuracy of the results. Finding the exact payload to a certain
mission is challenging, and it can complicate the remodelling process, particularly if
there are around five or more unknown input parameters.

Moreover, the computational effort must be considered. The number of samples
chosen strongly influences the runtime. In addition, if multiple missions are selected
for the same LV, the simulation time is scaled up by a factor equal to the number of
missions. With the available computational resources, 96 cores, the nominal runtime
for a single rocket is between one and two days. With an everyday laptop with four
cores, this should take more than 20 times longer than the current duration. Using
a supercomputer, for instance, with 96 cores twice as fast as the available ones,
could improve this run-time by half. To sum up, with the current computational power
available, complex LVs (with four stages) must be limited to one mission.

Finally, this framework’s implementation is still not overarching enough. Currently, it
only works for expendable LVs with liquid propellant stages without a thrust profile.
Developing this remodelling tool was quite complex, so the starting point was defined
for this kind of LV. However, the whole framework is ready to handle other rockets, as
long as the necessary changes are made.

4.6. Future Work

Based on the limitations identified above, there is room to further enhance the
performance and applicability of this framework.

Firstly, improvements to the TM should be considered. While it fulfilled its role as
a quick environment for testing statistical methods, its physical accuracy could be
refined. In particular, modelling the losses (gravitational, drag, and thrust) requires
deeper investigation to find better correlations with the input parameters. Similarly, the
averaging of the boosters I, and the instant of the fairing jettisoning could be refined
to better capture their effects on the Av budget. These enhancements would increase
the TM’s reliability. They might even strengthen its role as a potential pre-filtering tool
for the CM. If parts of the initial unknown ranges could be removed with a very small
computational effort by using the TM with a larger tolerance, the CM could be used
for a narrower region, thus requiring fewer samples and time.

Secondly, this remodelling framework should be expanded for any expendable LV, as
a first step, and subsequently to reusable LVs. Even though it is limited to liquid
propellant rockets, this is an important first step. It allowed for the framework’s
validation. The next step is adding capabilities to deal with different LVs. This has
been taken into account from the beginning, nonetheless. The IDS already has fields
for solid rocket motors and thrust or mass flow rate profiles. Also, CLAVA and the UQ
files need a new structure within the engine object to handle thrust profiles. Finally,
TOSCA and STSM are prepared to deal with any kind of LV, so the only thing to
do is to make the adapter read this extra information from CLAVA and pass it to the
SART Toolbox files. The last step to do is to run test cases to validate this improved
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framework. Regarding reusability, the framework does not have anything planned
yet, as this was too complex to be considered during such an initial phase of this work.
Lastly, still regarding the SART Toolbox, an engine model could be created for each
LV. This details the engine’s functioning and helps further understand its behaviour. It
was not included in this thesis, but it is another functionality that could be seamlessly
added.

Thirdly, the limited computational resources led to an optimised strategy during the
testing phase. The author tried to test as many scenarios as possible, but this implied
some trade-off. For instance, not every number of unknown parameters was tested.
This means that five might not be the real limit for an accurate result. In addition,
this number may vary depending on the parameters used as uncertain. With five
parameters with an insignificant impact, maybe the valid ranges for each unknown
will be as wide as their initial ones. Since not all combinations of unknown input
parameters were tested, this problem could not be solved. Furthermore, the SA
could not be performed as thoroughly as desired. Results with higher sample counts
and more test cases would be interesting to see with the CM. This is recommended
to be made in the future, as it might help reduce the confidence intervals and
improve the assessment of each parameter’s influence. Overall, some more testing
should be performed to sharpen this framework’s accuracy and extract its maximum
performance.

Lastly, the framework could benefit from better strategies for handling payload
uncertainties. Currently, relying on generic payload values (for example, 'to LEO’)
introduces ambiguity that can jeopardise the results. Investigating ways to estimate
or constrain these payload ranges more rigorously would improve the reliability of
the results. Perhaps one could implement a reinforcement learning model trained on
known vehicles or missions. In addition, the same model could be applied to estimate
ranges for unknown parameters based on similar LVs. It would use a database with
existing models to learn similarities between rockets with the same number of stages,
propellants, payload capabilities, etc. Then, once a new LV was desired, this algorithm
could suggest values or ranges for each unknown parameter based on LVs with similar
characteristics. This could accelerate the remodelling process while yielding even
more realistic results, as it would narrow down the uncertain ranges.

Despite these constraints, the framework was able to provide meaningful answers to
all the research questions. This demonstrates that the central problem of automating
LV remodelling while handling incomplete or uncertain input data can be addressed
effectively, even if certain practical challenges remain. Thus, this framework has the
baseline to start creating new rocket models, to improve the existing S3D results that
only consider the LVs already remodelled, as in Figure 4.33.
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Conclusion

This thesis presents the development of a semi-automated framework for launcher
remodelling that handles uncertain data. The framework integrates a flexible
input data sheet, statistical estimation methods, and trajectory modelling tools to
automate the creation of mass and aerodynamic models while validating optimised
trajectories. Through this work, it was demonstrated that the remodelling process
can be significantly accelerated while still achieving reliable results, even when the
available data is limited or inconsistent.

Its main contribution is to bridge two previously separated research domains:
rocket remodelling and statistical estimation of unknown input parameters. Existing
remodelling approaches use complete technical datasets, while statistical methods
such as Monte Carlo, Latin Hypercube, and Approximate Bayesian Computation have
mainly been applied in unrelated fields. By combining these two domains, this thesis
addressed a clear research gap and delivered a methodology capable of handling
realistic scenarios, where technical parameters are often missing or contradictory.

The framework was successfully tested in multiple case studies. That showed that
applying statistical methods to estimate unknown parameters results in feasible and
validated launch vehicle configurations. Consequently, the thesis provided a useful
tool for launcher analysis and new insights into the role of statistical sampling in the
aerospace sector.

The framework offers several significant benefits. Its modular design ensures
flexibility, allowing it to handle rockets with different numbers of stages and varying
levels of input data availability. This is considered from the interactive input data
sheet up to the trajectory optimisation tool. Also, once validated against a narrow
payload range, the Complex Model provides accurate and realistic results, within 2%
of the real ones. The post-processing stage is easily adaptable, giving users control
over selection criteria and validation thresholds. In addition, the workflow reduces the
dependence on manual work while keeping the process easily understood by other
users apart from the author. Overall, the framework is a practical tool that can be
adapted, extended, and used to build more realistic launcher models.
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Nevertheless, the framework has some limitations. Currently, it is restricted to
expendable launch vehicles with liquid propulsion, excluding hybrid, solid, and
reusable systems, which nowadays make up a significant portion of launch activity.
Moreover, it demands a lot of computational power that is not easily accessible.
Even when available, it takes around two days of simulations to produce a valid
launch vehicle model. The number of unknown parameters it can handle at once
is also limited to five. For more than that, the accuracy decreases. Additionally,
the framework requires a relatively narrow payload range, below 3%, to validate
configurations. If only generic payload data (e.g., “to LEQ”) is available, the results
become less reliable. Lastly, while it is useful for testing statistical methods, the Test
Model relies on simplifying assumptions for losses, fairing jettison, and propulsion
averages, which limit its predictive power as a pre-filtering tool. All of these issues are
areas where future refinement is possible.

Beyond the technical scope, this thesis’s relevance extends to broader questions
of sustainability in spaceflight. As highlighted in the introduction, the environmental
impact of rocket exhaust is still poorly quantified. Yet, it represents a potentially critical
driver of atmospheric change [3—8]. Projects such as the S3D depend on accurate
launch emission inventories to assess emissions at different altitudes. To create them,
it is vital to have launcher models as realistic as possible. By making the remodelling
process faster, more reliable, and less dependent on manual work, this thesis directly
contributes to the development of these comprehensive inventories.

In summary, although challenges remain, this work demonstrates that it is possible
to automate the remodelling of launch vehicles and design it to handle uncertainty.
Therefore, it improves the capability to assess the environmental footprint of
spaceflight. The launcher models resulting from this framework will be more
realistic than the current ones, enabling a better evaluation of their exhaust and its
consequences. Once a complete global launch emission inventory is built, some
conclusions will arise such as, for example, the propellant that causes the least
environmental impact. Thus, as launch activity continues to grow, this framework
will play an essential role in enabling more sustainable space transportation activities.
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Planning

In this appendix, the work to be done is divided into work packages. Then, they are
described and their interconnections are explained. The final project planning can be
seen in the Gantt chart (Figure A.1).

202502 202503 2025-04 202505 2025-08 202507 2025-08 2025-09
Task Name

~ Literature Review and Project Plan —:]
Research on Rocket Remodelling and Comp. _:E
Project Plan Formulation
Project Plan Delivery

Minimum Required Parameters
Data Sheet Format Selection '%
Adaptation to DLR Software Tools ;‘
Data Sheet Development _ﬂ
Documentation (]
Transformers _’j
~ Ssimpler Model Develoment [
Equations Selection L%—‘
Model Development

Computational Statistics Method Selection [é

Parameter Range Estimation E}T—‘
Documentation {
Mig-term Review i *

~ Complex Model Development [ ]
Parameter Range Estimation -LJ’
Final Model Selection L'T-‘
Documentation

~ Testing and Validation 1
single Trajectory Validation

Statistical Evaluation ’-]> L]’

*

«

Apply Process to Examples with Different Le. ,1

Comparison with Manual Results
Documentation ’-]>
~ Documentation ’_T—h
Writing Dratt Thesis Report
Green Light Review }:
Writing Final Thesis Report
Thesis Hand-In *
~ Thesis Defence [

Preparation [

Thesis Defence Presentation &

Powered by: onlinegantt.com

Figure A.1: Gantt chart with all work packages and their duration and organisation in the overall
planning structure.
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Firstly, the work packages are listed and explained:

1. Literature Review and Project Plan (5 weeks): This task has the Project Plan as
a deliverable.

(a) Research on Rocket Remodelling and Computational Statistics Literature:
this task consists of finding the relevant previous literature related to both
rocket remodelling and statistical methods used to solve identical problems
with a lack of input parameters.

(b) Project Plan Formulation: compiling all the findings and writing the project
plan.

2. Input Data Management (4 weeks): by the end of this work package, the input
data sheet should work with the required capabilities.

(a) Adaptation to DLR Software Tools: this task is important for the author
to get acquainted with the new software tools (different from the previous
internship) that will be used for this thesis.

(b) Data Sheet Format Selection: this task consists of finding suitable formats
to be able to handle the missing data and choosing the best one for this
problem.

(c) Minimum Required Parameters: before starting to develop the data sheet,
it is required to identify the different combinations of the minimum amount
of input parameters needed both for the remodelling process and for the
validation cases.

(d) Data Sheet Development: this task involves the creation and evolution
of the data sheet, making sure that it is infused with the data handling
capabilities required.

(e) Documentation: Writing the documentation regarding this work package.

3. Transformers (4 weeks): this task involves developing the "connectors” between
the input data sheet and the SART Toolbox programs; they will transform the
data (from the TBD input data sheet format) into a format readable by those
tools. By the end of this task, all combinations of the SART Toolbox files (TOSCA,
STSM CAC, etc...) should be ready to be executed. The code should now be
able to receive the input parameters and create all the combinations of SART
Toolbox files to be run.

4. Test Model Development (4 weeks): by the end of this task, the test
remodelling method should be working and capable of dealing with uncertainties.
Furthermore, the statistical methods for generating data samples and evaluating
the unknown parameter ranges should be tested and functioning. The code
should be able to generate simplified results at this stage. In addition, the
mid-term review will take place near the end of this task.

(a) Equations Selection: this task involves researching the equations needed
to calculate the Av necessary, as well as any other parameters that might
be used for VV.



106

(b) Model Development: after selecting the equations needed for the
remodelling process, they have to be implemented in the code with the
necessary interconnections.

(c) Computational Statistics Method Selection: this task consists of thoroughly
analysing the computational statistics methods presented in the literature
review and then selecting the most appropriate one(s) for this particular
task.

(d) Parameter Range Estimation: after carefully opting for a certain statistical
method, the next step is obtaining the range for each unknown parameter
to make the remodelling process realistic, followed by a sensitivity analysis.

(e) Documentation: Writing the documentation regarding this work package.

5. Complex Model Development (3 weeks): by the end of this task, the more
complex remodelling method should be working and capable of dealing with
uncertainties and providing the combinations of working models for each rocket.

(a) Parameter Range Estimation: after selecting and testing the best-suited
statistical methods, they are applied again, to estimate the range for each
unknown parameter, but now using DLR’s software tools, followed by a
sensitivity analysis.

(b) Final Model Selection: this task involves developing the algorithm capable
of selecting the best or most exact models for each type (mass, trajectory,
etc.), among the numerous ones that passed the validation step.

(c) Documentation: Writing the documentation regarding this work package.

6. Testing and Validation (5 weeks): by the end of this task, the whole algorithm
should be finalised and contain no issues.

(a) Single Trajectory Validation: this is a step to verify if the obtained trajectory
is feasible and realistic for every combination of sampled input parameters
for each LV.

(b) Statistical Evaluation: this task involves gathering the range of each input
parameter that produced a realistic rocket model and then deciding whether
the loop process occurs or the results are already definitive.

(c) Apply Process to Examples with Different Levels of Data Availability: this
task consists of testing the methodology with examples containing different
levels of data availability (from full, to some, to little) and iteratively refining
the process as errors arise.

(d) Comparison with Manual Results: this task involves comparing the
proposed methodology with manual results, for instance, the ones
developed in the internship that led to this thesis.

(e) Documentation: Writing the documentation regarding this work package.

7. Documentation (3 weeks): by the end of this task, the MSc Thesis report should
be completed; moreover, the green light review is planned to be close to the end
of this task, and the thesis will be handed in after this work package is completed.
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(a) Writing Draft Thesis Report: this task consists of finalising the writing of the
final report’s first draft and iteratively improving it.

(b) Writing Final Thesis Report: this task involves making small adjustments
to the report after all the feedback is given.

8. Thesis Defence (2 weeks): by the end of this task, the MSc Thesis will be
completed; it culminates in the completion of the master’s degree.

(a) Preparation: this task consists of preparing the slides and content for the
final presentation.

However, even though the work is split into the previously listed packages, the code’s
implementation order will likely differ. Figure A.2 shows a flowchart with the detailed
planned algorithm steps.

Statistical Parameter
Input » Transformers — CLAVA/.UQ —> Sample > Lists/Combi- —— Transformers
Datasheet model files ;
Generator nations
i l i
5 SART Toolbox
Test Model files (tosca,
stsm, cac...)
Set of Complex
payloads Model

1 ]

. Validation of a
Selected Parameters Statistical :
[e—— K «—— . < single
Model intervals Evaluation ) )
configuration

Set of rocket
trajectories

Figure A.2: Detailed algorithm flowchart containing the main components of the developed
framework and their interconnections.

The predicted order of execution of the algorithm is now explained. The first step is
to fill in the input data sheet to identify the missing parameters. Then, the statistical
method will estimate a viable range for these unknowns, thus creating several lists
of parameters with all the possible combinations to be tested. They will then be
converted into a format that the SART Toolbox can read, and then the TOSCA,
STSM and CAC files will be created, one for each combination. Then, the user
either runs the test or the complex model, but, no matter which option is chosen,
the outcome will be several payloads, again, one for each parameter combination.
Finally, a validation method will filter the feasible trajectories and estimate the ranges
of unknown parameters that yield realistic rocket models. Finally, if necessary, further
iterations on the statistical sample generator will be performed to narrow down the
unknown parameters’ scope. If the user intends, the last step will be to choose the
model/trajectory that fulfils a specific performance criterion.



B.1

Input Data Sheet

Required Parameters List

This section presents the list of parameters about a LV needed for the remodelling
process to be automated. Firstly, the fairing/booster’s nose parameters are listed:

Number of stages/boosters (if applicable);
Stage/booster length;

Stage/booster diameter;

Fairing nose radius (r);

Fairing nose length;

Fairing radius;

Fairing cylindrical length;

Fairing connection length;

Fairing last radius;

Fairing mass;

Booster nose radius (r);

Booster nose length;

Booster nose base radius;

Booster nose extra cylindrical length;

Booster nose mass;

Figure B.1 contains two sketches to help better understand each parameter listed
above.
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(a) Fairing’s geometry sketch (b) Booster geometry sketch

Figure B.1: Component sketches of the rocket: fairing and booster

Then, the list of each individual stage/booster stage characteristics (geometrical,
propulsive, structural):

* Length;

* Diameter;

+ Surface quality factor;

* Number of engines;

» Single engine mass;

* Engine’s exhaust diameter;

+ Maximum mass flow rate per engine;
* Maximum Isp (vaccum and sea-level);
* Maximum thrust (vaccum and sea-level);
+ Total mass;

* Dry mass;

» Ascent propellant mass;

» Descent propellant mass (if applicable and for the future development of this
framework);

* Reserve propellant mass;
» Residual propellant mass;

Total propellant mass;
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* Propulsion mass;

 Structure mass;
Finally, the mission(s) details are presented:

» Launch site coordinates (latitude, longitude and altitude);

Target orbit apoapsis;

Target orbit periapsis;
 Target orbit inclination;

There are some extra parameters/information fields in the Excel sheet, but they are
not essential nor needed for the current state of this LV remodelling framework.

B.2. Excel Tabs Pictures

This section contains the pictures of the remaining tabs of the IDS not shown in the
main text.

General Sources (PLEASE ADD THE List of References |Links/Citations
Comments/Notes
Parameters Value CORRECT REFERENCE
MNumber of Stages 0
Boosters FALSE
Number of Boosters 2
GLOM (kg) 0

Fairing Sources (PLEASE ADD THE
Parameters Value CORRECT REFERENCE
Mose Radius (m)
MNose Length (m)
Fairing Radius (m)
Fairing Cylindrical Length {m)
Fairing Mass (kg)
Connection Length (m) *
Fairing Last Radius (m) *

Comments/Notes

W o U e W N e

=
=]

*only if applicable

Constants

gravitational acceleration (m*2) 9.80665
tolerance 0.001
atm pressure (kPa) 101.325

Booster Nose Sources (PLEASE ADD THE
Parameters Value CORRECT REFERENCE
Booster Nose Radius (m)
Booster Nose Length (m)}
Booster Nose Base Radius (m)
Booster Nose Extra Cylindrical Length (m)
Booster Nose Mass (kg) ‘

Comments/Notes

Figure B.2: IDS general tab

Parameter |NamEfVaIue

Rocket Name
Rocket ID
Version 1

Figure B.3: IDS identifier tab
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Number of Control Points
Profile Type | FaLse

Figure B.4: IDS thrust profile template tab

DO NOT WRITE IN THIS LINE

Case

Orbit Type
Launch Site Name
Launch Site ID
Latitude (°)
Longitude (°)
Altitude (m)
Apoapsis (km)
Periapsis (km)
Inclination (°)

Min Payload Capacity (kg)
Max Payload Capacity (kg)
Acceleration

1D (COSPAR, NORAD, etc...)
Sources

Comments

Figure B.5: IDS validation cases tab



C.1. Losses Results

The losses obtained from the trajectory optimisations performed for 16 rockets over
more than 40 target orbits in total are presented in this appendix. The author
remodelled the LM rockets during his internship, while the others were done by
different colleagues.

Test Model

Table C.1: Gravitational, Drag, and Thrust Losses for Multiple Rockets and Orbits

Rocket Orbit | Gravitational Loss (m/s) | Drag Loss (m/s) | Thrust Loss (m/s)
LM 2C LEO 1411.697 78.785 34.296
LM 2C SSO 1421.914 61.056 8.404
LM 2D LEO 1308.375 67.844 44 171
LM 2D SSO 1310.163 66.718 34.562
LM 2F LSS 2265.440 103.023 191.036
LM 3B/E GTO 1462.985 117.311 190.975
LM 3B/E MEO 1373.974 115.837 150.585
LM 3B/E SSO 2244109 91.780 203.774
LM 4B LEO 1365.865 91.282 185.262
LM 4B LEO 1346.446 84.857 165.201
LM 4B SSO 1753.991 53.999 38.689
LM 4C LEO 1640.504 72.900 181.095
LM 4C LEO 1386.362 77.366 141.221
LM 4C SSO 1372.449 79.115 132.646
LM 4C SSO 1326.246 89.366 204.933
LM 4C SSO 1478.559 65.657 49.215
LM 5 GTO 1788.172 104.375 104.059
LM 5B LSS 1995.636 97.550 91.881
Ariane 5 GTO 1460.881 88.726 520.093
Ariane 5 TLI 1659.249 79.774 295.651
Ariane 6 GTO 1582.436 171.123 171.908
Vega C SSO 1237.784 79.433 3.583
Falcon Heavy | LEO 1590.956 38.818 84.843
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Table C.1 — Continued from previous page

Rocket Orbit | Gravitational Loss (m/s) | Drag Loss (m/s) | Thrust Loss (m/s)
Falcon Heavy | LEO 1576.795 42.039 79.211
Falcon Heavy | LEO 1915.287 39.446 22.925
Falcon Heavy | LEO 1943.230 38.001 25.711
Falcon Heavy | LEO 1924.681 39.203 25.442
Falcon Heavy | LEO 1559.064 42.738 124.604
Falcon 9 LEO 1502.359 29.583 79.830
Falcon 9 LEO 1986.406 27.272 59.818
Falcon 9 LEO 2004.453 25.319 192.777
Falcon 9 LEO 1900.653 26.021 136.119
Falcon 9 LEO 1888.845 30.589 88.544
Electron LEO 1494.826 200.125 11.859
Electron LEO 1512.113 197.539 103.441
Firefly Alpha | LEO 1596.082 140.173 22.209
Firefly Alpha | SSO 1583.931 140.036 27.414
Terran 1 LEO 1765.345 129.415 38.734
Terran 1 SSO 1811.382 128.248 45.315
Vega-C SSO 1372.132 148.164 4.694
Vega-C LEO 1456.218 142.657 20.097
Average — ~ 1600 — ~ 100

C.2. Gravitational Loss Estimation

In this section, a couple of plots are presented to demonstrate the lack of a useful
correlation between the gravitational loss and the LV’s parameters that could influence
it.

Gravitational Loss vs. T/W
y =666.55x+730.72

w 2400 ™
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2 : . :
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T 1200
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1000
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Figure C.1: Gravitational Losses correlation with T/W
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Gravitational Loss vs. Burn Time
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Figure C.2: Gravitational Losses correlation with Burn Time

Figure C.3 and Figure C.4 show two of these examples. In both scenarios, the
coefficient of determination is very low, hence confirming the lack of a clear correlation.
A few more possibilities and combinations of parameters were tested (e.g. burn time
per stage, assuming an average flight path angle, adding powers to the parameters,
etc.). Still, the results were not the desired ones.

C.3. Drag Loss Estimation

After some research, the best way to estimate the drag coefficient without using
any velocity term was by including a term accounting for the impact of the nose’s
shape/geometry. Some authors studied the correlation between length-to-diameter
ratio and the drag coefficient ([94], [95]).

After analysing the available literature, the conclusion was that the total drag
coefficient had a fixed term (Cy..se) and a varying term based on its nose shape
(Ci.nose), @s shown in Equation C.1.

Cd = Cd,nose + Cd,base (C1)

Then, the first step was to find a formula that would accurately estimate the nose drag.
Based on the work developed by Hoerner, F. ([94]), an approximated expression was
computed for the nose variable drag coefficient part:

0.05
Cinose = W (C.2)
where L corresponds to the length of the nose’s ogival section, whilst D corresponds to
the nose’s base diameter (diameter of the cylindrical part of the nose). It is important
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to note that this approximate expression only works for a finesse ratio (L/D) below 2.
However, in this study and in general, no rocket was found with such a high value for
this parameter. Additionally, this expression is rather simple to achieve. On the other
hand, incorporating the whole spectrum of possible values for the finesse ratio results
in a far more complex equation. Thus, the simplified version was used.

The following step was to add the fixed term to this. To compute it, the adopted strategy
was to subtract the variable term from the initial drag coefficient resulting from the
trajectory optimisation. By rearranging Equation C.1, the C; pase Was obtained for each
case. Afterwards, since this cannot change, the average was determined. In the end,

the final expression was:

0.05
C;=0.2204 + ————
d + (L/D)05

After comparing the real results with the ones obtained through the expression above,
an average value error of 9% was achieved. Considering that this is only the test
model and that the final impact of such deviations is not high, no further improvement
was done.

C.4. Thrust Loss Estimation

In this section, a couple of plots are presented to demonstrate the lack of a meaningful
correlation between the thrust loss and the LV’s parameters that could influence it.

Thrust Loss vs. T/W (2nd Stage)
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Figure C.3: Thrust Losses correlation with T/W (2"? Stage)
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Thrust Loss vs. Burn Time (upper stages)
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Figure C.4: Gravitational Losses correlation with Burn Time (upper stages)

The two plots above illustrate the bad correlations found for the thrust loss. The
coefficient of determination is low, hence this deduction. A few more possibilities
and combinations of parameters were tested (e.g. burn time divided by Isp times T/W,
with or without exponents, etc.). Still, the results were not the desired ones.
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Resultsand D

This appendix contains results from that help understand the content of Chapter 4.

D.1. Sensitivity Analysis

This section has the plots for the second-order indices results. As discussed in Section

4.1, a higher sample count is needed to better evaluate these results.

-0.05

Figure D.1: Sensitivity analysis second order results including confidence intervals for test case

LM2C 5U using the Test Model.
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Figure D.2: Sensitivity analysis second order results including confidence intervals for test case

LM2C 5U using the Complex Model.

D.2. Statistical Methods Performance

This section contains one example of a table with the results from the intensive testing
phase involving the TM. Each study corresponds to a different sample count.

Table D.1: Summary statistics of the structure mass of stage 2 for test case LM2C 2U.

Study Min Q25 Median Q75 Max Mean Std
study_ 1 3018.41 3148.35 3243.18 3352.03 3523.70 3259.75 156.47
study 2 3017.15 3172.18 3289.18 3409.59 3530.60 3272.95 152.56
study 3 3026.91 3192.55 3346.52 3486.79 3559.95 3335.04 170.53
study 4 3011.89 3186.67 3323.34 3421.68 3511.73 3296.32 141.64
study 5 3032.95 3169.71 3305.75 3411.75 3567.75 3293.09 145.00
study 6 3000.57 3147.96 3304.24 3428.06 3555.46 3289.45 154.23
study 7 3006.06 3178.82 3308.11 3413.12 3569.53 3293.89 146.50
study 8 3001.30 3171.12 3303.57 3421.39 3573.65 3292.43 148.79
study 9 3001.62 3182.12 3310.39 3415.67 3566.31 3296.99 145.59
study_10 3000.61 3165.91 329547 3416.97 3574.15 3288.54 148.11
study_11 3000.05 3166.66 3295.95 3413.45 357543 3288.53 148.05
study_12 3000.23 3170.25 3302.41 3416.33 3575.31 3292.28 147.96
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D.3. Complex Model Results

This section contains some extra plots with results from the CM.
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Figure D.3: Combination of unknown parameters for all the valid samples of the CM with LH
sampling for test case LM3BE 5U with a payload margin of 7% intentionally deviated from the right
values for comparison. The highlighted samples correspond to the top 5% samples with the lowest
summed mean distance to the others.
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Figure D.4: Combination of the selected unknown parameters for all the valid samples of the CM with
LH sampling for test case LM2C 10U with a payload margin of 2.5%. The highlighted samples
correspond to the top 25% samples with the lowest summed mean distance to the others.



	Nomenclature
	Introduction
	Outline
	Company Background

	Literature Review and Project Plan
	Remodelling Process
	Statistical Methods to Handle Uncertainties
	Research Gap
	Research Goals
	Research Objective
	Research Question

	Requirements

	Methods
	Theory
	Rocketry Equations
	Statistical Methods to Handle Uncertain Parameters
	Calculation Models
	Tools

	Practical Implementation
	Data Collection
	CLAVA Conversion
	Test Model
	Complex Model
	Statistical Methods to Handle Uncertain Parameters
	Test Cases

	Expected Results
	Verification and Validation

	Results and Discussion
	Sensitivity Analysis
	Test Model Results
	Complex Model Results

	Statistical Methods Performance
	Monte Carlo and Variants
	Latin Hypercube Performance
	Approximate Bayesian Computation Performance

	Comparison Between Latin Hypercube and Approximate Bayesian Computation
	Complex Model Results
	New Test Case - Long March 7

	Concluding Discussion
	Future Work

	Conclusion
	References
	Planning
	Input Data Sheet
	Required Parameters List
	Excel Tabs Pictures

	Test Model
	Losses Results
	Gravitational Loss Estimation
	Drag Loss Estimation
	Thrust Loss Estimation

	Results and Discussion
	Sensitivity Analysis
	Statistical Methods Performance
	Complex Model Results


