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Summary

The goal of this project is to investigate and implement online optimal and adaptive con-
trollers based on Actor Critic Designs for flight control. For online learning, nonlinear
system is approximated locally by linear model using incremental form. In this project,
novel controllers based on incremental models are discussed which includes Incremental
Model based Dual Heuristic Programming(IDHP), and Incremental Model based Action
Dependent Dual Heuristic Programming(IADDHP). Also, already existing model-free Ac-
tion Dependent Dual Heuristic Programming (ADDHP) controller is also investigated
which uses Finite Difference Method (FDM) instead of Incremental Model.

Three experiments are carried out to evaluate the performance of aforementioned online
model-free controllers for flight control. In first experiment, online system identification
methods are compared that are Sliding Window- Ordinary Least Square(SW-OLS), and
Recursive Least Square(RLS) to select one method to compare rest of the controllers.
In second experiment, Incremental model based Dual Heuristic Programming controller
(IDHP) and its Action Dependent (AD) form is compared based on success rate to identify
the significance of action dependence in DHP controllers. In third experiment, IADDHP
is compared with the existing model-free ADDHP controller in the literature which uses
FDM to find the require system dynamics. Comparison is done based on success rate,
performance under noise, and ability to adapt to changes in system dynamics. All these
experiments are implemented for nonlinear missile model control.

Experiments have shown that the RLS for online identification is better than SW-OLS
due to its quick convergence. It was also shown that the Action Dependent form of IDHP
has higher success rate and thus better performance. Similarly, it also performs better
than already existing ADDHP controller using FDM under normal conditions, noise, and
in failures. In short, among all online model-free methods, IADDHP controller has shown
best performance given same parameters.
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Online Action Dependent Dual Heuristic Dynamic
Programming using Incremental Model for Flight

Control
Shanza Ali Zafar

Abstract—This paper furthers the online model-free ap-
proaches in Approximate Dynamic Programming (ADP) by
developing Incremental Model based Action Dependent Dual
Heuristic Programming (IADDHP). In IADDHP, local system
dynamics is identified online which does not require any priori
knowledge about the model thus making it essentially ’model-
free’. Experiments are performed using missile model for refer-
ence tracking control and the results show that the IADDHP is
capable of finding near-optimal control for the task with noise
and system failure. It also outperforms the already existing model-
free ADDHP which uses finite difference method (FDM) and has
advantage over it in failure detection and adaptation. Being a
model-free method, IADDHP can be used for reference tracking
control for any system.

Index Terms—Action dependent dual heuristic programming
(ADDHP),Finite Difference Method (FDM),Incremental model,
model-free controllers, online learning, Reinforcement Learning
(RL).

I. INTRODUCTION

OPTIMAL adaptive control is of paramount importance
for all control systems especially flight control as it

achieves the desired objective effectively under all conditions
without unnecessary control effort. To solve optimal control
problem for nonlinear systems, it is required to solve Jacobi-
Hamilton-Bellman (JHB) equations which is rather compli-
cated because it involves solving nonlinear partial difference
equations [1]. Most of the classical optimal controllers for non-
linear systems are designed by linearizing the system around
certain operating points. These types of controllers provide
suboptimal performance at other operating points and require
gain scheduling. For this reason, we turn to reinforcement
learning (RL) to find adaptive optimal controllers.

Consider a nonlinear discrete system which can be written
as;

xt+1 = f(xt, ut) (1)

where t is the discrete time steps and xt ∈ Rn × 1 and ut ∈
Rm×1. Associated performance index or Cost-to-go function
at time t can be defined as Eq.2 which is the discounted sum
of all the future rewards at ’t’.

Jt =

∞∑

k=t

γk−tck (2)

γ is the discount factor with value ranging in 0 < γ < 1
and it describes the current worth of future rewards. ck is the
local cost function or utility function.

We can use Dynamic Programming (DP) to find the optimal
control policy compromised of optimal sequential control
actions u∗t for t = 0, 1, 2.... such that the cost-to-go function
is minimized(maximized) given complete system information.
Bellman principal of optimality for discrete time can be written
as,

J∗t = min
ut

ct + γJ∗t+1 (3)

where Jt+1 = J(f(xt, ut)). This recursive relation of value
function allows for the control action to be optimized one
step at a time by working backward in time. Optimal control
action u∗(xt) is the one which minimizes the optimal cost-to-
go function and can be written as Eq.4.

u∗(xt) = argmin
ut

ct + γJ∗t+1 (4)

DP is a very powerful tool that deals with the problem
of optimal control using sequential control actions given the
perfect model of the system by using the Eq.3. This is done
through exhaustive research from final point to the starting
point to look for the optimal policy by rejecting the suboptimal
paths at different points [2]. But, it remembers all the paths
which makes it quite computationally expensive for large state
space hence the Curse of Dimensionality. Also, the backward
search makes it impossible for the DP to be applied for real
time applications [3]. In addition to that, for complicated
nonlinear systems it is very difficult to obtain the exact value of
J∗. Another problem that we face with normal tabular methods
of RL is that of generalization that is how can experience from
a small state space be approximated to the larger state space.
This is important because we would like to implement the RL
controllers online for the states that has not been encountered
before.

To solve these problems, instead of finding the exact value
of cost-to-go function, function approximators can be used to
find an approximate value. Another important development in
the RL method is the Actor Critic structures in which actor
selects the action whereas critic evaluates the value function.
Separation of policy evaluation and policy improvement makes
it simpler to implement and learn. [4]. Using the approxi-
mation power of Neural Networks (NN) and combining it
with concepts of DP and actor critic structures led to the
development of Approximate Dynamic Programming (ADP)
or alternatively called Actor Critic Designs (ACD) in literature.
Although any function approximator can be used instead of
NN but NN are preferred due to their high approximation
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power. Traditionally, critic NN is used to approximate cost-to-
go function (J) and performs policy evaluation whereas actor
NN approximates the control action. Critic and actor interact
with each other to iteratively steer the control policy to the
optimal policy and this is done by using model NN.

Paul J. Werbos has generalized the previously suggested
structure for ADP in following categories; Heuristic Dynamic
Programming (HDP) in which critic approximates the desired
cost function (J) shown in Fig.1, Action Dependent HDP (AD-
HDP) in which actor output is directly connected to the critic
of HDP, Dual Heuristic Dynamic Programming (DHDP) in
which critic approximates the derivative of J with respect to its
states, and Generalized Dual Heuristic Dynamic Programming
(GDHP) which approximate both J and its derivatives [5].
Comparison of these methods has shown that the ADHDP
applied to the auto-landing problem has lower success ratio
than HDP. DHP performs better than HDP as they are directly
approximating the derivative instead of indirect calculation
of derivative in HDP obtained by backpropogation through
critic NN required for training of critic [6] [7]. GDHP does
not significantly outperform the DHP in auto-landing task but
its training is much more computationally expensive because
second derivative term that need to be calculated at every time
step [8]. Prokhorov & Wunsch furthered these categories by
introducing the AD forms of DHP and GDHP as advanced
actor critic designs and experimentally showed that these are
better than HDP and ADHDP [3]. Prokhorov & Wunsch also
suggested that although GDHP and ADGDHP outperforms
other methods, for most applications DHP and ADDHP are
adequate. Many of these structures has been used for different
flight control applications. In most of these examples, first;
Model network is trained offline for baseline controller and
then the controller adapts to the changes in dynamics online
[9], [10].

Critic NN

Actor NN

𝐽(𝑥𝑡)𝑥𝑡

𝑥𝑡

𝑢𝑡

Model NN
ො𝑥𝑡+1

𝑥𝑡

System
𝑥𝑡+1

𝑥𝑡

Critic NN

ො𝑥𝑡+1

𝐽( ො𝑥𝑡+1)

-

𝑢𝑡

γ

+
𝑐𝑡

Fig. 1: HDP: An Example of ACD

As mentioned before that model NN is essential to main-
tain the backpropogation paths but it also requires offline
training. To properly train the model NN, a large amount
of data distributed over the entire state space is required to
find appropriate global model estimate of the system. But
in most applications, especially in flight control, obtaining
this data can be quite expensive. Also it is not possible to

predict beforehand which states will be encountered during the
operation. Therefore, model-free approaches in ACD presents
themselves as quite a lucrative option and encompassing the
true essence of RL for control.

Earlies attempt for a model-free ACD is by using the AD-
HDP. In this structure, model network is completely omitted as
action NN can be updated by backpropogating through critic
NN as shown in Fig.2. Also the requirement for model NN
to train critic NN was averted by simply waiting for the next
term [6] [3] but a performance degradation was observed by
using this method. It is also important to note that same can

Critic NN

Actor NN

𝐽(𝑥𝑡)
𝑥𝑡

𝑥𝑡

𝑢𝑡

System
𝑥𝑡+1

𝑥𝑡
Critic NN

𝐽(𝑥𝑡+1)

-

𝑢𝑡

γ

+
𝑐𝑡

𝑢𝑡

𝑢𝑡

Fig. 2: Model-free ADHDP

not be done to obtain model-free ADDHP and ADGDHP as
they don’t just require one-step prediction from model NN
but they also need model NN to maintain backpropogation
paths. Si & Wang made very remarkable contribution in online
learning algorithm by proposing a model-free ACD closely
resembles the ADHDP structure with main distinction being
completely model-free without compromising on accuracy by
storing the previous cost-to-go value [8].This method has been
used successfully for many applications and will be referred
as modified ADHDP method [11] [12] [13].In flight control,
ADHDP has been applied to F-16 model and comparison was
done with HDP. Results showed that HDP with approximated
model dynamics outperforms ADHDP under changing dynam-
ics but ADHDP perform better with noise [14]. Russel &
Si also applied the model-free modified ADHDP to control
Apache helicopter for different realistic maneuvers and found
the controller performance to be satisfactory [15]. But as the
author pointed out, this study was done offline where a system
learns by trial and can afford failures. Liu et al. furthered this
modified ADHDP by introducing two methods to train the
critic NN namelybackward in time in which critic is trained
with Qt in Eq.?? as critic’s output by using 1/γ[Qt−1 − ct]
as target for training. whereas in forward in time approach,
critic network outputs Q(t− 1) and is trained with γQt + ct.
It is author’s opinion that the backward in time training can
lead to instabilities due to 1/γ term but it is worth noticing
that the MATLAB trainlm function was used to train the critic
network.

In this paper, to further improve the performance of online
model-free methods, ADDHP is investigated. As mentioned
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before, unlike ADHDP, ADDHP requires model information
to maintain the backpropogations paths for critic updates. Pro-
posed approach in this paper is to use increment based model
for nonlinear system. According to this, a nonlinear model in
the form of Eq.5 can be written in discrete incremental form
as Eq.6, given very high sampling frequency and slow varying
dynamics.

ẋ(t) = f(x(t), u(t)) (5)

∆xt+1 = Ft−1∆xt +Gt−1∆ut (6)

Therefore, instead of approximating the global model, local
model is approximated to avoid dealing with large set of
training data. This incremental model approach for control
has been successfully applied to control nonlinear system.The
incremental model approach for control which has been suc-
cessfully applied to control nonlinear system. It’s applications
include Incremental Dynamic Inversion (INDI) [16] [17], and
Incremental Backstepping (IBS) [18]. In ADP, an Incremental
Approximate Dynamic Programming (iADP) was developed
by Zhou et al. to find the near optimal control of nonlinear
system [19]. In ACD, incremental HDP (IHDP) used incre-
mental model to find the local system dynamics, instead of NN
for global dynamic model, to get the next state and next state
for training actor and critic. Online local system identifcation
can easily be performed using Ordinary Least Square (OLS)
methods or Recursive Least Square (RLS). Studies performed
showed that IHDP outperforms the traditional HDP and speeds
up the process of online learning for missile control [20].

In the literature, only other author who has implemented
online model-free ADDHP is Zhen et al by making use of
Finite Difference Method (FDM) [21] to find system dynamics
derivatives and applied it to a ball and beam problem. This
paper focuses on the development of model-free IADDHP and
compares its results with ADDHP using FDM.

II. ONLINE MODEL-FREE ADDHP STRUCTURES

Model-free ADDHP designs consist of three parts: Critic for
policy evaluation, Actor for policy improvement and System
Dynamics Matrix as opposed to Model NN in classical model
based ACD approaches as shown in Fig.3. DHP approximates
the derivative of cost-to-go as critic’s output which results
in higher success rate and accuracy as compared to HDP. In
ADDHP, there is a direct connection between actor and critic
network which makes training for the actor network easier and
it also improves the accuracy and convergence of the controller
as the derivative of Jt with ut is direct output of the critic.
Components of model-free ADDHP are described as follow.

A. Critic Network

Critic in ADDHP takes yt =

[
xt
ut

]
as its inputs and

approximates the derivative of Jt with input yt as its output,
which is given by Eq.7.

λt =
∂Jt
∂ŷt

(7)

where xt =
[
x1 · · ·xn

]ᵀ ∈ Rn×1 is system’s states,[
u1 · · ·um

]ᵀ ∈ Rm×1 is the control inputs, and λt =[
λtx1
· · ·λtxn

, λtu1
· · ·λtum

]ᵀ ∈ Rn+m×1 is critic’s output.

Critic

Actor System

System
Dynamics
Matrix

(2)

ut ut

xt

xt+1

xt, dt

ut

xt, dt

λ(yt) γ

ec

λ(yt−1)− ∂ct−1/∂yt−1
(1)

ea = λut

∂yt/∂yt−1

xt, xt−1, xt−2

ut, ut−1, ut−2

1

Fig. 3: Structure of Model-free Action Dependent Dual Heuris-
tic Programming

Critic is trained by minimizing the critic error defined in
Eq. 8

‖Ect‖ =
1

2
eᵀctect (8)

Prediction error for training backward in time for ADDHP
is stated in Eq.9.

ect =
∂[Jt−1 − {ct−1 + γJt}]

∂yt−1
(9)

ect = λt−1 − {
∂ct−1
∂yt−1

+ γ
∂yt
∂yt−1

λt} (10)

where ect ∈ R(n+m)×1 and ectk , kth element of ect ,
corresponds to the critic error for kth element of critic’s
input. The term ∂yt

∂yt−1
∈ R(n+m)×(n+m) contains the system’s

dynamics information and is obtained from System Dynamic
Matrix part of the model-free ADDHP structure. whereas,
∂ct−1

∂yt−1
can be written as Eq.11

∂ct−1
∂yt−1

=

[
∂ct−1

∂xt−1
∂ct−1

∂ut−1

]
(11)

ct is the local cost function and it’s definition depends upon
the mission at hand. In this paper, quadratic cost function is
used which is defined as Eq.12 to describe reference tracking
with minimum control effort.

ct(xt, ut) = (xt − dt)ᵀQ(xt − dt) + uᵀtRut (12)

where dt ∈ Rn×1 is the desired states, Q ∈ Rn×n and R ∈
Rm×m are positive definitive matrices chosen to describe the
relative importance of states and inputs in cost function. ∂ct−1

∂xt−1

in Eq.11 for ct which depends on ut can be written as Eq.13
for time t-1 using the chain rule.
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∂ct−1
∂xt−1

=
∂ct−1
∂xt−1

+

n∑

k=1

[ ∂ct−1
∂ukt−1

∂ukt−1

∂xt−1
] (13)

For ct described in Eq.12, ∂ct−1

∂xt−1
becomes;

∂ct−1
∂xt−1

= diag(Q)◦ (xt−1−dt−1)+diag(R)◦ (uᵀt−1
∂ut−1
∂xt−1

)ᵀ

(14)
where ∂ut−1

∂xt−1
is obtained by backpropogating through actor NN

structure. Similarly, ∂ct−1

∂ut−1
for Eq.12 is written as;

∂ct−1
∂ut−1

= diag(R) ◦ ut−1 (15)

where ◦ represents element-wise multiplication of a vector
with a matrix.

1) Critic NN Structure: To approximate λt, one hidden
layer multi-perceptron NN is used. This is show in Fig. 4
for MIMO controller. Based on the structure of critic NN, its
output can be written as;

λtk = purelin(vctk ) (16)

vctk =

Nhc∑

j=1

wctkj
pctj (17)

pctj = tansig(qctj ) (18)

qctj =
n∑

i=1

wctji
yti (19)

• λtk is the kth output of neural network
• vtk is the input to kth neuron.
• wctkj

is weight from jth hidden neuron to kth output
• ptj is the output of jth hidden neuron
• qtj is the input of jth hidden neuron
• wctji

is the weight from ith input to jth hidden neuron
• yi is the ith input to neural network
• n is the number of states
• Nh is the number of hidden neurons

x1

xm

um

un-1

λ1 =
𝜕𝐽

𝑥1

ἰ j k

wjἰ wkj

λ𝑛+1 =
𝜕𝐽

𝑢1

λ𝑛 =
𝜕𝐽

𝑥𝑛

λ𝑛+𝑚 =
𝜕𝐽

𝑢𝑚

Fig. 4: Critic Neural Network for DHP Structures

where purelin and tansig transfer functions can be changed
for the output neurons depending on the complexity of ap-
proximation. Tansig is equivalent to tanh mathematically but it
runs faster on MATLAB with slight numerical difference [22].
These transfer functions along with their derivative function
are calculated as;

a = purelin(b) = b (20)

∂a

∂b
= dpurelin(a) = 1 (21)

a = tansig(b) =
2

1 + e(−2b)
− 1 (22)

δa

∂b
= dtansig(a) = 1− a2 (23)

2) Critic NN Weight Update: In this paper, a recursive
Stochastic Gradient Descent (SGD) method also know as
Robbins-Monro algorithm is used to update NN weights for
actor and critic due to its ability to converge to an optimal
or near-optimal property [8] [4].Using Stochastic Gradient
Descent method, Weight update equation can be written as

wct+1
= wct + ∆wct (24)

∆wct = lct
[
− ∂Ect(xt, ut)

∂wct

]
(25)

where lt is the learning rate. According to [23], if the
learning rate satisfies the conditions in Eq.26 then for quadratic
Et, wt will converge to global optima w∗ otherwise it will
converge to a local optima with time. The convergence proof
of this is given in [8].

lim
t→∞

lt = 0,
∞∑

t=0

lt =∞,
∞∑

t=0

l2t <∞ (26)

Critic NN weight update equations can be written as;

1) ∆w
(2)
c (Hidden to Output Layer Weights)

Using Eq.25 and structure of the critic network given
by Eq.16 to Eq.19 , weight update equation from critic’s
hidden layer to output layer can be written as a matrix
∆w

(2)
c = [∆w

(2)
ckj ] ∈ Rn+m×Nhc

∆w(2)
ckj

= −lct
[ ∂Ect

∂ectk

][ ∂ectk
∂λt−1k

][ ∂λt−1k
∂vct−1k

][∂vct−1k

∂wctkj

]

(27)
∆w(2)

ckj
= −lct .ectk .pct−1j

(28)

Using column vectors for ect and pct−1j
, Eq.28 can be

rewritten as Eq.29.

∆w(2)
c = −lct .ect .pᵀct−1

(29)

2) ∆w
(1)
c (Input to Hidden Layer Weights) Critic neural

network’s weight update from input layer to hidden layer
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neuron can be written in a matrix ∆w
(1)
c = [∆w

(1)
cji ] ∈

RNhc×n+m

∆w(1)
cji = −lct

n∑

k=1

[ ∂Ect

∂ectk

][ ∂ectk
∂λt−1k

][ ∂λt−1k
∂vct−1k

]

.
[∂vct−1k

∂pct−1j

][∂pct−1j

∂qct−1j

][∂qct−1j

∂wctji

]
(30)

∆w(1)
cji = −lct

n∑

k=1

ectk .wckj .dtansig(qct−1j
).yt−1i

(31)
Using column vectors, entire matrix update ∆w

(1)
c can

be written as;

∆w(1)
c = −lct

[
eᵀct .wc

]ᵀ ◦
[
dtansig(qct−1

).yᵀt−1
]

(32)

B. Actor

The objective of actor is to produce the control policy u∗

which can minimize (maximize) error between Jt and desired
ultimate objective Ut.In this case, as the ct is defined in terms
of tracking error and control effort required, ideally we would
like Jt = 0 therefore Ut is set to 0. This control policy can
be written as Eq.33.

u∗ = argmin
ut

(Jt − Ut) = argmin
ut

(Jt) (33)

Actor NN weights are updated to minimize following error.

‖Eat‖ =
1

2
eᵀat
eat (34)

Using Eq.35 as target for actor weight update, we can write
prediction error as Eq:36.

∂Jt
∂ut

= 0 (35)

eat
= λut

(36)

where λut ∈ Rm×1 is obtained from critic i.e. λt =

[
λxt

λut

]

1) Actor NN Structure: Actor NN approximates the op-
timal control policy u∗t . For this, single hidden layer multi-
perceptron NN is used similar to Fig. 4. For MIMO ADDHP
controller, input to actor NN is the state vector xt whereas
its outputs is a control action vector ut. This output is then
given as input ti critic network and to simulate the real system.
Equation 37 to 40 make up the actor NN.

utk = tansig(vatk
) (37)

vatk
=

Nha∑

j=1

watkj
patj

(38)

patj
= tansig(qatj

) (39)

qatj
=

m∑

i=1

watji
xti (40)

2) Actor NN weight Update: Using stochastic gradient,
weight update for actor can be written as Eq.41

∆wat
= lat

[
λut

] ∂ut
∂wat

(41)

where ∂ut

∂wat
is calculated using backpropogation through actor

NN as derived below:
1) ∆w

(2)
a (Hidden to Output Layer Weights)

Using Eq.41, weights update equations from hidden
layer to output layer for actor can be written as a matrix
∆w

(2)
a = [∆w

(2)
akj

] ∈ Rm×Nhc .

∆w(2)
akj

= −lat

[
λutk

]
.
∂utk
∂vatk

∂vatk

∂watkj

(42)

∆w(2)
akj

= −lat
.
[
λutk

]
.dtansig(vatk

).patj
(43)

Eq.43 can be rewritten as Eq.44 using column vectors
for ∂ct

∂ut
, vat

, and pat
).

∆w(2)
a − lat

.
[
λut

]
◦ dtansig(vat

)ᵀ.pat
(44)

2) ∆w
(1)
a (Input to Hidden Layer Weights) Actor neural

network weights update from input layer to hidden layer
can be written in a matrix ∆w

(1)
a = [∆w

(2)
aji ] ∈ RNha×n.

∆w(1)
aji

= −lat

m∑

k=1

[
{λutk

}. ∂utk
∂vatk

∂vatk

∂patj

]
.
∂patj

∂qatj

.

.
∂qatj

∂watji

(45)

∆w(1)
aji

= −lat

m∑

k=1

[
{λutk

}.dtansig(vatk
).watkj

]
.

.dtansig(qatj
).xti (46)

Using column vectors, entire matrix update ∆w
(1)
a can

be written as;

∆w(1)
a = −lat

[[
{λut
} ◦ dtansig(vatk

)
]ᵀ
.watkj

]ᵀ

◦ dtansig(qat
)ᵀ.xt (47)

C. System Dynamics

As mentioned before, the term ∂yt

∂yt−1
in Eq.10 captures the

system dynamics of the system. This can be written as;

∂yt
∂yt−1

=

[
∂xt

∂xt−1

∂ut

∂xt−1
∂xt

∂ut−1

∂ut

∂ut−1

]
(48)

In classical methods, this information is obtained through
the Model NN. In the Model-free approaches, some alternate
way is required to obtain this information. In this report, two
methods are investigated to obtain ∂yt

∂yt−1
. These methods are

’Finite Difference Method (FDM)’ and ’Incremental Model’.
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1) Finite Difference Method: This method is proposed by
Zhen et al. in [21]. Instead of using Model NN, they sug-
gested using the Finite Difference Method (FDM) to find the
derivatives required in Eq.48. Using Taylor Series expansion,
’first-order backward difference’ derivative can be written as

∂qt
∂t
' q(t)− q(t−∆t)

∆t
+O(∆t) (49)

where O(∆t) is the truncation error associated with using
first-order approximation. This implies that the accuracy of
the approximation is proportional to the discretization step.
Therefore, data should be taken at high sampling rate for
better quality of approximation. Using chain rule and FDM,
derivatives in Eq.48 can be written as,

∂yt
∂yt−1

=

[
xt−xt−1

xt−1−xt−2

ut−ut−1

xt−1−xt−2
xt−xt−1

ut−1−ut−2

ut−ut−1

ut−1−ut−2

]
(50)

where xt, xt−1 ∈ Rn×1 and ut, ut−1 ∈ Rm×1 are column
vectors. FDM method described above for online system
identification is suitable for small noise-free systems with
rapidly changing dynamics [24]. Therefore, proper excitation
of the system is of paramount importance to avoid divergence.

2) Incremental Model: Another model-free approach to get
∂yt

∂yt−1
is by using incremental model instead of Model NN.

Non-linear continuous system can be defined by Eq.51 where
ẋ(t) represents the change in system dynamics and y(t) is the
output of system.

ẋ(t) = f(x(t), u(t)) (51)

y(t) = h(x(t), u(t))

Equation 51 can be linearized around a time to using Taylor
series expansion as Eq.52 which can be written as continuous
time-variant state space of incremental form as Eq.53

ẋ(t) ' ẋ(to) +
∂f(x(t), u(t))

∂x(t)
|x(to),u(to)(x(t)− x(to))(52)

+
∂f(x(t), u(t))

∂u(t)
|x(to),u(to)(u(t)− u(to))

∆ẋ(t) ' F (x(to), u(to))∆x(t) +G(x(to), u(to)∆u(t) (53)

where F (x(to), u(to)) = ∂f(x(t),u(t))
∂x(t) |x(to),u(to) ∈ Rn×n is

the state matrix and G(x(to), u(to)) = ∂f(x(t),u(t))
∂u(t) |x(to),u(to)

∈ Rn×m is the input matrix.
Although a system can be continuous but the data obtained

from sensors is discrete. Therefore, Eq. 51 can be written in
discrete form for a system with very high sampling frequency
and full state observations as Eq.54.

xt+1 = f(xt, ut) (54)

yt = h(xt, ut) = xt

Linearizing this equation around previous time step t − 1
will give us Eq.55.

∆xt+1 ' Ft−1∆xt +Gt−1∆ut (55)

where ∆xt = xt − xt−1, ∆ut = ut − ut−1 and
Ft−1 ' ∂xt+1

∂xt
|model ∈ Rn×n and Gt−1 ' ∂xt+1

∂ut
∈ Rn×m

are system matrix and input matrix at t − 1 respectively
for discrete system.As we are assuming the slowly time
varying system with high sampling frequency, these matrices
representing the linear system can be easily identified online
by linear regression methods by taking some previous
measurements into account. After analyzing Sliding Window-
Ordinary Least Square(SW − OLS) and Recursive Least
Square (RLS) for system identification, RLS is selected to
be used in this paper for its better performance.

Recursive Least Square
For the online identification of linear model, RLS is a very

powerful method as it recursively update the estimate as new
measurements become available and doesn’t require saving all
previous measurement. It also has better convergence than
other least square methods but it is computationally more
intensive [25].

For our linearized model,Eq.55 can be rewritten as Eq.56
which can be solved by RLS summarized in Eq.59 to 62

by taking Θ̂(t) =

[
F ᵀ
t−1

Gᵀ
t−1

]
as the parameter to be estimated

and ψ(t) =

[
∆xt
∆ut

]
as the regression matrix which contains

information about previous measurements [26].

∆xt+1 =

[
∆xt
∆ut

]ᵀ [
F ᵀ
t−1

Gᵀ
t−1

]
(56)

∆x̂(t) = ψ(t)ᵀΘ̂(t− 1) (57)

e(t) = ∆x(t)−∆x̂(t) (58)

Θ̂(t) = Θ̂(t− 1) +K(t)(e(t)) (59)

K(t) = Q(t)ψ(t) (60)

Q(t) =
P (t− 1)

Λ + ψ(t)ᵀP (t− 1)ψ(t)
(61)

P (t) =
1

Λ

[
P (t− 1)− P (t− 1)ψ(t)ψ(t)ᵀP (t− 1)

Λ + ψ(t)P (t− 1)ψ(t)ᵀ
]

(62)

Λ is the forgetting factor which ensures that the weight
of previous values is discounted exponentially for older
measurements when Λ < 1. For systems with high varying
dynamics, Λ should be small but this filters small noise. For
higher values of Λ(around 0.998), larger noise can be allowed
but tracking the changes in parameters is slower. P (t) is the
covariance matrix that should be initialized as P (0) = κI
where κ should be very large for convergence [27]. θ(t) is
initialized with F0 = I and G0 = O.

Backpropogation using RLS
Incremental model can be used to maintain the backpro-

pogation paths i.e. to find the term ∂yt

∂yt−1
in Eq.10. Using

chain rule and actor NN, component of matrix can be written
as;

∂xt
∂xt−1

=
∂xt
∂xt−1

|model +
∂xt
∂ut−1

∂ut−1
∂xt−1

|model+actor (63)
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∂ut
∂xt−1

=
∂ut
∂xt

∂xt
∂xt−1

|actor+model (64)

∂ut
∂ut−1

=
∂ut
∂xt

∂xt
∂ut−1

|actor+model (65)

Substituting Ft−1 ' ∂xt+1

∂xt
|model, and Gt−1 ' ∂xt+1

∂ut
|model

in above equations, ∂yt

∂yt−1
becomes ;

∂yt
∂yt−1

=

[
Ft−2 +Gt−2

∂ut−1

∂xt−1

ᵀ ∂ut

∂xt
Ft−2

ᵀ

Gt−2
ᵀ ∂ut

∂xt
Gt−2

ᵀ

]
(66)

III. ALGORITHM FOR ADDHP

Pseudo-code for ADDHP with FDM is given in Algorithm
1. Similar to this, Algorithm 2 gives an overview of Incremen-
tal model based ADDHP i.e. IADDHP.

Algorithm 1 Model-free ADDHP-FDM

1: Initialization of variables x0, γ, w(1)
c ,w(2)

c , w(1)
a ,w(2)

a , Q,
and R

2: for i = 1→ N do . Total simulation time=N × dt
3: if i = 1 then
4: for k = 1→ 3 do
5: xk+1 ← Excite the real system with uk
6: end for
7: ∂yt

∂yt−1
|0 ← Calculate the initial system dynamics

matrix using FDM
8: end if
9: ut, ut−1 ← Forward calculate actor (xt, wat

),
(xt−1, wat

)

10: λt, λt−1 ← Forward calculate critic (yt=
[
xt
ut

]
,wat

),

(yt−1, wat)
11: wct+1

← Update critic NN weights(yt−1,λt, λt−1,
∂ct−1

yt−1
, ∂yt

∂yt−1
)

12: λ(xt)← Forward calculate critic(ŷt, wct+1
)

13: wat+1
← Update actor NN weights(xt, λut

)
14: ut ← Forward calculate actor(xt, wat+1

)
15: xt+1 ← Simulate real system (xt, ut + uPE)

. Persistent Excitation(PE) for exploration
16: lt ← Update learning rate for actor and critic
17: ∂yt

∂yt−1
← Update system dynamics matrix for new

measurements using FDM
18: end for

IV. SIMULATION FOR FLIGHT CONTROL

In this section, numerical simulation setup for the ap-
plication of aforementioned ADDHP algorithms for missile
reference tracking control is discussed. Different experiments
are designed to identify and investigate various parameters
to find the optimal controller setting and the controllers are
compared based on their performance.

Algorithm 2 Model-free IADDHP

1: Initialization of variables like x0, γ,Λ, P0,Θ0,,
w

(1)
c ,w(2)

c , w(1)
a ,w(2)

a , Q, and R
2: for i = 1→ N do . Total simulation time=N × dt
3: if i = 1 then . To calculate Fo, Go

4: for k = 1→ 2 do
5: xk+1 ← Excite the real system with uk
6: end for
7: ψ(t)|0 ← Calculate initial regression matrix
8: end if
9: x̂i ← Forward calculate model estimate (xi, ψ(t),

Θ(t− 1)) . Equation 57
10: K(t), Q(t)← Calculate matrices

. Equation 60 and 61
11: Θ(t)← Update parameter estimate matrix K(t), et,

Θ(t− 1)) . Equation 59
12: P (t)← Update co-variance matrix (P (t− 1), ψ(t))

. Equation 62
13: ut, ut−1 ← Forward calculate actor (xt, wat),

(xt−1, wat
)

14: λt, λt−1 ← Forward calculate critic (yt=
[
xt
ut

]
,wat),

(yt−1, wat
)

15: wct+1
← Update critic NN weights(yt−1,λt, λt−1,

∂ct−1

yt−1
, ∂yt

∂yt−1
)

16: λ(xt)← Forward calculate critic(ŷt, wct+1
)

17: wat+1 ← Update actor NN weights(xt, λut)
18: ut ← Forward calculate actor(xt, wat+1)
19: xt+1 ← Simulate real system (xt, ut + uPE)

. Persistent Excitation(PE) for exploration
20: lt ← Update learning rate for actor and critic
21: ψ(t) ← Update regression matrix based on new

measurements
22: ∂yt

∂yt−1
← Update system dynamics matrix using RLS

for backpropogation . Equation 66
23: end for

A. Missile Model

To test the applicability of the online ACD controllers for
flight control, a simple missile model is used to simulate short
period dynamics of the air vehicle. This nonlinear model for
pitch plane can be written as:

α̇ = q +
q̄Sg

maVT
Cz(α, q,Ma, δe) (67)

q̇ =
q̄Sdl
Iyy

Cm(α, q,Ma, δe) (68)

where angle of attack (α) and pitch rate (q) are the states to
be controlled by changing control fin deflection angle (δe).
System is initialized with αo = 5.7 deg and q = 0 rad

sec .

Cz(α, q,Ma, δe) = Cz1(α,Ma) +Bzδe (69)

Cm(α, q,Ma, δe) = Cm1
(α,Ma) +Bmδe, (70)

Bz = b1Ma + b2, (71)

Bm = b3Ma + b4, (72)



8

Cz1(α,Ma) = φz1(α) + φz2Ma, (73)

Cz2(α,Ma) = φm1(α) + φm2Ma, (74)

φz1(α) = h1α
3 + h2α|α|+ h3α, (75)

φm1
(α) = h4α

3 + h5α|α|+ h6α, (76)

φz2 = h7α|α|+ h8α, (77)

φm2 = h9α|α|+ h10α, (78)

Aerodynamic coefficient and other parameters used for
simulation of missile model are given in Table I and are valid
for −10 deg < α < 10 deg [28].

TABLE I: Aerodynamic parameters for Missile Model

Parameter Value Parameter Value Parameter Value

q̄ 6132.8 lb
ft2

S 0.44ft2 ma 450 lb

VT 3109.3 ft
sec

dl 0.75 ft Iyy 182.5 slug
ft2

Ma 2 b1 1.6238 b2 -6.7240
b3 12.0393 b4 -48.2246 h1 -288.7
h2 50.32 h3 -23.89 h4 303.1
h5 -246.3 h6 -37.56 h7 -13.53
h8 4.185 h9 71.51 h10 10.01

The purpose of this model is to simulate the real system with
the sampling frequency of 100Hz. As the controllers discussed
in this project are model-free, therefore no direct information
from this model is used in the controllers.

B. Experiments and Results

Reference tracking control problem is used to analyze
the performance of controllers. Sinusoidal wave of 10 deg
amplitude is used as reference signal for α with 0.05 rad/sec
angular frequency.

For actor and critic NN, 2× 3× 1 and 3× 3× 3 structure
is used respectively with all the initial NN weights randomly
initialized in the range of (-0.5,0.5). lr is annealed slowly with
time to avoid instability. This is, after 50 time steps, lr is given
as;

lat
= lat

= blo ≥ 0.05 (79)

where b = 0.95 and lo represents the initial learning rate which
will be varied. Different scenarios are investigated by 100
independent runs with random initial weights. If after 20 sec
of 600 sec simulation, the absolute error between required and
desired state is greater than 1.5 deg then the trial is considered
unsuccessful. In these simulations, no internal weight update
cycles are used neither does a controller learns trials. Also,
for ADDHP-FDM, a limit is set on ∂yt

∂yt−1
matrix as it tends

to diverge very easily.
1) Without Noise or Failure: IADDHP and ADDHP-FDM

are simulated for 100 independent runs for various lr to
identify the optimal lr for each method as to compare these
methods fairly. It can be seen in Fig.5 that ADDHP-FDM
works better when the lr is low. Whereas, IADDHP performs
better at higher lr. This can be explained by observing how
the weights are being updated. As in FDM, small denominator
terms can lead to a very big ∂yt

∂yt−1
matrix which, coupled

with higher lr, results in higher values of weights and can
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Fig. 5: Success rate of model-free controllers with various
learning rates

cause a run to diverge very fast. Therefore small lr are
a safer option with highest success rates. Whereas in RLS
for system identification, previous values are averaged which
keeps ∂yt

∂yt−1
from getting excessively big. A higher learning

rate is required for faster convergence to optimal policy. For
lr = 0.1, ADDHP-FDM has maximum success rate of 60%
whereas for IADDHP it is 93% at lr = 13. It can also be seen
that after lr = 10, there is little variation in success rate of
IADDHP.

To understand the reason behind the divergence of FDM
methods, temporal progression of ∂yt

∂yt−1
was observed for

various randomly initialized unsuccessful runs. It was observed
that the ut for all these runs become saturated at some point in
time which leads to ill-condition ∂yt

∂yt−1
matrix and eventually

the divergence of the system output. This is shown in Fig.6 for
four randomly initialized unsuccessful runs for initial iterations
that lead to unbounded output.
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Fig. 6: Control input for unsuccessful runs

The saturation occurs because we have imposed a limit
on the control action of 0.5 [rad] to avoid large control fin
deflections. Because of this saturation, ∂xt

∂ut−1
and ∂ut

∂ut−1
term

in Eq.48 goes to infinity and undefined variable respectively.
To compare this with IADDHP, we have used the same
unsuccessful run NN weights for actor and critic using IDHP.
IADDHP follows the task without any instability whereas
ADDHP-FDM fails to do so. Figure 7 compares the control
policies of the unsuccessful ADDHP-FDM with successful
IADDHP. It can be observed that the control policy using FDM
is quite aggressive compared to the control policy using RLS.
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TABLE II: Comparison for model-free controllers for optimal
learning rate

Controller Name lr c̄t ūt[deg] t̄compt[sec] t̄set[sec]

IADDHP 13 0.031 6.8 17.5 0.12
ADDHP-FDM 0.1 0.03 7.3 14.5 1.41

This could be because of the higher excitation signal required
for FDM methods.
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Fig. 7: Successful IADDHP vs unsuccessful ADDHP-FDM
using same initial weights

Table II shows average values of different performance
measure for successful runs for optimal learning rates. It can
be seen that the ADDHP-FDM requires less computation time
due to its simplicity in calculating the system dynamics matrix.
Furthermore, It also requires higher average control effort for
almost same average local cost. Figure 8 shows one of the
successful response for reference tracking for ADDHP-FDM
and IADDHP controllers. It can be seen that both methods
can adequately follow a reference when the networks are
converged.

0 50 100 150 200 250 300 350 400 450 500

time [sec]

-15

-10

-5

0

5

10

15

 [d
eg

]

  
IADDHP

  
ADDHP-FDM

  
Ref

Fig. 8: α Reference tracking for model-free ADDHP con-
trollers

C. With Noise

To check the performance of both controller under noise, a
uniform Gaussian noise is added to sensor readings i.e. xt =
xt+ρ where ρ is the uniformly distributed noise.For IADDHP,
noise with standard deviation (σ) =

[
0.010.05

]
is added to

the α in degrees whereas half of this is added to q. Table III
shows the success rate for these 2 noise settings. For σ = 0.01,

success rate has increased to 97% from 93% with no noise
case. This increase in success rate when noise is applied is
counter intuitive but this is because of the additional excitation
of the system which enables the controller to explore.

TABLE III: Performance of IADDHP with noise

σ Success rate

0.01 97%
0.05 62%

For ADDHP-FDM, σ for noise is decreased till the con-
troller allowed the noise to pass. The result of this is summa-
rized in Table IV. It turns out that the ADDHP-FDM controller
allows noise with 40 times lower σ than IADDHP to pass
through.

TABLE IV: Performance of ADDHP-FDM with noise

σ Success rate

0.0002 53%
0.001 14%

D. With Failures

One of the properties of controllers using RL is their ability
to adapt to the changing dynamics. Failures are introduced
by suddenly changing the dynamics of the simulated system
halfway through the simulation by changing signs of coeffi-
cients Cz and b2 in missile model. No information about the
failure is provided to controller which means that controller
must be able to detect these changes and reset accordingly.
This failure identification is done by innovation term et in
RLS of IADDHP. Figure 9 and 10 show that around 250 secs,
controller identify the failure and quickly adapts to the change
.
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Fig. 9: Reference tracking with IADDHP controller with
sudden sign change in Cz

As in ADDHP-FDM, there is no mechanism to predict the
states i.e. identify if the identified model matches with the
’real system’, therefore there is no way to identify the failure
for adaptation.

V. CONCLUSION

The focus of this paper is to investigate incremental model
based ADDHP; an online controllers which does not require
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Fig. 10: Reference tracking with IADDHP controller with
sudden sign change in b2

any system information beforehand as opposed to the clas-
sical ADDHP method which model NN. Missile control is
simulated to test the applicability of the controller. From
the experiments, it was found that that incremental model
based ADDHP can follow the reference satisfactorily with a
very high success rate. It also outperforms ADDHP-FDM, an
already existing model-free controller based on the basis of
success rate, performance under different noise conditions and
ability to adapt to system dynamics changes. Also, using FDM
for ADDHP can make the controller susceptible to divergence
for fast changing dynamics and is unable to detect failure.
Although in this project, no internal training cycles are used as
they were used in the original work, it is our argument that the
use of internal training cycles will improve the performance of
both controllers that is ADDHP-FDM and IADDHP. Therefore
it is concluded that using incremental model with RLS for
system identification in online model-free ADDHP is better
solution than using FDM despite its simplicity.
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Thesis





Chapter 1

Introduction

1.1 Introduction

Optimal adaptive control is of paramount importance for flight control as it achieves
the desired objective effectively under all conditions including system failures without
unnecessary control effort. To solve optimal control problem for nonlinear systems, it is
required to solve Jacobi-Hamilton-Bellman (JHB) equations which is rather complicated
as it involves solving nonlinear partial difference equations [1]. Most of the classical
optimal controllers are designed by linearizing the system around certain operating points.
These types of controllers provide suboptimal performance at other operating points and
require gain scheduling.

Dynamic programming (DP) offers a solution to this but its applications are limited as
it suffers from Curse of Dimensionality and requires complete knowledge of the systems
model which also includes uncertainties, noise, and system failure information beforehand
[2]. Also its backwards approach makes it impossible to implement this to real-time
control. To solve this, Reinforcement Learning (RL) can be used which tries to achieve
same results as DP but without full system information. In RL, agent modifies its actions
based on the reward it receives by interacting with the environment. One such structure
is Actor Critic Designs or Adaptive Critic Designs (ACD), in which critic approximates
the Bellman equation to iteratively steers the control policy generated by actor to optimal
control policy. In most of the conventional ACDs, interaction between critic and actor
is carried out by using a Model structure which approximates global system dynamics
by offline training. Obtaining this training data could be expensive as it comes from
real flight or simulator model. Therefore the focus of this thesis is to investigate model-
free controllers using RL that does not required offline training or any prior information
about the system. Although few of these controllers already exist in the literature but
our objective is find even better model-free controllers. We can define a general goal for
this research as;

Can the already existing model-free approaches be improved?

15



16 Introduction

To obtain this objective, this project describes the implementation of two novel ACDs that
does not need prior knowledge or global approximation of the system. These methods
are; the Incremental model based Dual Heuristic Dynamic Programming (IDHP) and
Incrmental Action Dependent Dual Heuristic Programming (IADDHP). These model free
approaches have the advantage that they can adapt online to sudden changes like failures
in the systems, and perform under noise by using the local incremental model for system
identification for nonlinear and uncertain system.

We can now define even more specific question that we will answer during the span of
this thesis.

1. Is action dependent form of IDHP better in performance?

2. Is IADDHP better than already existing online model-free ADDHP method by using
Finite Difference Method?

Performance of these different controllers is evaluated by measuring its ability to track a
task, success rate, average time for stabilization and average computational time.

Literature review for this thesis is given in the following two chapters. Chapter 2 offers
some background information about the basic concept of reinforcement learning which
are helpful in the understanding for dynamic programming and how optimal control is
achieved. Chapter 3 focuses on approximate dynamic programming and describes the
motivation behind these methods along with advancements in actor critic designs and
defines the preface of our research topic. Incremental approach that will be used for
the controllers is described in chapter 4. Chapter 5 develops the algorithm for MIMO
Incremental Model based Dual Heuristic Programming (IDHP) controller. In chapter
6, two Model free Action Dependent (AD) controllers are discussed. One is the new
Incremental ADDHP while other one is ADDHP with finite difference method. Chapter
7 discusses the experimental setup for simulation to investigate aforementioned controller.
Results of the simulation along with the reason for those results are presented in chapter
8. At the end, conclusion based on the results is given along with the recommendation
for future work in chapter 9.



Chapter 2

Background

In this chapter, a brief background of optimal control using RL is given along with the
basic concepts required for the understanding of literature of Actor Critic Designs (ACD)
and current research topic.

2.1 Reinforcement Learning

In reinforcement learning, an agent learns its actions by interacting with the environment
without having the complete knowledge of it. At every time step ’t’, agent interacts with
the environment by producing the action (ut ∈ U(x)) based on the states (xt ∈ X) and
rewards (ct) it receives from the environment. This is shown in Fig.2.1.

Environment

Agent

xt+1

xt

ct+1

ct

ut

Figure 2.1: Basic Concept of Reinforcement Learning

Environment is everything which is outside of the agent whereas reward is the singular
number associated with how well goal is being achieved at that time. The objective of the

17
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agent is to choose ut which maximize(or minimize) value function or cost-to-go function
given by Eq.3.2 thus making it the optimal control.

Gt =

∞∑

k=0

γkct+k+1 (2.1)

Gt represents the discounted sum of all the future rewards. γ is the discount rate in the
range of 0 ≤ γ ≤ 1 and it describes how much future reward is worth at current time.
If γ = 0 then the agent gives all importance to maximizing rewards at that instance. If
γ → 1, then the agent becomes more foresighted.

This basic concept of RL can be applied to the control problem for designing the adaptive
controller that can update itself to find the optimal control policy. In this thesis, similar
to [3], methods for solving the optimal control problem by using the concept of Value
functions are considered as part of RL despite their need for complete knowledge of the
system information.

2.2 Optimal Value Functions

To produce ut, agent follows a certain policy (µ) which is the mapping of xt → ut.
This mapping describes how the action is selected given the system state at time ’t’ i.e
ut = µ(xt). Using this we can define the value function for starting at state x under
policy µ as Eq.2.2.

V µ(x) =
∞∑

k=0

γkct+k+1|xt=x =
∞∑

k=0

γkc(xt+k, ut+k, st+k+1)|xt=x (2.2)

V µ(x) is known as state-value functions for policy µ. It describes how good it is to be
in state x when following µ. Furthermore, action-value functions for policy µ describes
the value of starting at state x, and taking action u under policy µ subsequently. This is
given as;

Qµ(x, u) =
∞∑

k=0

γkct+k+1|xt=x,ut=u =
∞∑

k=0

γkc(xt+k, ut+k, st+k+1)|xt=x,ut=u (2.3)

The value function in RL satisfies the recursive relation which states that the value func-
tion at start state is equal to the discounted value of the expected next state and the
reward obtained along the way for any µ. This recursive condition is called as Bellman
equation and is given by Eq.2.4 for V µ.

V µ(x) = c(x, u, x′) + γV µ(x′) (2.4)

where x′ is the next state. The main idea of RL is to use the value functions to search for
optimal policy. An optimal policy is the one that is better than all other policies and is
represented by µ∗. All optimal policies have same optimal state-value function or optimal
action-value function given by Eq.2.5 and 2.5 respectively [3][4].

V ∗(x) = max
µ

V µ(x) ∀x ∈ X (2.5)
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Q∗(x, u) = max
µ

Qµ(x, u) ∀x ∈ X,u ∈ U(x) (2.6)

Since V ∗(x) is the value function for a policy, it also satisfies Eq.2.4. This is called
Bellman optimality equation and can be written as;

V ∗(x) = max
u
{c(x, u, x′) + γV ∗(x′)} (2.7)

Q∗(x, u) = c(x, u, x′) + γmax
u′
{V ∗(x′, a′)} (2.8)

Optimal policy can be found easily once the value functions corresponding to the µ∗ are
found. For this, Bellman optimal equations can be used as the assignments to find the
approximation for desired value functions and ultimately optimal policy.

2.3 Dynamic Programming

Dynamic Programming (DP) are the algorithms that find the optimal control policy given
a perfect model of the environment. Although the applicability of classical DP methods
in RL is limited due to its high computational expense for large state system and its need
for complete system’s information, understanding the basic idea behind the DP methods
is indispensable as most of the RL methods try to attain same results as DP with limited
knowledge of environment and with less computational burden [3]. DP and almost all RL
methods can be understood by considering them as Generalized Policy Iteration (GPI)
methods which encompasses the idea of alternating between finding optimal value function
and optimal policy. This is shown in Fig.2.2

V μ

Policy Evaluation

Policy Improvement

V Vμ

μ greedy(V) 

V* μ*

Figure 2.2: Generalized Policy Iteration

Policy Evaluation

Policy evaluation is the step to make the state-value function V µ consistent under random
policy µ. This is done iteratively by using the Bellman equation given by Eq.2.4.
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Policy Improvement

Policy improvement is the step which helps find a better policy µ′ given the state-value
function for previous policy V µ. A new policy is better if following condition is satisfied.

Q(x, µ′(x)) ≥ V µ(x) ∀x ∈ X (2.9)

which means that the return from the new policy for state x should be greater than
previous policy, that is;

V µ′(x) ≥ V µ(x) ∀x ∈ X (2.10)

The new greedy policy can be obtained by;

µ′(s) = argmax
u
{Qµ(x, u)} (2.11)

Policy improvement must give the better policy unless the policy is already an optimal
policy [3].

Using the concept of policy evaluation and policy improvements, two methods policy iter-
ation and value iteration can be guaranteed to find the optimal value function and policy
given the complete information of the finite Markov Decision Process. In policy iteration,
policy evaluation and policy improvement finish before other can start and alternate be-
tween each other whereas in value iteration completion of either of step is not required
i.e. only one iteration of policy evaluation is completed to start policy evaluation and this
is repeated. Although both methods achieve similar results, value iteration allows for the
online learning of the optimal control policy with time.



Chapter 3

Approximate Dynamic Programming

In this chapter, motivation behind the development of Approximate Dynamic Program-
ming (ADP) is discussed along with the structure of basic ADP. These methods are
capable of dealing with uncertainty in the system and large state space and ideal for
control of such systems.

In 1977, Paul J. Werbos [5] developed the approach for ADP which was afterwards called
as Actor Critic Designs (ACD). Throughout the literature, various terms has been used
interchangeably for ADP such as neuro-dynamic programming [6], neural dynamic pro-
gramming [7], reinforcement learning[8][3], and adaptive critic designs. The basic idea
in all these methods is similar. In this thesis, we will be using the term Approximate
Dynamic Programming and Actor Critic Designs.

3.1 Motivation for ADP

As the digital implementation of the system is discrete in time therefore we consider such
system for the rest of the thesis. A nonlinear discrete system can be written as;

xt+1 = f(xt, ut) (3.1)

where t is the discrete time steps and xt ∈ Rn×1 and ut ∈ Rm×1. Associated performance
index or Cost-to-go function at time t can be defined as Eq.3.2 which is the discounted
sum of all the future rewards at ’t’.

Jt =

∞∑

k=t

γk−tck (3.2)

γ is the discount factor with value ranging in 0 < γ < 1 and its significance in the equation
is described in chapter 2. ck is the local cost function or utility function.

21
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The objective for the DP in this thesis is to find the Optimal control policy compromised
of optimal sequential control actions u∗t for t = 0, 1, 2.... such that the cost-to-go function
is minimized(maximized). Using Bellman optimality equation given in Eq.2.4, Bellman
principal of optimality for discrete time can be written as,

J∗t = min
ut

ct + γJ∗t+1 (3.3)

where Jt+1 = J(f(xt, ut)). This allows for the control action to be optimized one step
at a time by working backward in time. Optimal control action u∗(xt) is the one which
minimizes the optimal cost-to-go function and can be written as Eq.3.4.

u∗(xt) = argmin
ut

ct + γJ∗t+1 (3.4)

DP is a very powerful tool that deals with the problem of optimal control using sequential
control actions given the perfect model of the system by using the Eq.3.3. This is done
through exhaustive research from final point to the starting point to look for the optimal
policy by rejecting the suboptimal paths at different points [2]. But, it remembers all
the paths which makes it quite computationally expensive for large state space hence the
Curse of Dimensionality. Also, the backward search makes it impossible for the DP to
be applied for real time applications [9]. In addition to that, for complicated nonlinear
systems it is very difficult to obtain the exact value of J∗. Another problem that we face
with normal tabular methods of RL is that of generalization that is how can experience
from a small state space be approximated to the larger state space. This is important
because we would like to implement the RL controllers online for the states that have not
been encountered before.

To solve these problems, instead of finding the exact value of cost-to-go function, existing
generalization methods known as function approximators can be used to find an approx-
imate value. These function approximators takes the examples of a function and try to
form an approximation for entire function. Theoretically, any function approximator that
is used in machine learning, curve fitting, artificial neural network (ANN or NN), or in
pattern recognition can be used [3]. In this thesis, NN are used because of their high ap-
proximation power of a function along with function’s derivatives as it will be described
later.

Another important development in the RL method is the Actor Critic Methods which are
the Temporal Difference(TD) methods with structures to explicitly store the actions. TD
methods wait for only one time step to update V (xt) . In these methods, actor selects
the action whereas critic evaluates the value function. These methods are on-policy
methods as critic evaluates the performance of current policy being used. Separation of
policy evaluation and policy improvement makes it simpler to implement and learn. This
architecture is shown in Fig.3.1.

Using the approximation power of Neural Networks (NN) and combining it with Actor
Critic architectures led to the development of ADP or ACD.
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Actor
(policy)

Critic
(evaluation)

Environment

TD error

ActionStates

Rewards

Figure 3.1: Actor Critic Architecture

3.2 Basic structure of ACD

Most of the classical ACDs have three basic components. There are; Critic, Actor, and
a Model. All of these use NN to approximate their intended output. Traditionally, critic
NN is used to approximate cost-to-go function (J) and performs policy evaluation whereas
actor NN approximates the control action. Critic and actor interact with each other to
iteratively steer the control policy to the optimal policy and this is done by using model
NN which approximates the system dynamics and predict system next state ˆxt+1. This
structure is shown in Fig.3.2 and is called as Heuristic Dynamic Programming (HDP).

Model NN can be trained offline beforehand [9]. A few other methods train the model
NN offline and then adapt to changes in dynamics online[10]. The need for model NN
will become evident as we discuss the critic and actor NN training.

Once the model NN is trained, critic NN is updated. As mentioned earlier that the critic
outputs an estimate of J given by Eq.3.2. This is done by training critic NN to minimize
following error over time.

‖Ect‖ =
∑

t

1

2
e2ct (3.5)

ect = Jt − {γJt+1 + ct} (3.6)

where Jt is the output of critic for xt and Jt+1 is the output of critic for an estimate
of next state (x̂t+1) provided by the model NN. After critic NN is updated, actor NN is
trained by minimizing γJt+1 + ct to reach optimal or sub-optimal policy depending on
critic’s performance. That is the backpropogation error is propagated through critic NN
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Figure 3.2: HDP: An Example of ACD

to model NN and then to action network. Therefore even if the f(xt, ut) is completely
known, model network is still required to maintain the propagation path for actor NN
training.

3.3 Advancements in ACD

Paul J. Werbos has generalized the previously suggested structure for ADP in follow-
ing categories; Heuristic Dynamic Programming (HDP) in which critic approximates the
desired cost function (J) shown in Fig.3.2, Action Dependent HDP (ADHDP) in which
actor output is directly connected to the critic of HDP, Dual Heuristic Dynamic Pro-
gramming (DHDP) in which critic approximates the derivative of J with respect to its
states, and Generalized Dual Heuristic Dynamic Programming (GDHP) which approxi-
mate both J and its derivatives [11]. Comparison of these methods has shown that the
ADHDP applied to the auto-landing problem has lower success ratio than HDP. DHP
performs better than HDP as they are directly approximating the derivative instead of
indirect calculation of derivative in HDP obtained by backpropogation through critic NN
required for training of critic [12] [13]. GDHP does not significantly outperform the DHP
in auto-landing task but its training is much more computationally expensive because of
second order derivative term that need to be calculated at every time step [14]. Prokhorov
& Wunsch furthered these categories by introducing the AD forms of DHP and GDHP
as advanced actor critic designs and experimentally showed that these are better than
HDP and ADHDP [9]. Prokhorov & Wunsch also suggested that although GDHP and
ADGDHP outperforms other methods, for most applications DHP and ADDHP are ad-
equate. Many of these structures have been used for different flight control applications.
In most of these examples, first; Model network is trained offline for baseline controller
and then the controller adapts to the changes in dynamics online [10],[15].
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3.3.1 Model-free ACD

As it is explained before, model NN is essential to maintain the backpropogation paths
but it also requires offline training. To properly train the model NN, a large amount of
data distributed over the entire state space is required to find appropriate global model
estimate of the system. But in most applications, especially in flight control, obtaining
this data can be quite expensive. Also it is not possible to predict beforehand which
states will be encountered during the operation. Therefore, model-free approaches in
ACD presents themselves as quite a lucrative option and encompassing the true essence
of RL for control.

Earlies attempt for a model-free ACD is by using the ADHDP. In this structure, model
network is completely omitted as action NN can be updated by backpropogating through
critic NN as shown in Fig.3.3. But the requirement for model NN to train critic NN was
averted by simply waiting for the next term [12][9] but a performance degradation was
observed using this method.

Critic NN

Actor NN

𝐽(𝑥𝑡)
𝑥𝑡

𝑥𝑡

𝑢𝑡

System
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𝐽(𝑥𝑡+1)

-

𝑢𝑡

γ

+
𝑐𝑡

𝑢𝑡

𝑢𝑡

Figure 3.3: Model-free ADHDP

It is also important to note that same can not be done to obtain model-free ADDHP and
ADGDHP as they don’t just require one-step prediction from model NN but they also
need model NN to maintain backpropogation paths. To understand this, lets consider the
critic training error for DHP or ADDHP.

ect =
∂Jt
yt
− {γ ∂yt+1

yt

∂Jt+1

yt+1
+
∂ct
∂yt
} (3.7)

where yt = xt for DHP and yt = [xt;ut] for ADDHP. To obtain the term ∂yt+1

yt
, model

NN is required even if we use the AD form and wait for the next time step.

Si & Wang made very remarkable contribution in online learning algorithm by proposing
a model-free ACD closely resembles the ADHDP structure with main distinction being
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completely model-free without compromising on accuracy by storing the previous cost-
to-go value [14]. By doing this, training error for the critic training is given by;

ect = {γQt + ct} −Qt−1 (3.8)

In Eq.3.8, Qt approximates the cost-to-go function given by;

Q(t) = c(t+ 1) + γc(t+ 2) + γ2c(t+ 1) + · · · (3.9)

or

Q(t) =
∞∑

k=t+1

γk−t−1ck (3.10)

Comparing Eq.3.10 with Eq.3.2, we can write the following relation.

Q(t) = J(t+ 1) (3.11)

This tells us that using Eq.3.8 to train critic NN, output Qt is the approximation of Jt+1

[16]. This is shown in Fig.3.4. This method has been used successfully for many appli-

Critic NN
𝐽( ො𝑥𝑡+1)

𝑢𝑡 Model NN
ො𝑥𝑡+1

𝑥𝑡

Modified 
Critic NN

𝑄(𝑥𝑡)
𝑢𝑡

𝑥𝑡

Actor
𝑥𝑡

Actor

𝑥𝑡

Figure 3.4: Modified ADDHP

cations and will be referred as modified ADHDP method[17][16][18]. In flight control,
ADHDP has been applied to F-16 model and comparison was done with HDP. Results
showed that HDP with approximated model dynamics outperforms ADHDP under chang-
ing dynamics but ADHDP perform better with noise [19]. Russel & Si also applied the
model-free modified ADHDP to control Apache helicopter for different realistic maneuvers
and found the controller performance to be satisfactory [7]. But as the author pointed
out, this study was done offline where a system learns by trial and can afford failures. Liu
et al. furthered this modified ADHDP by introducing two methods to train the critic NN
namelybackward in time in which critic is trained with Qt in Eq.3.8 as critic’s output by
using 1/γ[Qt−1 − ct] as target for training. whereas in forward in time approach, critic
network outputs Q(t − 1) and is trained with γQt + ct. It is author’s opinion that the
backward in time training can lead to instabilities due to 1/γ term but it is worth noticing
that the MATLAB trainlm function was used to train the critic network.
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3.3.2 Current Research Topic

In the light of the literature mentioned above, we know that DHP and ADDHP has better
performance than HDP and its AD form. But obtaining a model-free (AD)DHP is not

possible due to ∂yt+1

∂yt+1
term in Eq.3.7. This term is required even if we apply Eq.3.8 to get

critic training error. In the literature, only other author who has used online model-free
ADDHP is Zhen et al by making use of Finite Difference Method (FDM)[20] and applied
it to a ball and beam balancing example.

To this point, all the literature mentioned above was using NN to approximate the global
system model to get the next state xt+1 and ∂yt+1

∂yt+1
term. Another take on the model part

of the ACD is by using incremental based model. According to this, a nonlinear model in
the form of Eq.3.12 can be written in incremental form as Eq.3.13 in discrete form, given
very high sampling frequency and slow varying dynamics.

ẋ(t) = f(x(t), u(t)) (3.12)

∆xt+1 = Ft−1∆xt +Gt−1∆ut (3.13)

Instead of approximating the global model, local model is approximated to avoid dealing
with large set of training data. This incremental model approach for control has been
successfully applied to control nonlinear system. It’s applications include Incremental
Dynamic Inversion (INDI) [21][22], and Incremental Backstepping (IBS) [23]. In ADP, an
Incremental Approximate Dynamic Programming (iADP) was developed by Zhou et al. to
find the near optimal control of nonlinear system [24]. In Actor Critic Designs, incremental
HDP (IHDP) used incremental model to find the local system dynamics instead of NN
for global dynamics to get the next state to be used in Bellmans equations. Ft−1 and
Gt−1 are easily identifiable using Ordinary Least Square (OLS) methods or Recursive
Least Square (RLS) and can replace backpropogation through model NN terms in weight
updates of Actor and Critic NN thus simplifying the procedure and making online learning
feasible. Studies performed show that IHDP outperforms the traditional HDP and speeds
up the process of online learning for missile control [25]. Quite recently, Zhou et al. also
investigated IDHP and compared it with traditional DHP. Results are quite promising
which encourages and form the basis of this project that is investigation of performance of
Incremental Action Dependent Dual Heuristic Programming (IADDHP). Currently, IHDP
and IDHP has been applied for control of a missile in the range of −10 deg ≤ α ≤ 10 deg
using only elevator input.
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Chapter 4

Incremental Model

In previous chapter, we have discussed the need for model NN in classical ACD to obtain
estimate of Jt+1 in Bellman optimality equation(Eq.3.6) and to update actor NN. In

addition to that, it is also used to obtain ∂yt+1

∂yt
term for (AD)DHP structures . Therefore;

model NN is used in classical ACD for system identification and state prediction. But this
model NN needs to be trained offline before it can be used for online adaptation which
requires a lot of training data to approximate global system dynamics. To avoid that,
we use Incremental Model instead of model NN. This not only diminishes the need for
offline training of the ACD but it also does not require any prior system’s knowledge which
makes it ′model-free′ ACD. In this chapter, we discuss the discrete incremental model
form along with two online system identification methods for the incremental model.

4.1 Continuous Incremental Model

Non-linear continuous system can be defined by Eq.4.1 where ẋ(t) represents the change
in system dynamics and y(t) is the output of system.

ẋ(t) = f(x(t), u(t)) (4.1)

y(t) = h(x(t), u(t))

Equation 4.1 can be linearized around a time to using Taylor series expansion as Eq.4.2
which can be written as continues time-variant state space of incremental form as Eq.4.3

ẋ(t) ' ẋ(to) +
∂f(x(t), u(t))

∂x(t)
|x(to),u(to)(x(t)−x(to)) +

∂f(x(t), u(t))

∂u(t)
|x(to),u(to)(u(t)−u(to))

(4.2)

∆ẋ(t) ' F (x(to), u(to))∆x(t) +G(x(to), u(to)∆u(t) (4.3)

where F (x(to), u(to)) = ∂f(x(t),u(t))
∂x(t) |x(to),u(to) ∈ Rn×n is the state matrix andG(x(to), u(to)) =

∂f(x(t),u(t))
∂u(t) |x(to),u(to) ∈ Rn×m is the input matrix.
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4.2 Discrete Incremental Model

Although a system can be continuous but the data obtained from sensors is discrete.
Therefore, Eq. 4.1 can be written in discrete form for a system with very high sampling
frequency and full state observations as Eq.4.4.

xt+1 = f(xt, ut) (4.4)

yt = h(xt, ut) = xt

Linearizing this equation around previous time step t− 1 will give us Eq.4.5.

∆xt+1 ' Ft−1∆xt +Gt−1∆ut (4.5)

where ∆xt = xt − xt−1, ∆ut = ut − ut−1 and Ft−1 ' ∂xt+1

∂xt
|model ∈ Rn×n and Gt−1 '

∂xt+1

∂ut
∈ Rn×m are system matrix and input matrix at t − 1 respectively. As we are

assuming the slowly time varying system with high sampling frequency, these matrices
representing the linear system can be easily identified online by linear regression methods
by taking some previous measurements. In this paper, two such methods are analyzed
that are (SW −OLS) and (RLS)

4.2.1 Sliding Window-Ordinary Least Square

OLS can be used to identify the matrices in Eq.4.5 by using previous measurements of ∆x
and ∆u. In sliding window method, only window of ′M ′ previous measurements are taken
into account for identification of Ft−1 and Gt−1 with each t−M measurement forgotten
at time step t. Detailed derivation of this method can be found in [25]. Equation for ′rth′

element of ∆xt+1 can be rewritten as Eq.4.6.

∆xrt+1 =
[
∆xᵀ ∆uᵀ

] [fᵀr
gᵀr

]
(4.6)

where fr and gr are rth rows of matrix Ft−1 and Gt−1 respectively. Sliding window length
depends on the number of unknowns in fr and gr i.e. M ≥ n + m. Using a very long
window for system identification will not be true representative of system at that instance
because of nonlinearity of the model whereas using small window might be ill-conditioned.
In this project, M = 2(n + m) is sufficient. Using least squares, solution for fr and gr
can be written as Eq. 4.7

[
fᵀr

gᵀr

]
= (Aᵀ

tAt)
−1Aᵀ

tYrt (4.7)

where;

At =




∆xᵀt−1 ∆uᵀt−1
...

...

∆xᵀt−M ∆uᵀt−M


 , Yrt =




∆xrt
...

∆xrt−M
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4.2.2 Recursive Least Square

For the online identification of linear model, RLS is a very powerful method as it recur-
sively update the estimate as new measurements become available and doesn’t require
saving all previous measurement. It also has better convergence than other least square
methods but it is computationally more intensive[26].

For our linearized model, Eq.4.5 can be rewritten as Eq.4.8 which can be solved by RLS

summarized in Eq.4.10 to Eq.4.14 where Θ̂(t) =

[
F ᵀ
t−1

Gᵀ
t−1

]
is the parameter to be estimated

and ψ(t) =

[
∆xt

∆ut

]
is the regression matrix which contains information about previous

measurements[27].

∆xt+1 =

[
∆xt

∆ut

]ᵀ [
F ᵀ
t−1

Gᵀ
t−1

]
(4.8)

e(t) = x(t)− x̂(t) (4.9)

Θ̂(t) = Θ̂(t− 1) +K(t)(e(t)) (4.10)

∆x̂(t) = ψ(t)ᵀΘ̂(t− 1) (4.11)

K(t) = Q(t)ψ(t) (4.12)

Q(t) =
P (t− 1)

Λ + ψ(t)ᵀP (t− 1)ψ(t)
(4.13)

P (t) =
1

Λ

[
P (t− 1)− P (t− 1)ψ(t)ψ(t)ᵀP (t− 1)

Λ + ψ(t)P (t− 1)ψ(t)ᵀ
]

(4.14)

Λ is the forgetting factor which ensures that the weight of previous values is discounted
exponentially for older measurements when Λ < 1. For systems with high varying dynam-
ics, Λ should be small but this filters small noise. For higher values of Λ(around 0.998),
larger noise can be allowed but tracking the changes in parameters is slower. P (t) is the
covariance matrix that should be initialized as P (0) = κI where κ should be very large
for convergence[28].
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Chapter 5

Incremental Model Based Dual
Heuristic Programming (IDHP)

In DHP, critic NN approximates the derivatives of cost to go function with respect to the
input of critic. This direct calculation of the derivative results in more accurate weight
update as the direct derivative output has better quality than indirect backpropogation
through NN[9]. Hence; it provides more accuracy as compared to HDP or ADHDP but
with less computational power than GDHP. Like other ACDs, IDHP also consists of 3
components. These are; Critic for policy evaluation, Actor for policy improvement, and
Model to maintain backpropagation paths. Actor and Critic are made up of NN where
as for model network, instead of using NN, incremental model is used which makes IDHP
a model-free controller and simplifies the back-propagation even further. The schematics
for IDHP are shown in Fig.5.1.

5.1 Critic

For IDHP, as shown in Fig.5.1, Critic’s output is estimate of derivative of cost-to-go
function with respect to states given by Eq.5.1

λt =
∂Jt
∂xt

(5.1)

where Jt is cost-to-go function defined in Eq.3.2. xt ∈ Rn×1 is input to critic network
at time t.λt ∈ Rn×1 is a vector where its kth component represents the derivative of
cost-to-go function with respect to kth input state i.e. λtk = ∂Jt

∂xkt
.

5.1.1 Critic NN Structure

To approximate λt, one hidden layer multi-perceptron NN is used. Weights of this network
are updated to minimize the critic error given in Eq.5.6. This is show in Fig. 5.2 for MIMO
controller. Based on the structure of critic NN, its output can be written as;

33
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Critic
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ut ut
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(1)
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x̂t+1 λ(x̂t+1)

γλ(x̂t+1) + ∂ct/∂xt
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ut

1

Figure 5.1: Structure of Incremental Model based Dual Heuristic Programming

λtk = purelin(vctk ) (5.2)

vctk =

Nhc∑

j=1

wctkj pctj (5.3)

pctj = tansig(qctj ) (5.4)

qctj =
n∑

i=1

wctjixti (5.5)

• λtk is the kth output of neural network

• vtk is the input to kth neuron

• wctkj is weight from jth hidden neuron to kth output

• ptj is the output of jth hidden neuron

• qtj is the input of jth hidden neuron

• wctji is the weight from ith input to jth hidden neuron
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Figure 5.2: Critic Neural Network for DHP Structures

• xi is the ith input to neural network

• n is the number of states

• Nh is the number of hidden neurons

where purelin and tansig transfer functions can be changed for the output neurons de-
pending on the complexity of approximation. Tansig is equivalent to tanh mathematically
but it runs faster on MATLAB with very small numerical difference [29]. These transfer
functions along with their derivative function are calculated as;

a = purelin(b) = b

∂a

∂b
= dpurelin(a) = 1

a = tansig(b) =
2

1 + e(−2b)
− 1

δa

∂b
= dtansig(a) = 1− a2

5.1.2 Critic’s Training

Critic is trained by minimizing the critic error defined in Eq. 5.6

‖Ect‖ =
1

2
eᵀctect (5.6)
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Prediction error for DHP structures can be written as Eq.5.9 for training forward in
time[11].

ect =
∂[Jt − {ct + γJt+1}]

∂xt
(5.7)

ect = λt − {
∂ct
∂xt

+ γ
∂Jt+1

∂xt
} (5.8)

ect = λt − {
∂ct
∂xt

+ γ
∂(xt+1)

∂xt
λt+1} (5.9)

ct is the local cost function and it’s definition depends upon the mission at hand. In this
project, quadratic cost function is defined as Eq.5.10 to describe reference tracking with
minimum control input.

ct(xt, ut) = (xt − dt)ᵀQ(xt − dt) + uᵀtRut (5.10)

where dt ∈ Rn×1 is the desired states, Q ∈ Rn×n and R ∈ Rm×m are positive definitive
matrices chosen to describe the relative importance of states and inputs in cost function.

Equation 5.12 can be used for training critic NN backward in time for DHP designs [14].
The method to get the weight update equation for both forward and backward in time is
similar and both of these methods can be used to update critic weights. In this section,
critic NN weight update equations using backward in time training is derived.

ect =
∂[Jt−1 − {ct1 + γJt}]

∂xt1
(5.11)

ect = λt−1 − {
∂ct−1
∂xt−1

+ γ
(∂xt)

∂xt−1
λt} (5.12)

ect is a n× 1 vector where ectk , kth element of ect , corresponds to the critic error for kth
state. λt and λt−1 are output of critic network for two different instances for states but

using weights at time ’t’ i.e wct ; whereas (∂xt)
∂xt−1

provides system’s information and can be
obtained from the model part of IDHP and actor. Using chain rule, this can be written
as,

(∂xt)

∂xt−1
=

∂xt
∂xt−1

|model +
∂xt
∂ut−1

∂ut−1
∂xt−1

|model+actor (5.13)

where ∂ut−1

∂xt−1
∈ Rm×n can be obtained by backpropagating through actor NN. ∂ct−1

∂xt−1
in

Eq.5.12 for local cost function or utility function ct−1 which depends on ut−1 can be
written as Eq.5.14 using the chain rule.

∂ct−1
∂xt−1

=
∂ct−1
∂xt−1

+

n∑

k=1

[ ∂ct−1
∂ukt−1

∂ukt−1

∂xt−1
] (5.14)
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Using the local cost function in Eq.5.10; ∂ct−1

∂xt−1
becomes

∂ct−1
∂xt−1

= diag(Q) ◦ (xt−1 − dt−1) + diag(R) ◦ (uᵀt−1
∂ut−1
∂xt−1

)ᵀ (5.15)

In Eq. 5.15, ◦ represents element-wise multiplication of a vector with a matrix.

5.1.3 Critic NN weight update

There exist many methods that can be used to update the NN weights. Each method
has its own advantages and disadvantages. In this thesis, we will discuss Robbins-Monro
algorithm but various other methods have been used for network training of ACD such
as Resilient backpropogation (RPROP) and it’s modified form which uses the temporal
behavior of sign of error function for weights update which leads to faster convergence
but it can be successfuly used for the batch learning [10] [30].

Robbins-Monro Algorithm

For the online model-free controllers discussed in this thesis, we have used a recursive
Stochastic Gradient Descent (SGD) method also know as Robbins-Monro algorithm to
update NN weights for actor and critic due to its ability to converge to an optimal or
near-optimal property.

Using Stochastic Gradient Descent method, weight update equation can be written as;

wt+1 = wt + ∆wt (5.16)

∆wt = lt
[
− ∂Et(xt, ut)

∂wt

]
(5.17)

where lt is the learning rate. According to [31], if the learning rate satisfies the conditions
in Eq.5.18 then for quadratic Et, wt will converge to global optima w∗ otherwise it will
converge to a local optima with time. The convergence proof of this is given in [14].

lim
t→∞

lt = 0,
∞∑

t=0

lt =∞,
∞∑

t=0

l2t <∞ (5.18)

Using this, critic NN weight update equations can be written as;

1. ∆w
(2)
c (Hidden to Output Layer Weights)

Using Eq.5.17 and structure of the critic network given by Eq.5.2 to Eq.5.5 , weight
update equation from critic’s hidden layer to output layer can be written as a matrix

∆w
(2)
c = [∆w

(2)
ckj ] ∈ Rn×Nhc

∆w(2)
ckj

= −lct
[ ∂Ect
∂ectk

][ ∂ectk
∂λt−1k

][ ∂λt−1k
∂vct−1k

][∂vct−1k

∂wctkj

]
(5.19)



38 Incremental Model Based Dual Heuristic Programming (IDHP)

∆w(2)
ckj

= −lct .ectk .pct−1j
(5.20)

Using column vectors for ect and pct−1j
, Eq.5.20 can be rewritten as Eq.6.6.

∆w(2)
c = −lct .ect .pᵀct−1

(5.21)

2. ∆w
(1)
c (Input to Hidden Layer Weights) Critic neural network’s weight update from

input layer to hidden layer neuron can be written in a matrix ∆w
(1)
c = [∆w

(1)
cji ] ∈

RNhc×n

∆w(1)
cji = −lct

n∑

k=1

[ ∂Ect
∂ectk

][ ∂ectk
∂λt−1k

][ ∂λt−1k
∂vct−1k

][∂vct−1k

∂pct−1j

][∂pct−1j

∂qct−1j

][∂qct−1j

∂wctji

]
(5.22)

∆w(1)
cji = −lct

n∑

k=1

ectk .wckj .dtansig(qct−1j
).xt−1i (5.23)

Using column vectors, entire matrix update ∆w(1) can be written as;

∆w(1)
c = −lct

[
eᵀct .wc

]ᵀ ◦
[
dtansig(qct−1).x̂ᵀt−1

]
(5.24)

5.2 Actor

In ACD, actor improves the control policy based on evaluation by critic by updating its
weights. Actor takes states xt as input and it outputs the near-optimal control action ut.
This control action is the input to the model and environment to produce estimated next
state and the real next state at t+ 1.

5.2.1 Actor NN Structure

Actor NN approximates the optimal control policy u∗t . For this, single hidden layer multi-
perceptron NN is used. For MIMO IDHP controller, similar to critic NN in Fig. 5.2, input
to the NN is the state vector xt whereas its output is a control action vector ût ∈ Rm×1.
Equation 5.25 to 5.28 makes up actor NN.

utk = tansig(vatk ) (5.25)

vatk =

Nha∑

j=1

watkj patj (5.26)

patj = tansig(qatj ) (5.27)

qatj =
m∑

i=1

watjixti (5.28)

As mentioned in section 5.1.1, transfer function for the output layer can be changed.



5.2 Actor 39

5.2.2 Actor NN Weight Update

The objective of actor is to produce the control policy u∗ which can minimize(maximize)
error between Jt and desired ultimate objective Ut. In this case, as the rt is defined in
terms of tracking error and control action required at t, ideally we would like Jt = 0
therefore Ut is set to 0. This control policy can be written as Eq.5.29

u∗ = argmin
ut

(Jt − Ut) = argmin
ut

(Jt) (5.29)

Actor neural network weights are adapted using Eq.5.30 as target. As there is no direct
relation between Jt and ut in IDHP, indirect back-propagation through critic and model is
used for weight update given by Eq. 5.31. As we can see that for weight update of actor,
only forward in time Bellman equation given by Eq.5.7 can be used. This backpropogation
path is shown in Fig.5.1 by dotted line (2). Actor’s weight update equation can be written
as Eq.5.32[9].

∂Jt
∂ut

= 0 (5.30)

∂ct
∂ut

+ γ
∂Jt+1

∂ut
= 0 (5.31)

∆wat = lat
[ ∂ct
∂ut

+ γλt+1
∂xt+1

∂ut

] ∂ut
∂wat

(5.32)

Based on the Eq.5.10, ∂ct
∂ut

can be written as Eq. 5.33;

∂ct
∂ut

= diag(R) ◦ ut (5.33)

1. ∆w
(2)
a (Hidden to Output Layer Weights)

Using Eq.5.32, weights update equations from hidden layer to output layer for actor

can be written as a matrix ∆w
(2)
a = [∆w

(2)
akj

] ∈ Rm×Nhc .

∆w(2)
akj

= −lat
[ ∂ct
∂utk

+ γ

n∑

o=1

∂Jt+1

∂xot+1

∂xot+1

utk

] ∂utk
∂vatk

∂vatk
∂watkj

(5.34)

∆w(2)
akj

= −lat .
[ ∂ct
∂utk

+ γ

n∑

o=1

λot+1

∂xot+1

utk

]
.dtansig(vatk ).patj (5.35)

Eq.5.35 can be rewritten as Eq.5.36 using column vectors ( ∂ct∂ut
, vat , pat) and a matrix

∂xt+1

ut
form.

∆w(2)
a = −lat .

[ ∂ct
∂ut

+ γλt
∂xt+1

ut

]
◦ dtansig(vat)

ᵀ.pat (5.36)

where
[
∂ct
∂ut

+ γλ∂xt+1

ut

]
∈ Rm×1
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2. ∆w
(1)
a (Input to Hidden Layer Weights) Actor neural network weights update from

input layer to hidden layer can be written in a matrix ∆W (1) = [∆w
(2)
aji ] ∈ RNha×n.

∆w(1)
aji = −lat

m∑

k=1

[
{ ∂ct
∂utk

+ γ
n∑

o=1

λo
∂xot+1

utk
}. ∂utk
∂vatk

∂vatk
∂patj

]∂patj
∂qatj

∂qatj
∂watj i

(5.37)

∆w(1)
aji = −lat

m∑

k=1

[
{ ∂ct
∂utk

+ γ
n∑

o=1

λo
∂xot+1

utk
}.dtansig(vatk ).watkj

]
dtansig(qatj ).xti

(5.38)

Using column vectors, entire matrix update ∆W
(1)
a can be written as;

∆w(1)
a = −lat

[[
{ ∂ct
∂utk

+ γλᵀ
∂xt+1

ut
} ◦ dtansig(vatk )

]ᵀ
.watkj

]ᵀ ◦ dtansig(qat)
ᵀ.xt

(5.39)

5.3 Model

This part of IDHP uses incremental model described in chapter 4 to obtain ∂xt
∂xt−1

|model
and ∂xt

∂ut−1
|model for critic weight update in Eq.5.13 and xt+1 and ∂xt+1

∂ut
|model in Eq.5.32.

5.4 Algorithm for IDHP

In this section, Algorithms for IDHP methods are given. To give some idea of imple-
menting critic weight update using forward in time training, pseudocode for IDHP with
SW-OLS is given in Algorithm 1. Similarly pseudocode for IDHP with RLS is given in
Algorithm 2 which uses backward in time Bellman equation for training critic and forward
in time Bellman equation to train actor.
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Algorithm 1 IDHP with SW-OLS (Forward in Time Critic Weight Update)

1: Initialization of variables like xo, γ,Q,R, critic NN, and actor NN
2: for i = 1→ N do . Total simulation time=N × dt
3: if i = 1 then . To calculate Fo, Go
4: for k = 1→M do . M=Sliding Window Length
5: xk+1 ← Excite the system with uk
6: end for
7: ∆x1 =

[
∆x1 · · ·∆xM

]
and ∆u1 =

[
∆u1 · · ·∆uM

]

8: end if
9: Ft−1 and Gt−1 ← System Identification(∆xi,∆ui) . Eq.4.7

10: x̂i+1 ← Forward Calculate Model Estimate(xi, Ft−1, Gt−1) . Eq.4.6
11: λt, λ̂t+1 ← Forward calculate critic(xt, wct), (x̂t+1, wct)
12: u(xt)← Forward calculate actor(xt, wat) . ∂ut

∂xt
for critic NN weight update

13: wct+1 ← Update critic NN weights(xt, λt, λ̂t+1,
∂ct
xt
, Ft−1, Gt−1) . Section 5.1.3

14: λ(x̂t+1)← Forward calculate critic(x̂t+1, wct+1)

15: wat+1 ← Update actor NN weights(xt, λ̂t+1,
∂ct
∂ut

, Gt−1) . Section 5.2.2
16: ut ← Forward calculate actor(xt, wat+1)
17: xt+1 ← Simulate real system (xt, ut + uPE) . Persistent Excitation(PE) for

exploration
18: ∆xi,∆ui Update measurement vectors for identification by SW-OLS
19: lt ← Update learning rate for actor and critic
20: end for
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Algorithm 2 IDHP with RLS(Backward in Time Critic Weight Update

1: Initialization of variables like xo, γ,Λ, Po,Θo, Q,R, critic NN, and actor NN
2: for i = 1→ N do . Total simulation time=N × dt
3: if i = 1 then . To calculate Fo, Go
4: for k = 1→ 2 do
5: xk+1 ← Excite the real system with uk
6: end for
7: ψ(t)← ∆xi = x2 − x1 and ∆ui = u2 − u1
8: end if
9: x̂i ← Forward Calculate Model Estimate(xi, ψ(t),Θ(t− 1)) . Eq.4.11

10: K(t), Q(t) Calculate gain and Q(t) matrix . Eq.4.12 and Eq.4.13
11: Θ(t)← Update parameter estimate matrix K(t),Θ(t− 1), et . Eq.4.10
12: P (t)← Update co-variance matrix(P (t− 1), ψ(t)) . Eq.4.14
13: λt−1, λt ← Forward calculate critic(xt−1, wct), (xt, wct)

14: ut−1 ← Forward calculate actor(xt−1, wat) . ∂ut−1

∂xt−1
for critic NN weight update

15: wct+1 ← Update critic NN weights(xt−1, λt, λt−1,
∂ct−1

xt−1
,Θ(t− 1)) . Section 5.1.3

16: x̂i+1 ← Forward Calculate Model Estimate(xi, ψ(t),Θ(t)) . Eq.4.6
17: λ(x̂t+1)← Forward calculate critic(x̂t+1, wct+1)

18: wat+1 ← Update actor NN weights(xt, λ̂t+1,
∂ct
∂ut

, θ(t)) . Section 5.2.2
19: ut ← Forward calculate actor(xt, wat+1)
20: xt+1 ← Simulate real system (xt, ut + uPE) . Persistent Excitation(PE) for

exploration
21: ψ(t)← ∆xi,∆ui Update measurement vectors for identification by RLS
22: lt ← Update learning rate for actor and critic
23: end for



Chapter 6

Model-Free Action Dependent Dual
Heuristic Dynamic Programming

In Action Dependent (AD) form of ACDs, output from the actor ut is input to the critic
along with the states xt. This results in a direct relationship between cost-to-go function
Jt and control action ut. Because of this, in HDP methods, using AD form can result in
a model-free approach with backward in time Bellman equation [14][7]. In DHP designs,
using AD form can provide direct derivative of Jt with ut as critic output. Similar to the
motivation for using DHP instead of HDP i.e. direct approximation of the derivatives as
an output of NN has higher quality than indirect approximation through backpropgation
for multilayer NN, ADHDP is used in this project. Not only does the term ∂Jt

∂ut
has higher

accuracy because of backpropogation through critic network but it also greatly simplifies
the actor weight update equations as compared to DHP methods. As mentioned before
that for critic weight update equations, system information is required (see 5.12), therefore
it is not possible in DHP designs to completely omit the model network unlike ADHDP.
In this chapter, two methods are discussed to obtain this information. First one is by
using Finite Difference Method (ADDHP-FDM) and second one is by using incremental
model (IADDHP) due to its advantages explained in chapter 4 whereas actor and critic
in both methods is exactly the same and their equations are given in following sections.

6.1 Critic

Critic in ADDHP takes yt =

[
xt

ut

]
as its inputs and approximates the derivative of Jt

with input yt as its output which is given by Eq.6.1

λt =
∂Jt
∂ŷt

(6.1)
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where λt =
[
λtx1 · · ·λtxn , λtu1 · · ·λtum

]ᵀ
∈ Rn+m×1. Structure of critic NN is same as in

IDHP explained in section 5.1.1. Only difference is that now the inputs to the NN also
include the control action in addition to states as shown in Fig.6.1.

Critic

Actor System

System
Dynamics
Matrix

(2)

ut ut

xt

xt+1

xt, dt

ut

xt, dt

λ(yt) γ

ec

λ(yt−1)− ∂ct−1/∂yt−1
(1)

ea = λut

∂yt/∂yt−1

xt, xt−1, xt−2

ut, ut−1, ut−2

1

Figure 6.1: Structure of Model-free Action Dependent Dual Heuristic Programming

6.1.1 Critic NN Weight Update

For critic’s training, backward in time prediction error equation is used stated in Eq.5.11
for DHP designs. For ADDHP, critic weight update equations can be formulated as
following.

ect =
∂[Jt−1 − {ct1 + γJt}]

∂yt−1
(6.2)

ect = λt−1 − {
∂ct−1
∂yt−1

+ γ
∂yt
∂yt−1

λt} (6.3)

The term ∂yt
∂yt−1

∈ R(n+m)×(n+m) contains the system’s dynamics information and is dis-

cussed in section 6.3 whereas, the derivative of local cost function at previous time (ct−1)
with yt−1 is given in Eq.6.4

∂ct−1
∂yt−1

=

[
∂ct−1

∂xt−1

∂ct−1

∂ut−1

]
(6.4)

where values of ∂ct
∂xt

and ∂ct
∂ut

are given in Eq.5.15 and Eq.5.33 respectively.

During the formulation of critic NN weights update equations in section 5.1.3, a general-
ized case for any input was discussed therefore same equation can be used for ADDHP
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with vector yt, which is concatenation of xt and ut, as input instead of just xt. Here, the
layer weights are summarized.

1. ∆w
(2)
c (Hidden to Output Layer Weights)

Weight update equation from critic’s hidden layer to output layer can be written as

a matrix ∆w
(2)
c = [∆w

(2)
ckj ] ∈ Rn+m×Nhc

∆w(2)
ckj

= −lct .ectk .pct−1j
(6.5)

Using column vectors for ect and pct−1j
, Eq.6.5 becomes

∆w(2)
c = −lct .ect .pᵀct−1

(6.6)

2. ∆w
(1)
c (Input to Hidden Layer Weights) Critic neural network’s weight update from

input layer to hidden layer neuron can be written in a matrix ∆w
(1)
c = [∆w

(1)
cji ] ∈

RNhc×n+m

∆w(1)
cji = −lct

n∑

k=1

ectk .wckj .dtansig(qct−1j
).yt−1i (6.7)

Using column vectors, entire matrix update ∆w
(1)
c can be written as;

∆w(1)
c = −lct

[
eᵀct .wc

]ᵀ ◦
[
dtansig(qct−1).yᵀt−1

]
(6.8)

6.2 Actor

Similar to the actor described in section 5.2, actor NN takes states as inputs and produces
the near-optimal control actions. In ADDHP methods, these control actions are input to
the critic and the real system.

6.2.1 Actor NN weight Update

Actor NN structure is same as in DHP and can be described by Eq.5.25 to Eq.5.28.
Unlike the DHP structure, its AD form has a direct relationship between λt and ut which
simplifies the actor weight update equations. Actor NN is trained to minimize following
equation;

‖Eat‖ =
1

2
eᵀateat (6.9)

Using Eq.5.30 as target for actor weight update, we can write prediction error as Eq.6.10.

eat = λut (6.10)

Using stochastic gradient, weight update for actor can be written as Eq.6.11

∆wat = lat
[
λut
] ∂ut
∂wat

(6.11)
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where ∂ut
∂wat

is calculated using chain rule and NN structure for ∆w
(1)
a and ∆w

(2)
a same as

in section 5.2.2 because of unchanged NN structure.

1. ∆w
(2)
a (Hidden to Output Layer Weights)

Using Eq.6.11, weights update equations from hidden layer to output layer for actor

can be written as a matrix ∆w
(2)
a = [∆w

(2)
akj

] ∈ Rm×Nhc .

∆w(2)
akj

= −lat
[
λutk

]
.
∂utk
∂vatk

∂vatk
∂watkj

(6.12)

∆w(2)
akj

= −lat .
[
λutk

]
.dtansig(vatk ).patj (6.13)

Eq.6.13 can be rewritten as Eq.6.14 using column vectors for ∂ct
∂ut

, vat , and pat .

∆w(2)
a − lat .

[
λut
]
◦ dtansig(vat)

ᵀ.pat (6.14)

2. ∆w
(1)
a (Input to Hidden Layer Weights) Actor neural network weights update from

input layer to hidden layer can be written in a matrix ∆w
(1)
a = [∆w

(2)
aji ] ∈ RNha×n.

∆w(1)
aji = −lat

m∑

k=1

[
{λutk}.

∂utk
∂vatk

∂vatk
∂patj

]
.
∂patj
∂qatj

.
∂qatj
∂watj i

(6.15)

∆w(1)
aji = −lat

m∑

k=1

[
{λutk}.dtansig(vatk ).watkj

]
.dtansig(qatj ).xti (6.16)

Using column vectors, entire matrix update ∆w
(1)
a can be written as;

∆w(1)
a = −lat

[[
{λut} ◦ dtansig(vatk )

]ᵀ
.watkj

]ᵀ ◦ dtansig(qat)
ᵀ.xt (6.17)

6.3 System’s Dynamic

As mentioned before, the term ∂yt
∂yt−1

in Eq.6.3 captures the system dynamics of the system.
This can be written as;

∂yt
∂yt−1

=

[
∂xt
∂xt−1

∂ut
∂xt−1

∂xt
∂ut−1

∂ut
∂ut−1

]
(6.18)

In classical methods, this information is obtained through the Model NN. In the Model-
free approaches, alternate way is required to obtain this information. In this report, two
methods are investigated to obtain ∂yt

∂yt−1
. These methods are ’Finite Difference Method

(FDM)’ and ’Incremental Model’.
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6.3.1 Finite Difference Method

This method is proposed by Zhen et al. in [20]. Instead of using Model NN, they suggested
using the Finite Difference Method (FDM) to find the derivatives required in Eq.6.18
to make it model-free. Using Taylor Series expansion, ’first-order backward difference’
derivative can be written as

∂qt
∂t
' q(t)− q(t−∆t)

∆t
+O(∆t) (6.19)

where O(∆t) is the truncation error associated with using first-order approximation. This
implies that the accuracy of the approximation is proportional to the discretization step.
Therefore, data should be taken at high sampling rate for better quality of approximation.
Using chain rule and FDM (Eq.6.19), derivatives in Eq.6.18 can be written as,

∂yt
∂yt−1

=

[
xt−xt−1

xt−1−xt−2

ut−ut−1

xt−1−xt−2

xt−xt−1

ut−1−ut−2

ut−ut−1

ut−1−ut−2

]
(6.20)

where xt, xt−1 ∈ Rn×1 and ut, ut−1 ∈ Rm×1 are column vectors. FDM method described
above for online system identification is suitable for small noise-free systems with rapidly
changing dynamics [32]. Therefore, system excitation is of paramount importance to
avoid divergence.

6.3.2 Incremental Model

Another ’model-free’ approach to get ∂yt
∂yt−1

is by using incremental model as explain in
section 4.2. Nonlinear model can be linearized around a point given a high sampling rate
and can be written as Eq.4.5. Using Ft−1 ' ∂xt+1

∂xt
|model, Gt−1 ' ∂xt+1

∂ut
, and actor NN;

Eq.6.18 can be written as;

∂yt
∂yt−1

=

[
∂xt
∂xt−1

|model + ∂xt
∂ut−1

∂ut−1

∂xt−1
|model+actor ∂ut

∂xt
∂xt
∂xt−1

|actor+model
∂xt
∂ut−1

|model ∂ut
∂xt

∂xt
∂ut−1

|actor+model

]
(6.21)

∂yt
∂yt−1

=

[
Ft−2 +Gt−2

∂ut−1

∂xt−1

ᵀ ∂ut
∂xt

Ft−2
ᵀ

Gt−2
ᵀ ∂ut

∂xt
Gt−2

ᵀ

]
(6.22)

where Ft−2, and Gt−2 is identified online by using SW-OLS or RLS at t− 1.

6.4 Algorithm for ADDHP

Pseudocode for ADDHP methods is given in Algorithm 3. These steps are followed for
both methods that are IADDHP and ADDHP-FDM.
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Algorithm 3 Model-free ADDHP

1: Initialization of variables like xo, γ, critic NN, and actor NN and other variables for
RLS or FDM

2: for i = 1→ N do . Total simulation time=N × dt
3: if i = 1 then
4:

∂yt
∂yt−1

← Calculate the initial system dynamics matrix (Using FDM or RLS)
5: end if
6: ut, ut−1 ← Forward calculate actor (xt, wat), (xt−1, wat)
7: λt, λt−1 ← Forward calculate critic (yt = [xtut], wat), (yt−1, wat)

8: wct+1 ← Update critic NN weights(yt−1, λt, λt−1,
∂ct−1

yt−1
, ∂yt
∂yt−1

) . Section 6.1

9: λ(xt)← Forward calculate critic(ŷt, wct+1)
10: wat+1 ← Update actor NN weights(xt, λut) . Section 6.2
11: ut ← Forward calculate actor(xt, wat+1)
12: xt+1 ← Simulate real system (xt, ut + uPE) . Persistent Excitation(PE) for

exploration
13: lt ← Update learning rate for actor and critic
14:

∂yt
∂yt−1

← Update system dynamics matrix (Using FDM or RLS)
15: end for



Chapter 7

Flight Control Simulation

In this chapter, experimental or simulation setup for the application of aforementioned
ACD algorithms for missile reference tracking control is discussed. Also, different exper-
iments are designed to identify and investigate various parameters to find the optimal
controller setting. Performance criteria is established to compare the results of different
algorithms.

7.1 Missile Model

To test the applicability of the online ACD controllers for flight control, a simple missile
model is used to simulate short period dynamics of the air vehicle. This nonlinear model
for pitch plane can be written as:

α̇ = q +
q̄Sg

maVT
Cz(α, q,Ma, δe) (7.1)

q̇ =
q̄Sdl
Iyy

Cm(α, q,Ma, δe) (7.2)

where angle of attack (α) and pitch rate (q) are the states to be controlled by changing
control fin deflection angle (δe). System is initialized with αo = 5.7 deg and q = 0 rad

sec .

Cz(α, q,Ma, δe) = Cz1(α,Ma) +Bzδe (7.3)

Cm(α, q,Ma, δe) = Cm1(α,Ma) +Bmδe, (7.4)

Bz = b1Ma + b2, (7.5)

Bm = b3Ma + b4, (7.6)
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Cz1(α,Ma) = φz1(α) + φz2Ma, (7.7)

Cz2(α,Ma) = φm1(α) + φm2Ma, (7.8)

φz1(α) = h1α
3 + h2α|α|+ h3α, (7.9)

φm1(α) = h4α
3 + h5α|α|+ h6α, (7.10)

φz2 = h7α|α|+ h8α, (7.11)

φm2 = h9α|α|+ h10α, (7.12)

Aerodynamic coefficient and other parameters used for simulation of missile model are
given in Table 7.1 and are valid for −10 deg < α < 10 deg [33].

Table 7.1: Aerodynamic parameters for Missile Model

Parameter Value Parameter Value Parameter Value

q̄ 6132.8 lb
ft2

S 0.44ft2 ma 450 lb

VT 3109.3 ft
sec dl 0.75 ft Iyy 182.5 slug

ft2

Ma 2 b1 1.6238 b2 -6.7240

b3 12.0393 b4 -48.2246 h1 -288.7

h2 50.32 h3 -23.89 h4 303.1

h5 -246.3 h6 -37.56 h7 -13.53

h8 4.185 h9 71.51 h10 10.01

The purpose of this model is to simulate the real system with the sampling frequency of
100Hz. As the controllers discussed in this project are ’model-free’, therefore no direct
information from this model is used in the controllers.

7.2 Experiments Setup

In this section, various experiments are formulated to answer different questions by vary-
ing different parameters. To study the effects of only desired parameters; all the controllers
i.e. IDHP, IADDHP, and ADDHP-FDM have following things that are constant unless
mentioned otherwise.

Reference tracking control problem is used to analyze the performance of controllers given

in Equation 5.10 with Q =

[
500 0

0 0.01

]
and R =

[
3
]
. Whereas, a sinusoidal wave of 10
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deg amplitude is used as reference signal for α. Reference signal (dt) can be written as;

dt =

[
10π
180 sin(0.05t)

0

]
(7.13)

For actor and critic NN, one hidden layer with three neurons is used with all the initial NN
weights randomly initialized in the range of (-0.5,0.5). Forgetting factor (γ) in Bellman
equation is set to 0.7. Another important parameter in critic and actor NN weight update
is the learning rate (lr). If a constant (lr) is used then a low (lr) will take too long to reach
the optima whereas a high (lr) can overshoot the optimal point and can cause instability.
For this project, (lr) is annealed slowly with time to avoid instability. This is, after 50
time steps, lr is given as;

lat = lct = blo ≥ 0.05 (7.14)

where b = 0.95 and lo represents the initial learning rate which will be varied.

7.2.1 Experiment A: SW-OLS vs RLS

This experiment relates to the Incremental Model part of ACD. Two methods explained in
section 4.2 for system identification and state prediction for incremental form of nonlinear
system are implemented and compared. Following questions needs to be answered during
this experiment.

1. Is the controller capable of performing given task? Can it stabilize the system?

2. Which controller has better performance in terms of reference tracking?

3. Which method is easier to implement?

Sliding window used for OLS has the length M = 2(n + m) which in the missile case is
6. For RLS, Λ = 0.9, and P = 1000 is used. θ(t) is initialized with F0 = I and G0 = O.
Both of these methods are implemented on IDHP controller.

7.2.2 Experiment B: IDHP vs IADDHP

In this section, IDHP and its Action Dependent form (IADDHP) is compared. Both
methods are implemented with same parameters and weight update equations for critic.
Weight update equation is different for actor as mention in section 6.2. These 2 controllers
are compared based on various categories. One of the most important category is the
success rate. As we are using random initial weights, therefore we would like to know how
often does these controllers converge to an near-optimal policy. Experiment is designed
to answer following questions.

1. Can the system be stabilized by the controllers? Are the controllers able to produce
acceptable results?

2. What is the success rate of these controller?
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3. How well do they follow the given task i.e. which has minimum average local cost
value?

4. What is the computational time required by the two controllers?

5. What is the average time to reach a stabilizing policy?

Local cost is a good measure of performance as it includes both the tracking error and
control action required. To determine the success rate, a criteria is defined. If after 20
secs, the absolute error between required and desired state is greater than 1.5 deg then the
trial is considered unsuccessful. System is simulated 100 times with different initialized
weights. Each trial is independent and does not learn from previous experiences. The
system is also simulated with different leaning rates.

7.2.3 Experiment C: IADDHP vs ADDHP-FDM

In this experiment, two forms of model-free ADDHP are compared. First one is the
incremental model based ADDHP and second one is ADDHP with finite difference as
described in section 6.3. To compare both controllers without any bias, both systems
are excited with different persistent excitation which gives optimal performance for that
controller. Also different learning rates are investigated to find best learning rate for
the controller. In addition to the questions in section 7.2.2, following questions will be
answered by this experiment.

1. How does a controller performs under noise?

2. Can the controller inherently detects system failure?

3. Can controller adapt to failures in system dynamics?

For these controllers, no internal training cycles are used. As using the internal training
cycles will improve the results in both cases of IADDHP and ADDHP-FDM. Also, for
ADDHP-FDM, a limit is set on ∂yt

∂yt−1
matrix as it tends to diverge very easily. This

limit on system dynamics changes the controller performance at different learning rates.
After trying different limits, ∂yt

∂yt−1
≤ 5 is used that gave optimal performance while giving

controller freedom to identify the dynamics.

To check the performance of both controller under noise, a uniform Gaussian noise is
added to sensor readings i.e. xt = xt + ρ where ρ is the uniformly distributed noise.For

IADDHP, noise with standard deviation (σ) =
[
0.01 0.05

]
is added to the α in degrees

whereas half of this is added to q. For ADDHP-FDM, σ is lowered till the controller is
able to let the noise pass through it without getting unstable.

To introduce the failure in the system, at half the simulation time, system dynamics is
changed by changing the sign of coefficient Cz and b2. In IADDHP, as we are using RLS,
failure can be detected with the help of innovation (e(t)) given by Eq.4.9. If e(t) is greater
than 1.5 deg then a failure is detected and NN weights for actor and critic are reset to
random initial condition. In ADDHP-FDM, there is no way to detect the system failure as
it is only capable of system identification and not the state prediction. All these scenarios
are investigate by 100 independent runs with random initial weights.



Chapter 8

Results & Discussion

In this chapter, results of the experiments set up in chapter 7 are discussed. Main results
are extracted and shown in this chapter.

8.1 Experiment A: SW-OLS vs RLS

In this experiment, IDHP controller was implemented with SW-OLS and RLS with the
same parameters to see the performance of each of the system identification methods. One
of the successful run is shown in Fig.8.1. As it can be seen that both SW-OLS and RLS
are able to perform tracking task with little difference in the performance. But if we look
at the first ten seconds of the simulation to see the adaptation behavior of the controllers
(Fig.8.2), it can be seen that IDHP with SW-OLS has noisier control policy in the start.
Apart from that, SW-OLS could easily become ill-conditioned or even unstable due to
inverse of the matrix involved in calculation of system dynamics. RLS also provides more
control to the system identified. For instance, in RLS, Λ can be tuned to allow more or
less noise and innovation (et) which is inherent in RLS update equations can be used to
detect failure in system dynamics. SW-OLS also requires more data points than RLS
which increase with the number of unknowns, for initialization of the method.

For the reasons mentioned above,RLS is adopted for system identification of incremental
models for rest of the experiments even though SW-OLS is easier to implement. It is
also possible that the performance of SW-OLS and RLS in terms of reference tracking
is comparable because of very simple nonlinear model being used. We can expect to see
more difference when highly nonlinear model is used.

8.2 Experiment B: IDHP vs IADDHP

In this experiment, performance of the IDHP and IADDHP controller with RLS for
incremental model system identification is discussed. It can be seen in Fig.8.3 that the
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Figure 8.1: α Reference tracking using IDHP controller with SW-OLS and RLS
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Figure 8.2: Tracking error for α state and control fin deflection(δe) using IDHP controller
for initial 10 secs

success rate for IADDHP is higher than IDHP for higher lr whereas for very low lr IDHP
has better success rate. But looking at the optimal lr(maximum success rate), it can be
seen that the success rate for IADDHP(93%) is higher than IDHP(58%) with lr = 13 and
lr = 10 respectively.

Other performance criteria for optimal lr are also given in Table.8.1. Average control
effort required and average computation time for one run (t̄computation) is same for both
IDHP and IADDHP. Average time to settle (t̄settling) is lower for IADDHP. These averages
are computed for the successful runs only.



8.3 Experiment C: IADDHP vs ADDHP-FDM 55

0.05 0.1 0.5 0.7 1 5 7 10 13 15 20
0

10

20

30

40

50

60

70

80

90

100

Learning  rate 

S
uc

ce
ss

  
ra

te
 

(%
) IADDHP

ADDHP-FDM

IDHP

Figure 8.3: Success rate of model-free controllers with various learning rates

8.3 Experiment C: IADDHP vs ADDHP-FDM

This is the main experiment of this report. In this experiment, two Action Dependent
controllers are compared. First one is the incremental model based ADDHP which uses
RLS to find the system dynamics matrix described in section 6.3. Other method is using
a very simple approach of Finite Difference Method to calculate the system dynamics
matrix. Three different scenarios are investigated.

8.3.1 Without Noise or Failure

In this experiment, IADDHP and ADDHP-FDM are simulated for 100 independent for
various lr to identify the best lr for each method as to compare these methods fairly. It can
be seen in Fig.8.3 that ADDHP-FDM works better when the lr is low. Whereas, IADDHP-
FDM performs better at higher lr. This can be explained by observing how the weights
are being updated. As in FDM, even small changes can lead to a very big ∂yt

∂yt−1
matrix.

Therefore using a higher lr can make the wights very big, very fast. Therefore small lr
are a safer option with highest success rates. Whereas in RLS for system identification,
previous values are averaged. This results in convergence of ∂yt

∂yt−1
. A higher learning

rate is required for quick convergence to optimal policy. For lr = 0.1, ADDHP-FDM has
maximum success rate of 60% whereas for IADDHP it is 93% at lr = 13. It can also be
seen that after lr = 10, there is little variation in success rate of IADDHP.

To understand the reason behind the divergence of FDM methods, temporal progression
of ∂yt

∂yt−1
was observed for various randomly initialized unsuccessful runs. It was observed

that the ut for all these runs become saturated at some point in time which leads to ill-
condition ∂yt

∂yt−1
matrix and eventually the divergence of the system output. This is shown

in Fig.8.4 for four randomly initialized unsuccessful runs for initial iterations that lead to
unbounded output.

The saturation occurs because we have imposed a limit on the control action of 0.5 [rad]
to avoid large control fin deflections. Because of this saturation, ∂xt

∂ut−1
and ∂ut

∂ut−1
term
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Figure 8.4: Control input for unsuccessful runs

in Eq.6.18 goes to infinity and undefined variable respectively. To compare this with
IADDHP, we have used the same unsuccessful run NN weights for actor and critic using
IDHP. IADDHP follows the task without any instability whereas ADDHP-FDM fails
to do so. Figure 8.5 compares the control policies of the unsuccessful ADDHP-FDM
with successful IADDHP. It can be observed that the control policy using FDM is quite
aggressive compared to the control policy using RLS. This could be because of the higher
excitation signal required for FDM methods.
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Figure 8.5: Successful IADDHP vs unsuccessful ADDHP-FDM using same initial weights

Table 8.1 shows average values of different performance measure for successful runs for
optimal learning rates. It can be seen that the ADDHP-FDM requires less computation
time due to its simplicity in calculating the system dynamics matrix. But its behavior is
not uniform throughout the runs as it can be seen with t̄settling. It also requires higher
average control effort for almost same average local cost. Figure 8.6 shows one successful
response in this scenerio for ADDHP-FDM and IADDHP.



8.3 Experiment C: IADDHP vs ADDHP-FDM 57

Table 8.1: Comparison for model-free controllers for optimal learning rate

Controller Name lr c̄t ūt[deg] t̄computation[sec] t̄settling[sec]

IDHP-RLS 10 0.025 6.6 17 0.27

IADDHP 13 0.031 6.8 17.5 0.12

ADDHP-FDM 0.1 0.03 7.3 14.5 1.41
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Figure 8.6: α Reference tracking for model-free ADDHP controllers

8.3.2 With Noise

In this section, effect of noise on AD controllers is investigated. For IADDHP with RLS,
uninformly distributed Gaussian noise with standard deviation (σ) of 0.01 and 0.05 is
applied to α in deg and half of this is applied to q. lr = 13 corresponding to the optimal
lr in previous section is used. Table 8.2 shows the success rate for these 2 noise settings.
For σ = 0.01, success rate has increased to 97% from 93% with no noise whereas for
σ = 0.05, success rate has reduced to 62%. The increase in success rate when noise
is applied is counter intuitive but this is because of the excitation of the system which
enables the controller to explore.

Table 8.2: Performance of IADDHP with noise

σ Success rate percentage

0.01 97%

0.05 62%

For ADDHP-FDM, σ for noise is decreased till the controller allowed the noise to pass.
The result of this is summarized in Table 8.3. It turns out that the ADDHP-FDM allows
noise with 40 times lower σ than IADDHP with RLS. This result is consistent with
the findings in literature which states that the FDM does not perform well with noisy
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measurements whereas RLS can be thought of as a noise filter therefore its performance
is superior under noisy measurements.[32][34].

Table 8.3: Performance of ADDHP-FDM with noise

σ Success rate percentage

0.0002 53%

0.001 14%

8.3.3 With Failures

One of the properties of controllers using RL is their ability to learn with the changing
dynamics. In this experiment, failures are introduced by suddenly changing the dynamics
of the simulated system halfway through the simulation by changing signs of coefficients
Cz and b2 explained in section 7.1. No information about the failure is given to controller
which means that controller must be able to detect these changes and reset accordingly.
This failure identification is done by innovation term (et) in RLS of IADDHP. Figure 8.7
and 8.8 show that around 250 secs,, controller identify the failure and quickly adapts to
the change in signs of Cz and b2 by returning to optimal policy.
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Figure 8.7: Reference tracking with IADDHP controller with sudden sign change in Cz

As in ADDHP-FDM, there is no mechanism to predict the states i.e. identify if the
identified model matches with the ’real system’, there is no way to identify the failure for
adaptation.
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Figure 8.8: Reference tracking with IADDHP controller with sudden sign change in b2
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Chapter 9

Conclusion and Recommendations

The purpose of this report is to investigate different online controllers which does not
require any system information beforehand and to learn about their applicability in var-
ious scenarios using numerical simulation. Based on the experiments carried out, in this
chapter few concluding remarks are given along with the few recommendations for future
work.

9.1 Conclusion

Experiment A was designed to investigate two online system identification methods. From
the experiment, it is concluded that despite its complexity, RLS is better than SW-OLS
for online system identification in ACD controllers because of its fast convergence which
is required to reach optimal control as soon as possible specially in case of failures. It also
does not suffer from ill-conditioning due to matrix inverse.

Experiment B was designed to compare model-free IDHP controller with its action de-
pendent form. Initial experiments have concluded that IADDHP outperform IDHP with
same parameters. IADDHP is also easier to implement than IDHP. This may be due to
the fact that direct derivative is being obtained from critic NN that is being used for for
actor weight update instead of indirect backpropogation. This not only results in more
accurate derivative but it also ties the convergence of critic network with actor network.
Therefore at this point, IADDHP can be considered ultimate model-free controller in
terms of performance and computational complexity.

Experiment C was designed to compare already existing model-free ADDHP control in
literature proposed by Zhen et al. using FDM. From the experiments, it was found that
that incremental model based ADDHP can outperform ADDHP-FDM controller based on
success rate, performance under different noise conditions and ability to adapt to system
dynamics changes. Also ADDHP-FDM controller is susceptible to divergence for fast
changing dynamics and unable to detect failure. Although in this project, no internal
training cycles are used as they were used in the original work, it is our argument that
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the use of internal training cycles will improve the performance of both controllers that
is ADDHP-FDM and IADDHP. Therefore it is concluded that using RLS for system
identification in online model-free ADDHP is better solution than using FDM despite its
simplicity.

9.2 Recommendations

One of the most important thing in these online controller with high risk tasks like flight
control is the assurance of 100% success rate under all conditions. Hence to improve this,
during the implementation of these online controllers, there are various parameters that
were identified for further investigation. Few of them are;

◦ Use of recurrent neural network for actor due to their dynamic temporal behavior.

◦ Using local adaptive learning rates algorithms like adaGrad for better and fast
convergence of NN weights for online training.

◦ Using Radial Basis Function NN instead of current FeedForward NN due to their
ability to have better local approximation.

◦ Using different weight update scheme like Risilient backpropogation for faster learn-
ing.

Apart from this, these newly developed methods (IDHP and IADDHP) need to be applied
to complex and more nonlinear environment to check the applicability and limitations of
these online controllers.
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