Graduation Plan

Master of Science Architecture, Urbanism & Building Sciences

Graduation Plan: All tracks

Submit your Graduation Plan to the Board of Examiners (<u>Examencommissie-</u> <u>BK@tudelft.nl</u>), Mentors and Delegate of the Board of Examiners one week before P2 at the latest.

The graduation plan consists of at least the following data/segments:

Personal information	
Name	Joris Jan Burger
Student number	4152921

Studio		
Name / Theme	Building Technology, Sustainable Design Graduation	
	Studio	
Teachers / tutors	Christian Louter, Serdar Asut	
Argumentation of choice	rong interest in novel materials, innovative ways of	
of the studio	building and using technology to improve the built	
	environment in a sustainable way.	

Graduation project									
Title of the graduation project	Fabricating non-standar using 3D printed thin sl	-standard, structural concrete columns d thin shell formwork							
Goal									
Location:	Resea Case	arch: location independent study: Zurich, Switzerland							
The posed problem,	Curre concr geom proce	nt techniques for producing ete columns with a non-standard etry are not effective in terms of ss and material use.							
research questions and	Can 3 used perfor as a r existir	D printed, thin-shell formwork be to construct full-scale, structural rming, concrete columns and serve nore sustainable alternative to ng ways of fabricating formwork?							
design assignment in whic	n these result. Desig a sing a non wood	n of an outside roof structure with le structural concrete column with -standard geometry supporting a en roof.							

The research subject is the exploration of a promising innovative technique of producing formwork for concrete construction. Some preliminary prototypes have been made but the challenge lies in scaling up the technique to be fit for use in construction. For this to happen several challenges need to be addressed such as reinforcement, scale and structural performance. After developing the technique it will be applied into a case study which is a pavilion in Zurich.

Process Method description

Various types of methods and techniques of research will be utilized because a variety of subjects is studied. Quantitative research will be used for example, when studying concrete properties or 3D printing. When researching reinforcement a research by doing approach will be followed where different techniques are tested in a practical application.

For design an iterative process will be followed which is heavily informed by structural motivations.

Literature and general practical preference

The project builds upon earlier work done at the ETH Zurich for creating nonstandard concrete columns using a slipforming process (Lloret et al., 2015). The project uses the same set-on-demand casting system of concrete to avoid high hydrostatic pressure. Furthermore many other projects that deal with "digital concrete" (Wangler et al., 2016) are taken as a reference. As for classical references the work of Pier Luigi Nervi is a practical reference, his innovative use of concrete to create optimized structure is inspiring.

Reflection Relevance

This research project addresses the strong societal demand of a more efficient use of building materials. Because concrete is such a heavily used construction material and all concrete needs formwork, this project has the potential to strongly reduce material use in concrete construction.

The projected innovation of the project lies in the fact that it will for the first time allow a thin, 3D printed shell to be used as a formwork for concrete construction. Although other 3D printed materials such as binder jetting have been successfully used as concrete formwork (Wangler et al. 2016; Aghaei Meibodi et al. 2017), a thin thermoplastic shell has been deemed impossible until now because of the strong hydrostatic pressure exerted by the concrete. In this project, this is overcome by using a set-on-demand concrete filling strategy. If other aspects such as reinforcement are addressed the technique could thus potentially revolutionize concrete construction.

Time planning	J																					
year	2018																				2019	
month	April		May		June		July			August		Septer	nber		October		November	Dece	mber		January	
week no.	14 1	5 16 17	18	19 20 21	22	23 24 25	5 26 2	27 2	8 29 30	31 32	33 34	35 3	6 37 38	3 39	40 41 42	2 43	44 45 46 43	7 48	49 50	51 52	1 2	3 4
Presentations	P1					P2									P3			P4			P5	
Exams																						
Integration of structural reinforcement																				_		
Literature study																						
3D Printing Tests: just printing																				_		
Reinforced concrete tests: printing + filling																				_		
Demonstrator showing reinforcement principle																				_		
Material & tooling								_												_		
Literature study											_		_									
Tool development																						
Tool testing																						
Tool refinement																						
Recyclability of shell material																						
Structural optimization																				_		
Literature study																				_		
Simulation and analysis																				_		
(Optional structural loading test)																						
Geometrical possibilities																			_	_		
Scale prototypes (1:2, 2:3, 1:1)								_														
Holidays								Ho	oliday		Holiday											

References:

Lloret, E., A. R. Shahab, M. Linus, R. J. Flatt, F. Gramazio, M. Kohler, and S. Langenberg. 2015. "Complex Concrete Structures: Merging Existing Techniques with Digital Fabrication." Computer-Aided Design. https://doi.org/10.1016/j.cad.2014.02.011.

Wangler, Timothy, Ena Lloret, Lex Reiter, Norman Hack, Fabio Gramazio, Matthias Kohler, Mathias Bernhard, et al. 2016. "Digital Concrete: Opportunities and Challenges." RILEM Technical Letters 1: 67. <u>https://doi.org/10.21809/rilemtechlett.2016.16</u>.

Aghaei Meibodi, Mania, Mathias Bernhard, Andrei Jipa, and Benjamin Dillenburger. 2017. "The Smart Takes from the Strong: 3D Printing Stay-in-Place Formwork for Concrete Slab Construction." Fabricate, no. May 2017: 210–15.