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Abstract During the last decades, the Euler scheme
was the common “workhorse” in particle tracking,
although it is the lowest-order approximation of the
underlying stochastic differential equation. To con-
vince the modelling community of the need for better
methods, we have constructed a new test case that
will show the shortcomings of the Euler scheme. We
use an idealised shallow-water diffusivity profile that
mimics the presence of a sharp pycnocline and thus
a quasi-impermeable barrier to vertical diffusion. In
this context, we study the transport of passive particles
with or without negative buoyancy. A semi-analytic
solutions is used to assess the performance of various
numerical particle-tracking schemes (first- and second-
order accuracy), to treat the variations in the diffusivity
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profile properly. We show that the commonly used
Euler scheme exhibits a poor performance and that
widely used particle-tracking codes shall be updated to
either the Milstein scheme or second-order schemes.
It is further seen that the order of convergence is not
the only relevant factor, the absolute value of the error
also is.
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1 Introduction

Over recent years, Lagrangian particle tracking became
quite popular, as they offer a straightforward physical
interpretation and a more intuitive understanding of
the involved processes. As particle tracking deals with
discrete elements and not with continuous fields like
in the Eulerian framework (concentration fields), the
equations of motion for both frameworks differ. How-
ever, the equivalence between both ways of describing
the same process is given by the reinterpretation of
a Fokker–Planck equation, i.e. a deterministic partial
differential equation (PDE) (Arnold 1974). By con-
trast, particle tracking deals with stochastic differential
equations (SDE) to describe the same process.

The application of particle tracking ranges from lar-
vae dynamics (Christensen et al. 2007; Huret et al. 2007;
Brochier et al. 2008), tracking of water masses (Blanke
and Raynaud 1997; Soomere et al. 2011; Callies et al.
2011), oil spill modelling (Elliott et al. 1992; Mariano
et al. 2011) or sediment dynamics (Lane and Prandle
2006; Krestenitis et al. 2007). Furthermore, particle
tracking has been used to simulate dynamics in highly
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baroclinic environments (Blumberg et al. 2004; Proehl
et al. 2005; North et al. 2006). Although the above-
mentioned applications are covering a wide range of
topics, what they all have in common is that they
are based on the Euler scheme (Maruyama 1955).
This stochastic generalisation of the deterministic Euler
scheme is the lowest-order numerical approximation
for SDEs and is at best of first-order accuracy. This
seems quite surprising, as recent developments in geo-
physical fluid dynamics propose the usage of high-order
schemes for the advection or diffusion of momentum
and tracer (Prather 1986; Pietrzak 1998; Iskandarani
et al. 2005). Moreover, deterministic particle tracking,
to quantify chaotic mixing in the ocean (D’Ovidio
et al. 2004; Beron-Vera and Olascoaga 2009; Ohlmann
and Mitarai 2010), is commonly based on fourth-order
Runge–Kutta schemes. This discrepancy in usage of
low-order stochastic particle-tracking schemes and
high-order schemes in the deterministic case might be
explained by two reasons. First, stochastic calculus de-
viates from the rather intuitive handling of integration,
derivation or Taylor expansions as in the deterministic
case. Thus, there is a lack of knowledge of stochastic
calculus in the oceanic modelling community. Secondly,
numerical approximations of SDEs are computation-
ally expensive and, hence, are believed to limit their
use. However, the marine modelling community is pro-
gressively realising that the Euler scheme is far from
optimal (e.g. Stijnen et al. (2006); Spivakovskaya et al.
(2007a); Gräwe and Wolff (2010)). Turning to higher-
order schemes is one of the improvements that are now
believed to be needed. Recently, Gräwe (2011) and
Shah et al. (2011) discussed the performance of various
stochastic numerical schemes and showed that not only
the convergence of the error in a numerical approxima-
tion is important but also the total error. Furthermore,
Gräwe (2011) showed that there exist schemes that are
much more efficient (error vs. runtime) than the Euler
scheme.

A common argument to excuse the usage of the
Euler scheme is to vary the time step and to show that
the solution converges (in a statistical sense) to a stable
solution by reducing the time step. However, we will
show that even the time step restrictions proposed by
Visser (1997) does not guarantee that the numerical
approximation converges to the true solution.

In recent years, a battery of test cases was devel-
oped to asses the accuracy and convergence of particle-
tracking schemes (Thomson 1987; LaBolle et al. 2000;
Brickman and Smith 2001; Deleersnijder et al. 2006a;
Spivakovskaya et al. 2007a; Shah et al. 2011). Most of
these test cases were designed to compare an analytical
solution with the numerical approximations. Owing to

the fact that analytical solutions are generally unavail-
able, only highly idealised test cases could be used.
For example, the assumption that the vertical eddy
diffusivity in shallow water has a parabolic profile is
generally believed to be acceptable for an idealised test
case. However, the assumption of a parabolic diffusivity
implies that the water column is well mixed and no
suppression of turbulence or vertical transport occurs,
which is a well-observed feature in coastal oceanogra-
phy. For instance, in shallow seas and estuaries, a pycn-
ocline can act is a quasi-impermeable barrier to vertical
diffusion. This variation in the vertical diffusivity is
easily taken into account by Eulerian models, while ob-
taining a similar result in Lagrangian simulations is far
from trivial. This was illustrated by Stijnen et al. (2006).
Accordingly, it is necessary to develop Lagrangian test
cases focussing on features that cannot be dealt with
easily in a Lagrangian mode. In this paper, we construct
a new benchmark that deals with an idealised pycno-
cline. This test case is used to assess the performance
of different numerical particle-tracking schemes and to
compare their efficiency. An additional positive side
effect of the proposed test case is that the particle-
tracking schemes are tested for the weak and strong
convergence (Arnold 1974). Previous publications fo-
cused either on the weak convergence (Stijnen et al.
2006; Spivakovskaya et al. 2007a; Gräwe and Wolff
2010; Gräwe 2011) or on the strong convergence (Shah
et al. 2011), but not on a combination of both.

The outline of the present paper is as follows: In
Section 2, we briefly summarise the underlying the-
ory for particle tracking. In Section 3, we discuss the
construction of a test case that deals with an idealised
pycnocline, which should act as a barrier to vertical
diffusive transport. The numerical schemes, which shall
be tested for accuracy, convergence and efficiency, are
introduced in Section 4. In Section 5, we present the
results and discuss the performance of the numerical
schemes. In Section 5, we try to answer the question
as to why the Euler scheme fails for the presented test
case. Finally, the findings are summarised with a short
conclusion.

2 The Lagrangian model

In the 1-D vertical Eulerian framework, the concentra-
tion of various constituents (suspended particular mat-
ter, pollutants, biological species etc.) obeys a PDE in
the following form (neglecting source and sink terms):

∂tC = ∂z (w C + K(z) ∂zC) (1)
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Thus, Eq. 1 is an advection–diffusion equation for the
concentration field C(z, t) of a passive tracer that has
a sinking velocity w. K(z) represents the vertical eddy
diffusivity.

Instead of solving the PDE, it is possible to transform
the whole solution process into the solution of an SDE
also called Langevin equation. The basic idea is to
interpret the concentration field C(z, t) as a transition
density field and reinterpret Eq. 1 as a Fokker–Planck
equation, i.e. a deterministic PDE with regard to tran-
sition density functions. This lead to the following SDE
defined in the Îto sense (Arnold 1974):

dZ (t) = (w + ∂z K(z)) dt + √
2 K(z) dW(t) (2)

Here Z (t) is the position vector of the particles and
dW(t) is a Wiener noise increment with the following
properties. W(t) is a Gaussian process with indepen-
dent increments for which the following expressions
hold

〈W(t)〉 = 0 ; Std (W(t) − W(s)) = √|t − s|. (3)

Therefore, the noise process has a vanishing mean 〈·〉,
its standard deviation scales as

√
dt and the increments

are uncorrelated. For convenience, Eq. 2 can be further
simplified to

dZ (t) = a(z) dt + b(z) dW(t), (4)

where a = w + ∂z K(z) represents the deterministic
part and b = √

2 K(z) is the stochastic part. Again
Eqs. 4 and 2 are only valid in the Îto interpretation
(Arnold 1974).

To evaluate the accuracy or order of convergence
of a stochastic scheme, two cases have to be distin-
guished. For SDEs, the convergence is separated into
weak and strong (Arnold 1974; Kloeden and Platen
1999). A method is said to have a weak/strong order of
convergence of γ if there exists a constant � such that

|〈p(Zn)〉 − 〈p(Z (τ ))〉| ≤ � �tγ : weak
〈|Zn − Z (τ )|〉 ≤ � �tγ : strong,

(5)

for any fixed τ = n�t ∈ [0, T] and �t sufficiently small.
Zn represents the true solution and Z (τ ) is the ap-
proximation. The function p(·) is an arbitrary function
(not necessarily a probability density function) with
polynomial growth. This implies that all the moments
of the distribution (and hence the distribution itself) are
approximated with the desired accuracy. The weak cri-
terion asks for the difference in a distribution, whereas
the strong criterion accounts for the difference in the
trajectory.

3 Construction of the test case

3.1 Motivation

The starting point is the test case of Stijnen et al. (2006).
The authors performed Lagrangian simulations in a
shallow coastal region (the coastal zone of the Nether-
lands). The challenge they were faced with was the
vertical stratification due to salinity contrasts, caused by
river run-off. The stratification, which is associated with
a rather thin pycnocline, is a quasi-impermeable barrier
to vertical diffusive or turbulent transport. Stijnen et al.
(2006) showed that this is easily taken into account
by Eulerian models, while obtaining a similar result in
Lagrangian simulations is far from trivial. They could
show that the pycnocline was no significant barrier to
diffusion when the Lagrangian Euler scheme was used.
However, when using a higher-order particle-tracking
scheme, the pycnocline remained almost impermeable
to diffusive fluxes—as it is supposed to be. Unfortu-
nately, Stijnen et al. (2006) used a fairly large time step
and did not do a detailed analysis of the reason why the
Euler scheme fails. As we believe that it is important to
investigate in detail the advantages and disadvantages
of tools we are using, we will tackle the questions they
left open.

As a test case should run on a standard desktop
computer, it is desirable that the CPU cost of each
run is modest so that many runs can be performed
within a reasonably small amount of time. This allows
numerous schemes to be tested and an assessment of
a wide spectrum of parameter values to be considered.
This is why it is suggested to turn to a vertical problem
in which transport is due to vertical turbulent diffusion,
with the possible addition of settling processes (e.g.
Spivakovskaya et al. (2007a); Gräwe and Wolff (2010);
de Brauwere and Deleersnijder (2010)). Hence, hori-
zontal transport processes are not taken into account.
A pycnocline associated with a strong density gradient
must be present so that the eddy diffusivity at the
location of the pycnocline is negligible, thereby rep-
resenting an impermeable barrier to vertical diffusive
transport. In Fig. 1, a measured diffusivity profile in the
presence of a sharp pycnocline is shown (van der Lee
and Umlauf 2011). The large variation in the diffusivity
is caused by a gradient in the salinity with a difference
of 10 g/kg over 20 m. An important fact to realise is that
the diffusivity can vary by several orders of magnitude
over a short distance.

To construct a possible test case, we use the
diffusivity profile in Fig. 1 as a blue print. We assume
without any loss of generality that the pycnocline is
located in the middle of the water column. Accordingly,
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Fig. 1 Salinity and diffusivity profile measured in the Baltic Sea.
For details of the measurement, see van der Lee and Umlauf
(2011). Note that the upper 5 m and lower 10 m are not plotted

it is suggested that the idealised vertical eddy diffusivity
be equal to:

K(z) = K
2(1 + a)(1 + 2a)

a2 H1+1/a

⎧
⎪⎪⎨

⎪⎪⎩

z(H − 2z)1/a ,

0 ≤ z < H/2
(H − z)(2z − 1)1/a ,

0 ≤ z < H/2

,

(6)

where a is a constant that is larger than or equal to
unity, z is the distance to the seabed, which is located
at z = 0, while the sea surface is at z = H.

K is a free parameter, representing the depth-
averaged diffusivity,

K = 1

H

∫ H

0
K(z)dz.

The important tuning parameter is a, which controls
the sharpness of the pycnocline. The dependence of the
sharpness of the pycnocline on a is depicted in Fig. 2.
The eddy diffusivity is a linear function of the distance
to the upper and lower boundaries of the domain:
Such behaviour is generally regarded as acceptable for
idealised test cases. In addition, the eddy diffusivity
is zero at the pycnocline and in the vicinity of the
latter. The parameter a controls the steepness of the
diffusivity profile. The larger the value of a, the larger
the vertical diffusivity gradient in the vicinity of the
pycnocline. For values of a greater than 10, one can
generate pathologically thin interfaces which we will
not consider. Note that setting a = 1 will produce a
double parabolic diffusivity profile.
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Fig. 2 Diffusivity profile K for two different values of a

3.2 Diffusive pycnocline crossing

For the first test case, we will consider a pure diffusion
problem; thus, we set in Eq. 1 the sinking velocity
w to zero. Moreover, for the sake of generality, it is
convenient to reformulate the problem above using
dimensionless variables. The latter are defined to be:

t′ = t K
H2

; z′ = z
H

; K′ = K

K
;

From here on, only dimensionless quantities will be
used; we will thus drop the primes. The domain of
interest and the problem to be solved may be rewritten
as follows:

0 ≤ t ; 0 ≤ z ≤ 1
∂tC = ∂z (K(z)∂zC)

K(z)∂zC
∣∣∣
z=(0,1)

= 0

C(0, z) = δ(z − z0).

The boundaries are treated as “no flux” boundaries,
and the initial release is a Dirac function. For an an-
alytical solution of the posed problem in the special
case of a = 1, the interested reader is referred to Spi-
vakovskaya et al. (2007a).

However, the intention of the test case is not to
reproduce the analytical solution. Our aim is to as-
sess the ability of different numerical schemes to treat
the pycnocline as the requested impermeable barrier.
Thus, if we release particles in the upper half of the
water column, a “perfect” scheme must exhibit zero
concentration in the lower half of the water column at
any time. This is easily achieved in Eulerian numeri-
cal models. In Lagrangian simulations, however, it is
almost impossible to prevent some particles from cross-
ing the pycnocline, thereby causing simulation errors
that have to be assessed. To quantify to what extent
the pycnocline is actually a barrier to vertical diffusion,
N particles may be released somewhere in the upper
half of the water column. Since the number of particles
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has to remain constant, one could display the number of
particles present in the lower half of the domain. As the
whole modelling system outputs concentration fields (a
detailed description is given by Gräwe (2011)), rather
than individual trajectories, we use as error measure the
following definition:

ε = 2
∫ 0.5

0
C(T, z)dz (7)

with

∫ 1

0
C(T, z)dz = 1

thus, we integrate (sum) the particle concentration
C(T, z) at an arbitrary time T, in the lower half of
the water column. If ε = 0, no particles have crossed
the pycnocline; if ε = 1, the particles are uniformly
distributed in the whole water column. Clearly, the
lower ε, the better the scheme under considerations.
Although we have a well-defined error measure, it must
be realised that it is a non-linear one. At first, it can only
vary between zero and one, and secondly if a scheme
has an ε of zero, it will remain zero by further reduction
of the time step. Thus, there is obviously no further
improvement.

To finish the introduction of the error measure, we
have to define the integration time T, at which the eval-
uation of ε is done. If T is too small, the particle cloud
has not reached the pycnocline, and if T is large, the
distribution is uniform over the whole water column,
regardless of the used scheme. The vertical mixing time
scale TM (with physical units) is of the order of:

TM = (H/2)2

K
= H2

4K
. (8)

H/2 is related to the fact that the pycnocline is located
in the middle of the water column. Therefore, TM

represents a lower limit of the runtime. The dimen-
sionless mixing time scale has a value of TM = 1/4. To
deduce an upper bound for the T is only possible by
educated guessing. We have chosen to use the fourfold
of TM as integration time. This is a trade-off between
computational demand and accuracy.

An important point to mention is that although we
are looking for the time evolution of a particle distribu-
tion and thus a weak convergence (Eq. 5), the crossing
of the pycnocline tests for the strong convergence. This
is related to the fact that the individual particle path in
the vicinity of the pycnocline is important and therefore
a strong error measure.

3.3 Residence time

In the previous test, the settling velocity w was set
to zero. This might be appropriate for tracking water
parcels, but for buoyant particles, this assumption is
no longer valid. However, imposing a finite sinking
velocity makes it impossible to formulate an analytical
solution. This even holds for a = 1 and thus recovering
the parabolic diffusivity profile. Nevertheless, an exact
solution for the adjoint problem of finding the resi-
dence time θ(z) is known (Deleersnijder et al. 2006a, b).
To obtain the residence time θ(z0), a number of parti-
cles are released at a distance z0 from the bottom, and
the residence time is defined to be the mean time taken
by the particles to settle in the sea bed.

To simplify the calculations in the following, it is
again convenient to introduce dimensionless variables:

t′ = t
H/w

; (z′, z0
′) = (z, z0)

H
; K′ = K

K
;

Finally, the Peclet number Pe is defined to be

Pe = w H

K

and because only dimensionless variables will be used,
we will drop again all primes from now on. Accordingly,
the domain of interest is now defined as 0 ≤ z ≤ 1. The
initial and boundary conditions are defined as:

IC: C(0, z)=δ(z − z0) ; BC:
[
C+K(z)∂zC

]
z=1 =0.

The boundary at z = 0 (seafloor) is a barrier to turbu-
lent diffusion, and therefore, the diffusion flux must be
zero at the bottom:

BC: K(z)∂zC
∣∣∣
z=0

= 0.

In the case of a double parabolic diffusivity profile (a =
1 in Eq. 6), a closed-form expression of the residence
times for the lower or upper part of the water column
can be derived (Deleersnijder et al. 2006b). However,
for the general case of a �= 1, no closed-form expression
exists, and one only has the following general formula
(Deleersnijder et al. 2006a, b):

θ(z) = z +
∫ 1

z
exp

[
−Pe

∫ ξ

z

dζ

K(ζ )
dξ

]
. (9)

This integral can be evaluated numerically to any de-
sired accuracy and thus be used as reference solution.
The residence time profiles for a = 1 and a = 5 are
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Fig. 3 Residence time θ for two different Peclet numbers Pe,
a for a = 1 and b a = 5. These curves have been obtained from
Eq. 9

shown in Fig. 3 for two different Peclet numbers. It can
be seen that for higher values of a, the presence of the
pycnocline at z = 0.5 is not visible any longer. As the
diffusivity vanishes at z = 0.5, the particle behaviour in
the vicinity of the pycnocline is controlled by the sink-
ing velocity. If the value of the parameter a increases,
the thickness of the region (straddling the pycnocline)
in which the diffusivity is small decreases. Accordingly,
the impact of this region on the residence time obtained
from Eq. 9 diminishes, which is why the influence of the
pycnocline neighbourhood is less visible in the lower
panel of Fig. 3 (a = 5) than in the upper one (a = 1).
To quantify the performance of the numerical algo-
rithms, the root mean square error ε is computed,

ε =
√√√√ 1

Nz

Nz∑

i=1

(θA(zi) − θS(zi))
2 (10)

with θA(zi) is the analytical solution (Eq. 9) and θS(zi) is
the prediction of the Lagrangian model. The analytical
solution and the model prediction are computed at Nz

equidistant bins of the water column. In the previous

section, we saw that the crossing of the pycnocline tests
for the strong convergence. This is not the case for
the residence time, as this is an integral quantity and
therefore only a weak convergence benchmark.

3.4 Time step restrictions

To choose a proper time step in particle tracking is
much more difficult than for instance in Eulerian ocean
models. In the latter case, an upper limit is the ratio
of the propagation speed of surface gravity waves (in-
ternal waves) and the grid spacing. As such a strict
criterion does not exist for SDEs, the time step has to
be selected either by sensitivity studies or from some
general guidelines.

Penland (2003) proposed as a rule of thumb to esti-
mate the smallest time scale of the system and divide
this time scale by 27. In our case, the smallest time
scale is the mixing time scale TM (Eq. 8), such that we
have a time step �t = (1/4)/27 = 0.002. However, this
suggestion can only act as a first guess, since it does
not take into account the sharpness of the pycnocline.
Furthermore, one has to know in advance the smallest
time scale of the system, which may be difficult to
estimate.

To arrive at a better guess of the required time step,
we will discuss the suggestions of Visser (1997). To
choose a time step that resolves the variations in the
diffusivity, Visser (1997) proposed a restriction on the
time step for the integration:

�t 	 min

(
1

∂zz K

)

. (11)

It is widely accepted that this formulation implies that
�t must be at least one order of magnitude smaller
than the reference time scale. However, the diffusivity
profile (Eq. 6) has, as it is constructed, an inherent
discontinuity in the curvature of the diffusivity at z =
0.5, which might cause problems. However, one has to
note that the discontinuity only occurs in the derivative
and curvature and not in the diffusivity profile itself.
We do not have a jump in the diffusivity as used by
LaBolle et al. (2000) or Spivakovskaya et al. (2007b).
At z = 0.5, the curvature of the diffusivity behaves as:

∂zz K(z)

∣∣∣
z=0.5

∝ lim
z→0.5

(1 − 2z)
1−2a

a , (12)

Table 1 Time step limits based on Eq. 11 for different values of a for the discretised version of the diffusivity profile (Eq. 6)

a 1 2 4 8

�tmax 1×10−3 4×10−4 2×10−4 1×10−4
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Table 2 Settings for the
diffusive pycnocline crossing
and residence time test, with
Nz the number of vertical
grid points and N the total
number of tracked particles

�t Nz N a Pe

Pycnocline crossing
a 10−4–10−6 100 105 2 0
b 10−5 100 105 1–10 0

Residence time
a 10−4–10−6 100 105 2 3,12
b 10−5 100 105 1–10 3,12

hence, the curvature grows unbounded and the time step
limit tends to zero. Nevertheless, as we approximate
the diffusivity profile on a finite grid, the chosen time
step depends strongly on the grid resolution. In Table 1,
we give an upper limit of the proposed time step for a
vertical resolution of 100 equidistant grid points.

3.5 Experimental settings

Since the numerical schemes are tested for a wide range
of parameters, in Table 2, the experimental settings are
summarised. The number of vertical levels Nz is limited
to 100, as this is similar to present day high-resolution
ocean model discretisation. Using a higher/lower num-
ber or levels would only change the time step (Eq. 11),
as the diffusivity profile is given analytically. To get a
proper scaling of the error ε, the time step is varied by
two orders of magnitude.

To estimate the concentration profiles, we resort
to a simple box-counting approach, as using kernel
estimates (Silverman 1986; Spivakovskaya et al. 2007a)
would smooth the concentration profile at the pyc-
nocline. The random numbers are generated by the
“keep it simple stupid” (KISS) generator of Marsaglia
(2003) in combination with the Ziggurat algorithm of
Marsaglia and Tsang (2000) to map uniform random
numbers to Gaussian ones.

4 Numerical approximations

In the following section, a short presentation of the
used schemes is provided. A detailed description and
discussion of the implementation may be found in
Gräwe (2011).

4.1 The Euler scheme (E1)

A straightforward translation of Eq. 4 into a numerical
scheme simply consists in replacing dt by a finite time

step �t and dW by a discrete increment �W. There-
fore, the lowest-order approximation reads as:

Zn+1 = Zn + a �t + b �Wn. (13)

This is also known as Euler scheme (Maruyama 1955).
As discussed after Eq. 3, the increment �W scales as√

�t; hence, the whole Euler scheme is only of order√
�t in the sense of strong convergence and of order

�t in the sense of weak convergence. The noise incre-
ment is drawn from a Gaussian distribution (Eq. 3). To
compute the velocity and the diffusivity at the particle
position, they need to be interpolated from the discrete
grid. This is done via linear interpolation

4.2 The Milstein scheme (M1)

To develop numerical schemes that have a higher accu-
racy than the Euler scheme, one has to use the appro-
priate Taylor approximation of Eq. 4 (see, e.g. Arnold
(1974) or Kloeden and Platen (1999)). The next higher-
order approximation reads

Zn+1 = Zn + a �t + b �Wn + 1

2
bb ′ (�Wn

2 − �t
)
,

(14)

where b ′ is the spatial derivative. This is also known as
the Milstein scheme (Milstein 1974). Additional accu-
racy is gained by including information of the deriva-
tive of the noise term b . The noise increment �W is
again drawn from a Gaussian distribution (Eq. 3). The
interpolation is done linearly.

Although the Milstein scheme and Euler scheme
have the same order of accuracy in terms of the weak
convergence, they differ in the strong convergence. As
we will later show, this is a crucial difference.

4.2.1 The 1.5-order strong Taylor scheme (S15)

By including further terms of the stochastic Taylor
expansion, the next higher-order scheme is of 1.5-order
accuracy in the strong convergence and second order in
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the weak sense. The 1.5-order strong Taylor scheme is
given as:

Zn+1 = Zn + a �t + b �Wn + 1

2
bb ′ (�Wn

2 − �t
)

+ a′b�Zn + 1

2

(
aa′ + 1

2
b 2a′′

)
�t2

+
(

ab ′ + 1

2
b 2b ′′

)
(�Wn�t + �Zn)

+ 1

2
b

(
bb ′′ + (

b ′)2
) (

1

3
�Wn

2 − �t
)

�Wn (15)

Additional to the noise increment �W, a second ran-
dom variable �Z is needed. �Z is also a Gaussian
random variable (Eq. 3) with the following proper-
ties: 〈�Zn〉 = 0, variance 〈�Z 2〉 = 1

3�t and covariance
〈�Z�W〉 = 1

2�t2. As terms like a′′, b ′′ are needed, lin-
ear interpolation is not sufficient any longer. Thus, the
interpolation of the diffusivity to the particle position is
done via cubic spline interpolation (Lalescu et al. 2010).

4.3 The second-order Milstein scheme (M2)

This scheme is a simplification of the previous one.
Therefore, only a weak approximation is needed, and
some terms of Eq. 15 can be skipped. In contrast to
Eq. 15, there is no need for a second random variable.
The scheme was proposed by Milstein (1979) and is of
second-order accuracy:

Zn+1 = Zn + a �t + b �Wn + 1

2
bb ′ (�Wn

2 − �t
)

+ 1

2

(
(ab)′+ 1

2
b ′′b 2

)
�Wn�t+ 1

2

(
aa′+ 1

2
a′′b 2

)
�t2.

(16)

As above, the interpolation is done via cubic splines.

4.3.1 The Heun scheme (PC1)

The lowest-order predictor–corrector (PC) scheme
reads as follows:

Zn+1 = Zn + 1

2

(
a(Z̃ ) + a

)
�t + b �Wn (17)

with

Z̃ = Zn + a�t + b �Wn. (18)

Equation 17 is a stochastic version of the trapezoidal
method also known as Heun scheme. Note that the
predictor step Eq. 18 is only applied to the deterministic
part, the stochastic part is not corrected to keep the nu-
merical approximation consistent with Eq. 4 (Kloeden
and Platen 1999). The Heun scheme is of first-order
accuracy in the weak convergence and is therefore
similar to the Euler scheme.

4.3.2 The Platen two-step scheme (PC2)

Another predictor–corrector scheme, which is of sec-
ond order accuracy, was proposed by Kloeden and
Platen (1999)

Zn+1 = Zn + 1

2

(
a(Ẑ ) + a

)
�t + � (19)

with

� = b �Wn + 1

2
bb ′ (�Wn

2 − �t
)

+ 1

2

(
ab ′ + 1

2
b ′′b 2

)
�Wn�t

and with the predictor

Ẑ = Zn + a �t + � + 1

2
a′b�Wn�t

+ 1

2

(
aa′ + 1

2
a′′b 2

)
�t2,

where �W is again a Gaussian variable (Eq. 3). The
interpolation is done via cubic splines.

Table 3 Summary of the different numerical schemes and related abbreviations. Shown are the theoretical order of convergence and
the interpolation method used. Note that the strong order of convergence is not defined for all schemes

Scheme Short name Weak order Strong order Interpolation

Euler E1 1 0.5 Linear
Milstein 1st order M1 1 1 Linear
Strong Taylor S15 2 1.5 Cubic splines
Milstein 2nd order M2 2 – Cubic splines
Heun PC1 1 0.5 Linear
Platen two-step PC2 2 – Cubic splines
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4.4 Summary of used schemes

Table 3 summarises the numerical schemes, the theo-
retical order of convergence, and the applied interpola-
tion method and introduces the short notations used.

5 Results and discussion

5.1 The pycnocline crossing test case

In Fig. 4, the time evolution of a point release of
particles at z = 0.75 is shown. One can clearly see that
for the E1 scheme, the pycnocline is not a true barrier
to diffusion. This even holds for small values of a. The
M2 scheme shows for a = 1 no crossing of particles of
the pycnocline. For a = 4 (Fig. 4 d), there is a leakage
of particles into the lower half of the water column. By
simple visual inspection, it is obvious that the results
obtained with the Euler scheme are completely wrong.
Furthermore, variations of the time step would not
reveal this failure as we are already using a time step
which is 1/100 of the time step suggested by Visser
(1997).

5.1.1 Variation of the time step �t

To have a more quantitative performance measure, in
Fig. 5, the scaling of the error ε (Eq. 7) for different
time steps is presented. Figure 5 a indicates that the
E1 and PC1 scheme do not treat the pycnocline as a
barrier by varying the time step over two orders of
magnitude. Both schemes show only a slow conver-
gence to the true solution. The other schemes show a
proper performance with a convergence of the error by
decreasing the time step. Figure 5 a further shows that
for time steps smaller than 10−5, the M1, M2, PC2 and

S15 schemes have a vanishing error. This suggests that
the time step should be a factor of 100 smaller than the
limit proposed by Visser (1997) (Eq. 11).

It is not surprising to see that the S15 scheme shows
the best performance. As the diffusive crossing of the
pycnocline is a test that seeks for a strong error con-
vergence, the S15 scheme can outperform the other
schemes. This is because the S15 scheme is by construc-
tion a strong scheme and exhibits the highest theoreti-
cal accuracy within all schemes considered here.

Increasing the pycnocline sharpness by setting a =
3 leads to an overall degradation of the performance
for all schemes (Fig. 5 b). Only for a time step of �t =
10−6 the pycnocline remains a impermeable boundary
(except for the E1 and PC1 scheme).

The error convergence in Fig. 5 is plotted on semi-
logarithmic axes. As the error decreases nearly lin-
early for all schemes, this implies an exponential error
convergence. It is further visible that the E1 and PC1
scheme exhibit a much slower “error decay” timescale
than the four other schemes.

5.1.2 Variation of the pycnocline sharpness

To have a better understanding of the performance for
different values of a, in Fig. 6 we show the convergence
of the error for variations of the pycnocline sharpness.
For moderate time steps and small values of a, the M1,
M2, PC2 and S15 scheme can treat the pycnocline as
a barrier (Fig. 6 a). However, for values of a ≥ 7, all
schemes fail this test. Only by decreasing the time step
to 10−6, the M1, M2, PC2 and S15 schemes show a
scaling of the error over the whole range of variations
of a (Fig. 6 b). Clearly, the S15 scheme shows the best
performance. Again the E1 scheme and PC1 scheme do
not treat the pycnocline correctly for all values of a.

Fig. 4 Dispersion of a
particle cloud initially located
at z = 0.75 for two different
schemes and two sets of a.
Colour-coded is the particle
concentration computed by
box counting, for a E1
scheme with a = 1, b E1 with
a = 4, c M2 with a = 1 and d
M2 with a = 4. The time step
is �t = 10−6
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Fig. 5 Variation of the error
ε for the different numerical
schemes and for a fixed
parameter a with: a a = 1 and
b a = 3. On the x axis, we
show the time step �t and on
the y axis the error ε
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5.1.3 Spurious background dif fusivity

There is an important question that has yet to be
answered: Can we quantify the particle leakage intro-
duced by the numerical schemes in terms of a physical
quantity (rather than in the number of particles)? To
answer the question, one has to recall Fig. 4 d. One can
see that at the beginning, there exists a well-defined
sharp interface at the pycnocline with a concentration
of two above the pycnocline and zero below. As time
progresses, there is a constant leakage of particles into
the lower half of the water column. As this is a pure
diffusion problem, it can be written as:

∂tC = ∂z (K ∂zC) . (20)

We do not focus on the particle dynamics itself, but
rather on the change in concentration such that there
is a flux of concentration (particles) from top to down.
If the pycnocline is a “true“ barrier, the leakage is zero.
However, since this is not the case, one can imagine that
there exists a spurious background diffusivity that leads
to the levelling of the concentration. Assuming that the

spurious background diffusivity KS is constant, Eq. 20
can be written as:

∂tC = KS ∂zzC.

As we are seeking to estimate KS rearranging the terms
leads to,

KS = ∂tC

∂zzC
.

To finally estimate KS, one can use any standard text-
book method to solve a diffusion equation with con-
stant coefficient, for instance a forward in time and
central difference scheme. One has to note that we
have to solve the inverse problem and do a least square
fitting for the estimated diffusion constant.

In Fig. 7, the scaling of KS for variation of the
time step is shown (keeping a = 1). The M1, M2, PC2
and S15 schemes show a rapid decrease of KS by de-
creasing �t and finally reach the point where KS is
equal zero. The E1 and PC1 schemes only show a very
slow convergence of KS. This still holds if we chose a
time step that is two orders of magnitude below the

Fig. 6 Variation of the error
ε for the different numerical
schemes and a fixed time
step, with a �t = 7 × 10−6

and b �t = 10−6. On the x
axis, we show the pycnocline
sharpness parameter a and on
the y axis the error ε
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Fig. 7 Scaling of the background diffusivity KS for variations of
the time step �t with fixed a = 1. On the y axis the error ε is
shown

time step restriction proposed by Visser (1997). The
minimum background diffusivity for both schemes is
approximately 5 × 10−2. Since this is a dimensionless
value, we have to convert it back to real physical units.
Assume the diffusivity profile given in Fig. 1 with a
depth averaged diffusivity of approximately 10−4 m2/s.
This gives a spurious background diffusivity for the
Euler scheme of 5 × 10−6 m2/s. Thus, the E1 and PC1
scheme would “ignore” diffusivities below that (which
can reach down to 10−7 m2/s). The E1 scheme will
overestimate the vertical diffusive fluxes by two orders
of magnitude.

Figure 7 further indicates that particle-tracking
schemes can show numerical diffusion, which is known
from discretised PDEs in ocean models (Burchard
and Rennau 2008; Vitousek and Fringer 2011). None-
theless, for sufficiently small time steps and a proper

numerical particle-tracking scheme, this artificial dif-
fusivity can completely be removed.

5.2 The residence time

In the second test case, we compute the residence time
of particles in the water column. In Fig. 8a, the scaling
of the error is shown for a = 1 and Pe = 3. All schemes
converge to the analytic solution according to their
proposed accuracy. It is important to note that not only
the scaling is important, also the absolute error has to
be considered. For instance, the M1 scheme with the
largest time step gives a similar error as the E1 scheme
with the smallest time step and is thus much more
efficient. The E1 scheme and PC1 scheme show an
identical performance. The same is valid for the second
order schemes. Increasing the Peclet number (Fig. 8c)
does not yield any new results. Only the absolute error
for all schemes is slightly reduced, as with increased
Peclet number, the particle movement close to the
pycnocline is mainly controlled by the sinking speed
(Fig. 3).

As discussed above, the residence time is an integral
measure; thus, this test is a weak convergence problem.
As the true particle path is not important, only the time
evolution of a distribution is, all schemes show the pro-
posed convergence behaviour. The E1 scheme shows a
similar performance compared to the M1 scheme.

The error of the particle-tracking schemes does not
show a strong dependence on the pycnocline sharpness
(Fig. 8b). For the E1 scheme and PC1 scheme, ε is even
independent of the pycnocline sharpness.

Fig. 8 Results of the
residence time test for:
a a = 1 and Pe = 3,
b �t = 10−5 and Pe = 3,
c a = 1 and Pe = 12. In d, the
efficiency (runtime vs. error)
is shown for a = 1 and
Pe = 3.
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The efficiency of the different schemes, as indicated
in Fig. 8 d, clearly shows the excellent performance
of the second-order schemes. They can be regarded as
highly efficient. It is further visible that the M1 scheme
has an error that is one order of magnitude lower than
for the E1 scheme and has a much higher efficiency.

6 Why the Euler scheme fails

Finally, we try to answer the question as to why the
Euler scheme fails. At first, one has to recall the nu-
merical schemes used. In Eq. 21, we have rewritten the
E1 and M1 scheme in a more convenient way to have a
better comparison between both:

Zn+1 = Zn + ∂z K�t + √
2K�W: E1 scheme

Zn+1 = Zn+∂z K
1

2

(
�W2+�t

)+√
2K�W: M1 scheme.

(21)

The difference between the E1 scheme and M1 scheme
is rather subtle. The correction for the M1 scheme is
only applied to the gradient term ∂z K. Since

(�W)2 = O (�t) ,

and (�W)2 is a random variable with mean and stan-
dard deviation �t, the M1 scheme tends to the E1
scheme for average size noise increments. Only for
large or small noise increments the gradient correc-
tions gets different weight. Consider for instance a
particle close to the pycnocline and a noise increment
�W = −2

√
�t. For the E1 scheme, the particle can

cross the pycnocline. For the M1 scheme, however, the
large increment is balanced by an additional “repelling”
force which is proportional to 3/2∂z K�t. That might
prevent a crossing. This indicates that noise increments
larger than

√
�t lead to the poor performance of the

E1 scheme. To test our hypothesis, we will modify
the noise term �W. The noise increment is usually a
Gaussian variable (Eq. 3). As discussed above, we are
seeking a solution that should converge in the weak
sense; therefore, only the statistics of the noise incre-
ment �W need to be approximated in the weak sense.
Thus, only its first two moments have to match. This
means either any two-point random variable with

P(�WT = ±√
�t) = 1

2
, (22)

or a uniform distributed random variable as,

WU (t) =
(

U(t) − 1

2

)
2
√

3�t, (23)
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Fig. 9 Variation of the error ε for different noise increments of
the E1 scheme with a = 1. On the y axis the error ε is shown. As
reference, the M1 scheme is included

with U(t) an uniform random number in the interval
[0, 1] could be used. Both random variables fulfil the
following necessary conditions:

〈W(t)〉 = 0 ; Std (W(t) − W(s)) = √|t − s|.
Either WT(t) or WU (t) can be considered as a weak
approximation of the original Wiener increment as
defined in Eq. 3. A more profound discussion on ap-
proximating the moments of a distribution can be found
in Kloeden and Platen (1999). However, it is important
to note that by using either WT(t) or WU (t), the E1
scheme is still only of first-order accuracy in the weak
sense (Eq. 5), whereas the convergence in the strong
sense is not defined any longer.

To test our hypothesis, we repeat the diffusive pycn-
ocline crossing experiment as discussed in Section 3.2.
The numerical schemes under considerations are the
E1 scheme, the Euler scheme with a two-point ran-
dom variable �WT is the E1T scheme and the Euler
scheme with a uniform random variable �WU is the
E1U scheme. As an additional benchmark solution, we
use the M1 scheme.

Figure 9 clearly indicates that the bounded noise
increments (Eq. 22 or 23) improve the performance of
the E1 scheme. Especially for small time steps, the E1T
and E1U schemes converge to the “true” solution so
that the pycnocline is a quasi-impermeable barrier to
diffusion. However, the M1 scheme can clearly outper-
form the modified E1 schemes; thus, it is still beneficial
to use an improved particle-tracking scheme and not a
“fixed” one.

7 Conclusion

In this paper, we described a new test case for particle-
tracking schemes. The motivation to construct this
benchmark was to investigate how different numerical
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schemes handle variations in the diffusivity by several
orders of magnitude and sharp interfaces as repre-
sented by a well-defined pycnocline. Moreover, the
proposed test can be used to assess the weak and strong
convergence properties of various numerical schemes.

The findings of this paper can be summarised in one
sentence: Do not use the Euler scheme for particle
tracking in highly baroclinic simulations! In particular,
the diffusive pycnocline crossing test revealed that the
E1 scheme or PC1 scheme is of no use, since they do
not treat the pycnocline as an impermeable boundary.
Even lowering the time step did not solve the problem.
The analysis showed that the poor performance of
both schemes is related to a high spurious background
diffusivity. This artificial diffusivity limits the range of
variations in the “real” diffusivity. The poor perfor-
mance of the E1 scheme or PC1 scheme is not cor-
related with the theoretical convergence of the error,
which is for both schemes of first order. The Milstein
scheme, which is also of first order, showed much better
ratings, a higher efficiency and accessorily an absolute
error that is approximately one order of magnitude
lower compared to the E1 scheme. This gain is caused
by an additional correction term, which accounts for
the size of the noise increment. A second reason for
the good performance of the Milstein scheme is that
the strong error convergence is better than for the
E1 scheme. Although particle tracking is mostly used
to describe the time evolution of distributions rather
than individual tracks, close to boundaries (and the
pycnocline is such a boundary), the individual particle
path is important and hence the performance in the
strong sense. Similar suggestions were made by Stijnen
et al. (2006) or Gräwe and Wolff (2010).

The failure of the Euler scheme was only apparent
in the diffusive pycnocline crossing test. For the res-
idence time, the E1 scheme or PC1 scheme showed
a proper scaling, although the absolute error was at
least one order of magnitude higher than the other
schemes. If the sinking velocity is small compared to the
typical diffusion length, the usage of low order particle-
tracking schemes is highly questionable. In that limit, it
is highly recommended to turn to higher order schemes.

A possible solution to improve the Euler scheme is
to use bounded noise increments (Eq. 22 or 23). The
drawback of the modification is that the Euler scheme
has only a well-defined convergence in the weak sense.
The strong convergence is no longer defined. By using a
large numbers or particles, the distribution of particles
is well sampled. Especially the uniform noise increment
(Eq. 23) is commonly used. The reason is that uniform
random numbers are faster to generate than Gaussian
ones. However, as common applications deal with sim-

ulating individual tracks of drifter, species or larvae, the
tracking scheme is applied in the strong sense (Eq. 5),
where the convergence of the modified Euler scheme is
not defined.

The results of the pycnocline crossing test suggest
that existing particle-tracking schemes should be up-
dated to at least the Milstein scheme. This would only
require minor modifications in the commonly used
Euler scheme but will be rewarded by a much higher
accuracy. Additionally, the efficiency is much higher,
meaning that the overhead due to a more complex
numerical scheme is cancelled out by the much higher
accuracy and therefore lower computational cost.
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