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S U M M A R Y
Amplitude-preserving data processing is an important and challenging topic in many scientific
fields. The amplitude-variation details in seismic data are especially important because the
amplitude variation is directly related with the subsurface wave impedance and fluid character-
istics. We propose a novel seismic noise attenuation approach that is based on local plane-wave
assumption of seismic events and the amplitude preserving capability of the orthogonal poly-
nomial transform (OPT). The OPT is a way for representing spatially correlative seismic data
as a superposition of polynomial basis functions, by which the random noise is distinguished
from the useful energy by the high orthogonal polynomial coefficients. The seismic energy is
the most correlative along the structural direction and thus the OPT is optimally performed
in a flattened gather. We introduce in detail the flattening operator for creating the flattened
dimension, where the OPT can be applied subsequently. The flattening operator is created
by deriving a plane-wave trace continuation relation following the plane-wave equation. We
demonstrate that both plane-wave trace continuation and OPT can well preserve the strong
amplitude variation existing in seismic data. In order to obtain a robust slope estimation perfor-
mance in the presence of noise, a robust slope estimation approach is introduced to substitute
the traditional method. A group of synthetic, pre-stack and post-stack field seismic data are
used to demonstrate the potential of the proposed framework in realistic applications.

Key words: Image Processing; Seismic Noise.

1 I N T RO D U C T I O N

Seismic noise attenuation is one of the most significant steps in the
whole seismic data processing and imaging workflow. It has great
influence to many subsequent processing tasks, such as amplitude-
variation-offset inversion, reverse time migration, full waveform
inversion and automatic interpretation for oil and gas detection
(Wang et al., 2015; Gan et al., 2016; Gao et al., 2016; Huang et al.,
2016; Qu et al., 2016; Xue et al., 2016b; Asgedom et al., 2017;
Zeng et al., 2017; Zhang et al., 2017; Chen, 2018).

In the past several decades, a large number of algorithms have
been developed for seismic noise attenuation. Stacking the seis-
mic data along the spatial directions, for example, the offset direc-
tion, can enhance the energy of spatially coherent useful waveform
signals as well as mitigate the spatially incoherent random noise
(Liu et al., 2009a; Xie et al., 2016; Wu & Bai, 2018c). One of
the commonly used state-of-the-art algorithms is the prediction-
based method, including t–x predictive filtering (Abma & Claer-
bout, 1995), f–x deconvolution (Canales, 1984), the polynomial

fitting based approach (Liu et al., 2011) and non-stationary pre-
dictive filtering (Liu et al., 2012; Liu & Chen, 2013). This type
of methods utilize the predictive property of useful signals along
spatial direction to create a regression-like model for distinguishing
between signal and noise.

Another type of commonly used methods are based on data de-
composition. This type of methods assume that noisy seismic data
can be decomposed into different components where signal and
noise are separated based on their frequency difference or morpho-
logical difference (Huang et al., 2017). Empirical mode decomposi-
tion (EMD; Huang et al. 1998; Chen 2016) and its improved version,
for example, ensemble empirical mode decomposition (EEMD; Wu
& Huang 2009), complete ensemble empirical mode decomposition
(CEEMD; Colominas et al. 2012;), have been used intensively for
reducing the noise in seismic data (Chen et al., 2016a) . Variational
mode decomposition was proposed by Dragomiretskiy & Zosso
(2014) for substituting EMD because of its explicit control on the
decomposition performance. It has been utilized for noise attenu-
ation in Liu et al. (2017) and for time-frequency analysis by Liu
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Figure 1. Trace prediction for clean data. (a) Reference trace. (b) Slope
field. (c) Predicted gather from the reference trace. (d) Flattened gather by
predicting the reference trace from each trace in Fig. (c). (e) First trace in
Fig. (a).

et al. (2016a). Regularized non-stationary decomposition (Yang
et al., 2014; Wu et al. , 2016) is another decomposition method
which is also based on a solid mathematical model. Singular value
decomposition (SVD) can also be used to extract the most spatially
coherent components from the multidimensional seismic data.

Sparse transform based approaches assume that multidimen-
sional seismic data can be compressed in a sparse transformed
domain, where the signal is represented by high-amplitude coeffi-
cients and the noise is represented by small-amplitude coefficients
(Gholami, 2013; Bai & Wu, 2018). Hence, by transforming data
to the sparse domain, a soft thresholding can be applied to reject
those small-amplitude coefficients that correspond to noise, which
is followed by an inverse transform from the thresholded coeffi-
cients to time–space domain (Chen, 2017). This type of methods are
closely connected with the compressive sensing paradigm (Lorenzi
et al., 2016). Widely used sparse transforms are Fourier transform,
curvelet transform (Candès et al., 2006; Herrmann et al., 2007; Her-
rmann & Hennenfent, 2008); Wang et al., 2011; Zu et al., 2017),
seislet transform (Fomel & Liu, 2010; Chen & Fomel, 2015a; Gan
et al., 2015a; Gan et al., 2015b), shearlet transform (Kong et al.,
2016), Radon transform (Foster & Mosher, 1992) and a variety of
sparse wavelet transforms (Mousavi & Langston, 2016b; Anvari
et al., 2017), for example, synchrosqueezing (Daubechies et al.,
2011; Mousavi et al., 2016; Mousavi & Langston, 2016a, 2017)
or empirical wavelet transforms (Liu et al., 2016b), etc. Recently,
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Figure 2. Trace prediction for noisy data. (a) Reference trace. (b) Slope
field. (c) Predicted gather from the reference trace. (d) Flattened gather by
predicting the reference trace from each trace in Fig. (c). (e) First trace in
Fig. (a). Note that during trace prediction, the noise is preserved as coherent
signal.
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Figure 3. (a) Curved events. (b) Flattened events by predicting the first trace
from each trace in (a). Note that during trace prediction, the amplitude is
well preserved.
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(a) (b)

(c) (d)

(e)

Figure 4. Slope calculation test. (a) Clean data. (b) Noisy data. (c) Slope calculated from the clean data using PWD algorithm. (d) Slope calculated from the
noisy data using the robust slope calculation algorithm. (e) Slope calculated from the noisy data using the PWD algorithm.

the adaptive dictionary learning has gained a lot of attention in
the seismic data processing field (Chen, 2017; Wu & Bai, 2018b).
The dictionary learning based sparse representation differs from
the traditional sparse transforms in that the basis functions for the
sparse transform are adaptively learned from the data itself, instead
of being fixed in the traditional transforms.

Rank reduction methods are one of the most effective methods in
the seismic data processing community, which includes the Cadzow
filtering (Trickett, 2008), singular spectrum analysis (SSA) (Vau-
tard et al., 1992; Wu & Bai, 2018a; Zhou et al., 2018), damped
SSA (Chen et al., 2016b; Zhang et al., 2016a,b), and multistep
SSA (Zhang et al. , 2016c). There are two least-squares projec-
tion step in the damped SSA method. The first step can be con-
sidered as a rank reduction method while the second step can
be interpreted as a compensation step for the non-optimal perfor-
mance of the rank-reduction method, that is, the approximated signal

subspace in the traditional rank-reduction framework is a mixture of
both signal and noise subspaces. From a different aspect, Xue et al.
(2016a) proposed a rank-increasing method for iteratively estimat-
ing the spike-like noise instead of estimating signals in deblending
of simultaneous-source data (Zu et al. , 2016a,b; Bai & Wu, 2017;
Zhou & Han, 2018; Wu & Bai, 2018d; Bai et al., 2018a,b).

Mean and median filters utilize the statistical difference between
signal and noise to reject the Gaussian white noise or impulsive
noise (Liu et al., 2009b; Liu, 2013). In addition to these classic
noise attenuation methods, some advanced denoising methods have
been proposed in recent years. Time-frequency peak filtering (Ka-
hoo & Siahkoohi , 2009; Lin et al., 2013, 2015) based approaches
utilize the high-resolution property of time-frequency transform
to distinguish between useful signals and random noise. Instead
of developing a standalone denoising strategy, Chen & Fomel
(2015b) proposed a two-step denoising approach that tries to solve a
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(a) (b) (c)

(d) (e) (f)

Figure 5. Synthetic example. (a) Clean data. (b) Denoised data using KL filtering. (c) Denoised data using the proposed method. (d) Noisy data. (e) Noise
section corresponding to (b). (f) Noise section corresponding to (c).

long-existing problem in almost all denoising approaches: the sig-
nal leakage problem. By initiating a new concept called local or-
thogonalization, Chen & Fomel (2015b) successfully retrieved the
coherent signals from the removed noise section to guarantee no
signal leakage in any denoising algorithms.

For all the aforementioned state-of-the-art noise attenuation al-
gorithms, none of them are specifically designed for preserving the
strong amplitude-variation details in seismic data. As we know, the
amplitude variations in seismic data greatly affect the subsurface oil
and gas exploration and production. Hence, the amplitude preserv-
ing capability is one of the backbone features we need to keep in
mind when designing a new denoising algorithm. In this paper, we
are solving the serious problem that is often neglected in traditional
seismic data processing by proposing the plane-wave orthogonal
polynomial transform (OPT) method. Here we want to clarify that
the amplitude variation we mention here refers to strong amplitude
variation, not simply the edge details or weak signals that are often
mentioned in the literature. We first introduce the basic knowledge of
the OPT, which is the key component that brings us the amplitude-
preserving capability in the proposed framework. We then intro-
duce the theory of plane-wave trace continuation that is used for

flattening the seismic events without damaging the amplitude in-
formation. We show that both plane-wave trace continuation and
OPT can well preserve the amplitude variation details in the seis-
mic data, which accounts for the superb performance of preserving
the amplitude details in the real data applications. Considering the
strong influence of the slope estimation to the plane-wave flattening,
we introduce a robust slope estimation method that can substitute
the traditional plane-wave destruction (PWD; Fomel 2002) based
methods in the presence of strong noise. A group of synthetic, pre-
stack and post-stack field seismic data are used for demonstrating
the performance of the proposed framework.

2 T H E O RY

2.1 Orthogonal polynomial transform

In a seismic profile, the amplitude of time t and space x can be
expressed as:

A(t, x) =
M−1∑
j=0

C j (t)Pj (x), (1)
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(a)

(b)

Figure 6. Comparison of the 20th trace amplitude of each seismic gather
in Fig. 5. The black line is from the clean data. The red line is from the
noisy data. The blue line corresponds to the KL method. The green line
corresponds to the proposed method. (a) Comparison of the whole trace.
(b) Zoom-in comparison. Note that the black and green lines are very close
to each other, thus the reconstruction error using the proposed approach is
much less than the traditional method for most parts.

Table 1. Comparison of SNRs in dB for different input noise level. The
diagram corresponding to this table is shown in Fig. 7.

Noise variance Input data (dB) KL (dB) OPT (dB)

0.1 2.60 13.08 17.58
0.2 −3.42 6.92 11.56
0.3 −6.94 3.05 8.04
0.4 −9.44 0.19 5.54
0.5 −11.38 −1.89 3.60
0.6 −12.97 −3.54 2.02
0.7 −14.30 −4.94 0.68
0.8 −15.46- −6.17 −0.48
0.9 −16.49 −7.26 −1.50
1.0 −17.40 −8.25 −2.42

where {Pj(x), j = 0, 1, 2, , M − 1} is a set of orthogonal polynomials
and M is the number of basis functions and {Cj(t), j = 0, 1, 2, , M
− 1} is a set of coefficients. The Pj(x) is a unit basis function that
satisfies the condition:

Pj (x)Pi (x) = δi j , (2)

where δij denotes the Kronecker delta. The spectrum defined by
Cj(t) denotes the energy distribution of the t–x domain data in the
orthogonal polynomials transform domain. Besides, the low-order
coefficients represent the effective energy and the high-order coef-
ficients represent the random noise energy. We provide a detailed

Noise level (Variance)
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Figure 7. SNR diagrams of synthetic example.

(a) (b)

(c) (d)

Figure 8. Denoising comparison. (a) Raw noisy data. (b) Filtered using
EMD method. (c) Filtered using KL method. (d) Filtered using the proposed
method.
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(a) (b)

(c)

Figure 9. Noise comparison. (b) Removed noise using EMD method. (b)
Removed noise using KL method. (c) Removed noise using the proposed
method. In this case, the calculated RMSs for (a)–(c) are 389.49, 449.22
and 506.26, respectively. Thus, the proposed method removes 12.7 per cent
more noise than the KL method and 30.0 per cent more noise than the EMD
method.

introduction about how we construct the orthogonal polynomial
basis function in Appendix A.

In a matrix-multiplication form, eq. (1) can be expressed as the
following equation:

A = CP, (3)

where A is constructed from A(t, x), C is constructed from Cj(t) and
P is constructed from Pj(x). A is known and P can be constructed
using the way introduced in Appendix A. The unknown is C. C can
be obtained by inverting the eq. (3),

C = APH (PPH )−1, (4)

where [ · ]H denotes matrix transpose. In this paper, we choose M =
20, which indicates that we select 20 orthogonal polynomial basis
function to represent the seismic data. Hence, inverting equation
PPH is simply inverting a 20 × 20 matrix and is computationally
efficient.

In the OPT method, we need to define the order of coefficients
we want to preserve, the process of which corresponds to applying
a mask operator to the orthogonal polynomial coefficients. Mask

(a) (b)

(c) (d)

Figure 10. Zoomed frame box A from Fig. 8. (a) Zoomed noisy field data.
(b) Zoomed filtered data using EMD method. (c) Zoomed filtered data using
KL method. (d) Zoomed filtered data using the proposed method.

operator can be chosen to preserve low-order coefficients and reject
high-order coefficients. It takes the following form:

Mτ (C j (t)) =
{

C j (t) for j ≤ τ

0 for j > τ
, (5)

where M denotes the mask operator, Cj(t) denotes the orthogonal
polynomial coefficients at time t and order j. τ denotes a threshold
for coefficients rejection. In this paper, we chose τ = 2.

The coefficients after applying the mask operator 5 become

Ĉ = Mτ (C). (6)

The useful signals can be reconstructed by

Â = ĈP, (7)

where Â denotes the denoised data.

2.2 Plane-wave trace continuation

In this section, we will derive a plane-wave flattening operator so
that the seismic data can be flattened locally and the OPT can then
be applied to the flattened gather.

The key question here is how to map the curved events into flat-
tened events. We do the data mapping by a recursively predicting
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(a) (b)

(c) (d)

Figure 11. Zoomed frame box B from Fig. 8. (a) Zoomed noisy field data.
(b) Zoomed filtered data using EMD method. (c) Zoomed filtered data using
KL method. (d) Zoomed filtered data using the proposed method.

strategy. Each trace in a seismic gather can be predicted using neigh-
bour traces. Given a reference trace, each trace in the gather can
predict the reference trace in some ways, for example, by recursive
trace continuation. Ideally, arranging the predicted reference traces
(from all other traces) into a gather constructs a flattened gather.
Next, we will introduce the theory of how we predict traces fol-
lowing the plane-wave equation, which we call plane-wave trace
continuation.

For simplicity, we always treat the first trace in the gather as the
reference trace. To flatten the gather, we need to predict the first
trace from all other traces and arrange them together. In a brief
mathematical way, predicting the first trace from the jth (j �= 1)
trace can be expressed

d1 = P2,1P3,2 · · · P j, j−1d j , (8)

where Pp,q denotes a prediction operator to predict trace dq from
trace dp . Specifically, Pp,p−1 denotes the prediction between two
traces from right to left. In the inverse process, the jth trace can be
predicted in a similar recursive formula from left to right:

d j = P j−1, j · · · P2,3P1,2d1. (9)

(a) (b)

(c) (d)

Figure 12. Zoomed frame box C from Fig. 8. (a) Zoomed noisy field data.
(b) Zoomed filtered data using EMD method. (c) Zoomed filtered data using
KL method. (d) Zoomed filtered data using the proposed method.

Predicting from the jth trace to (j + 1)th trace (or from the (j +
1)th trace to jth trace) requires solving the plane-wave equation:

∂u

∂x
+ σ

∂u

∂t
= 0, (10)

where u(t, x) is the seismic record and σ is local slope. In the case
of the constant local slope, eq. (10) has the following solution:

u(t, x) = f (t − σ ), (11)

where f is the waveform function. In the variable-slope case, we can
solve eq. (10) by discretizing it. Let uv

p denote u(v�t, p�x), and
then we obtain:

uv+1
p+1 − uv+1

p

2�x
+ uv

p+1 − uv
p

2�x

+ σ v
p

(
uv+1

p+1 − uv
p+1

2�t
+ uv+1

p − uv
p

2�t

)
= 0.

(12)

Rearranging the terms in eq. (12), we get(
1

�x
+ σ v

p

�t

)
uv+1

p+1 +
(

− 1

�x
+ σ v

p

�t

)
uv+1

p +(
1

�x
− σ v

p

�t

)
uv

p+1 +
(

− 1

�x
− σ v

p

�t

)
uv

p = 0.

(13)
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(a) (b)

(c) (d)

Figure 13. Zoomed frame box D from Fig. 8. (a) Zoomed noisy field data.
(b) Zoomed filtered data using EMD method. (c) Zoomed filtered data using
KL method. (d) Zoomed filtered data using the proposed method.

Then we have the following point-to-point recursion from uv
p to

uv+1
p+1:

uv+1
p+1 =

(
1

�x
+ σ v

p

�t

)−1 [(
1

�x
− σ v

p

�t

)
uv+1

p +(
− 1

�x
+ σ v

p

�t

)
uv

p+1 +
(

1

�x
+ σ v

p

�t

)
uv

p

]
.

(14)

Eq. (14) can be used for the continuation from the first trace to all
other traces, in a similar way, all other traces can predict the first
trace by an inverse trace continuation process. Since the trace con-
tinuation process is achieved using the local plane-wave assumption
of seismic data, we call the relation in eq. (14) the plane-wave trace
continuation relation.

Fig. 1 shows an example of the trace prediction process. We start
from the first trace in a gather, and predict each trace in the gather
from the first trace, following a given local slope field. Fig. 1(a)
shows the initial status of the trace prediction process, where only
the first trace is shown. Following the slope field shown in Fig. 1(b),
we can predict a complete gather from the first trace using the plane-
wave equation. The complete gather is shown in Fig. 1(c). It is clear
that the morphology of the predicted gather is consistent with the
local slope shown in Fig. 1(b). Fig. 1(d) shows a flattened gather

(a) (b)

(c) (d)

Figure 14. Pre-stack field data example. (a) Field data. (b) Flattened field
data. (c) Reconstructed field data. (d) Reconstruction error.

Figure 15. Local slope estimation of the pre-stack field data.
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(a) (b)

(c) (d)

Figure 16. Denoising comparison in the flattened dimension. (a) Raw noisy
data. (b) Filtered using EMD method. (b) Filtered using KL method. (c)
Filtered using the proposed method.

(a) (b)

(c) (d)

Figure 17. Zoomed sections from Fig. 16. (a) Zoomed noisy field data. (b)
Zoomed filtered data using EMD method. (c) Zoomed filtered data using
KL method. (d) Zoomed filtered data using the proposed method.

from the curved events shown in Fig. 1(c). We flatten the events by
predicting the first trace from each trace shown in Fig. 1(c). For a
clear view of the first trace, we plot it in Fig. 1(e).

We then show an example in the presence of random noise. The
noisy data is simulated with d = s + n, where s is signal, that is, the
solution to a wave equation in some random medium. The signal
has a certain mean and variance, and a certain spatial and temporal
correlation structure. n is the noise, for which, presumably the
expectation 〈n〉 is zero. The overall spatial variance of the noise is a
certain number, and its covariance with the signal is zero. The noise
is distributed in the 2-D plane following a Gaussian rule and has no
spatial correlation. Fig. 2(a) shows the noisy reference trace. The
details of the noisy trace are shown in Fig. 2(e). Following a given
slope field shown in 2(b), we predict a complete gather from the
first trace, and show the gather in Fig. 2(c). It can be seen that the
noise is preserved during the prediction process. Fig. 2(d) shows the
flattened gather from Fig. 2(c). We can conclude from this test that
trace prediction can preserve any component in the starting trace.

We then use another example to show the amplitude preserv-
ing feature of the flattening operator. Fig. 3(a) shows a complete
gather containing three curved events and amplitude variation along
the spatial direction. Fig. 3(b) shows the flattened gather from the
curved events, where we can see that the amplitude variation is well
preserved during the trace prediction process.

2.3 Robust slope estimation

Another important factor in plane-wave OPT is the local slope cal-
culation. The accuracy of the slope estimation affects performance
of the flattening operation and the following OPT. In this part, we
will introduce a robust slope estimation method that is based on the
Hilbert transform (Liu et al., 2015).

Rearranging eq. (10) we get

σ = −
∂u
∂x
∂u
∂t

. (15)

Eq. (15) can be further derived such that

σ = −
∂u
∂x
∂u
∂z

= − F−1
x [HDX[Fx u]]

F−1
t [HDT[Ft u]]

, (16)

where HDX is frequency response function of the partial derivative in
the x direction, and HDT is frequency response function of the partial
derivative in the t direction. Fx and Ft denote the Fourier transform
along the x and t directions, respectively. It can be straightforwardly
derived that

σ = −Hx (u)

Ht (u)
, (17)

where Hx (u) denotes the Hilbert transform of u along x direction
and Ht (u) denotes the Hilbert transform of u along t direction.

Fig. 4 shows a slope calculation test. We calculate the slope from
the noisy data using the traditional PWD method and the robust
slope calculation method, respectively. As a comparison, an accu-
rate slope estimation from the clean data using the PWD algorithm
is used to evaluate the robustness of different slope estimation ap-
proaches in the case of noise. Fig. 4(a) shows the clean data, and
Fig. 4(c) shows the slope estimated from the clean data using the
PWD algorithm, which is deemed to be the accurate slope. Fig. 4(b)
shows the noisy data by adding some Gaussian white noise. Fig. 4(d)
shows the slope calculated using the robust slope estimation. It is
salient that the slope estimated from the noisy data is fairly close to
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(a) (b)

(c) (d)

Figure 18. First post-stack field data example. (a) Field data. (b) Filtered data using EMD method. (c) Filtered data using KL method. (d) Filtered data using
the proposed method.

the accurate slope field. However, using the traditional PWD algo-
rithm, it is difficult to obtain an acceptable slope estimation from the
noisy data, as can be seen from the result shown in Fig. 4(e). From
this test, we conclude that the robust slope estimation can be used
to obtain robust slope estimation performance even in the presence
of strong random noise.

It is worth mentioning that, by eqs (10) and (15), we do not
consider the spatial gradient of amplitude. In the case of smooth
spatial amplitude change (e.g. small spatial gradient), the slope
estimation method also works, since the calculation is done locally
and the small spatial gradient almost has no influence. However,
in the case of sharp spatial amplitude change (e.g. large spatial
gradient), the method cannot be adopted. This drawback can be
hopefully overcome in the future work. In addition, the problem of
spatial gradients of amplitude and the implications for non-plane
wave solutions was mentioned in Wielandt (1993).

2.4 Plane-wave orthogonal polynomial transform

We have introduced in detail the theory of plane-wave trace contin-
uation, that is, how we predict an arbitrary trace in a seismic gather
from a random starting trace. We have shown that by discretizing
the plane-wave equation, we can derive the spatial trace contin-
uation relation, which can be used for trace prediction. We have
presented that during trace continuation, the amplitude of seismic
waveforms can be well preserved. Regarding the slope estimation,
which is an important factor in the plane-wave trace continuation
operator, we introduce the robust slope estimation approach. We

also show that the robust slope estimation approach can obtain ro-
bust slope estimation in the presence of strong noise. Considering
the amplitude-preserving capability of the OPT in a flattened dimen-
sion, we can cascade the plane-wave trace continuation operator and
the OPT together to obtain a twofolds amplitude-preserving perfor-
mance during a complete workflow. Thus, we name the cascaded
framework as the plane-wave OPT. The complete framework for
noise attenuation using the plane-wave OPT is shown in Algorithm
1.

Algorithm 1 Plane-wave OPT

Input: Noisy data D. Order of coefficients to be preserved τ .
Output: Denoised data D.

1: Forward plane-wave flattening: D̂=PWF(D)
2: Forward OPT: C = OPT(D̂)
3: Mask: Ĉ = M(C, τ )
4: Inverse OPT: D̂=IOPT(Ĉ)
5: Inverse plane-wave flattening: D=IPWF(D̂)

The forward OPT corresponds to inverting PH (PPH )−1. The in-
verse OPT corresponds to multiplying the orthogonal polynomial
coefficients by P. In Algorithm 1, the detailed implementations of
the forward plane-wave flattening operator and the inverse plane-
wave flattening operator are shown in Algorithms 2 and 3, respec-
tively.

In Algorithms 2 and 3, note that N denotes the number of spatial
traces. 1 and −1 in the operator PWTC() denote predicting from a
trace to the first trace and predicting the first trace to another trace,
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(a) (b)

(c) (d)

Figure 19. Comparison in the flattened domain. (a) Field data. (b) Filtered data using EMD method. (c) Filtered data using KL method. (d) Filtered data using
the proposed method.

Algorithm 2 Plane-wave flattening

Input: Matrix containing curved events D.
Output: Matrix containing flattened events D̂.
Setting the first trace as the reference trace.

1: for n = 1, · · · , N do
2: Predict the first trace: D̂(n)=PWTC(D(n),1)
3: end for

Algorithm 3 Inverse plane-wave flattening

Input: Matrix including flattened events D.
Output: Matrix including curved events D̂.
Setting the first trace as the reference trace.

1: for n = 1, · · · , N do
2: Predict the first trace: D̂(n)=PWTC(D(n),−1)
3: end for

respectively. D(i) and D̂(i) denote the ith column (or trace) in the
matrix D and D̂.

3 E X A M P L E S

The first example is a synthetic example, as shown in Fig. 5. We
apply the Karhunen–Loève (KL) filtering method (Jones & Levy,
1987) and the proposed method to a flattened data set with strong
amplitude variation. Fig. 5(a) shows the clean data and Fig. 5(d)
shows the noisy data. Figs 5(b) and (c) show the denoised data us-
ing the KL filtering method and the proposed method, respectively.

Figs 5(e) and (f) show the removed random noise using two ap-
proaches. We can observe clearly from Figs 5(b) and (c) that the KL
filtering causes significant damages to the events, while the proposed
method preserves the amplitude-variation details successfully.

In order to compare the amplitude between different seismic
profiles in detail, we compare the amplitude for a single trace from
each section shown in Fig. 5. The trace is chosen as the 20th trace
in each section of Fig. 5. The comparison is presented in Fig. 6. A
zoom-in comparison is shown in Fig. 6(b). The black line is from
the clean data. The red line is from the noisy data. The blue line
corresponds to the KL method. The green line corresponds to the
proposed method. It is apparent that the green line is very close
to the black line while the blue line deviates from the black line
too much in most areas. This trace amplitude comparison further
confirms the superior performance of the proposed algorithm.

In order to numerically compare the denoising performance, we
use the commonly used signal-to-noise ratio (SNR) defined as fol-
lows to quantitatively measure the performance (Chen & Fomel,
2015b):

SNR = 10 log10

‖s‖2
2

‖s − ŝ‖2
2

. (18)

where s denotes the noise-free data and ŝ denotes the denoised
data. In addition, to quantitatively measure the noise removal in the
case of no discernable signal damage, we define the metric as the
root-mean-square (RMS),

RMS = ‖n‖2, (19)

where n denotes the removed noise. Although the amplitude range
varies a lot for different data sets, the RMS metric provides us a
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(a) (b)

(c) (d)

Figure 20. Denoising comparison for the second post-stack field data. (a) The second post-stack field data. (b) Filtered data using f–x predictive filtering. (c)
Filtered data using SSA. (d) Filtered data using the proposed method.

(a)

(b) (c)

Figure 21. Noise comparison for the second post-stack field data. (a) Re-
moved noise using f–x predictive filtering. (b) Removed noise using SSA.
(c) Removed noise using the proposed method.

quantitative way to evaluate the noise removal performance for one
specific data set among different denoising methods, for example,
how much better method A performs than method B.

In order to compare the performance of two methods in different
noise level, we increase the variance of noise from 0.1 to 1.0, and
calculate the SNRs of denoised data of both methods and show

them in Table 1. To see the varied SNRs more vividly, we plot
the data from Table 1 in Fig. 7. The black line shows the SNRs
varying with input noise variances. The red line shows the SNRs
corresponding to the KL method. The blue line shows the SNRs of
the OPT method. It is obvious that both methods obtain large SNR
improvement for all noise levels and the SNRs of the OPT method
are always higher than the KL method. We can also observe clearly
that the difference between the proposed OPT method and the KL
method increases as noise variance becomes larger, which indicates
that the proposed method outperforms the KL method more when
the seismic data becomes noisier.

For computational cost comparison, the KL method takes 0.62 s
for processing the data shown in Fig. 5(d) while the proposed algo-
rithm takes 0.01 s. The data contains 151 samples and 61 traces. The
computation is done on a PC station equipped with an Intel Core i7
CPU clocked at 3.1 GHz and 16 GB of RAM. Note that both KL and
OPT methods require the events to be flattened in order to obtain
the best performance, thus we only compare the cost difference in
the filtering stage.

The second example is a pre-stack field data example. Fig. 8(a)
shows the original data. Figs 8(b)–(d) show the denoised data using
EMD method, KL method and the proposed method, respectively.
Fig. 9 shows the removed noise sections using three approaches.
Fig. 9(a) shows that some low-frequency energy is damaged while
Fig. 9(c) shows that the removed noise is stronger. In this exam-
ple, the calculated RMSs for Figs 9(a)–(c) are 389.49, 449.22
and 506.26, respectively. Thus, the proposed method removes
12.7 per cent more noise than the KL method and 30.0 per cent more
noise than the EMD method.

RETRACTED

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/214/3/2207/5049011 by D

elft U
niversity of Technology user on 05 N

ovem
ber 2020



Plane-wave orthogonal polynomial transform 2219

(a) (b)

(c) (d)

Figure 22. Spectra comparison. (a) Spectrum of the second post-stack seismic data. (b) Spectrum using f–x predictive filtering. (c) Spectrum using SSA. (d)
Spectrum using the proposed method.

(a)

(b) (c)

Figure 23. Comparison of local similarity between denoised data and removed noise. (a) Local similarity using f–x predictive filtering. (b) Local similarity
using SSA. (c) Local similarity using the proposed method.
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Figure 24. Comparisons of the average spectrum of all the traces. The black
line denotes the average spectrum of raw data. The green line corresponds to
the proposed approach. The red line corresponds to f–x predictive filtering
method. The blue line corresponds to the SSA method.

In order to comprehensively compare three different approaches,
we zoomed four frame boxes (A, B, C and D) to show the detailed
difference. Fig. 10 shows the comparison from frame box A. It is
obvious that the KL approach causes some residual noise while
EMD and OPT approaches obtain good results, more careful ob-
servation can show that the proposed method can obtain a more
coherent image. Fig. 11 shows the comparison for frame box B. It is
obvious that OPT method obtains the cleanest result. Fig. 12 shows
the comparison for frame box C. It is still obvious that OPT method
can make the events more coherent and more importantly, preserve
the amplitude-variation-with-offsets details well. Fig. 13 shows the
comparison for frame box D. Both Figs 13(b) and (c) show obvious
amplitude artefacts while the OPT result in Fig. 13(d) shows nearly
zero amplitude in the zoomed section.

For this example, we also demonstrate the plane-wave flattening
process in Fig. 14. Fig. 14(b) shows the flattened gather from the
original data shown in Fig. 14(a) (or Fig.8(a)). It is clear that most
events have been flattened well. Fig.14(c) shows the reconstructed
data from the inverse plane-wave flattening. The data is almost the
same as the original data. Fig. 14(d) shows the difference between
the reconstructed data and the original data. The error section is
almost zero everywhere, which demonstrates that the plane-wave
flattening process does not introduce extra error. Fig. 15 shows the
slope estimated from the original data. We also show a detailed com-
parison between different data in the flattened dimension in Fig. 16.
A zoomed comparison among the flattened gathers after filtering is
shown in Fig. 17, where we can conclude that the proposed method
obtains the smoothest result while best preserving the reflection
amplitude.

The next example is a real post-stack seismic image shown in
Fig. 18(a). There are 140 spatial traces and 194 temporal sam-
ples. The seismic image contains highly curved events and the
amplitude along the events is not continuous, which will make
the seismic interpretation difficult. After using three approaches,
the EMD method, the KL method and the proposed method, the
denoised images are shown in Figs 18(b)–(d), respectively. It is ob-
vious that the proposed OPT based filtering approach can obtain a
well smoothed seismic image with the continuity and the amplitude
of events enhanced greatly. The EMD based approach, however,
cannot effectively smooth the seismic events, and still leaves a lot
of discontinuity in the image. The KL filtering approach obtains a

much better filtering performance compared with the EMD based
approach, however, it is not as successful as the performance of the
proposed OPT based approach.

We can find the mechanism that caused the tremendous difference
of denoised images from the comparison in the flattened domain,
as shown in Fig. 19. It is even more obvious that the OPT based
approach obtains a nearly perfect smoothing along the flattened
images (equivalent to along the structure in the original domain).
The EMD based approach can achieve some smoothing, but remains
less continuous than both KL and OPT based approaches. In this
example, the calculated RMSs of removed noise are 0.015 for EMD
method, 0.016 for KL method and 0.019 for the proposed method.
Thus, the proposed method removes 18.7 per cent more noise than
the KL method and 25.0 per cent more noise than the EMD method.

The next field data example is shown in Fig. 20(a), which is
also a post-stack data and contains weak seismic reflection events.
Figs 20(b)–(d) show the denoised results using three different meth-
ods. For this example, we further compare the performance of the
proposed method with that of the f–x predictive filtering method
and the SSA method (Vautard et al., 1992). Fig. 21 shows the
corresponding noise sections. For this example, it seems that all
three methods obtain much improved results and the performance
of different methods is quite similar. In order to compare the perfor-
mance in detail and more fairly, we plot the F–K spectra of different
denoised results. The F–K spectrum of the raw data is shown in
Fig. 22(a). The F–K spectra corresponding to different methods are
shown in Figs 22(b)–(d). Comparing the F–K spectra of different
methods and F–K spectrum of the raw data, it is easy to find that both
f–x predictive filtering method and the proposed method preserve
the useful signals well, but the f–x predictive filtering method has
some residual spectrum energy around the edges (large wavenum-
ber components). SSA method causes significant damages to useful
signals.

In this example, we also calculate the local similarity between the
denoised data and removed noise for different methods. The local
similarity is an effective way to detect the lost signals in the removed
noise. High local similarity indicates that in the noise section, there
are significantly similar components as the useful signals, that is,
there is lost energy in the noise. The calculation of local similarity
is provided in Appendix B. The local similarity maps for different
methods are shown in Fig. 23, where we can clearly observe the
high similarity anomalies in the f–x predictive filtering and SSA
results. Although there are also some similarity anomalies in the
result from the proposed method, the similarity value is relatively
lower than the other two methods. From this test we conclude that
the proposed method causes less damage to useful energy.

We also plot a comparison of the average spectrum of all the
traces for different data in Fig. 24. The green line corresponds to
the proposed approach. The red line corresponds to f–x predictive
filtering method. The blue line corresponds to the SSA method.
It is quite obvious that the energy preservation of the proposed
method in signal frequency band (20–60 Hz) is quite successful.
The proposed method mitigates more high-frequency noise than
f − x predictive filtering method, which confirms the observation
from Fig. 22. We admit that the high-frequency noise of the pro-
posed method is slightly more than the SSA method. However,
the proposed method preserves more useful energy than the other
two methods in the spectrum. This field data further confirms the
superior performance of the presented algorithm.

In this example, to compare the noise removal performance, we
need to make sure the removed noise sections do not contain dis-
cernable signal energy, as required by the metric defined in eq. (19),
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(a) (b) (c)

(d) (e) (f)

Figure 25. Comparison for the second post-stack field data after adjusting the parameters. (a) Filtered data using f–x predictive filtering. (b) Filtered data using
SSA. (c) Filtered data using the proposed method. (d) Removed noise using f–x predictive filtering. (e) Removed noise using SSA. (f) Removed noise using
the proposed method. In this case, the calculated RMSs for (d)–(f) are 0.059, 0.071 and 0.086, respectively. Thus, the proposed method removes 21.1 per cent
more noise than the SSA method and 38.0 per cent more noise than the f − x predictive filtering method.

and have to adjust the parameters for the f–x and SSA methods. The
denoised data and the removed noise sections using the adjusted
parameters are shown in Fig. 25. In this case, the calculated RMSs
for Figs 25(d)–(f) are 0.059, 0.071 and 0.086, respectively. Thus, the
proposed method removes 21.1 per cent more noise than the SSA
method and 38.0 per cent more noise than the f–x method.

4 C O N C LU S I O N S

The OPT can be used to effectively separate spatially correlative
signals and spatially incoherent noise without losing waveform am-
plitude. To create a flattened dimension where the OPT can be
optimally applied, we derive a plane-wave trace continuation rela-
tion for flattening the curved seismic events. Trace prediction in the
flattening process and the subsequent OPT are both demonstrated
to be amplitude preserving. The robust slope estimation approach
can obtain more robust performance than the state-of-the-art PWD
method in the presence of strong noise. The proposed framework
has been applied to several synthetic, field pre-stack and post-stack
seismic data and is shown to better preserve the amplitude variations
than other alterative methods.
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A P P E N D I X A : C O N S T RU C T I O N O F
P O LY N O M I A L T R A N S F O R M S

Let {Pj(x)}, j = 0, 1, , N denote a set of polynomials, which satisfies
the orthogonality condition:

N∑
i=0

Pk(xi )Pj (xi ) = δ j,k . (A1)

It is known that as polynomials, Pj(xi) can be expressed

Pj (xi ) =
j∑

k=0

a jk xk
i , (A2)

ajk denotes polynomial coefficients. It is natural that xj can be ex-
pressed based on superposition of different polynomials:

x j =
j∑

k=0

β jk Pk(x). (A3)

Based on eqs (A3) and (A4), jth polynomial can be expressed as
lower order polynomials

Pj (xi ) =
{

x j −
j−1∑
k=0

β jk Pk(xi )

}
/β j j , (A4)

Get squares of eq. (A3) and combine with eq. (A1), we can obtain

β j j =
√√√√ N∑

i=0

x2 j
i −

j−1∑
k=0

β2
jk (A5)

and

β jk =
N∑

i=0

x j
i Pk(xi ). (A6)

From eqs (A4)–(A6), we can construct the set of polynomials. We
first get β00 = √

N based on eq. (A5), and thus P0 = 1/β00, then
compute β10, β11 to construct P1. In the same way, we can construct
all polynomials.

A P P E N D I X B : L O C A L S I M I L A R I T Y

Local similarity between vectors a and b is defined as

c = √
c1 ◦ c2 (B1)

where ◦ denotes dot product, c1 and c2 come from two least-squares
minimization problems:

c1 = arg min
c1

‖a − Bc1‖2
2 (B2)

c2 = arg min
c2

‖b − Ac2‖2
2, (B3)

where A is a diagonal operator composed of the elements of a
and B is a diagonal operator composed of the elements of b. Note
that in eqs (B1)–(B3), a, b and c denote vectorized 2-D matrices.
Eqs (B2) and (B3) can be solved using shaping regularization with
a local-smoothness constraint:

c1 = [λ2
1I + T(BT B − λ2

1I)]−1TBT b, (B4)

c2 = [λ2
2I + T(AT A − λ2

2I)]−1TAT a, (B5)

where T is a smoothing operator and λ1 and λ2 are two parameters
controlling the physical dimensionality and enabling fast conver-
gence when inversion is implemented iteratively. These two param-
eters can be chosen as λ1 = ‖BT B‖2 and λ2 = ‖AT A‖2.
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