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Abstract

Wavelets have been very popular in the field of image compression and noise reduc-
tion. Another interesting application is adaptive mesh refinement. There are many
wavelets with various properties, which will have different effects on different applica-
tions. There is no consensus on which wavelet is the best option for adaptive mesh
refinement. Most commonly used wavelets for adaptive mesh refinement are Donoho’s
interpolating wavelet and Sweldens wavelet, the latter a lifted version of Donoho’s in-
terpolating wavelet. A detailed comparison of both wavelets is done on different data
sets. Moreover, different manners of handling the boundaries are tested. An algorithm
to construct the meshes using wavelets is tested and optimised.
Donoho’s interpolating wavelet with the lower order boundary stencil implementation re-
sulted to be the most accurate, whilst resulting in very high compression compared to the
original mesh. Furthermore, changing the adaptivity of the algorithm, which constructs
the meshes, turned out to be valuable for fast changing shapes. Lastly, an improvement
on the inverse transform during the adaptive mesh refinement had promising results.
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Abstrakte

In Bereichen der Bildkomprimierung und Rauschminderung sind Wavelets wohl bekannt.
Ein weiteres interessantes, jedoch bisweilen noch weniger bekanntes Verwendungsge-
biet ist die adaptive Netzverfeinerung. Es gibt eine Vielzahl von Wavelets, welche ver-
schiedene Eigenschaften haben und in einer breiten Sparte unterschiedlicher Anwendun-
gen ihren Einsatz finden. Bei der Frage, welche Wavelets zur adaptiven Netzverfeinerung
am Besten geeignet sind, herrscht Uneinigkeit. In der vorliegend Arbeit, wurden hierfür
Donoho’s interpolierende Wavelets sowie eine geliftete Version dieser, die sogenannten
Sweldens Wavelets gewählt. Zunächst erfolgte ein detaillierter Vergleich der beiden
Methoden unter Nutzung unterschiedlicher Datensätze. Im Umgang mit den Rand-
bereichen wurden verschiedene Verfahren angewandt und analysiert. Basierend hierauf
wurde ein Algorithmus zur Konstruktion von Wavelets geprüft und optimiert.
Im Vergleich zum Ausgangsnetz erzielt Donoho’s interpolierendes Wavelet die höchste
Genauigkeit und Komprimierung. Als effizient erweist sich ebenso die Änderung der
Anpassungsfähigkeit des Algorithmus für sich schnell ändernde Formen. Letztlich, führt
eine verbesserte Rücktransformation während der Netzverfeinerung zu vielversprechen-
den Ergebnisse.
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1 Introduction

1.1 Motivation
1.1.1 Adaptive mesh refinement
In the field of Scientific Computing there is a big focus on solving Partial Differential
Equations (PDEs) as efficiently and fast as possible. In some cases a function has certain
regions with very high gradients. To approximate these regions a refined mesh is needed
locally, while in other regions a sparser mesh is sufficient. To increase efficiency it makes
sense to refine the mesh only in high gradient regions, these regions are also called ’re-
gions of interest’. Finding such a mesh is called mesh refinement. Mesh refinement is
used to develop a mesh which is sparse and results in an accurate approximation.
In order for such a sparse mesh to be beneficial, there are some important properties to
consider. Firstly, with the sparse mesh an accurate approximation of the PDE should be
found, i.e., the approximation found with the sparse mesh should be almost the same as
the approximation found with a dense mesh. Secondly, the mesh should be highly sparse,
i.e., the solving time should be reduced significantly and the memory usage should be
decreased. Finally, it is important that the overhead caused by generating the sparse
mesh is small.

For time dependent PDEs, there are two types of mesh refinements, namely static mesh
refinement (SMR) and adaptive mesh refinement (AMR). Static mesh refinement is used
when the overall behaviour of the PDE is known, i.e., the regions which might have a
high gradient at certain time-steps are known in advance. In SMR a refined mesh is
designed before solving the PDE. Throughout all the time-steps the used mesh stays
the same. In adaptive mesh refinement the mesh will be adapted at certain predefined
time-steps (this could be every time-step). Adaption means that points in the mesh can
both be deleted or added, depending on certain criteria. The SMR approach is preferred
if the regions of interest are known or predictable beforehand, as it is faster then AMR.
SMR is faster because a mesh has to be designed only once and not multiple times. In
this thesis wavelets, will be used for adaptive mesh refinement.
There are many algorithms designed for adaptive mesh refinement. Three main AMR
methods are: mesh distortion, point-wise structured refinement, and block structured
refinement. The following explanation is based on the lecture [11]. In the three methods
the mesh is divided in cells, the size of the cells corresponds to the refinement level. If
a cell is big then the cell represents a coarse approximation, if a cell is small this means
that the cell represents a fine approximation. Various versions of the three methods
exist. The overall idea per method is sketched here. The three methods are visualised
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1 Introduction

in Figure 1.1. Both the point-wise and block structured mesh refinements are based on
different refinement levels. The different refinement levels are coloured green and orange
in the figure. Where the orange coloured cells belong to the finest refinement.
In mesh distortion, also called stretching grids, the mesh surface is divided in cells which
all have different sizes. The cells are created by lines put into the mesh, which are un-
evenly spaced. Many lines are placed in regions of interest and less lines in the other
regions.
In point-wise structured refinement one starts with big cells, every cell is marked for re-
finement or not. After the marked cells are refined, these refined cells are again checked
for refinement. This will go on until the densest level is reached. This particular refine-
ment method is implemented using a tree structure.
In block structured refinement a whole block of cells is checked for refinement, if refined,
then this block, which consists out of blocks in a finer level, is again checked for refine-
ment.

Figure 1.1: Different adaptive mesh refinement methods.

Similar to the point-wise and block structured mesh refinements, the wavelet-based adap-
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1.1 Motivation

tive mesh refinement method is also based on different refinement levels. The wavelet
based AMR is point based instead of cell based. A coarse level of points is added and
points in between are checked for refinement. If certain criteria are satisfied for a point at
level j that point is added to the mesh. In Figure 1.2 the wavelet based AMR is depicted
schematically. The AMR methods described could also be used as SMR methods.

Figure 1.2: Wavelet based adaptive mesh refinement.

1.1.2 Wavelets

Over the last three decades there have been a lot of developments in the wavelet theory.
Wavelets are extremely good in compression of data and allow for a fast computation of
this compression. Therefore, wavelets have a lot of applications in different fields, the
most famous one being image compression. In the field of Scientific Computing wavelets
also have multiple utilisations. The two main applications are adaptive wavelet Galerkin
methods and adaptive wavelet collocation methods. In the Galerkin methods wavelets are
used to directly discretise the PDEs. In the latter method the properties of the wavelets
are used to find a sparse mesh on which the PDEs will be solved.

In the thesis the focus will be on the adaptive wavelet collocation methods. Because
wavelets are very good in compressing data it makes sense to use this property for
adaptive mesh refinement. Many wavelets have been developed. Typically, the wavelets
are designed in such a manner that the transformation of a data set or function can be
calculated fast. As mentioned before, it is important for adaptive mesh refinement that
the mesh can be calculated quickly, a fast transform will ensure this. Moreover, because
wavelets are good in compression of data they can be used to find a highly sparse mesh.

The thesis is in collaboration with the Numerical Algorithms Group (NAG). Therefore,
the focus will be on solving financial parabolic PDEs. A lot of the research in collocation
methods have focused mainly on 1 dimension, extensions to multiple dimensions have
been mentioned, however they have not been extensively tested. Furthermore, when
going in higher dimensions the computational costs can grow significantly. Therefore, it
is important to find a wavelet transform which can easily and efficiently be extended to
1, 2 and 3 dimensions.
There are many different wavelet transforms. It is important to consider a particular
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wavelet transform, which is fast to compute, has good compression rates and can easily be
generalised to multiple dimensions, irregular meshes and different boundary conditions.
Finding a perfect wavelet is not possible, therefore finding a wavelet which can easily
be extended to multiple dimensions and has good compression rates is considered most
important.
Furthermore, special attention should be paid to aliasing. Aliasing has been mentioned
in literature as a negative effect of certain wavelets. If aliasing also has a negative result
for AMR will be tested in this thesis.
Because meshes are defined on a finite domain, one should take special care of the
boundaries. In this thesis two different boundary stencil implementations will be tested,
the interpolating boundary stencil and the lower order boundary stencil.
In this thesis two types of wavelets will be considered, namely Donoho’s interpolating
wavelet and a second generation wavelet, Sweldens wavelet, which is special case of
Donoho’s interpolating wavelet. It is interesting to investigate the abilities of the mesh
generation per wavelet, e.g., can a sparse mesh be generated for every function, does
the sparse mesh generator have stable behaviour, how local are perturbations in the
sparse mesh and what is the sparsity rate of the generated meshes. The wavelets will be
compared against each other.

1.1.3 Adaptive wavelet collocation methods
Applying adaptive wavelet collocation methods to solve time dependent PDEs exists out
of multiple phases. In figure Figure 1.3 the phases are described in a block diagram.

Figure 1.3: Adaptive collocation method scheme.

Firstly, one starts of with a given problem existing out of a time dependent operator,
boundary conditions and an initial condition. In the framework of the method of lines,

4



1.2 Scope

spatial discretisation will be performed on the time dependent operator and bound-
ary conditions. A discretisation method, which can be used in this phase, is Finite
Differences. The initial conditions will be transformed with a wavelet transform, this
transform will be used to generate a sparse mesh M . Next, the discretised operator and
sparse mesh M will be combined to determine a stiffness matrix A. In the next phase
one or more time steps will be solved. The amount of time steps, which will be solved
in this phase, will depend on the different type points added in the generation of the
mesh M . After this phase the current approximation will be used to determine a new
wavelet transform. This wavelet transform will be used to generate a new mesh. A new
stiffness matrix will be determined and some time steps will be solved. These last steps
will loop until the final time is reached.

1.2 Scope
The focus in this thesis will be on extensively testing the AMR algorithm and the perfor-
mance of two different wavelets, Donoho’s interpolating wavelet and Sweldens wavelet.
On both these wavelets two different boundary stencils will be tested, the interpolating
boundary stencil and the lower order boundary stencil. All the implementations will be
done in Matlab. The mesh algorithm will be based on [30]. The performance of the
wavelets and the AMR algorithm will be checked by generating sparse meshes on data
sets provided by NAG. These data sets exist out of the approximations of the PDE at
every time step. Therefore, AMR can be applied every time step on the approximation
restricted to the mesh of the previous time step. In this manner, it is possible to directly
check the performance of the AMR through time. There are two different types of data
sets. One type of sets are financial PDEs, there are 1 and 2 dimensional data sets of this
type. The other type of data sets are based on a hydro PDE, the PDE calculates the
pressure, which in turn depends on the density, energy and x, y, z velocity. The PDE
has a 2 dimensional and 3 dimensional version.

The goal of this thesis is to extensively test different wavelets in the setting of adaptive
mesh refinement.
This leads to the research question:

Which wavelet transform is most stable and has the best
performance in adaptive mesh refinement?

5



1 Introduction

1.3 Outline
The report starts of in Chapter 2 with an overview of current literature in wavelet based
adaptive mesh refinement. Thereafter, in Chapter 3, the theory behind wavelets will be
discussed. In this chapter both Donoho’s interpolating wavelet and Sweldens wavelet
will be introduced. Subsequently, in Chapter 4 the adaptive mesh refinement algorithm
is stated. This chapter will start with an explanation of mesh refinement using wavelets,
after which the mesh refinement will be extended to adaptive mesh refinement. In
Chapter 5, the tests will be explained and the results will be analysed and evaluated.
Finally, Chapter 6 contains the conclusion. Furthermore, prospects for future research
will be given.

6



2 Existing results in literature

In this thesis the focus will be on wavelet based adaptive mesh refinement. There are
many applications for wavelets, therefore many wavelets have been developed. In section
2.1 a summary of existing literature on the different wavelets is given. Subsequently,
literature on wavelet based mesh refinement methods are discussed in 2.2. Finally, an
overview of collocation methods is given in 2.3. In this last section it will also be discussed
which wavelets are used for AMR.

2.1 Wavelets

Cohen, Daubechies and Feauveau lay the fundamental backgrounds behind orthogonal
and biorthogonal wavelets, [4, 5]. Furthermore, Cohen gives a detailed description of
first generation wavelets in numerical analysis, [3]. Donoho introduces the interpolating
wavelets in [9]. The ability of wavelets to perfectly represent functions is depended on the
vanishing moments, [26, 28]. Sweldens introduced a faster and more intuitive manner to
transform functions in their wavelet representation, [6, 23, 27, 25]. This new transform
resulted in second generation wavelets, [15, 24].

2.2 Adaptive mesh refinement

Algorithms for wavelet based adaptive mesh refinement are introduced in [13] and [16].
Vasilyev and Bowman combine these methods to introduce an AMR, for non equidistant
meshes and second generation wavelets, [30]. The algorithm can be changed in the way
it thresholds, [14], or in the way it adapts, i.e., how adjacent points are added. Applying
AMR on non equidistant meshes leads to stability issues, which are related to the update
step, boundary stencil implementation and lack of orthogonality, [15, 22]. Equidistant
meshes are tested, however considering the stability issues of non equidistant meshes
turned out to be valuable for the equidistant case.

2.3 Collocation methods

There has not been a lot of comparison between the performance of different wavelets
for AMR. Rather, a lot of research has been done in collocation methods and applying
wavelet based AMR to all kind of PDEs. Wirasaet researched Donoho’s interpolating
wavelet with the interpolating boundary stencil for AMR, [32]. He considered the two
type of adjacent points also considered in section 4.2.3. Furthermore, both equidistant
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2 Existing results in literature

and non equidistant meshes have been tested on 1D and 2D problems. The mesh refine-
ment algorithm is similar to [30] and the PDEs are solved using Finite Differences. This
collocation method has been tested on different problems, [18, 19, 20].
A similar collocation method which focuses on Finance PDEs has been tested in [7, 8].
This collocation method does not use the lifting scheme for wavelet transformation.
Further, Donoho’s interpolating wavelet, the interpolating boundary stencil implemen-
tation, the mesh refinement of [30] and Finite Differences are used. The testing only has
been performed on equidistant meshes.
Vasilyev and others have designed a similar collocation method, [1, 2, 17, 21, 29, 30].
The only difference is that Sweldens wavelet is used instead of Donoho’s interpolating
wavelet. Tests have been done on all kind of PDEs, mainly 1 dimensional problems and
on occasion 2 and 3 dimensional problems and both equidistant and non equidistant. In
[31] the possibility to use Multigrid instead of Finite Differences is investigated.

In the literature both Donoho’s interpolating wavelet and Sweldens wavelet have been
used for AMR. However, the two wavelets have not been directly compared. Because
it is not clear which wavelet is favoured, both wavelets will be compared on various
data sets in 1, 2 and 3 dimensions. Furthermore, in the literature the interpolating
boundary stencil is always used. In this thesis the lower order boundary stencil will
be tested, because [15] and [22] suggest that the behaviour of this boundary stencil
implementation is more stable.
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3 Wavelet analysis

3.1 Wavelets in general

Wavelets can be used to represent data sets or functions. In this sense they could be
compared to the Fourier transform. However, the Fourier transform represents functions
with finite support as functions with infinite support. Whereas the wavelets preserve the
finite support. This is due to the localisation both in space and frequency of wavelets.
Therefore, they have a big advantage compared to the well known Fourier transform,
especially in the sense of compression. A wavelet transform means that a function will
be written as a sum of the localised wavelets. This is typically done in a setting of a
family of nested subsets, called multiresolution analysis (MRA), this will be described
more thoroughly in the section 3.2. Wavelets can successfully represent functions which
have certain smoothness properties, these particular properties differ per wavelet. How-
ever, wavelets are always able to represent polynomials up to a certain order N . This
order can be steered in the initial phase of generating the wavelets.

There are many different wavelets with different properties. However, in the literature
the focus was mostly on finding wavelets with a fast and parallelisable transform. This is
an important property, because the usage of wavelets should deliver a significant speed
up, hence the overhead of transforming a function should be small. The process of trans-
forming a function to its wavelet transform will be called the fast transform, this will be
discussed more detailed in section 3.3.
The wavelet transform exists out of two different transforms, namely the forward and
inverse transform. The forward transform will present the function compactly. The in-
verse transform will use the compact representation to iteratively determine the original
function. During the process of forming the fast transform, so called ’detail’ coefficients
are determined. Intuitively, the detail coefficient at a certain position represents the
ability of the wavelet transform to present the actual value of the function by interpola-
tion. If a point can be perfectly reconstructed the detail coefficient of that point will be
zero. The higher the absolute value of the detail coefficient the less accurate the wavelet
interpolation. Therefore, in the adaptive wavelet collocation methods the value of the
detail coefficients is used for thresholding. In other words, if a detail coefficient is low
the wavelet transform can accurately determine the value at that given position. Hence,
it is not needed to keep the function value at that position. The mathematical deriva-
tion of this property can be easily demonstrated for Donoho’s interpolating wavelet, see
subsection 3.4.4.
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3 Wavelet analysis

3.1.1 Different types of wavelets
Two type of wavelets which have been researched extensively in the literature are or-
thogonal and biorthogonal wavelets. These wavelets will be introduced in this chapter,
because they are helpful in defining the wavelets clearly. A typical example of an or-
thogonal wavelet is Daubechies N wavelet, where N indicates the amount of vanishing
moments, more information on the vanishing moments is given in 3.5. This particu-
lar wavelet is generated using the Fourier transform, more information can be found in
[5]. The Haar wavelet is an easy, almost trivial, example of a wavelet and has both
orthogonal and biorthogonal versions. Although it is easy to understand and imple-
ment, the Haar wavelet is not very good in approximating functions. Another example
of a biorthogonal wavelet is the Cohen-Daubechies-Feauveau wavelet as described in [4].
The Daubechies N wavelets, orthogonal and biorthogonal Haar wavelets and the Cohen-
Daubechies-Feauveau wavelets will be used as examples in section 3.2.
Another famous wavelet is Donoho’s interpolating wavelet, [9]. The Donoho’s interpo-
lating wavelet is based on the Deslauriers and Dubuc interpolation and is closely related
to biorthogonal wavelets. Donoho designed his wavelet such that the fast transform is
highly parallelisable. All the coefficients in the fast transform can be calculated inde-
pendently of the other coefficients in the same level. This wavelet will be explained more
extensively in section 3.4.

Donoho’s interpolating wavelet gave an introduction to a new type of wavelets, as the
wavelets did not need to be generated by the use of the Fourier transform. Sweldens
explicitly defined this difference and called the wavelets, generated without the use
of a Fourier transform, second generation wavelets. Implying that the other wavelets
will be called first generation wavelets. The second generation wavelets are based on
biorthogonal wavelets. The fast transform looks significantly different, Sweldens altered
the fast transform by introducing the lifting scheme, [23], [24] , [25] and [27]. More
information on this type of wavelets and their construction is given in section 3.6.

3.2 Multiresolution analysis
In this section mathematical fundaments of the wavelets are introduced, the setting will
be restricted to 1D.
Wavelets are used to approximate functions, this is done by projecting the function to
a multiresolution space. In the general wavelet theory the multiresolution space is an
approximation of the Hilbert space L2(R). This approximation is done by an infinite set
of nested subspaces:

{0} ⊂ . . . ⊂ Vj−1 ⊂ Vj ⊂ Vj+1 ⊂ . . . ⊂ L2(R) j ∈ Z.

Where a higher value for j implies a more precise space.
The manner in which I will define the multiresolution analysis is based on the works of
Cohen, Sweldens, Dempster and de Wiart, [3], [24], [8] and [7]. Note that there is more
than one way to define the MRA.
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3.2 Multiresolution analysis

Definition 1 - Multiresolution analysis (MRA)

A multiresolution analysis is a sequence of closed subspaces of L2(R), such that the
following properties are satisfied:

(i) The sequence is nested, i.e., for all j ∈ Z,

Vj ⊂ Vj+1. (3.1)

(ii) The spaces are related to each other by dyadic scaling, i.e.

f ∈ Vj ⇐⇒ f(2·) ∈ Vj+1 ⇐⇒ f(2−j ·) ∈ V0. (3.2)

(iii) The union of the spaces is dense, i.e. for all f in L2(R)

lim
j→+∞

||f − P 0
j f ||L2 = 0,

where P 0
j is the orthonormal projection onto Vj.

(iv) The intersection of the spaces is reduced to the null function, i.e.

lim
j→−∞

||P 0
j f ||L2 = 0. (3.3)

(v) There exists a function ϕ ∈ V0 such that the family

ϕ(· − k), k ∈ Z,

is a Riesz basis of V0.

Note, because ϕ(x) ∈ V0, from (3.1) it follows that ϕ(x) ∈ V1, which implies ϕ(x/2) ∈ V0
due to (3.2). The ϕ(· − k) form a Riesz basis of V0, which yields:

ϕ(x/2) =
∑
k∈Z

αkϕ(x− k),

with (αk)k∈Z ∈ l2(R). This leads to the dilation equation,

ϕ(x) =
∑
k∈Z

hkϕ(2x− k), (3.4)

the solution ϕ(x) is called the mother scaling function and H = (hk)k∈Z is called the
scaling filter.

11



3 Wavelet analysis

In order to have normality the integral of the mother scaling function should be 1, which
gives a condition on the scaling filter H.

1 =
∫
ϕ(x)dx =

∫ ∑
k∈Z

hkϕ(2x− k) =
∑
k∈Z

hk

∫
ϕ(2x− k)dx

=
∑
k∈Z

hk

∫ 1
2ϕ(u)du = 1

2
∑
k∈Z

hk

=⇒
∑

k

hk = 2.

Due to (3.2) any fj ∈ Vj can be written as fj = 2j/2f0(2j ·), where f0 ∈ V0 so f0 =∑
k αkϕ(· − k). Hence any fj ∈ Vj can be written as fj = 2j/2 ∑

k αkϕ(2j · −k). This
leads to the following basis functions for Vj , j ∈ Z:

ϕj,k(x) = 2j/2ϕ(2jx− k) k ∈ Z.

The ϕj,k form a Riesz basis for the space Vj , a property for a Riesz basis is that:

C1||f ||2L2 ≤
∑
k∈Z
|〈f, ϕj,k〉|2 ≤ C2||f ||2L2 . (3.5)

Therefore, any f ∈ Vj can be written as:

f(x) =
∑
k∈Z

sj,kϕj,k(x), sj,k = 〈f, ϕj,k〉,

where 〈·, ·〉 denotes the dot product of L2(R).
Thus define the projection PVj of any f ∈ L2(R) as

PVjf(x) =
∑
k∈Z
〈f, ϕj,k〉ϕj,k(x) =

∑
k∈Z

sj,kϕj,k(x).

In order to present any function f as a sum of scaling functions, the so called smoothing
coefficients, sj,k, need to be determined. These coefficients will be determined using the
fast transform, which will be introduced in a later stage.

3.2.1 Orthogonal wavelets

The MRA description described above will be extended for the case of orthogonal
wavelets. In this case orthogonality implies that two basis functions ϕj,k of Vj are orthog-
onal. In other words < ϕj,k, ϕj,l >= δk,l, where k, l ∈ Z and δ the Kronecker delta. The
orthogonality condition leads to a condition on the filter H, namely

∑
k∈Z hkhk−2l = δ0,l

12



3.2 Multiresolution analysis

for all l ∈ Z, which followed from:

δ0,l = 〈ϕ0,0, ϕ0,l〉 = 〈ϕ(x), ϕ(x− l)〉
= 〈

∑
k∈Z

hkϕ(2x− k),
∑
k′∈Z

hk′ϕ(2(x− l)− k′)〉

=
∑
k∈Z

∑
k′∈Z

hkhk′〈ϕ(2x− k), ϕ(2(x− l)− k′)〉

=
∑
k∈Z

∑
k′∈Z

hkhk′−2l〈ϕ(2x− k), ϕ(2x− k′)〉

=
∑
k∈Z

∑
k′∈Z

hkhk′−2lδk,k′ =
∑
k∈Z

hkhk+2l.

Construction wavelets

In this subsection the wavelet will be introduced in an orthogonal setting. Consider
the detail space Wj (in literature often referred to as innovation space), which is the
orthogonal complement of Vj in Vj+1, i.e. Vj+1 = Vj ⊕Wj . From the MRA definition
(3.3) it can be concluded that the union of the detail spaces is dense, i.e.,

∪+∞
i=−∞Wi = L2(R).

Next, a mother wavelet function ψ ∈W0 ⊂ V1 is defined as

ψ(x) =
∑
m∈Z

gmϕ(2x−m), (3.6)

with gk = (−1)kh1−k and G = (gm)m∈Z the wavelet filter. Similar to the scaling functions
the family ψ(· −m) forms a Riesz basis for W0. Moreover, the basis functions for Wj

are
ψj,m(x) = 2j/2ψ(2jx−m) j,m ∈ Z.

Furthermore, due to the orthogonality the relation 〈ψj,m, ψj,n〉 = δm,n holds and leads
to the condition

∑
m∈Z gmgm−2n = δ0,n. Because Wj is the orthogonal complement of

Vj , it holds that 〈ϕj,k, ψj,m〉 = 0, which leads to
∑

k hkgk−2m = 0:

0 = 〈ϕ0,0, ψ0,m〉 = 〈ϕ(x), ψ(x−m)〉
= 〈

∑
k∈Z

hkϕ(2x− k),
∑
k′∈Z

gk′ϕ(2(x−m)− k′)〉

=
∑
k∈Z

∑
k′∈Z

hkgk′〈ϕ(2x− k), ϕ(2(x−m)− k′)〉

=
∑
k∈Z

∑
k′∈Z

hkgk′−2m〈ϕ(2x− k), ϕ(2x− k′)〉

=
∑
k∈Z

∑
k′∈Z

hkgk′−2mδk,k′ =
∑
k∈Z

hkgk−2m.
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3 Wavelet analysis

Since ψj,m form a basis for Wj , f ∈Wj can also be written as:

f(x) =
∑
m∈Z

dj,mψj,m(x), dj,m = 〈f, ψj,m〉.

Furthermore, the projection PWj of any f ∈ L2 is defined as

PWjf(x) =
∑
m∈Z

dj,mψj,m(x).

In order to present any function f as a sum of wavelet functions, the so called detail
coefficients, dj,m, need to be determined. These coefficients will be determined using the
fast transform, which will be introduced in a later stage.

3.2.2 Biorthogonal wavelets

Next the MRA setting will be extended for the biorthogonal wavelets. Biorthogonal
wavelets have been developed, due to the difficulty of finding appropriate orthogonal
wavelets. Naturally, it is preferred for implementation purposes that H and G have a
finite support, however if a support is too small there can be performance issues. As
a result of the strong orthogonality restrictions the filters H and G typically have an
extremely small amount of nonzero values. Which results in non smooth scaling and
wavelet functions. Therefore, a weaker criterion, biorthogonallity, will be introduced.

In the biorthogonal setting next to the primal MRA M there is also a dual MRA M̃ . The
dual MRA is defined in a similar manner as the primal MRA. The subsets introduced
will be denoted as

{0} ⊂ . . . ⊂ Ṽj−1 ⊂ Ṽj ⊂ Ṽj+1 ⊂ . . . ⊂ L2(R) j ∈ Z,

with basis functions ϕ̃j,k for k ∈ Z. The imposed biorthogonallity condition is

〈ϕj,k, ϕ̃j,k′〉 = δk,k′ for k, k′ ∈ Z.

A dual mother scaling function is defined with the dual filter H̃:

ϕ̃ =
∑

k

h̃kϕ̃(2x− k) (h̃k) ∈ l2(Z). (3.7)

The extra scaling functions can be used to redefine the projections PVj of any f ∈ L2 as

PVjf(x) =
∑
k∈Z

sj,kϕj,k(x), sj,k = 〈f, ϕ̃j,k〉.

Note, the smoothing coefficients sj,k now depend on the dual scaling functions instead
of the primal scaling functions.
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3.2 Multiresolution analysis

Construction wavelets

Next, the wavelet will be introduced in the biorthogonal setting. Consider two detail
spaces Wj and W̃j . The detail spaces are not the orthogonal complements of respectively
Vj and Ṽj , but they are the complements with cross orthogonality conditions:

Vj ⊕Wj = Vj+1 Ṽj ⊕ W̃j = Ṽj+1,

Ṽj ⊥Wj Vj ⊥ W̃j

The mother wavelets can be defined as follows:

ψ(x) =
∑
m

gmϕ(2x−m) gk = (−1)kh̃1−k,

ψ̃(x) =
∑
m

g̃mϕ̃(2x−m) g̃k = (−1)kh1−k.

Thus there are two wavelet filters G = (gm)m∈Z and G̃ = (g̃m)m∈Z. In addition, the
basis wavelets for Wj and W̃j are

ψj,m(x) = 2j/2ψ(2jx−m) ψ̃j,m(x) = 2j/2ψ̃(2jx−m) for m ∈ Z.

The duality and cross orthogonality lead to the following conditions on inproducts and
implications for the filters:

〈ϕj,k, ϕ̃j,k′〉 = δk,k′ =⇒
∑

k

hkh̃k−2l = δ0,l,

〈ψj,m, ψ̃j,m′〉 = δm,m′ =⇒
∑
m

gmg̃m−2n = δ0,n,

〈ϕj,k, ψ̃j,m〉 = 0 =⇒
∑

k

hkg̃k−2m = 0,

〈ψj,m, ϕ̃j,k〉 = 0 =⇒
∑
m

gmh̃m−2k = 0,

for k, k′, l,m,m′, n ∈ Z.

When a set of biorthogonal scaling functions and wavelets have been implemented, the
above conditions on the filters can be used to check the mathematical correctness of the
implementation.
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3 Wavelet analysis

Only the first derivation will be showed, the others can be done in a similar manner:

δ0,l = 〈ϕ0,0, ϕ̃0,l〉 = 〈ϕ(x), ϕ̃(x− l)〉,
= 〈

∑
k

hkϕ(2x− k),
∑
k′

h̃k′ϕ̃(2(x− l)− k′)〉 from (3.4) and (3.7),

=
∑

k

∑
k′

hkh̃k′〈ϕ(2x− k), ϕ̃(2x− 2l − k′)〉,

=
∑

k

∑
k′

hkh̃k′−2l〈ϕ(2x− k), ϕ̃(2x− k′)〉,

=
∑

k

∑
k′

hkh̃k′−2l〈ϕ0,k, ϕ̃0,k′〉,

=
∑

k

∑
k′

hkh̃k′−2lδk,k′ =
∑

k

hkh̃k−2l.

The projection PWj of any f ∈ L2 is defined using the dual wavelet for the detail
coefficient:

PWjf(x) =
∑
m∈Z

dj,mψj,m(x), dj,m = 〈f, ψ̃j,m〉.

3.2.3 Finite precision
The sums described in the MRA are infinite. However, in order to implement the wavelets
finite sums are needed. Typically densest and coarsest levels are fixed and respectively
called J2 and J1. Where J2 and J1 are integers and J2 > J1. J2 is considered to be
a fine approximation space, it is assumed no finer space exists. Before a projection PVj

for the orthogonal scaling function was defined as

PVjf(x) =
∑
k∈Z

sj,kϕj,k(x).

Furthermore, the projection PWj for the orthogonal wavelet was defined as

PWjf(x) =
∑
m∈Z

dj,mψj,m(x).

Due to the definition of the detail space Wj , VJ2 can be rewritten as

VJ2 = VJ1 ⊕ ∪J2−1
j=J1Wj .

Combining these definitions will lead to an approximation of f ∈ L2 on the finest space
VJ2:

f(x) ≈ PVJ2f(x) = PVJ1f(x) +
J2−1∑
j=J1

PWjf(x)

=
∑
k∈Z

sJ1,kϕJ1,k(x) +
J2−1∑
j=J1

∑
m∈Z

dj,mψj,m(x).
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3.2 Multiresolution analysis

3.2.4 Construction of the basis functions

If an appropriate wavelet has been determined the scaling functions and the wavelet
functions should be generated. The manner in which wavelets are generated depends on
the wavelet system used. In the case of Donoho’s interpolating wavelet an interpolating
scheme based on the Deslauriers-Dubuc function is used. When describing the wavelets,
the specific construction algorithm needed will be mentioned.

3.2.5 Examples

In this subsection 4 examples of orthogonal and biorthogonal wavelets will be given.

Daubechies wavelet

The Daubechies wavelet is an example of an orthogonal wavelet. The wavelet is gen-
erated by applying the Fourier transform as described in [5]. One starts off with an
interval function which is equal to 1 in the interval [−1

2 ,
1
2 [. Thereafter, this function is

dilated and scaled multiple times. In Algorithm 1 the construction of the scaling func-
tion and wavelet function is given. Note that the formula for the scaling and wavelet
functions differ from (3.4) and (3.6) in the sense that they are scaled with

√
2. The G

filter is constructed by the formula gk = (−1)kh1−k. Different Daubechies wavelets can
be constructed by applying different H filters.

Algorithm 1 Construction of Daubechies
η0(x) = χ[− 1

2 , 1
2 [(x)

for i = 1 upto ∞ do
ηi(x) =

√
2

∑
k hkηi−1(2x− k)

end for
ϕ(x) = η∞(x)
ψ(x) =

√
2

∑
k gkϕ(2x− k)

The Daubechies 2 wavelet, of order N = 2, is constructed with the filter H2 = (h2
k)k∈Z

in the Table 3.1 extracted from [5].

Table 3.1: The HN filter coefficients of the different Daubechies wavelets.

k h1
k h2

k

0 1 1+
√

3
4
√

2
1 1 3+

√
3

4
√

2
2 3−

√
3

4
√

2
3 1−

√
3

4
√

2
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3 Wavelet analysis

This particular wavelet has been generated using Matlab, the code can be found in the
appendix, in Figure 3.1 both the mother scaling function ϕ and the mother wavelet
function ψ are shown.

Figure 3.1: The Daubechies wavelet with N = 2.

Another famous wavelet which can be constructed as a Daubechies wavelet is the or-
thogonal Haar wavelet. By applying the same construction as Daubechies on the filter
H1 = (h1

k)k∈Z in the Table 3.1 the orthogonal Haar wavelet is generated. In Figure 3.2
both the mother scaling function ϕ and the mother wavelet function ψ are shown.

Figure 3.2: The orthogonal Haar wavelet or Daubechies wavelet with N = 1.

Cohen-Daubechies-Feauveau wavelet

Cohen, Daubechies and Feauveau described multiple biorthogonal wavelets in [4]. The
wavelets are generated by applying the Fourier transform in a similar way as in [5]. One
of the example wavelets given by Cohen, Daubechies and Feauveau is a wavelet based
on splines. These wavelets will be denoted as CDF(N, Ñ), for ease of notation, where N
denotes the order and Ñ the dual order. In this case the primal mother scaling function
is equal to a spline of a certain order, which influences the order N . The dual mother
scaling function is a recursive application of dilations and scalings of the same spline,
the filter used for this determines the dual order Ñ . In Algorithm 2 the construction of
the CDF(N, Ñ) wavelet is given.
If the CDF mother wavelet is based on a linear spline, the CDF(2,2) wavelet is generated.
This wavelet has order N = 2 and dual order Ñ = 2 and can be constructed using the
filters in table 6.1 in [4]. In Figure 3.3 the primal mother scaling function ϕ, the primal
mother wavelet function ψ, the dual mother scaling function ϕ̃ and the dual mother
wavelet function ψ̃ are shown.
Basing the CDF mother wavelet on a constant spline will result in the biorthogonal Haar
wavelet. In Figure 3.4 the Haar wavelet with order N = 1 and dual order Ñ = 3, using
the filters in table 6.1 in [4], is shown.
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3.3 Fast transform

Algorithm 2 Construction of CDF
ϕ(x) = spline(x)
η0(x) = spline(x)
for i = 1 upto ∞ do
ηi(x) =

√
2

∑
k h̃kηi−1(2x− k)

end for
ϕ̃(x) = η∞(x)
ψ(x) =

√
2

∑
k gkϕ(2x− k)

ψ̃(x) =
√

2
∑

k g̃kϕ̃(2x− k)

Figure 3.3: The Cohen-Daubechies-Feauveau wavelets with N = 2 and Ñ = 2.

3.3 Fast transform
When one wants to determine the wavelet transform of a function the following definition
can be used:

f(x) ≈ PVJ2f(x) =
∑
k∈Z

sJ1,kϕJ1,k(x) +
J2−1∑
j=J1

∑
m∈Z

dj,mψj,m(x).

Consider the scaling functions and wavelet functions to be known. Then only the co-
efficients sJ1,k and dj,m, for k,m ∈ Z and J1 ≤ j ≤ J2 − 1, need to be determined to
reconstruct f . The coefficients can be determined by rewriting the projection definitions.
Calculating these coefficients will be called the forward transform. If sj,k are needed at
any other level than J1 the projections can be rewritten in another matter to determine
the values. This is called the inverse transform. The forward and inverse transform
combined is called the fast transform. Typically when new wavelets are designed one
tries to find a fast transform which can be solved in linear time (O(N)). In this sec-
tion the forward and inverse transform will be determined both for the orthogonal and
biorthogonal wavelets. When a new wavelet is introduced the appropriate fast transform
will be explained in that section.
There are multiple scaled versions of the mother scaling and wavelet functions. The ones
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3 Wavelet analysis

Figure 3.4: The biorthogonal Haar wavelet or Cohen-Daubechies-Feauveau wavelet with
N = 1 and Ñ = 3.

for which the fast transform will be calculated are:

ϕ(x) = 2
∑

k

hkϕ(2x− k)

ψ(x) = 2
∑
m

gmϕ(2x−m)

ϕj,k(x) = 2j/2ϕ(2jx− k)
ψj,m(x) = 2j/2ψ(2jx−m)

The mother functions have a different scaling then defined in section 3.2, this because
these are the equations which will be used later in section 3.6. The new scaling results
in a new condition on the H filter,

∑
k hk = 1.

3.3.1 Forward transform

In this transform one wants to determine the coefficients sJ1,k and dj,m, for k,m ∈ Z
and J1 ≤ j ≤ J2 − 1. Firstly, assume that the coefficients sJ2,k are known or have an
accurate approximation, i.e., the smoothing values at the finest level of approximation
are given.
Starting with the orthogonal wavelets a new expression for the detail coefficients can be
found by simply rewriting the inner product dj−1,k = 〈f, ψj−1,k〉.

dj−1,m = 〈f, ψj−1,m〉 = 〈f, 2(j−1)/2ψ(2j−1x−m)〉,
= 〈f, 2(j−1)/22

∑
n

gnϕ(2(2j−1x−m)− n)〉 = 2−1/22
∑

n

gn〈f, 2j/2ϕ(2(2j−1x−m)− n)〉,

= 21/2 ∑
n

gn〈f, 2j/2ϕ(2jx− (2m+ n))〉 = 21/2 ∑
n

gn〈f, ϕj,2m+n〉,

= 21/2 ∑
n

gnsj,2m+n.
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3.3 Fast transform

Hence, the detail coefficients at a coarser level can be determined completely by the
smoothing coefficients of a finer level. Typically, the filter G is finite, hence the sum
needed to determine dj−1,k is finite. Similarly for the smoothing coefficient at a coarser
level it holds that:

sj−1,k = 〈f, ϕj−1,k〉 = 〈f, 2(j−1)/2ϕ(2j−1x− k)〉,
= 〈f, 2(j−1)/22

∑
l

hhϕ(2(2j−1x− k)− l)〉 = 2−1/22
∑

l

hl〈f, 2j/2ϕ(2(2j−1x− k)− l)〉,

= 21/2 ∑
l

hl〈f, ϕ(2jx− (2k + l))〉 = 21/2 ∑
l

hl〈f, ϕj,2k+l〉,

= 21/2 ∑
l

hlsj,2k+l.

Thus the forward transform for the orthogonal wavelets is:

{
dj−1,m =

√
2

∑
n gnsj,2m+n,

sj−1,k =
√

2
∑

l hlsj,2k+l.
(3.8)

The forward transform for the biorthogonal wavelets is completely the same, it only dif-
fers in the fact that the coefficients depend on the dual filters. Hence, for the biorthogonal
wavelets the forward transform is:{

dj−1,m =
√

2
∑

n g̃nsj,2m+n,

sj−1,k =
√

2
∑

l h̃lsj,2k+l.
(3.9)

The equations of (3.8) and (3.9) can be applied iteratively to determine sJ1,k and dj,m, for
k,m ∈ Z and J1 ≤ j ≤ J2−1. Typically, the s values will be overwritten every iteration
in order to minimise the amount of data which needs to be stored. The algorithm is
written down in Algorithm 3.

Algorithm 3 Forward transform
for j=J2 downto J1 do
∀m dj−1,m =

√
2

∑
n gnsj,2m+n

∀k sj−1,k =
√

2
∑

l hlsj,2k+l

end for

3.3.2 Inverse transform

In order to find the inverse transform, one can rewrite the projection

PVjf(x) = PVj−1f(x)⊕ PWj−1f(x). (3.10)
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3 Wavelet analysis

Firstly, note:

ϕj−1,l(x) = 2(j−1)/2ϕ(2j−1x− l) = 2(j−1)/22
∑
m

hmϕ(2(2j−1x− l)−m)

= 21/2 ∑
m

hm2jϕ(2jx− (2l +m)) = 21/2 ∑
m

hmϕj,2l+m(x) =
√

2
∑

k

hk−2lϕj,k(x),

ψj−1,l(x) = 2(j−1)/2ψ(2j−1x− l) = 2(j−1)/22
∑
m

gmϕ(2(2j−1x− l)−m)

= 21/2 ∑
m

gm2jϕ(2jx− (2l +m)) = 21/2 ∑
m

gmϕj,2l+m(x) =
√

2
∑

k

gk−2lϕj,k(x).

These expressions will be used to rewrite (3.10).

PVjf(x) = PVj−1f(x)⊕ PWj−1f(x)∑
k

sj,kϕj,k(x) =
∑

l

sj−1,lϕj−1,l(x) +
∑

l

dj−1,lψj−1,l(x)∑
k

sj,kϕj,k(x) =
√

2
∑

l

sj−1,l

∑
k

hk−2lϕj,k(x) +
√

2
∑

l

dj−1,l

∑
k

gk−2lϕj,k(x)∑
k

sj,kϕj,k(x) =
∑

k

(
√

2
∑

l

sj−1,lhk−2l +
√

2
∑

l

dj−1,lgk−2l)ϕj,k(x)

=⇒ sj,k =
√

2
∑

l

sj−1,lhk−2l +
√

2
∑

l

dj−1,lgk−2l

This equation is the same for the biorthogonal wavelet, as ϕ is rewritten and not the
coefficients s and d.
Hence, for the orthogonal and biorthogonal wavelets the inverse transform is:

sj,k =
√

2
∑

l

sj−1,lhk−2l +
√

2
∑

l

dj−1,lgk−2l. (3.11)

The algorithm is written down in Algorithm 4.

Algorithm 4 Inverse transform
for j=J1 downto J2 do
∀k sj,k =

√
2

∑
l sj−1,lhk−2l +

√
2

∑
l dj−1,lgk−2l

end for

3.4 Donoho’s interpolating wavelet
To find the wavelet transform of a function the fast transform has to be computed.
The wavelet introduced by Donoho, [9], was designed to increase the speed of the fast
transform. The three main properties Donoho tried to optimise are mentioned below:
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3.4 Donoho’s interpolating wavelet

1. Each smoothing coefficient sj,k can be calculated independent of all other coeffi-
cients. This in order to decrease computational costs of the forward transform.

2. The smoothing and detail coefficients have decay properties which are comparable
to the decay properties of orthogonal wavelets.

3. A simple thresholding rule should hold in order to minimise the coefficients needed
to reconstruct a function. This in order to decrease memory usage.

3.4.1 Construction basis functions
The wavelet designed by Donoho is based on the family of Deslauriers-Dubuc fundamen-
tal functions. These functions are formed by interpolating the Kronecker delta at the
integers. The interpolation is done by fitting polynomials of order N − 1. Repeating
this interpolation step will lead to the primal mother scaling function ϕ of order N . In
Algorithm 5 the construction of generating the Donoho mother scaling function is given.
Note that the H filter is not needed for this construction.

Algorithm 5 Construction of Donoho’s wavelet

For k ∈ K0 ⊂ Z, ϕ(k) =
{

1 if k == 0
0 else

for i = 1 upto ∞ do
for k ∈ Ki−1 do
Add k

2 to Ki.
end for
for k

2 ∈ Ki do
Fit N − 1 order polynomial p to the N points k ∈ Ki−1 surrounding k

2 ∈ Ki.
Set ϕ(k

2 ) = p(k
2 ).

end for
end for

This Donoho wavelet has been generated using Matlab, the code can be found in the
appendix. In Figure 3.5 different Donoho wavelets ϕN are depicted.

3.4.2 MRA
The MRA setting will be similar as in section 3.2. If the mother wavelet is constructed
from the Deslauriers-Dubuc fundamental functions, the ϕ can be represented as a linear
combination of dilates and translates of itself:

ϕN (x) =
∑

k

ϕN (k2 )ϕN (2x− k).

Therefore, the HN filter coefficients can be determined by checking the values of the
half integers. Thus for the case N = 4 the value at 0 is 1, hence h4

0 = 1. Furthermore,
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3 Wavelet analysis

Figure 3.5: The Donoho mother scaling function of order N = 2, 4, 6, 8.

ϕ4(0.5) = ϕ4(0.5) = 9
24 , ϕ4(1.5) = ϕ4(1.5) = −1

24 , hence h4
−1 = h4

1 = 9
24 and h4

−3 = h4
3 =

−1
24 . At all other half integer locations the scaling function has a value equal to zero.
These values and the filters of the other order Donoho functions can be found in the
Table 3.6.
The wavelet ψ is constructed by ψ(x) = ϕN (2(x − 1

2)). Furthermore, the bases for the
nested families Vj and Wj are:

ϕj,k(x) = 2
j
2ϕN (2jx− k)

ψj,k(x) = 2
j
2ψ(2jx− k)

With these definitions an interpolating wavelet transform can be defined, which can
reconstruct any f which is the sum of a polynomial of degree ≤ N−1. This construction
will look like:

f =
∑

k

sJ1,kϕJ1,k +
∑

j≥J1

∑
k

dj,kψj,k.

In [9] the proof can be found, which states that indeed this transform can reconstruct
any function which has a polynomial degree ≤ N − 1. Note that the s coefficients relate
to the β coefficients and d to α in [9].
The smoothing coefficient has the special property that sj,k = 2−

j
2 f(2−jk). The projec-

tion of a continuous function f on Vj is defined as (PVjf)(x) = 2−
j
2

∑
k f(2−jk)ϕj,k(x).

From Lemma 2.4 in [9] it follows that for all continuous functions vanishing at ∞, the
projection PVjf converges to f as j increases.

24



3.4 Donoho’s interpolating wavelet

Table 3.2: The HN filter coefficients of the different Donoho wavelets.

k h2
k h4

k h6
k h8

k

-7 − 5
211

-6 0
-5 3

28
49
211

-4 0 0
-3 − 1

24 −25
28 −245

211

-2 0 0 0
-1 1

2
9
24

155
28

1225
211

0 1 1 1 1
1 1

2
9
24

155
28

1225
211

2 0 0 0
3 − 3

24 −25
28 −245

211

4 0 0
5 3

28
49
211

6 0
7 − 5

211

3.4.3 Fast transform

Forward transform

In order to obtain the forward transform two useful properties will be derived:

ψj,k(x) = 2
j
2ψ(2jx− k) = 2

j
2ϕ(2(2jx− k − 1

2))

= 1√
2

2
j+1

2 ϕ(2j+1x− 2k − 1) = 1√
2
ϕj+1,2k+1(x)

sj+1,2k = 2−
j+1

2 f(2−j−12k) = 1√
2

2−
j
2 f(2−j2−12k)

= 1√
2
sj,k

This leads to the first part of the fast forward transform, namely sj,k =
√

2sj+1,2k. In
order to determine the second half of the fast transform, determining the detail coeffi-
cients at coarser levels, a property leading to a new formulation of the detail coefficient
will be derived.
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3 Wavelet analysis

ϕj,l(x) = 2
j
2ϕ(2jx− l)

= 2
j
2

∑
m

ϕ(m2 )ϕ(2(2jx− l)−m)

=
∑
m

ϕ(m2 )2−
1
2 2

j+1
2 ϕ(2j+1x− 2l −m)

=
∑
m

ϕ(m2 )2−
1
2ϕj+1,2l+m(x)

= 1√
2

∑
k

ϕ(k − 2l
2 )ϕj+1,k(x) (3.12)

∑
l

dj,lψj,l = 1√
2

∑
l

dj,lϕj+1,2l+1

= 1√
2

∑
k

dj, k−1
2
ϕj+1,k (3.13)

For f ∈ Vj+1 we have two representations, namely f =
∑

k sj+1,kϕj+1,k and f =∑
l sj,lϕj,l +

∑
l dj,lψj,l. Setting them equal will give a nice property for the coefficients

out of which the forward and inverse transform can be constructed.

∑
k

sj+1,kϕj+1,k =
∑

l

sj,lϕj,l +
∑

l

dj,lψj,l

=
∑

l

sj,l
1√
2

∑
k

ϕ(k − 2l
2 )ϕj+1,k(t) + 1√

2
∑

k

dj, k−1
2
ϕj+1,k

= 1√
2

∑
k

(
∑

l

sj,lϕ(k − 2l
2 ) + dj, k−1

2
)ϕj+1,k

=⇒
√

2sj+1,k =
∑

l

sj,lφ(k − 2l
2 ) + dj, k−1

2
(3.14)

Rewriting the indices of (3.14) and using sj,k =
√

2sj+1,2k, the forward transform of the
detail coefficient can be derived.

dj,k =
√

2sj+1,2k+1 −
∑

l

sj,lϕ(2k + 1− 2l
2 )

=
√

2sj+1,2k+1 −
∑

l

√
2sj+1,2lϕ(k + 1

2 − l)

=
√

2(sj+1,2k+1 −
∑

l

sj+1,2lϕ(k + 1
2 − l))
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3.4 Donoho’s interpolating wavelet

Hence, the simplified forward transform of the Donoho wavelet is:{
sj,k =

√
2sj+1,2k

dj,k =
√

2(sj+1,2k+1 −
∑
sj+1,2lϕ(k + 1

2 − l))

Because ϕ only has a finite support the sum
∑

l sj+1,2lϕ(k+ 1
2 − l) is finite. Remember,

that a standard forward transform looks as follows:{
sj−1,k =

∑
l h̃lsj,2k+l,

dj−1,m =
∑

n g̃nsj,2m+n.

Hence the filter H̃ only has a non-zero value at k = 0, namely h̃0 = 1. Furthermore, G̃
is a shifted version of the earlier mentioned H filter, which is defined on the half integers
of ϕ. And the minus sign indicates that the filter H is multiplied with a (-1) term on
the odd indices. This all corresponds with the definition of a general G̃ filter, as defined
in the sections 3.2 and 3.3.

Inverse transform

For the reconstruction of the smoothing coefficients at finer levels a distinct will be made
between the even and odd indices. Firstly, note that sj,k =

√
2sj+1,2k, so if k is even

then sj+1,k = 1√
2sj, k

2
.

Secondly, rewriting (3.14) and assuming that the indices k are odd, leads to:

sj+1,k = 1√
2

(
∑

l

sj,lϕ(k − 2l
2 ) + dj, k−1

2
)

= 1√
2

(
∑

l

sj,lϕ(k − 1
2 + 1

2 − l) + dj, k−1
2

)

= 1√
2

(
∑

l

sj,l+ k−1
2
ϕ(1

2 − l) + dj, k−1
2

)

Hence, the following inverse transform is constructed:

sj+1,k =


1√
2sj, k

2
if k is even

1√
2(

∑N
l=−N+1 sj,l+ k−1

2
ϕ(1

2 − l) + dj, k−1
2

) if k is odd

3.4.4 Note on detail coefficient
In order to retrieve an intuitive interpretation of the detail coefficient and to understand
the thresholding, (3.14) will be rewritten.
Note that:

ϕ(k − 1
2 + 1

2 − l) = ϕ(2j(
k + 1

2
2j

)− l) = 2−
j
2ϕj,l(

k + 1
2

2j
)
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3 Wavelet analysis

Using the fact that sj,k = 2−
j
2 f(2−jk) and (PVjf)(t) = 2−

j
2

∑
k f(2−jk)ϕj,k(t), results

in:

dj,k =
√

2sj+1,2k+1 −
∑

l

sj,lϕ(2k + 1− 2l
2 )

=
√

2sj+1,2k+1 − 2−
j
2

∑
l

sj,lϕj,l(
k + 1

2
2j

)

=
√

2(2−
j+1

2 f(2k + 1
2j+1 ))− 2−

j
2

∑
l

(2−
j
2 f( l2j

))ϕj,l(
k + 1

2
2j

)

= 2−
j
2 f(

k + 1
2

2j
)− 2−

j
2

∑
l

(2−
j
2 f( l2j

))ϕj,l(
k + 1

2
2j

)

= 2−
j
2 (f(

k + 1
2

2j
)− 2−

j
2

∑
l

f( l2j
)ϕj,l(

k + 1
2

2j
)

= 2−
j
2 (f(

k + 1
2

2j
)− (PVjf)(

k + 1
2

2j
))

Hence the detail coefficient d measures the lack of approximation of f by PVjf . So in
order to compress using this wavelet it makes sense to threshold on the value of the detail
coefficients. Each detail coefficient corresponds to a smoothing coefficient on a higher
level. So if the detail coefficient is almost equal to zero the corresponding smoothing
coefficient can be correctly interpolated, thus the smoothing coefficient does not need
to be saved. If the function is a polynomial of order N − 1 all the detail coefficients
will be zero, thus by only using the smoothing coefficient on the coarsest level the whole
function can be reconstructed perfectly.
Consider the threshold value ε and denote the function with thresholded detail coeffi-
cients as f (ε). Donoho described the difference between f (ε) and PVjf intuitively as:
”The slogan is that f (ε) contains the terms which are important, while PVjf contains all
terms which might possibly be important.”
In [9] theorem 3.8 gives a bound on the infinity norm of the difference between f and
f (ε) for f sufficiently smooth.

||f − f (ε)||∞ ≤ C1ε,

for some constant C1. The theorem also results in a bound for the amount of non zero
detail coefficients N (ε):

N (ε) ≤ C2ε
−p,

for some constant C2 and p corresponding to the Besov space as defined by Donoho. For
more details [9] can be consulted.
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3.5 Vanishing moments

3.5 Vanishing moments
Whenever an example of a wavelet system has been discussed, an order N was given. In
this section, the order N and dual order Ñ will be introduced and their properties will
be analysed. This will give insights on choosing the order and dual order of a wavelet
system in such a manner that the approximation error will be minimised. More pre-
cisely choosing N = Ñ will result in the best results. Furthermore, this section will give
insights on the weakness of the Donoho wavelet. The latter will result in the motivation
behind second generation wavelets.

Firstly, the order N and dual order Ñ of a wavelet are defined:

Definition 2 - Vanishing moments

Consider a (bi)-orthogonal wavelet system, with scaling function ϕ and wavelet ψ. Then
the wavelet system has order N if the scaling function has N vanishing moments, i.e.:∫ ∞

−∞
xnϕ(x)dx = 0, for 0 < n < N.

The wavelet system has dual order Ñ if the wavelet function has Ñ vanishing moments,
i.e.: ∫ ∞

−∞
xnψ(x)dx = 0, for 0 ≤ n < Ñ.

Note that the integral of the wavelet,
∫∞
−∞ ψ(x)dx, needs to be zero in order to have

Ñ > 0, whilst
∫∞
−∞ ϕ(x)dx = 1 in many cases. The order N has a direct relation with

the polynomial functions a wavelet system can reproduce. In other words a wavelet
system of order N can reproduce any polynomial of order N − 1, see [9] and [26]. Fur-
thermore, the order N of the wavelet system directly influences the size of the filter H.
Theorem 2.2 in [12], gives a lower bound on the support of any wavelet depending on
the order N , the support size directly relates to the filter size.
Moreover, imposing vanishing moments on the scaling function and dual vanishing mo-
ments on the wavelet will reduce the approximation error of f with the wavelet system.
To illustrate this, theorems from [28] will be introduced. The theorems are used to
depict the properties of the vanishing moments, for more details on these theorems and
their proofs one can consult [28].

Firstly, denote by CN,1
0 (R) the set of compactly supported functions having derivatives

of order ≤ N and whose N -th derivative is Lipschitz. Furthermore, if an orthonormal
wavelet system is used, an orthogonal wavelet system with the property

∫∞
−∞ ϕ(x)dx = 1

is implied.
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3 Wavelet analysis

Theorem 3.5.1 - Orthogonal projection error

Consider an orthonormal wavelet system with scaling function ϕ(x) and wavelet function
ψ(x). For f(x) ∈ CÑ,1

0 (R), define the orthogonal projection

P j(f) :=
∑
k∈Z

(
∫ ∞
−∞

f(t)ϕj,k(t)dt)ϕj,k(x).

If ψ(x) has vanishing moments up to degree Ñ , then

||f(x)− P j(f)||L2 ≤ C12−j(Ñ+1),

where C1 is a constant independent of j and Ñ .

Hence, the higher the dual order Ñ the closer the orthogonal projection is to the func-
tion f . Next, a similar theorem will be applied to the vanishing moments of ϕ. The
orthogonal projection as defined in theorem 3.5.1 has an integral, namely the inner prod-
uct between f and the scaling functions. This integral can be approximated using the
wavelet sampling approximation:

Definition 3 - Wavelet sampling approximation

The wavelet sampling approximation of an L2(R) function f(x) at the j-th level is

Sj(f) := 2
−j
2

∑
k∈Z

f( k2j
)ϕj,k(x).

Note, that this manner of representing the inner product is similar to the manner in
which Donoho defined the smoothing coefficients. The vanishing moments of ϕ can be
used to express the approximation error of the wavelet sampling approximation.

Theorem 3.5.2 - Wavelet sampling approximation error

Consider an orthonormal wavelet system with scaling function ϕ(x) and wavelet function
ψ(x). If ϕ(x) has vanishing moments up to degree N and f(x) ∈ CN,1

0 (R), then

||P j(f)− Sj(f)||L2 ≤ C22−j(N+1),

where C2 is a constant independent of j and N .

Using the wavelet sampling approximation method to determine the inner products, as
is done by Donoho, leads to the following bound on the approximation error:

||f(x)− Sj(f)||2L2 ≤ ||f(x)− P j(f)||2L2 + ||P j(f)− Sj(f)||2L2

≤ C12−j(Ñ+1) + C22−j(N+1).
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3.5 Vanishing moments

Naturally, one tends to minimise this error. The order of the error is determined by
the smallest of the terms N and Ñ . Hence, an optimal choice would be N = Ñ . This
because a higher (dual) order leads to more computations and only increasing one of the
orders will not have a huge influence on the behaviour of the error of the approximation.
The above setting is defined for orthogonal wavelets, however in [28] it is shown that it
also holds for the biorthogonal setting.

Concluding, a wavelet system should be designed in such a manner that the order N and
dual order Ñ are equal. Furthermore, the higher the orders the smaller the approxima-
tion error, however a higher order results in a bigger filter H. Thus there is a trade-off
between the order of the wavelet system and the computational costs.

3.5.1 Example

In section 3.2 an example of a biorthogonal wavelet was discussed, the CDF(2,2). This
is a biorthogonal wavelet with N = Ñ = 2. In this subsection the order and dual order
will be derived.
Firstly, the mother scaling function and mother wavelet function are:

ϕ(x) =


1 + x −1 ≤ x ≤ 0,
1− x 0 ≤ x ≤ 1,
0 else,

ψ(x) =
√

2
∑

k

gkϕ(2x− k).

With g−1 = g3 = 1
8 , g0 = g2 = 1

4 and g1 = −3
4 . Secondly, the integrals of the scaling

function will be calculated.∫ ∞
−∞

ϕ(x)dx =
∫ 0

−1
(1 + x)dx+

∫ 1

0
(1− x)dx

= [x+ 1
2x

2]0−1 + [x− 1
2x

2]10 = 1∫ ∞
−∞

xϕ(x)dx =
∫ 0

−1
x(1 + x)dx+

∫ 1

0
x(1− x)dx

= [12x
2 + 1

3x
3]0−1 + [12x

2 − 1
3x

3]10 = −(1
2 −

1
3) + (1

2 −
1
3) = 0∫ ∞

−∞
x2ϕ(x)dx =

∫ 0

−1
x2(1 + x)dx+

∫ 1

0
x2(1− x)dx

= [13x
3 + 1

4x
4]0−1 + [13x

3 − 1
4x

4]10 = −(−1
3 + 1

4) + (1
3 −

1
4) = 1

6 6= 0
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Hence, the order N of CDF(2,2) is indeed 2. Next, the integrals of the wavelet function
will be calculated. Note, that the integral of the wavelet should also be zero. First some
useful integrals will be calculated.∫ ∞

−∞
ψ(2x− k)dx = 1

2

∫ ∞
−∞

ψ(u)du = 1
2∫ ∞

−∞
xψ(2x− k)dx = 1

4

∫ ∞
−∞

(u+ k)ψ(u)du

= 1
4[

∫ 0

−1
(u+ k)(1 + u)du+

∫ 1

0
(u+ k)(1− u)du] = k

4∫ ∞
−∞

x2ψ(2x− k)dx = 1
8

∫ ∞
−∞

(u2 + 2uk + k2)ψ(u)du

= 1
8[

∫ 0

−1
(u2 + 2uk + k2)(1 + u)du+

∫ 1

0
(u2 + 2uk + k2)(1− u)du]

= 1
8(1

6 + k2)

∫ ∞
−∞

ψ(x)dx =
√

2
∑

k

gk

∫ ∞
−∞

ϕ(2x− k)dx

=
√

2
2

∑
k

gk =
√

2
2 (1

8 + 1
4 −

3
4 + 1

4 + 1
8) = 0∫ ∞

−∞
xψ(x)dx =

√
2

∑
k

gk

∫ ∞
−∞

xϕ(2x− k)dx

=
√

2
4

∑
k

gkk =
√

2
4 (−1 ∗ 1

8 + 0 ∗ 1
4 + 1 ∗ (−3

4) + 2 ∗ 1
4 + 3 ∗ 1

8) = 0∫ ∞
−∞

x2ψ(x)dx =
√

2
∑

k

gk

∫ ∞
−∞

x2ϕ(2x− k)dx

=
√

2
8

∑
k

gk(1
6 + k2) =

√
2

8 (1
8(1

6 + 1) + 1
4

1
6 +−3

4(1
6 + 1) + 1

4(1
6 + 4)

+ 1
8(1

6 + 9)) > 0

Indeed the dual order Ñ of CDF(2,2) is 2.

3.5.2 Donoho’s interpolating wavelet
In section 3.4 Donoho’s interpolating wavelet is described. This wavelet can not detect
non smooth behaviour in every level due to aliasing. Remember, the forward transform:{

sj,k =
√

2sj+1,2k,

dj,k =
√

2(sj+1,2k+1 −
∑
sj+1,2lϕ(k + 1

2 − l)).
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This implies that the filter H̃ only has a non zero value at the position 0, h̃0 = 1. The
filter for the wavelet G directly corresponds to the filter H̃, thus H̃ relates directly to
the vanishing moments of ψ. To determine the amount of dual vanishing moments of
the Donoho wavelet, consider the integral of the wavelet ψ.∫ ∞

−∞
ψ(x)dx =

∫ ∞
−∞

ϕ(2(x− 1
2))dx

= 1
2

∫ ∞
−∞

ϕ(u)du = 1
2 .

Hence the dual order Ñ = 0, this leads to aliasing, which will be shown with the unitary
impulse. The unitary impulse is a test function which is everywhere zero expect for 1 lo-
cation. Depending on the position of this 1 value the Donoho wavelet gives very different
results. In Figure 3.6 the forward transform is shown, both the smoothing coefficients
and the detail coefficients at the coarsest level are depicted. In this example the unitary
impulse is exactly located at a position of the mesh which corresponds to a smoothing
value at the coarsest level.

Figure 3.6: Correct forward transform of Donoho’s interpolating wavelet.

The forward transform was performed on the unitary impulse (even
location) with Donoho’s interpolating wavelet of order N = 4.

However, if the unitary impulse is located at a position which does not correspond with
the smoothing locations of the coarsest mesh, the smoothing and detail coefficients at
the coarsest level look completely different. This can be seen in Figure 3.7.

This illustrates a drawback of Donoho’s interpolating wavelet. However, it is not clear
if this will also be a drawback in adaptive mesh refinement. On one of the layers the
detail coefficients will contain the peak of the unitary impulse. So the unitary impulse
is detected, but the wavelet coefficients no longer represent the information in certain
frequency bands, e.g., in the coarsest level the unitary impulse is undetected. If this has
effect in the AMR setting will be tested.
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Figure 3.7: Incorrect forward transform of Donoho’s interpolating wavelet.

The forward transform was performed on the unitary impulse (odd
location) with Donoho’s interpolating wavelet of order N = 4.

Increasing the dual order will solve this aliasing problem. In the next section the second
generation wavelets will be introduced, these wavelets provide a tool with which wavelets
can be custom designed. In order to illustrate the benefits of increasing the dual order,
the same example as above will be considered for a different wavelet. In Figure 3.8 the
forward transform of the unitary impulse is shown using the Sweldens wavelet. This
wavelet is the donoho wavelet adjusted such that the dual order Ñ = 4. In this example
the unitary impulse is exactly located at a position of the mesh which corresponds to a
smoothing value at the coarsest level.

Figure 3.8: Forward transform of the Sweldens wavelet.

The forward transform was performed on the unitary impulse (even
location) with Sweldens wavelet of order N = Ñ = 4.

The Sweldens wavelet still detects the impulse correctly at the coarsest level, if the uni-
tary impulse is located at a position which does not correspond with the smoothing
locations of the coarsest mesh. Note that the the forward transform does not result in a
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symmetric function due to the location of the impulse. This can be seen in Figure 3.9.

Figure 3.9: Forward transform of the Sweldens wavelet.

The forward transform was performed on the unitary impulse (odd
location) with Sweldens wavelet of order N = Ñ = 4.

3.6 The lifting scheme and second generation wavelets

Starting in 1994 Sweldens introduced a new type of wavelets,second generation wavelets,
in the papers [23], [24] , [25] and [27]. The wavelets described until now are always trans-
lates and dilates of one function, this kind of wavelet system is called first generation
wavelets. The construction of the wavelets was always based on the Fourier transform.
Sweldens introduced a new way to construct wavelets, the lifting scheme. The lifting
scheme can be used to construct the traditional first generation wavelets. More im-
portantly, the lifting scheme can be used to construct a new class of wavelets (second
generation wavelets).
In this section both the lifting scheme and the second generation wavelets will be dis-
cussed. Thereafter, the lifting scheme will be applied to construct a better version of
Donoho’s interpolating wavelet.

3.6.1 Second generation wavelets

Traditionally, wavelets are dyadic translates and dilates of the mother wavelet. The sec-
ond generation wavelets however, are not necessarily translates and dilates of each other.
The second generation wavelets are constructed using the lifting scheme. Although they
differ from the first generation wavelets some important properties are kept:

� The wavelets form a Riesz basis for L2(R).

� The wavelets fit within the multiresolution analysis. The wavelets are orthogonal
or biorthogonal, in which case the dual wavelets are known.
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� The wavelets and their duals are local in space and frequency.

These properties are important as they ensure that the essential information of a function
is captured by a small fraction of detail coefficients. Sweldens’ motivation for the second
generation wavelets are the following three properties which are missing in the first
generation setting.

� Wavelet bases that are defined on arbitrary, possibly non-smooth, domains of Rn

are needed.

� Because of diagonalisation of differential forms, a basis adapted to weighted mea-
sures is needed.

� First generation wavelets need regular sampled data, while sometimes data is sam-
pled on irregular locations.

To ensure the last three properties, the translation and dilations property is lost.
The second generation wavelets are constructed using the lifting scheme. One starts
off with a fairly simple wavelet, in many cases the Lazy wavelet, after which prediction
and update steps are performed to lift the wavelet to a multiresolution analysis with
particular properties. Using the lifting scheme one can custom design the filters needed.

3.6.2 Lifting scheme
The lifting scheme can be used to construct wavelets, and to gain a fast implementation
of the fast transform. The advantages of using the lifting scheme to construct the first
generation wavelets are summed up below:

1. The lifting scheme is a faster version of the standard fast transform, because the
lifting scheme makes optimal use of the similarities between the filters to speed up
the calculation. Smaller filters can be used, so less points need to be called from
memory.

2. The lifting scheme only uses in-place calculations and thus no extra memory is
needed, i.e. the smoothing coefficients can be overwritten. This will be further
explained at the end of this section in 3.6.7.

3. The inverse transform becomes trivial.

Moreover, because the lifting scheme does not depend on the Fourier transform, it can
be used to construct second generation wavelets.
The forward transform of the lifting scheme consists out of three steps, the split, predict
and update steps. In the split step the finer set of smoothing coefficients sj is split into
two disjoint sets sj−1 and dj−1. The Lazy wavelet is a wavelet which has a fast transform
that only consists out of the split step. Hence, the Lazy wavelet is only a split of a data
set. The Lazy wavelet splits the set into even and odd points, this is the type of split
which will be used in this section.
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3.6 The lifting scheme and second generation wavelets

The second step is the predict step. In this step smoothing coefficients at the same level,
sj−1, are used to predict the other set, dj−1. The predict step is executed with the
prediction operator P. This gives the following new equation for the detail coefficients:

dj−1 = dj−1 − P(sj−1).

Hence, the detail coefficients now imply how much the data deviates from the inter-
polation model P. The operator P is linear and can be mathematically written as
P(sj−1,k) =

∑
l plsj−1,k+l. Thus the predict step has its own new filter, P.

In the last step of the forward transform the smoothing coefficients are updated in order
to preserve certain properties of the smoothing coefficients, e.g. the average value of the
smoothing coefficients stays the same during the coarsening process. This is done by
applying an operator U to the detail coefficients at the same level:

sj−1 = sj−1 + U(dj−1).

Note that this step is calculated after all the detail coefficients have been predicted. The
operator U is also linear and can be mathematically written as U(dj−1,k) =

∑
l uldj−1,k+l,

the update filter is thus U.
In Algorithm 6, the fast transform using the lifting scheme is given.

Algorithm 6 Lifting scheme: forward transform
for j=J2 downto J1 do

[sj−1, dj−1] = split(sj)
dj−1 = dj−1 − P(sj−1)
sj−1 = sj−1 + U(dj−1)

end for

The inverse transform is simply the reverse of the forward transform. The inverse trans-
form exists out of three steps, undo update, undo predict and merge. Firstly, the update
will be undone, followed by undoing the prediction and in the end the two subsets are
merged back to one set. Note, the order in which the steps are performed is important.
This leads to Algorithm 7.

Algorithm 7 Lifting scheme: invers transform
for j=J1 upto J2 do

sj−1 = sj−1 − U(dj−1)
dj−1 = dj−1 + P(sj−1)
sj = merge(sj−1, dj−1)

end for

In Figure 3.10 the wiring diagram of the full fast transform is given.

In section 3.2 two examples of biorthogonal wavelets are given, the CDF(2,2) and the
Haar wavelet. Here, another version of the Haar wavelet (different dual order) and the
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Figure 3.10: Wiring diagram of the lifted scheme.

CDF(2,2) will be considered, however this time in the lifting scheme setting. There is
no need to construct the scaling and dual functions, the functions will be generated
during the forward transform of the lifted scheme. In order to compare the lifting
scheme forward transform with the classical forward transform, the filters of the Haar
and CDF(2,2) wavelets are given in Table 3.3.

Table 3.3: The H̃ and G̃ filter coefficients of a biorthogonal Haar wavelet and CDF(2,2).

Haar
k h̃k g̃k

-2
-1
0 1

2 -1
1 1

2 1
2

CDF(2,2)
k h̃k g̃k

-2 −1
8

-1 1
4

0 3
4 −1

2
1 1

4 1
2 −1

8 −1
2

Biorthogonal Haar wavelet

The classical forward transform of the Haar wavelet is:{
sj−1,k = 1

2sj,2k + 1
2sj,2k+1

dj−1,k = −sj,2k + sj,2k+1

In the lifting scheme one starts with the Lazy wavelet, i.e. splitting the finer level into two
subsets. The split is done by dividing sj into a set of even points (sj−1) and odd points
(dj−1). The goal is to reduce the value of the detail coefficients such that thresholding
can be efficiently applied. Hence, the detail coefficients (dj−1) will be predicted using
the smoothing coefficients (sj−1). In the case of the Haar wavelet the predictor operator
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is equal to P(sj−1,k) = sj−1,k:

dj−1,k = dj−1,k − sj−1,k.

Thus the detail coefficients are simply predicted by the value of the neighbouring smooth-
ing coefficient. Because sj−1,k = sj,2k and dj−1,k = sj,2k+1, in classical form the predic-
tion would look like:

dj−1,k = sj,2k+1 − sj,2k.

This corresponds to the classical forward transform of the biorthogonal Haar wavelet.
Next, the smoothing coefficients are updated. One property of the Haar wavelet is that
the average value of the smoothing coefficients stays the same:

1
2

2j∑
k=0

sj,k =
2j−1∑
k=0

sj−1,k, (3.15)

where the 1
2 comes from the fact that level j has twice as many points as j − 1. The

property 3.15 can be used to find the update operator U . Choosing the update operator
as U(dj−1,k) = 1

2dj−1,k will ensure the average to be preserved. This can be verified by
substituting the following equation into 3.15:

sj−1,k = sj−1,k + 1
2dj−1,k.

Substituting the detail coefficient gives:

sj−1,k = sj,2k + 1
2sj,2k+1 −

1
2sj,2k.

Again, this is the same result as the classical forward transform. In Table 3.4 the filters
P and U are given. The gain is in the fact that no additional data storage is needed.
The finer level does not have to be kept and can be completely overwritten. While in
the classical case sj needs to be kept in order to make sj−1 and dj−1, only after these
coefficients have been created the sj coefficients can be removed.
In short, the lifted forward transform of the biorthogonal Haar wavelet is:

sj−1,k = sj,2k,

dj−1,k = sj,2k+1,

dj−1,k = dj−1,k − sj−1,k,

sj−1,k = sj−1,k + 1
2dj−1,k.

CDF(2,2)

The classical forward transform of the CDF(2,2) is:{
sj−1,k = −1

8sj,2k−2 + 1
4sj,2k−1 + 3

4sj,2k + 1
4sj,2k+1 − 1

8sj,2k+2

dj−1,k = −1
2sj,2k + sj,2k+1 − 1

2sj,2k+2
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Table 3.4: The P and U filter coefficients of a biorthogonal Haar wavelet and CDF(2,2).

Haar
k pk uk

-1
0 1 1

2
1

CDF(2,2)
k pk uk

-1 1
4

0 1
2

1
4

1 1
2

After starting with the Lazy wavelet, the detail coefficient will be predicted by averaging
the neighbouring smoothing coefficients (linear prediction), i.e. P(sj−1,k) = 1

2sj−1,k +
1
2sj−1,k+1:

dj−1,k = dj−1,k −
1
2(sj−1,k + sj−1,k+1),

which corresponds to:

dj−1,k = −1
2sj,2k + sj,2k+1 −

1
2sj,2k+2.

Again, the update operator ensures that the average is preserved. The operator which
achieves this is equal to U(dj−1,k) = 1

4dj−1,k−1 + 1
4dj−1,k:

sj−1,k = sj−1,k + 1
4(dj−1,k−1 + dj−1,k),

which corresponds to:

sj−1,k = sj,2k + 1
4(sj,2k−1 −

1
2sj,2k−2 −

1
2sj,2k + sj,2k+1 −

1
2sj,2k −

1
2sj,2k+2),

= −1
8sj,2k−2 + 1

4sj,2k−1 + 3
4sj,2k + 1

4sj,2k+1 −
1
8sj,2k+2

The averaging property can be verified by substituting the above in equation 3.15. The
lifting steps result in the same forward transform as the classical forward transform. The
predict and update filters can be found in Table 3.4.
In short, the lifted forward transform of CDF(2,2) is:

sj−1,k = sj,2k,

dj−1,k = sj,2k+1,

dj−1,k = dj−1,k − 1
2(sj−1,k + sj−1,k+1),

sj−1,k = sj−1,k + 1
4(dj−1,k−1 + dj−1,k).

3.6.3 Lifting to construct second generation wavelets
In this subsection it is explained how to built new wavelets using the lifting scheme.
Earlier, lifting was introduced as adding and subtracting of linear operators, these op-
erators resulted in new filters P and U . Combining these filters with the filters of the
starting wavelet will result in the filters of the new wavelet.
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Primal lifting

In the forward transform of the lifting scheme the update step adds the linear operator
U to the smoothing coefficients. This corresponds to changing the H̃old filter of the
original wavelet to the filter H̃ of the newly built wavelet. This process is also called
’primal lifting’. Because the H̃ wavelet is directly connected to the G filter, this filter
also changes. How the filters change is stated in the theorem below extracted from [25].

Theorem 3.6.1 - Primal lift

Take an initial set of biorthogonal filter operators {hold, h̃old, gold, g̃old}. Then a new set of
biorthogonal filter operators {h, h̃, g, g̃} can be found as

hj,k = hold
j,k,

h̃j,k = h̃old
j,k +

∑
l

uj,lg̃
old
j,k+l,

gj,k = gold
j,k −

∑
l

u∗j,lh
old
j,k+l,

g̃j,k = g̃old
j,k,

where u∗j,l is some shifted version of uj,l.
The filters can be written as 2π-periodic continuous functions instead of discrete func-
tions. This notation can be useful for the construction and interpretation of the liftings.

Definition 4 - 2π-periodic filters

Consider H and G to be the filters of a wavelet system, then the 2π-periodic filters are
defined as

h(ω) =
∑

k

hke
−kiω,

g(ω) =
∑

k

gke
−kiω.

h̃(ω) and g̃(ω) are defined in a similar manner.
This leads to a new version of theorem 3.6.1.

Theorem 3.6.2 - Primal lift

Take an initial set of biorthogonal filter operators {hold, h̃old, gold, g̃old}. Then a new set of
biorthogonal filter operators {h, h̃, g, g̃} can be found as

h(ω) = hold(ω),
h̃(ω) = h̃old(ω) + g̃old(ω)u(2ω),
g(ω) = gold(ω)− hold(ω)u(2ω),
g̃(ω) = g̃old(ω),
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where u(2ω) indicates the complex conjugate of u(2ω).

As a consequence of the primal lifting, the scaling and wavelet functions are altered,
remember:

ϕ(x) =
∑

k

hkϕ(2x− k),

ϕ̃(x) =
∑

k

h̃kϕ̃(2x− k),

ψ(x) =
∑

k

gkϕ(2x− k),

ψ̃(x) =
∑

k

g̃kϕ̃(2x− k).

Comparing this to theorem 3.6.1, it can be concluded that the dual scaling functions and
primal wavelet functions are altered due to the updated filters. Because the dual wavelet
functions are constructed from the dual mother scaling function, the dual wavelet func-
tions also change although the filter does not change.

The result of these theorems is that if one starts off with a biorthogonal set of filters,
then after lifting the new set of filters are again biorthogonal. This does not depend on
the filter choice U , i.e. the filter coefficients uk can be freely chosen. However, it is not
ensured that the set of new filters give scaling and dual functions which belong to L2(R)
and form a Riesz basis.
Typically, the filter coefficients are chosen such that the number of vanishing moments
of the wavelet Ñ will be increased. In section 3.4, Donoho’s interpolating wavelet of
arbitrary order N and dual order Ñ = 0 is discussed. This wavelet has aliasing problems
due to the dual order, the primal lifting can therefore improve Donoho’s interpolating
wavelet.
Choosing the U filter such that the dual order is increased can be done by firstly noticing
that ψnew(x) = ψold(x) −

∑
k ukϕ

old(x). This can be applied to the formal definition of
the dual order to get a linear system which can be solved for uk:

∫ ∞
−∞

xnψnew(x)dx =
∫ ∞
−∞

xnψold(x)dx−
∑

k

uk

∫ ∞
−∞

xnϕold(x)dx.

Cakewalk construction

The prediction operator P in the forward transform tends to predict the values of the
detail coefficients such that thresholding can be applied to these values. The prediction
operator is subtracted from the detail coefficients, i.e. the filter G̃old is lifted to the new
filter G̃new. This manner of lifting is called ’dual lifting’. Dual lifting also preserves the
biorthogonallity of a set of filters:
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Theorem 3.6.3 - Dual lift

Take an initial set of biorthogonal filter operators {hold, h̃old, gold, g̃old}. Then a new set of
biorthogonal filter operators {h, h̃, g, g̃} can be found as

h(ω) = hold(ω) + gold(ω)p(2ω),
h̃(ω) = h̃old(ω),
g(ω) = gold(ω),
g̃(ω) = g̃old(ω)− h̃old(ω)p(2ω).

The lifting scheme is introduced with the predict and update operators, indicating that
one starts with the prediction operator followed by the update operator. However, one
can alternate the update and predict steps, i.e. the primal and dual lifting phases can
be alternated in order to find a custom designed wavelet. Alternating these two different
lifting phases is called a cakewalk construction. In [25] it is shown that primal lifting
will not change the order N and that the dual lifting will not change the dual order Ñ .
So, after constructing a wavelet of order N , the primal lifting can be applied to increase
the dual order Ñ without changing the order N .

3.6.4 Lifting Donoho
In section 3.4 Donoho’s interpolating wavelet is introduced, in section 3.5 the aliasing
problem of Donoho’s interpolating wavelet is discussed. By applying a primal lifting to
Donoho’s interpolating wavelet, this aliasing problem can be solved by increasing the
dual order Ñ . The lifted version of Donoho’s interpolating wavelet will be denoted as
Sweldens wavelet.
Firstly, it will be shown how Donoho’s interpolating wavelet can be constructed by lift-
ing the Lazy wavelet. Thereafter, the Donoho’s interpolating wavelet will be lifted to an
arbitrary dual order.

Lifting the Lazy wavelet to Donoho’s interpolating wavelet

In the construction of Donoho’s interpolating wavelet a scaled version of the Lazy wavelet
will be used:

hold(ω) = 1
2 ,

h̃old(ω) = 1,
gold(ω) = e−iω,

g̃old(ω) = e−iω

2 .
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Table 3.5: The filter coefficients of the scaled Lazy wavelet.

Lazy wavelet
k hk h̃k gk g̃k

0 1
2 1

1 1 1
2

Which corresponds to the filters in Table 3.5.
In Table 3.6 the HN filters of Donoho’s interpolating wavelet are given, note that they
are scaled such that

∑
k hk = 1 holds. In continuous form this filter can written as:

hN (ω) = 1
2 + e−iωpN (2ω), (3.16)

for arbitrary N . In this notation it can be clearly seen that Donoho’s interpolating
wavelet is a lifted version of the Lazy wavelet. This pN (2ω) can be determined by
rewriting the filter hN (ω) functions of Donoho. For example, the case N = 4:

h4(ω) = − 1
25 e

3iω + 9
25 e

iω + 1
2 + 9

25 e
−iω − 1

25 e
−3iω

= 1
2 + e−iω(− 1

25 e
4iω + 9

25 e
2iω + 9

25 −
1
25 e
−2iω)

pN (2ω) = − 1
25 e

4iω + 9
25 e

2iω + 9
25 −

1
25 e
−2iω

pN (2ω) = − 1
25 e

2iω + 9
25 + 9

25 e
−2iω − 1

25 e
−4iω

The dual lifting filters PN can be found in Table 3.6.
By performing a dual lifting with pN (2ω), the Lazy wavelet is lifted to Donoho’s inter-
polating wavelet. The continuous filters will look as follows:

hnew(ω) = 1
2 + e−iωpN (2ω),

h̃old(ω) = 1,
gold(ω) = e−iω,

g̃new(ω) = e−iω

2 − pN (2ω).

Or in lifting form:

hN (ω) = hold(ω) + gold(ω)pN (2ω),
h̃old(ω) = h̃old(ω),
gold(ω) = gold(ω),
g̃(ω) = g̃old(ω)− h̃old(ω)pN (2ω).
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Table 3.6: The scaled Donoho filter HN , dual filter PN and Sweldens filter H̃ for N =
4, Ñ = 2.

Donoho HN

k N = 2 N = 4 N = 6
-5 3

29

-4 0
-3 − 1

25 −25
29

-2 0 0
-1 1

22
9
25

150
29

0 1
2

1
2

1
2

1 1
22

9
25

150
29

2 0 0
3 − 1

25 −25
29

4 0
5 3

29

PN

k N = 2 N = 4 N = 6
-4 3

29

-3 0
-2 − 1

25 −25
29

-1 0 0
0 1

22
9
25

150
29

1 0 0 0
2 1

22
9
25

150
29

3 0 0
4 − 1

25 −25
29

5 0
6 3

29

Sweldens H̃
k h̃k

-5
-4 1

26

-3 0
-2 − 1

23

-1 1
22

0 23
5

1 1
22

2 − 1
23

3 0
4 1

26

5

Lifting Donoho’s interpolating wavelet to Sweldens wavelet

The mother wavelet of Donoho’s wavelet system has zero vanishing moments. This leads
to inconvenient aliasing and because there is no vanishing integral there is no Riesz basis
for L2(R). Therefore, primal lifting will be applied to increase the number of vanishing
moments of the wavelet. Only the case where Ñ ≤ N will be considered. In [24] Sweldens
gives a theorem to lift Donoho’s interpolating wavelet to the Sweldens wavelet of dual
order Ñ ≤ N.

Theorem 3.6.4 - Lifting Donoho

Consider Donoho’s interpolating wavelet of order N . If Ñ ≤ N , lifting with

u(2ω) = 2pÑ (−2ω),

results in the shortest wavelet with Ñ vanishing moments which is symmetric around 1
2 .

Note that pÑ (−2ω) = pÑ (2ω). Applying this primal lift to Donoho’s interpolating
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wavelet, gives:

hnew(ω) = 1
2 + e−iωpN (2ω),

h̃old(ω) = 1 + (e
−iω

2 − pN (2ω))2pÑ (2ω),

gold(ω) = e−iω − (1
2 + e−iωpN (2ω))2pÑ (2ω),

g̃new(ω) = e−iω

2 − pN (2ω).

Or in lifting form:

hN (ω) = hold(ω) + gold(ω)pN (2ω),
h̃(ω) = h̃old(ω) + g̃(ω)u(2ω),
g(ω) = gold(ω)− h(ω)u(2ω),
g̃(ω) = g̃old(ω)− h̃old(ω)pN (2ω).

In order to make this more concrete the Sweldens H̃ filter of order N = 4 and dual
order Ñ = 2 will be calculated. Note that normally these calculations do not have to
be performed as the direct filter is not needed in the lifting scheme. However, this filter
can be used in order to check the implementation of the lifted scheme and it can give
clarification on the formulas written above.

p2(2ω) = 1
22 e

2iω + 1
22 ,

p4(2ω) = − 1
25 e

2iω + 9
25 + 9

25 e
−2iω − 1

25 e
−4iω,

h̃(ω) = 1 + (e
−iω

2 − p4(2ω))2p2(2ω),

= 1 + ( 1
25 e

2iω − 9
25 + 1

2e
−iω − 9

25 e
−2iω + 1

25 e
−4iω)(1

2e
2iω + 1

2),

= 1 + 1
2( 1

25 e
4iω − 9

25 e
2iω + 1

2e
iω − 9

25 + 1
25 e
−2iω

+ 1
25 e

2iω − 9
25 + 1

2e
−iω − 9

25 e
−2iω + 1

25 e
−4iω),

= 1
26 e

4iω − 1
23 e

2iω + 1
4e

iω + 23
25 + 1

4e
−iω − 1

23 e
−2iω + 1

26 e
−4iω

In discrete form the H̃ filter can be found in Table 3.6. The big advantage of designing
a wavelet system in this manner is that the implementation of the fast transform is
trivial. The forward transform is almost exactly the same as in Algorithm 6, with
P(sj−1,k) =

∑
l p

N
l sj−1,k+l and U(dj−1,k) = 2

∑
l p

Ñ
−ldj−1,k+l. The only difference is
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3.6 The lifting scheme and second generation wavelets

that directly after the split all the detail coefficients should be halved after which both
the detail coefficients and the smoothing coefficients will be subject to downsampling.
Downsampling means that the coefficients are multiplied by

√
2, this because the fast

forward transform related to this MRA setting looks as follows:{
dj−1,m =

√
2

∑
n g̃nsj,2m+n,

sj−1,k =
√

2
∑

l h̃lsj,2k+l.

The algorithm of the fast forward transform can be found in Algorithm 8. Furthermore,
the wiring diagram of the Sweldens wavelet is given in Figure 3.11.

Algorithm 8 Lifting scheme: forward transform of Sweldens wavelet
for j=J2 downto J1 do

[sj−1, dj−1] = split(sj)
dj−1 = 1

2dj−1
sj−1 =

√
2sj−1

dj−1 =
√

2dj−1
dj−1 = dj−1 − P(sj−1)
sj−1 = sj−1 + U(dj−1)

end for

Figure 3.11: Wiring diagram of the Sweldens wavelet.

3.6.5 Sweldens wavelet
The Sweldens wavelet is formed by lifting the Donoho wavelet, this lifting is done by
adding an update step to the smoothing coefficients. This update step increases the dual
order of the wavelet. In this subsection the effect of lifting this dual order is discussed
shortly.
As mentioned before in the sections 3.4 and 3.5, the Donoho wavelet has difficulties with
aliasing, because the smoothing coefficients are simply translates of the actual function
values. To improve this behaviour, the smoothing coefficients are updated. Because of
the update step the smoothing coefficients at level j are not simply the values of the
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3 Wavelet analysis

corresponding coefficient in the higher level j + 1, but they are an average of the detail
coefficients and the corresponding smoothing coefficient at the higher level. Due to this
fact, the smoothing coefficients actually ’smooth’ the function, while going from the
dense level J2 to the coarse level J1.
To illustrate this new smoothing property, an example is introduced. The function which
will be discussed is:

f(x) = cos 2πx+ noise.

In order to illustrate the difference between the Donoho and Sweldens smoothing co-
efficients, the added noise is high, between -1 and +1. In Figure 3.12 the function is
depicted, it can be seen that there is a lot of noise. The forward transform has been
applied to the function with noise. Both with Donoho’s wavelet and Sweldens wavelet.
The densest level used is J2 = 18 and the coarsest level J1 = 5. In Figure 3.13 one step
of the forward transform using Sweldens wavelet has been applied. It can be seen that
already in the first step smoothing is visible. In Figure 3.14 the smoothing coefficients
of Sweldens wavelet at level J1 after the forward transform are given, it is clear that the
Sweldens wavelet has been able to remove the noise and retrieve the cosine function. In
Figure 3.15 the smoothing coefficients of Donoho are given after the forward transform,
the function is highly irregular and it can not be concluded from these smoothing coeffi-
cients that the original signal was a cosine function. These results suggest that Sweldens
wavelet will be able to reduce noise, this could be interesting when an initial solution of
a partial differential equation is based on measured data.

Figure 3.12: cos(2πx) with noise. Figure 3.13: 1 Sweldens smoothing step.

Figure 3.14: Sweldens forward transform. Figure 3.15: Donoho forward transform.

3.6.6 Boundary stencil

If the wavelets are implemented, one typically uses a finite domain. If a predict or up-
date step is performed near the boundary of the domain, it will need points which are
not defined. There are multiple ways to deal with the boundary. In this subsection
two methods will be discussed. Note that in the Sweldens case both the smoothing
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3.6 The lifting scheme and second generation wavelets

coefficients and detail coefficients have boundary issues, whereas Donoho’s interpolating
wavelet only needs a boundary stencil implementation for the detail coefficients. Because
the predict and update filters are similar, the cases can be handled similarly. The only
differences are that the predict filter depends on N , while the update filter depends on
Ñ . Furthermore, the predict filter works on the smoothing coefficients, while the update
filter uses the detail coefficients. Because the cases are so similar only the boundary
handling of the predict step will be discussed.

In the case of order N = 2 the predict step is:

dj,k = dj,k − (1
4sj,k + 1

4sj,k+1).

Hence, on the right boundary an issue will arise if the point sj,k+1 is needed. In
Figure 3.16 the predict step for N = 2 is schematically given. The boundary prob-
lem occurs here for the detail coefficient dj,3, as mentioned before, two methods have
been used to solve this issue.

Figure 3.16: Predict step of order N = 2.

Cascade algorithm

In this subsection figures of the wavelets will be shown. These wavelets were generated
by using the cascade algorithm, in the cascade algorithm one puts all the smoothing
coefficients at level J1 to zero, all the detail coefficients at levels J1 up until J2− 1 will
be set to zero as well. Every smoothing coefficient and detail coefficient corresponds to
either a scaling or wavelet function. If a value of a detail coefficient at an arbitrary level
is set to 1 the wavelet corresponding to that point can be retrieved by performing the
inverse transform on the set of smoothing and detail coefficients which are all zero. This
has been done for the detail coefficients near the boundary at level J1 in the figures.

Interpolating boundary stencil

Both the predict and update step are based on fitting a polynomial on N points. In other
words for the predict step, a polynomial is fitted on the points sj,k−N/2+1 until sj,k+N/2.
Thereafter the predict value dj,k is found by filling the location into the polynomial. One
manner to treat the boundary is to use N smoothing coefficients closest to the boundary
and fit a polynomial on these points. Again, the predict value dj,k is found by filling the
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3 Wavelet analysis

location into the polynomial. In Figure 3.17 this is depicted schematically. It can be
observed that both dj,2 and dj,3 in the figure will have the same polynomial, namely the
polynomial fitted on sj,2 and sj,3. The difference is the location where this polynomial
is evaluated. For the predict step of dj,2 the polynomial will be evaluated at location
2.5, while for dj,3 the polynomial will be evaluated at 3.5.

Figure 3.17: Predict step of order N = 2 using the interpolating boundary stencil.

The boundary predict step can be written as a filter, similar to the predict filter. This
is done by using the Lagrange polynomial:

L(x) =
N−1∑
i=0

yili(x), for the samples (x0, y0), . . . , (xN−1, yN−1),

and li(x) =
∏

0≤m≤N−1
m 6=i

x− xm

xi − xm
.

To show how the Lagrange polynomial can be used to create a filter, the right boundary
of the Sweldens wavelet of order N = 2 is considered. Assume that at level j there are
m+ 1 detail coefficients, i.e., dj,0 until dj,m. The predict step of dj,m is:

dj,m = dj,m − LR,N=2(m+ 1
2).

LR,N=2(x) denotes the polynomial fitted on the samples (x0, y0) = (m − 1, sj,m−1) and
(x1, y1) = (m, sj,m). This polynomial is evaluated in m+ 1

2 , because the detail coefficient
dj,m is located a half step to the right of the smoothing coefficient sj,m. The polynomial
is given by:

LR,N=2(x) = sj,m−1l0(x) + sj,ml1(x),

l0(x) = x−m
m− 1−m = −x+m,

l1(x) = x− (m− 1)
m− (m− 1) = x−m+ 1.

Evaluating this polynomial at m+ 1
2 , gives LR,N=2(m+ 1

2) = sj,m−1(−1
2) + sj,m(3

2). So
the predict step at the right boundary becomes

dj,m = dj,m − (−1
2sj,m−1 + 3

2sj,m).
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3.6 The lifting scheme and second generation wavelets

Table 3.7: The interpolating boundary stencil predict filters PL,N and PR,N .

Left Predict PL,N

N = 4 N = 6
k d0 d0 d1

0 5
25

63
29 − 7

29

1 15
25

315
29

105
29

2 − 5
25 −105

28
105
28

3 1
25

63
28 −35

28

4 −45
29

21
29

5 7
29 − 3

29

Right Predict PR,N

N = 2 N = 4 N = 6
k dm dm−1 dm dm−2 dm−1 dm

m-5 − 3
29

7
29 −63

29

m-4 21
29 −45

29
385
29

m-3 1
25 − 5

25 −35
28

63
28 −495

28

m-2 − 5
25

21
25

105
29 −105

28
693
28

m-1 −1
4

15
25 −35

25
105
29

315
29 −1155

29

m 3
4

5
25

35
25 − 7

29
63
29

693
29

This leads to the predict filter PR = (−1
2 ,

3
2 , 0).

It is important to note that if wavelets of higher order are used, e.g., N = 4, then there
are more points which need a boundary filter. In the case of N = 4 this leads to one
boundary filter on the left side and two different boundary filters on the right side. Both
the right points are predicted using the same polynomial, however the polynomial is
evaluated on different locations. Furthermore, the Sweldens and Donoho wavelet half
the size of the detail coefficient during the Lazy wavelet split, so the filter should also
be multiplied by a half otherwise the prediction is incorrect. The predict filters at the
boundary for N = 2, 4, 6 are given in Table 3.7.
Using the cascade algorithm 4 wavelets near the left boundary for the case N = Ñ = 4
are generated and given in Figure 3.18. On the left side of this wavelet there is one
boundary filter for the predict step and there are two boundary filters for the update
step. As can be seen in the figure this leads to 4 altered wavelets at the lowest level J1.
At the boundary, polynomials of order N are fitted, hence the wavelet is able to re-
construct polynomials up to order N − 1 near the boundary, which leads to zero detail
coefficients at the boundary for polynomials up to order N − 1.

Figure 3.18: Left boundary for the interpolating boundary stencil with N = Ñ = 4.
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Lower order boundary stencil

The interpolating boundary stencil keeps the filter size the same and shifts the filter.
One other manner to deal with the boundary is by keeping a symmetric filter, this is
done by using a lower order filter. The closer the wavelet or scaling function is to the
boundary, the lower the order of this function. To illustrate this, the Sweldens wavelet
of order N = 4 will be considered. In Figure 3.19 the predict step is schematically given.
There are three different boundary points, namely dj,0, dj,2 and dj,3. Consider boundary
point dj,0, it misses one smoothing coefficient sj,−1. However, if the predict filter PN=2

is used instead of PN=4, then dj,0 has all the smoothing neighbours it needs. Similarly,
dj,2 will be predicted with the PN=2 filter. The boundary point dj,3 does not have any
right neighbours. Here, one can use the predict filter for N = 1, which is simply 1

2 times
the corresponding smoothing coefficient sj,3.

Figure 3.19: Predict step of order N = 4 using the lower order boundary stencil, all the
detail coefficients with a black border are boundary points.

Implementing the lower order boundary stencil is easy. It is not needed to construct
different filters, the wavelet and scaling functions closer to the boundaries simply use
the internal predict filters of lower order. In figure Figure 3.20 the boundary wavelets of
Sweldens with orders N = Ñ = 4 are given.

Comparison of the boundaries

The downside of the lower order boundary stencil is the loss of precision near the bound-
ary. However, if the interpolating boundary wavelets in Figure 3.18 are looked at closely,
it can be seen that the tail towards the left boundary takes on extreme values, compared
to the normal wavelet. This because the detail coefficients use smoothing coefficients
further away than usual. If one of the smoothing coefficients is non zero than the smooth-
ing coefficient relatively far away influences all the boundary wavelets. This can lead to
higher detail coefficients near the boundary. Another way to look at this, is by inspect-
ing the coefficients in Table 3.7. The boundary coefficients are around a factor 4 bigger
than the internal wavelet coefficients. Hence, possible errors will be blown up. Both of
the boundary stencil implementations will be tested and compared in Chapter 5.
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3.6 The lifting scheme and second generation wavelets

Figure 3.20: N = Ñ = 4 lowerOrder.

3.6.7 In-place calculations

As mentioned earlier one of the main advantages of the lifting scheme compared to the
classical fast transform is that in-place calculations can be performed. This will be
explained in the 1d case. Classically, a forward transform step is:{

sj,k =
√

2
∑

l h̃lsj+1,2k+l,

dj,m =
√

2
∑

n g̃nsj+1,2m+n.

Only after the forward transform step has been performed sj+1 can be removed from
memory. This means that the detail coefficients, which are being kept at every level
need to be stored in separate arrays.
A forward transform step using the lifting scheme is:

[sj , dj ] = split(sj+1)
dj = dj − P (sj)
sj = sj − U(dj).

After the split step, sj+1 is not needed any more, thus sj+1 can be overwritten with
sj and dj . Hence, in the case of the lifting scheme the densest array can be kept, and
certain values in the array can be altered during the forward transform. In Figure 3.21
a schematic forward transform is depicted from level J2 = 3 down to J1 = 1. After
the forward transform both the smoothing coefficients at level J1 and all the detail
coefficients in the intermediate layers are stored in one array. Detail coefficients at a
particular layer can be retrieved by stepping through the array with step-size= 2J2−j

starting from the offset= 1
2∗step-size. The smoothing coefficients at level J1 can be

retrieved by stepping through the array with step-size = 2J2−J1 starting from the offset
= 0. The lifting scheme can store all the detail coefficients and the smoothing coefficients
at level J1 in one array as it exploits the mathematical property described in 3.2:

VJ2 = VJ1 ⊕ ∪J2−1
j=J1Wj .
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Figure 3.21: In-place 1D forward transform from J2 = 3 down to J1 = 1.

3.7 Multi-dimensional wavelets

In the literature there are 2 main manners in which multiple dimensions are applied
to the wavelet setting. Firstly, triangulations are applied mainly to irregular meshes.
More often, one chooses the tensor product due to the ease of implementation. For the
problems which will be used in this thesis a regular mesh is adequate. Furthermore,
exploring 2 and 3 dimensions is one of the goals of this thesis. Therefore, it makes sense
to choose the tensor product as the implementation is straightforward.
If an n-dimensional function f is approximated using a wavelet transform, the tensor
product simplifies down to applying the forward transform sequentially to dimension
1 up until dimension n. The inverse transform traverses the dimensions in a reversed
order, starting at dimension n followed by n− 1 down to dimension 1.
In this section first the 2D tensor product will be introduced in a mathematical set-
ting. Thereafter, the implementation will be explained and in the last subsection higher
dimensions will be discussed.

3.7.1 2D mathematically

The 2 dimensional setting will be introduced in the case of biorthogonal wavelets. In
the 2D setting the nested family Vj can be written as a tensor product of the x- and
y-direction. This tensor splitting leads to new detail spaces:

Vj = V x
j ⊗ V

y
j = (V x

j−1 ⊕W x
j−1)⊗ (V y

j−1 ⊕W
y
j−1),

= (V x
j−1 ⊗ V

y
j−1)⊕ (W x

j−1 ⊗ V
y

j−1)⊕ (V x
j−1 ⊗W

y
j−1)⊕ (W x

j−1 ⊗W
y
j−1),

= Vj−1 ⊕W a
j−1 ⊕W b

j−1 ⊕W c
j−1.

Before, in the 1 dimensional setting there was one detail space, in 2 dimensions there are
3 different detail spaces, W a

j ,W
b
j and W c

j . W a
j is a tensor product of W x

j−1 and V y
j−1,
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3.7 Multi-dimensional wavelets

hence it is generated by ψ(x) and ϕ(y). The product of these functions will be denoted
as ψa, in a similar manner the scaling and wavelet functions are defined as:

ϕ(x, y) = ϕ(x)ϕ(y),
ψa(x, y) = ψ(x)ϕ(y),
ψb(x, y) = ϕ(x)ψ(y),
ψc(x, y) = ψ(x)ψ(y).

Remember, the orthogonal projection in the 1D setting is

f(x) ≈ PVJ2f(x) = PVJ1f(x) +
J2−1∑
j=J1

PWjf(x),

where J2 is the densest level of the mesh and J1 the coarsest level. In the 2D setting
there are more detail spaces, hence the orthogonal projection will look like:

f(x, y) ≈ PVJ2f(x, y) = PVJ1f(x, y)+
J2−1∑
j=J1

PW a
j
f(x, y)+

J2−1∑
j=J1

PW b
j
f(x, y)+

J2−1∑
j=J1

PW c
j
f(x, y),

where PW a
j
f(x, y) =

∑
k,l∈Z d

a
j,k,lψ

a(x, y) with da
j,k,l = 〈f, ψ̃a

j,k,l〉.
In the 1 dimensional setting there was one type of detail coefficients. However, in the 2
dimensional setting there are three different types of detail coefficients, da

j,k,l, d
b
j,k,l and

dc
j,k,l. Where db

j,k,l corresponds to the inner product 〈f, ψ̃b
j,k,l〉 and dc

j,k,l to 〈f, ψ̃c
j,k,l〉.

Hence, an approximation of f is:

f(x, y) ≈
∑

k,l∈Z
sj,k,lϕ(x, y) +

J2−1∑
j=J1

∑
k,l∈Z

da
j,k,lψ

a(x, y)

+
J2−1∑
j=J1

∑
k,l∈Z

db
j,k,lψ

b(x, y) +
J2−1∑
j=J1

∑
k,l∈Z

dc
j,k,lψ

c(x, y).

In order to determine the smoothing coefficients (s) and the detail coefficients (da, db, dc)
the forward transform can be performed. Consider the detail coefficient da, this is the
inner product of f and the wavelet ψa.
ψa = ψ(x)ϕ(y) is a wavelet in the x-direction, however it is a scaling function in the
y-direction. Firstly, the forward transform will be applied in the first dimension, in this
case the detail coefficient will be treated as a 1 dimensional wavelet. Secondly, the for-
ward transform will be applied to the second dimension, in this case da will be treated
as a smoothing coefficient. Similarly, db will be treated as a smoothing coefficient in the
first dimension and as a detail coefficient in the second dimension. dc will be treated
twice as a detail coefficient.
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In Figure 3.22 the positioning of the smoothing and detail coefficients are given for the
1D setting and the 2D setting. There are two grey boxes in both meshes, indicating
the smoothing coefficient with its detail coefficient or coefficients. In the 1D setting the
smoothing coefficient has 1 corresponding detail coefficient in the same level. In the
2D setting one smoothing coefficient has three detail coefficients, da in the x-direction,
db in the y-direction and dc in the x, y-direction. Therefore, thresholding on the detail
coefficients will have a higher drop out rate in the 2D setting compared to the 1D setting.
Because there are 3 times more detail coefficients than smoothing coefficients in the 2D
case.

Figure 3.22: Division of dyadic 2J2 mesh in 1D and 2D setting.

3.7.2 2D implementation

The derivation of the fast transform as in section 3.3 is straightforward but cumbersome.
Instead, the fast transform will only be considered using the lifting scheme. In this setting
the scaling and wavelet functions, ϕ(x, y), ψa(x, y), ψb(x, y) and ψc(x, y), will not be
calculated directly.
Consider the 2D mesh in Figure 3.22 as a matrix. The general idea is to start applying
the lifting forward transform to each row, after which the lifting forward transform can
be applied to each column. The inverse transform starts of with applying the inverse
transform to each column and finishes with every row. In Figure 3.23 the row and column
transforms are depicted. In the first step both the coefficients s and db will be handled
as 1D smoothing coefficients, while the da and dc are handled as 1D detail coefficients.
In the second step the columns are subject to a forward transform step. The coefficients
s and da will be handled as 1D smoothing coefficients and the db and dc are handled
as 1D detail coefficients. Note, that the detail coefficient dc is handled twice as a detail
coefficient, both in the x- and y-direction.
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3.7 Multi-dimensional wavelets

Figure 3.23: The 2D forward transform.

The points handled as smoothing coefficients are red and the points
handled as detail coefficients are grey.

Implementing the two steps in Matlab is fairly easy. The smoothing coefficients of the
densest level can be stored in a matrix. One forward transform step from j to j − 1 can
then be applied to every row. Thereafter, one forward transform step can be applied to
every column.
Due to the in-place properties of the lifting scheme, the next forward transform step
can be applied again on this matrix using a different step-size. The forward transform
steps can be applied until level J1 is reached. In Algorithm 9 the forward transform
implementation is given in functions.

Algorithm 9 Lifting scheme: 2D forward transform
Safe smoothing coefficients of level J2 in the matrix S.
for j=J2 downto J1 do

S=forward step perRow(S)
S=transpose(S)
S=forward step perRow(S)
S=transpose(S)
[S, Da, Db, Dc]=split(S)

end for

3.7.3 More dimensions
Following the implementation as described above leads to a general extension in multiple
dimensions. In the 2D setting, one forward step is first applied in the 1st dimension (x-
direction) followed by a forward step in the 2nd dimension (y-direction). Extension in
more dimensions is done by applying the forward step to the other dimensions as well.
Note, that the inverse lifting transform always performs all steps in the opposite order.
The manner in which the smoothing coefficients and detail coefficients are saved should
be considered carefully. One can consider to threshold the detail coefficients already
during the forward transform to reduce the storage.
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4 Adaptive mesh refinement

In [30], C. Bowman and O. Vasilyev introduce a mesh adaption algorithm for wavelets.
The mesh refinement and adaptive mesh refinement algorithms used will be based on
this algorithm. However, as will be discussed later on it will differ in the way we thresh-
old, add neighbours, and calculate the inverse transform. The changes are inspired after
testing adaptive mesh refinement on different non smooth test functions.
Naturally, wavelets are defined in a dyadic setting, hence a dyadic mesh is needed this
will be further explained in subsection 4.1.1. In the case of second generation wavelets
the mesh is not restricted to be dyadic, however in this thesis a dyadic mesh is chosen.
This because we can use the same wavelets on all the internal points of the meshes,
which will lead to more stable behaviour, which is explained in [15]. Furthermore, mesh
refinement will only be applied to square meshes, i.e., the same number of points in all
dimensions. Within one dimension all the mesh points are equidistant, but between di-
mensions the distances can differ. Extending the mesh refinement to non square meshes
is not difficult, however due to time constraints it is not considered in this thesis. In
the first section 4.1 mesh refinement will be introduced. This will be extended in 4.2 to
adaptive mesh refinement.

4.1 Mesh refinement

4.1.1 Mesh setup

Recall, in definition 1 the multiresolution analysis of the wavelet systems was defined.
The wavelet system has a set of nested spaces VJ1 ⊆ VJ1+1 ⊆ · · · ⊆ VJ2, where J1
corresponds to the coarsest level and J2 to the densest level. If we relate this to meshes
VJ1 corresponds to the coarsest mesh and VJ2 to the finest mesh considered. In definition
1 the different spaces Vj are defined to be related through dyadic scaling. Therefore, the
different meshes, each corresponding to a Vj , considered will be set up to be dyadic.
In Figure 4.1 a one dimensional example is depicted. There are three different meshes
G1, G2 and G3, each corresponding to a space Vj . The densest level in this case is 3,
corresponding to mesh G3, this mesh exists out of 23 = 8 points. One level below, j = 2
so grid G2, has 22 = 4 points, essentially halving the number of points in mesh G3.
In general, one fixes two levels of approximation, namely J2 and J1 corresponding
respectively to the densest and coarsest meshes. This leads to J2 − J1 evenly spaced
meshes Gj , where Gj exists out of 2j points for J1 ≤ j ≤ J2, i.e.

Gj = {xj,k : 0 ≤ k ≤ 2j − 1}.

59
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The mesh is dyadic, hence a grid point xj,k ∈ Gj corresponds to xj+1,2k in Gj+1 for
0 ≤ k ≤ 2j − 1. So the meshes are nested, i.e. Gj ⊂ Gj+1, and Gj+1 restricted to the
points with even k value gives Gj .

Figure 4.1: 1D dyadic mesh.

The location indices are depicted inside the mesh points.

Extending this definition to multiple dimensions is simply done by the tensor product,
e.g., in the 2 dimensional setting the squared mesh Gj looks like:

Gj = {xj,k,l : 0 ≤ k ≤ 2j − 1, 0 ≤ l ≤ 2j − 1}.

Note, this definition can be extended to enable non-square meshes.

4.1.2 Smoothing and Detail coefficients

The representation of a function f by the second generation wavelets is calculated by the
lifting scheme (a version of the fast transform). The lifting scheme starts with splitting
the data set in smoothing coefficients and detail coefficients. In Figure 4.1 3 different
levels of meshes are depicted. The points in the densest level G3 are all smoothing points.
Then this is split up, the even points will stay smoothing coefficients and the odd points
will become detail coefficients. The smoothing coefficients after the split correspond to
the points of mesh G2. This splitting process is shown in Figure 4.2. After the splitting
step, the update and predict step will be applied to the smoothing and detail coefficients.
Then the remaining smoothing coefficients are split up again in smoothing coefficients
and detail coefficients. This process will repeat until the coarsest level J1 is reached.
After the forward transform one ends up with smoothing coefficients at the coarsest level
and detail coefficients corresponding to every level j.

4.1.3 Thresholding

After the forward transform, there are a few smoothing coefficients and a lot of detail
coefficients. The idea is to keep all the smoothing coefficients in the mesh and add the
detail coefficients with a high absolute value.
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4.1 Mesh refinement

Figure 4.2: Splitting.

The location indices are depicted beneath points.

As mentioned before the value of detail coefficients indicates how well a mesh point can
be estimated using the wavelet transform. If the absolute value of the detail coefficient is
low, the function value can be easily determined using the neighbours. However, when
the value is high, the function value is difficult to estimate and thus in that case it
is better to keep the mesh point. The approximation of a function using the wavelet
transform can be written as:

f(x) ≈ PVJ2f(x) =
∑

k

sJ2,kϕJ2,k(x)

= PVJ1f(x) +
J2−1∑
j=J1

PWjf(x) =
∑

k

sJ1,kϕJ1,k(x) +
J2−1∑
j=J1

∑
m

dj,mψj,m(x).

Every point in the dense mesh corresponds to a smoothing coefficient sJ2,k in the dens-
est level. In another representation, all the points correspond to either a smoothing
coefficient sJ1,k in the coarsest level or a detail coefficient dj,m in any other level. Note,
that if the absolute value of the detail coefficient is small the term does not influence
the approximation of f significantly, therefore it can be dropped out of the mesh. If the
value is high, though, the original smoothing coefficient is difficult to determine and thus
the corresponding detail coefficient will influence the approximation of f significantly.
In Figure 4.3 the thresholding process is depicted. After the forward transform, the
smoothing coefficients are kept. Then moving through the levels high detail coefficients
are kept. After identifying which points to keep, all the points will be set to the function
values at that location, i.e. they will function as smoothing coefficients of the densest
level.

4.1.4 Perfect reconstruction

The points which have been added up until now are considered as important, i.e. all the
points have a significant high detail coefficient. Because the points are significant, one
wants to be able to fully construct the values of these points using the inverse trans-
form. However, some of the required values might be lost during the thresholding phase.
Hence, the points to perfectly reconstruct the mesh points currently in the mesh need
to be added. These points are called perfect reconstruction points. The particular points
which need to be added in this phase are dependent on the inverse transform, i.e., they
are dependent on the used wavelet transform. Because Donoho’s interpolating wavelet
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Figure 4.3: Thresholding.

The location indices are depicted beneath points.

and Sweldens wavelet are considered in this thesis, the perfect reconstruction points
for these wavelet transforms will be discussed. Because all the mesh points should be
reconstructed perfectly, one should note that the perfect reconstruction check should be
repeated until no new points are added.
In the one dimensional setting the added points are always detail coefficients generated
by the wavelet ψ, therefore the neighbouring smoothing coefficients need to be added.
These neighbouring smoothing coefficients correspond to detail coefficients in the lower
levels. The added smoothing coefficients themselves are constructed by neighbouring
detail coefficients, however we assume that if one of these detail coefficients is not al-
ready in the mesh, the value is significantly low so it does not affect the value of the
smoothing coefficient significantly. If also these detail coefficients are added the mesh
will end up to be full. Which smoothing coefficients need to be added for the perfect re-
construction of a detail coefficient depends on the order of the wavelet used. Because the
detail coefficient is constructed using the predict filter, both Sweldens and Donoho have
the same neighbouring smoothing coefficients which need to be added for each detail co-
efficient. Namely, for dj,k the points sj,k+n need to be added, where −N/2+1 ≤ n ≤ N/2.

2 dimensional setting

In the 2 dimensional setting, the detail coefficients da and db are both depending on the
scaling function ϕ and on the wavelet ψ. Furthermore, for the detail coefficients dc the
points which act as smoothing coefficients are the detail coefficients da and db. For the
implementation, first the smoothing neighbours of the detail coefficients dc need to be
added. Thereafter, the perfect reconstruction can be applied to the detail coefficients da

and db. The process needs to be repeated until no new points are added, as new da and
db coefficients will be added during the perfect reconstruction process of dc. These new
da and db coefficients need to be perfectly reconstructed themselves.
For the reconstruction of dc

j,k,l the neighbours da
j,k,l+n and db

j,k+n,l need to be added, where
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4.1 Mesh refinement

−N/2 + 1 ≤ n ≤ N/2. Similarly, for the reconstruction of da
j,k,l the neighbours sj,k+n,l

need to be added and for db
j,k,l the neighbours sj,k,l+n. For both da and db neighbours are

only added in one direction, as discussed above only the smoothing coefficients needed for
reconstruction of the detail coefficients need to be added, i.e., no extra detail coefficients
need to be added in this case. In Figure 4.4 per type of detail coefficient the process
of adding the perfect reconstruction points is depicted. In the figure it is assumed that
Sweldens and Donoho wavelets have order N = 4. Note, that the perfect reconstruction
of dc is done in two steps. First, da and db will be added after which the s corresponding
to these da and db will be added.

Figure 4.4: Perfect reconstruction for 2 dimensional mesh, N = 4.

The black dots are detail coefficients which have been thresholded.
The green dots are points which have to be added for the perfect
reconstruction of the black dot. The perfect reconstruction of dc has
blue dots which result from the perfect reconstruction of the detail
points added, due to the perfect reconstruction of dc.

4.1.5 The algorithm

The complete mesh refinement is as follows. Consider a function f on a closed domain
Ω, density levels J2 and J1 and a set of layered meshes Gj . These layered meshes look
similar as the meshes in Figure 4.1. Set sJ2,k = f(xJ2,k), for 0 ≤ k ≤ 2J2 − 1. Then the
forward transform can be performed up until the level J1. After the forward transform
a set of smoothing coefficients on the coarsest level and a set of detail coefficients are
retrieved. Thresholding will be applied to the detail coefficients, if the detail coefficients
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4 Adaptive mesh refinement

are above a certain threshold the corresponding mesh point will be added to the mesh.
Next, points will be added to be able to perfectly reconstruct all the points in the mesh.
In Algorithm 10 the mesh generation is given. The M resulting from this algorithm is an
indication of which points should be in the mesh. This computational mesh M includes
all the smoothing coefficients of the coarsest level J1, all significant detail coefficients
in the levels between J1 and J2 and all the points needed to perfectly reconstruct the
mesh points. The algorithm is written for the 1 dimensional case, however extension to
more dimensions is easily done, by simple checking more detail coefficients.
The error of the mesh refinement can be checked by performing an inverse transform on
the function restricted to the mesh.

Algorithm 10 1D mesh refinement
Set Gj = {xj,k : 0 ≤ k ≤ 2j − 1} for all J1 ≤ j ≤ J2.
MJ1 = GJ1.
Perform the forward transform on sJ2 = f(GJ2).
for j=J1 upto J2 do

for k=0 upto 2j − 1 do
if |dj,k| ≥ εThreshold then add xj+1,2k+1 to M j .
end if

end for
end for
Add perfect reconstruction points to M j .
M = ∪J2

j=J1M
j .

4.1.6 2D examples
Two simple test functions will be introduced, to show some mesh refinement examples.
The wavelets which will be researched in this thesis are Donoho’s interpolating wavelet
and Sweldens wavelet. Both the interpolating and the lower order boundary stencil
implementations are tested. These two different boundary types are described in section
3.6.6. The parameters used to generate the following examples are: J2 = 8, J1 = 4,
εThreshold = 0.001, N = 4, Ñ = 4. Hence, the finest mesh considered will have p =
28 × 28 points, so for sparsity the following formula is used: 100 × Number of Points

p .
The wavelets will be denoted as Don(N, Ñ,bounary) and Swel(N, Ñ,bounary), where
boundary stencil is denoted as int or low corresponding respectively to the interpolating
and lower order boundary stencil.

Unitary impulse

The unitary impulse is a function which is equal to zero everywhere except for 1 point,
located in the middle of the domain. In Figure 4.5 the function is shown. Mesh re-
finement can be split in 3 steps, adding the smoothing coefficients of the coarsest level,
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4.1 Mesh refinement

Figure 4.5: Mesh refinement on the unitary impulse.

thresholding detail coefficients and adding points for perfect reconstruction. The last
2 steps are inspected for Sweldens wavelet with the interpolating boundary stencil. In
Figure 4.5 the thresholded and the perfect reconstruction points are shown.
Mesh refinement on the unitary impulse is tested on 4 different wavelets. Donoho’s inter-
polating wavelet and Sweldens wavelet, both with the lower order and the interpolating
boundary stencil implementations. The primal order of the wavelets tested is N = 4.
The results of the meshes can be seen in Figure 4.6. The mesh refinement algorithm
results in a very sparse grid, because the non smoothness of this function is very local.
The unitary impulse has local behaviour far away from the boundary, this results in
exactly the same meshes for the two different boundary stencil types. The performance
of the two wavelets is very similar, both resulted in meshes with a sparsity of around
1%.

Figure 4.6: Meshes from different wavelets.

65



4 Adaptive mesh refinement

Golf function

The golf function is equal to

f(x, y) = 1
|0.5− x4 − y4|+ 0.1 .

The behaviour of this test function is less local, and close to the boundary. In Figure 4.7
the golf function is shown. Furthermore, the different steps of mesh refinement using
Donoho’s wavelet can be seen.

Figure 4.7: Mesh refinement on the golf function.

In Figure 4.8 meshes of both the interpolating and lower order implementations are
given. The interpolating boundary stencil is adding more points near the boundary,
thus is keeping more points.

Relative error versus sparsity

The sparsity of a mesh is important, however the accuracy of the mesh is also of great
significance. In Figure 4.9 the error versus the sparsity is depicted. This graph was con-
structed by performing mesh refinement for different threshold values, namely 1× 10−1,
1× 10−2, 1× 10−3, 1× 10−4, 1× 10−5, 1× 10−6, 1× 10−7, 1× 10−8. The error was
measured by performing an inverse transform on the function restricted to the mesh.
After the inverse transform the result was compared to the actual function. The error
measured is the relative Frobenius error. The calculation is done by the formula:

||f − f ε||F
||f ||F

.

66



4.2 Adaptive Mesh refinement

Figure 4.8: Meshes from different wavelets

Figure 4.9: Sparsity versus relative error.

Where f ε denotes the function values estimated by the inverse transform. The test
function is the golf function The levels of accuracy used are J2 = 8 and J1 = 4. It is
interesting to note that the lower order boundary stencil implementation is not able to
reduce the error in the Sweldens case, while it gets a high accuracy with high sparsity in
the Donoho case. The interpolating boundary stencil has similar performance for both
the Donoho and Sweldens case.

4.2 Adaptive Mesh refinement
The wavelets perform good on mesh refinement, except for Sweldens wavelet with the
lower order boundary stencil implementation. However, mesh refinement becomes more
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delicate when it is done through time, adaptive mesh refinement. A PDE is solved over
a certain time span, [0, T ]. Mesh refinement will be applied in the first time step, on this
refined mesh the PDE will be solved for one or more time steps. After which, the refined
mesh will be refined again for the coming time step(s). In this new refining step, the
wavelets should be able to both add and remove points. In order to do mesh refinement
the forward transform should be adapted, this because there are no values for some
coefficients. This special forward transform is called the adaptive forward transform.
Performing the inverse transform will give the function f on the whole domain, for the
inverse transform one can also use an adapted form, however this is not needed.
In order to be able to adapt through time adjacent points are added. If a point is
thresholded it is considered as significant. Therefore, in the coming time step(s) its
neighbouring points can become significant. Hence, one new aspect in adaptive mesh
refinement will be adding the immediate neighbours of the thresholded points.

4.2.1 Adaptive forward transform
Normally, the forward transform is applied to all the points in the mesh. However, not all
the values of the smoothing coefficients are known, because the mesh is sparse. Because
of the special reconstruction check, all the smoothing coefficients needed to calculate
the detail coefficients of the mesh points, are in the mesh. It is important that firstly
it is checked if a point which is handled as a detail coefficient is in the mesh, if not it
will be set to zero. If the Sweldens wavelet is used, or another wavelet with an update
step, then the smoothing coefficients are updated using detail coefficients which might
not be in the mesh. Firstly, if a smoothing coefficient is not in the mesh no update
needs to be done. If it is in the mesh the update step can proceed normally, if a detail
coefficient is used which is not in the mesh this detail coefficient will be treated as a zero.
This because in the thresholding phase, only detail coefficients almost equal to zero were
removed. Hence, the original value of the detail coefficient is considered insignificant for
the update step.

4.2.2 Adaptive inverse transform
During the testing phase, it was noticed that the Sweldens wavelet had a larger error
than the Donoho wavelet in the 2 dimensional test sets. In order to find out where the
error was build up, the points with the highest errors were checked. This was done by
printing out its value during the forward and inverse transform. In the 2 dimensional
setting points were treated in two directions. It was noticed that in the last update step
the update was different from the corresponding update step in the forward transform.
In the inverse transform one wants to reform the original function f , this is done by
undoing the operations of the forward transform. Hence, it makes sense to create the
same environment as in the last performed forward transform. This forward transform
used zeros for the update step, if detail coefficients were used which were not in the
mesh. In the inverse transform all the coefficients will receive a value, hence the update
step will be different. Therefore, in the adapted setting one can choose to change the
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inverse transform. So during the update step it is checked if a detail coefficient used
was in the mesh which was used for the forward transform. If not this detail coefficient
will contribute the value of zero to the update step instead of its own value. The mesh
used to restrict the inverse transform is not the last generated mesh, but the mesh of the
time step before, the one which one was used in the forward transform. Hence, for the
adaptive inverse transform one extra binary sparse matrix should be stored in memory.
During testing the adaptive inverse transform will be compared to the normal inverse
transform.

4.2.3 Adjacent points
If a mesh point xj,k is added to M j for j > J1, then the absolute value of the detail
coefficient at that level is significantly big. The mesh generated will be used to solve a
partial differential equation for one or more time steps. It makes sense that the computa-
tional mesh should consist of those mesh points associated with detail coefficients which
are or can possibly become significant during the period of time when the grid remains
unchanged. Therefore, adding points in the adjacent zone of the grid points with high
detail coefficients is needed, as over time these detail coefficients could become signifi-
cant. There are two types of neighbouring points considered in this thesis. Type 1 refers
to adding neighbours only in the direction the coefficient functions as a detail coefficient.
For example, if a point in a 2 dimensional mesh is a detail coefficient in direction 1 and
a smoothing coefficient in direction 2, then only in direction 1 neighbours will be added.
Commonly, points which have been thresholded are detail coefficients in both directions
but in different layers j, then neighbours in the corresponding direction will be added in
that layer. A second way of adding neighbours is called type 2. In this case not 1 but in
all directions in that level neighbours are added. In other words, the M closest points in
layer j are added. In both types of neighbouring points, one can also add points in the
neighbouring layers. For example, type 1 neighbours can be added in the layer below,
the same layer and the layer above.

Type 1

In the one dimensional case type 1 points in the adjacent zone of xj,k are the points
xj′,k′ such that:

|j − j′| ≤ Llevel |2j−j′k − k′| ≤ Lneighbour.

Where Llevel are the number of layers in which adjacent points are added, and Lneighbour

are the number of adjacent points added per layer per direction. So if Llevel = 1 and
Lneighbour = 1, then 1 neighbour to the right and 1 to the left of the detail coefficient will
be added in the layer below, the same layer and the layer above.
In [30] it is suggested that the optimal values of the adjacent zone are Llevel = Lneighbour =
1. During the testing phase these parameters will be changed, to investigate if Llevel =
Lneighbour = 1 is indeed optimal. The higher the adjacent criteria values are the more
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Algorithm 11 Adaptive mesh refinement
Perform the adapted forward transform on sJ2 = f(GJ2|Mt−1).
Add the points corresponding to sJ1 to Mt.
Add thresholded points to Mt.
Add adjacent points to Mt.
Add perfect reconstruction points to Mt.

mesh points will be in the mesh M . However, if the adjacent criteria values are too low
solving the partial differential equation with the computational mesh M for t time-steps
can give inaccurate results. So for optimality conditions the trade-off between these
properties should be considered.
In the 2 dimensional setting, the one dimensional approach is used. If a coefficient is
a detail coefficient in two directions and different levels this means neighbours will be
added twice, in the corresponding layers. This approach is similar in a 3 dimensional
case.

Type 2

Another way to add points, is adding all the points within a certain distance of the mesh
point xj,k. This does not give a difference in the 1 dimensional setting, but it does make
a difference in higher dimensions. For example, in the 2 dimensional case, if point xj,k,l

is a detail coefficient in layer j in direction 1, type 1 points will add points in the same
layer with the coordinates (j ± Llevel, k ± Lneighbour, l). In the type 2 setting the points
with the following coordinates will be added (j ± Llevel, k ± Lneighbour, l ± Lneighbour). If
then the same mesh point is a detail coefficient in the second direction in layer J , again
this type of boundaries will be added, (J ± Llevel, p± Lneighbour,m± Lneighbour).

Algorithm 12 AMR for timedependent PDE
t=0.
Perform the forward transform on sJ2 = f(GJ2).
Perform Mesh refinement to retrieve M .
Solve time step(s) on mesh M .
for t=1 upto T do
Perform the adapted forward transform on sJ2 = f(GJ2|M ).
Perform Mesh refinement to retrieve M .
Solve time step(s) on mesh M .
end for
Perform the (adapted) inverse transform on fM .
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4.2.4 Adaptive thresholding
The thresholding of points is strongly connected to the adjacent points, namely, only for
the thresholded points adjacent points are added. This in a sense broadens the way in
which thresholding can be done. For example, if a detail coefficient is very high it can
be considered as very difficult to predict, so it might make sense to add more neighbours
for this kind of points. Below three types of thresholding are described.

Version 1

This version is the standard setting. There is one threshold value and for all the
thresholded points, adjacent points of type 1 will be added. With the parameters
Llevel = Lneighbour = 1.

Version 2

In version 2 two values for thresholding are used, again type 1 adjacent points is con-
sidered. The motivation behind two layers of thresholding, is that if a certain detail
coefficient has a very high absolute value, then more neighbours need to be added. The
parameters for the first threshold are εthreshold

1 = 1 and Llevel
1 = Lneighbour

1 = 2. So if a
detail value is high more neighbours will be added in more layers. The second threshold
value εthreshold

2 can be chosen arbitrary with Llevel
2 = Lneighbour

2 = 1. During the testing
phase, the results of version 1 and version 2 where very the similar. Therefore, version
2 will not be mentioned in the results, however the data can be found in the tables in
the appendix.

Version 3

Some of the financial PDEs which will be considered have a very high peak which
will spread out quickly. In this case a more extreme adding of neighbours might be
considered. Setting the threshold value dependable on the test function can give an
indication of the relative difficulty to predict the value. In this sense, the first threshold
is defined as εthreshold

1 = |max(f)−min(f)|
4 , with type 2 adjacent points. So in 2D a square

of points will be added around the thresholded detail coefficient. In the 3D setting this
will be a cube of neighbours. The second threshold will be free to choose and the other
parameters will be: Lneighbour

1 = 5 and Llevel
1 = Llevel

2 = Lneighbour
2 = 1.

4.2.5 The algorithm
Summarising, in adaptive mesh refinement the algorithm to determine the mesh is ex-
panded with adjacent points. In Algorithm 11 the new mesh refinement is given. Fur-
thermore, in the first time step the normal forward transformed is used, but after that a
special version of the forward transform should be used. In Algorithm 12 the application
of adaptive mesh refinement on a time dependent PDE is given.
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4.2.6 2D examples
The unitary impulse and golf function will be used to show the effect of adding adjacent
points in the mesh refinement. Version 1 of the AMR will be tested. In Figure 4.10
the mesh refinement using Sweldens wavelet with the interpolating boundary stencil can
be seen. The mesh is split up in the thresholded points, adjacent points and perfect
reconstruction points. It can be seen that more points have been added, and the area
covered by the mesh has expanded. Similar results can be seen in Figure 4.12. Note that
the amount of perfect reconstruction is not increased. This because some points added
in the adjacent step, would otherwise have been added in the perfect reconstruction.
Finally, in Figure 4.11 and Figure 4.13 the resulting AMR meshes for both Sweldens
and Donoho’s wavelet are given.

Figure 4.10: Adaptive mesh refinement on the unitary impulse.

Figure 4.11: Meshes from different wavelets
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Figure 4.12: Adaptive mesh refinement on the golf function.

Figure 4.13: Meshes from different wavelets
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5.1 Problem setup
NAG (Numerical Algorithms Group) has provided data sets to evaluate the performance
of the wavelets. The PDEs which are tested are Finance PDEs in 1 and 2 dimensions
provided by Jacques Du Toit and a Hydro PDE in 2 and 3 dimensions provided by
Kevin Olson. The PDEs are approximated through time, every time step the interme-
diate approximation is stored. Therefore, the data on which the wavelets will be tested
are approximations of PDEs at every time step. This gives the ability to evaluate the
performance of the wavelets at every time step. Only a part of the tested data is evalu-
ated in this chapter, for more results the Appendix can be consulted.

Two types of wavelets will be extensively tested, Donoho’s interpolating wavelet and
Sweldens wavelet. Their performance will be investigated in 1, 2 and 3 dimensions.
Both wavelets will be tested with two different boundary stencil implementations, lower
order and interpolating boundaries. These two different boundary types are described
in section 3.6.6. Furthermore, two orders will be checked, N = 4 and N = 6. In order
to indicate which wavelet is tested the following notation will be used: Wavelet(primal
order N , dual order Ñ , boundary). Where Don indicates Donoho’s interpolating wavelet,
Swel Sweldens wavelet, int the interpolating boundary stencil and low the lower order
boundary stencil. Two examples are Don(6,0,int) and Swel(4,4,low).

5.1.1 Benchmarks
Kevin Olson is experienced in AMR, therefore the standards he and his colleagues use
will be considered. A mesh is evaluated on its sparsity and the accuracy with which it
can approximate a function. AMR is only beneficial if the meshes are sparse enough.
Typically, 2 dimensional AMR is used if the sparsity is below 40% and below 30%
for 3 dimensional AMR. There are no standards in accuracy, because as this depends
on the accuracy of the numerical solver. During testing 3 different accuracies were
considered, 0.1%, 1% and 10% relative Frobenius error. This relative error is calculated
as follows. Define f as the approximation retrieved from the data set and f ε as the
approximation generated by the wavelets. In order to calculate the relative Frobenius
error, the Frobenius norm on f − f ε and f are calculated. Then the relative error is
||f−fε||F
||f ||F . The Frobenius norm for a 2 dimensional matrix A is ||A||F =

√∑
i

∑
j a

2
ij .
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5.1.2 AMR in short
The provided data sets are approximations of the PDE at every time step. The AMR
starts with applying a forward transform on the initial time step. Subsequently, mesh
refinement results in a mesh M . After the mesh refinement the initial solution is re-
stricted to the mesh M and an inverse transform is applied. The inverse transform will
be compared to the initial solution and the relative error is calculated.
Next, the approximation at the subsequent time step is restricted to M . On this re-
stricted version of the data, mesh refinement will be applied, resulting in a new mesh
M . Thereafter the relative error will be calculated by performing an inverse transform.
These last steps proceed until the last time step is reached.

5.1.3 Financial PDEs
Below the three different types of PDEs are shortly described, for more information
https://www.nag.co.uk/doc/techrep/pdf/tr3 16.pdf can be consulted.

SLV

SLV is the probability density function for the 2D Stochastic Local Volatility model
with Heston volatility dynamics. The SLV model is widely used in finance, especially in
foreign exchange (FX) markets. The model has to be calibrated to market data, and a
key stage in this calibration is solving for the probability density function of the process.
The 1 dimensional version is called LV .

Price

Call is the price of a call option driven by SLV. The payoff of a call options is max (ST −K, 0)
where ST is the underlying asset at time T and K is the strike price. This data set is
called price.

Digital

Digital is the price of a digital option driven by SLV. The payoff of a digital option is
1 if ST > K, 0 otherwise, where ST and K are the underlying asset at time T and the
strike price.

5.1.4 Hydro PDE
The PDE computes pressure, which depends on the density, energy, x velocity, y veloc-
ity and z velocity. The code which delivered the approximations, solves the equations
of compressible hydrodynamics assuming an ideal gas equation of state using a finite
volume technique. The method uses the MUSCL technique for limiting the slopes of
the primitive variables and computing the left and right states at the interfaces between
cells. An approximate Riemann solver is used to compute the numerical fluxes at the
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interfaces between cells. For more information, see [10].

The code applies AMR only on the pressure and density. In the wavelet setting this
would entail generating meshes for both approximations and using the union of these
meshes to solve the next time step(s). Therefore, these two data sets will be considered
in the results. Because the other variables provide more surfaces to test the wavelets on,
they have also been investigated. The results of this can be found in the appendix.

5.2 Finance PDEs
All the 1D data is tested with J2 = 11 as the densest level and J1 = 5 as the coarsest
level. In the 2D tests, J2 = 8 was assumed to be the finest level of refinement and
J1 = 4 the coarsest level.

5.2.1 2D SLV 17
There are three versions of the 2 dimensional SLV method which have been tested, SLV
5, SLV 17 and SLV 53. The difference is caused by different initial solutions. SLV 17
will be considered in the results. In Figure 5.1 SLV 17 is depicted at time step 0 (the
initial solution), time step 26 and the final time step 52. The PDE starts off with a high
peak on one point, the rest of the approximation is zero. This peak is located near the
boundary, this makes the data set interesting as non smoothness near the boundary is
more difficult for the wavelets. The high peak spreads out during time.

Figure 5.1: SLV 17 through time.

In Figure 5.2 the three different meshes corresponding to time steps 0, 26 and 52 are
shown. The wavelet used in this AMR is Donoho’s interpolating wavelet with the lower
order boundary stencil, primal order N = 4 and dual order Ñ = 4. Version 1 of the AMR
is used, this means that the there is one threshold value, namely 0.001, and neighbours
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are added with the values Llevel = Lneighbour = 1. Version 1 of the AMR is explained in
more detail in 4.2.4. The figure shows that the AMR is capable of growing its mesh if
the non smooth area grows in time.

Figure 5.2: Meshes of SLV 17 using Don(4,0,low).

In order to visualise the performance of all the different wavelets, 5 tests have been run.
Every wavelet is tested on the data set 5 times per version by varying the threshold
value, εthreshold = [1× 10−1, 1× 10−2, 1× 10−3, 1× 10−4, 1× 10−5]. After each test the
maximum number of points and the maximum error are kept. This results in the plots
of Figure 5.3. Version 1 and version 3 of the AMR are evaluated.

Figure 5.3: Comparing all the wavelets on SLV 17.

More information on the third version of the AMR is given in 4.2.4. In the figure it can be
observed that in the first version of the AMR all the wavelets have difficulties in reducing
the error, whilst this error is significantly reduced in version 3 of the AMR. Moreover,
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reducing the threshold results in more points but not a higher accuracy. To investigate
this further it is convenient to observe the error at every time step, see Figure 5.4. There
are some remarkable items to be observed in this figure.
Firstly, the error of Donoho’s interpolating wavelet is for a long time constant at 1× 10−15.
In reality this error is not constant, however many times Donoho was so accurate that the
squaring in the relative error was causing arithmetic underflow. In order to catch away
NAN numbers the relative error was manually set to 1× 10−15, in case of arithmetic
underflow.

Secondly, it can be seen that the maximum error is occurring in the second time step.
SLV 17 starts of with a very high peak on one point. Naturally, this will lead to adding
points around this point. However, the number of neighbours added in this case is not
high enough. This adaptive malfunction lead to testing different versions of the AMR.
One successful version was version 3. In this setting two different threshold values are
used. The first depends on the current approximation and the second is static, chosen
beforehand. The dynamic threshold is relative to the approximation. If a point is
thresholded by that value a big square of points is added around the detail point. The
bigger the square the more accurate the second step can be approximated, however this
leads to adding more points. The adding of more points is not a problem for SLV 17,
as the maximum number of points is reached at later time steps. However, to make this
version suitable for more problems Lneighbour

dynamic = 5 was chosen. A benefit of version 3 is
that extra points will be added only if there is a very high detail coefficient. This can
be observed in Figure 5.5, at the first time steps Sweldens and Donoho add more points
than in version 1 Figure 5.4, but after some time steps they grow to the same number
of points.

Furthermore, Sweldens structurally has more points than Donoho’s interpolating wavelet.
This is caused by the interpolating boundary stencil, in all the test cases more points are
added for the interpolating boundary stencil. More points are added near the bound-
ary, because the interpolating boundary wavelets have a very high tail. Due to this
tail points fairly far away from the boundary will influence the boundary. When going
to the lower scales, e.g. level J1, this means that points relatively far away from the
boundary influence the boundary. Hence, high detail coefficients further away from the
boundary will result in higher detail coefficients close to the boundary. In the case of
SLV17, Sweldens will also add more points because the peak is smoothed out so it will
cover a larger area. One beneficial aspect of this smoothing is that Sweldens wavelet has
less problems to adapt in the second time step.

However, although the interpolating boundary stencil is adding more points it works
better than the lower order boundary stencil for Sweldens wavelet. The lower order
implementation in Sweldens case is highly unstable, many times it has difficulties ob-
taining a high accuracy. Due to the update step, this is a problem with the Sweldens
wavelet and not for Donoho’s interpolating wavelet. Sweldens wavelet has to use the
boundary stencil implementation both for the smoothing coefficients (update step) and
for the detail coefficients.
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Figure 5.4: Version 1, performance per time step on SLV 17.

Figure 5.5: Version 3, performance per time step on SLV 17.
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Whereas Donoho’s wavelet only needs to deal with boundary points for the detail coef-
ficients. Moreover, the update step works as a smoother, i.e., it averages the smoothing
coefficients. Reducing the order near the boundary can cause an error. Due to the
smoothing this error will be transported through the grid.

Lastly, in the error plots two different graphs for the Sweldens wavelet are depicted.
In the testing phase it was discovered that high errors for the Sweldens wavelet were
caused by the update step in the inverse transform. Therefore, we designed our own
version of the inverse transform, the adapted inverse transform. The adapted inverse is
described in section 4.2.2.This leads to only changing the last step in the AMR, hence
both versions have the same meshes.

5.2.2 2D Digital

Figure 5.6: Digital through time.

Digital is a financial PDE with a completely different surface. It starts of as a step
function, thereafter it smoothens out. Digital at time step 0, 26 and the last time step
52, can be seen in Figure 5.6. It can be observed that on one side of the domain the step
function smoothens out more then on the other side. In Figure 5.7 the meshes generated
by version 1 of the AMR using Sweldens interpolating wavelet can be seen. The type
of neighbours added in version 1, only add neighbours in the direction that the point is
acting as a detail coefficient. This can be clearly seen in the meshes. The meshes are
highly sparse, however only points in the y direction are added. Although this PDE is
different from SLV 17 version 1 of the AMR has difficulties with the error.

In Figure 5.8 a comparison of all the wavelets can be found. Indeed, version 1 of the
AMR has difficulties reducing the errors. It is also worth to note that reducing the
threshold, does not result in significantly more points. In the case of version 3 of the
AMR a lot more points are used. However, version 3 of the AMR is capable of reducing
the error. For example, Don(4,0,low) is reducing the error to below 1× 10−3, whilst
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keeping just 11% of the points. It is interesting that version 3, designed to deal with
highly non smooth areas quickly spreading out, also has such a positive effect on the
Digital PDE.

Figure 5.7: Meshes of digital using Swel(4,4,int).

The 6th order wavelets with interpolating boundary stencil are adding a lot of points.
This occurs in more data sets, although more points also result in a higher accuracy, it is
not beneficial. In many cases, a PDE solver will not have an accuracy of 1× 10−5, hence
it does not make sense to aim for an AMR which is that accurate. A better heuristic
method would be to look for wavelets with the lowest number of points, whilst having
an accuracy of 1× 10−3. Another notable aspect is that Don(4,0,int) appears as a point
in version 3. This means that the maximum error and number of points are stirred by
1 or 2 time steps, hence lower threshold values do not result in better performance.

Figure 5.8: Comparing all the wavelets on digital.

In Figure 5.9 Don(4,0,low) and Swel(4,4,int) are compared using version 3 of the AMR.
In this case Sweldens is slightly more accurate, whilst Donho’s wavelet is a bit sparser.
Contrary to SLV 17, it is not obvious which wavelet performs best.

82



5.2 Finance PDEs

Figure 5.9: Performance per time step on digital.

5.2.3 Adapted inverse for Finance 2D PDEs
As mentioned before, there are two ways to extrapolate the approximation in the AMR.
The normal inverse transform, which is currently the standard in literature, and an
adaptive inverse transform can be used. This adapted version is not specifically de-
signed for Sweldens wavelet, it is for any second generation wavelet with an update step.
The idea for the adapted inverse transform resulted from investigating the SLV results.
Hence, it is important to see the effect on all the data sets. In Figure 5.10 the results
for Swel(4,4,int) on all the 2D data sets are depicted. Both the normal and adapted
inverse transform were calculated for each threshold. Major improvement is observed in
the SLV sets. This was to be expected as the problems are similar and they motivated
the design of the adapted inverse transform. Especially, for SLV 53 the reduction in
error is between 100x and 1000x better. In the case of SLV17 it is interesting to note
that the adapted inverse has an accuracy < 1× 10−4 with a sparsity of 6%. Meanwhile,
the normal inverse transform needs around 17% points to reach that accuracy.
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Figure 5.10: Comparing the different inverses for Sweldens.

There is almost no difference in the other two sets. For the Price set the error is even
worse for the adapted inverse transform. However, it is important to note that the
reduction in error is less than 10x. Furthermore, both versions of the inverse transform
are capable to reduce the error to < 1× 10−3, whilst maintaining a high sparsity.

5.2.4 1D Finance PDEs
In 1 dimension the wavelets behave very different. In the literature wavelet based AMR
has mostly been tested on 1 dimensional PDEs. A lot of difficulties encountered in 2
dimensions are simply not important in 1 dimension. For example, different implemen-
tations of the AMR result in exactly the same values. Therefore, only the data of version
1 will be shown. Furthermore, the adapted inverse transform is exactly the same as the
normal inverse in the 1 dimensional setting. 2 different PDEs will shortly be discussed,
SLV 5 and Price.
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Figure 5.11: LV 5 using Swel(4,4,int).

Figure 5.12: Price using Don(4,0,low).

In Figure 5.11 LV 5 is shown at time steps 0, 26 and 52, below the plots the meshes are
shown. Note that the peak of SLV 5 starts off at around 600 and then quickly reduces to
around 4. In Figure 5.12 the Price set is depicted, which has just 51 time steps, hence
t = 0, t = 25 and t = 50 are shown. In both the figures it can be seen that the grid
is not only able to grow, but also able to shrink if the solution becomes smoother. In
Figure 5.14a and Figure 5.14b all the wavelets are compared. It is interesting to note
that Donoho’s wavelets are highly accurate. As discussed earlier it only makes sense to
consider an accuracy of 1× 10−3. In that setting Sweldens wavelets are also performing
very good.
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Figure 5.13: Comparing all the wavelets.

(a) lv 5. (b) Price.

5.3 Hydro PDE
The 2D Hydro data is tested with finest scale J2 = 8 and coarsest scale J1 = 4. For
the 3D test sets J2 = 7 was assumed to be the finest level of refinement and J1 = 3 the
coarsest level.

5.3.1 2D Pressure
In Figure 5.14 the pressure is given at time step 0, 257 and the last time step 514. The
surface and heat plots are depicted for every time step. The solution starts of with a
local blob, which results in a wave that interacts with the boundaries. In Figure 5.15 the
meshes at these time steps are shown. Donoho’s lower order wavelet was used to generate
the meshes. It is interesting to compare the heat plots with the meshes. Wavelets are well
known for their edge detection skills in image compression. That ability is observed in
the mesh, where only around the shock waves, points are added. Furthermore, although
the shocks are spread over the whole domain the wavelet is able to make a sparse grid,
with just 19% of the points kept.
All the wavelets are tested on pressure for version 1 and 3 of the AMR, the results
are shown in Figure 5.16. As mentioned earlier, in practise AMR is only considered
worthwhile in 2D if less than 40% of the points are kept. Only Donoho’s interpolating
wavelet with the lower order boundary stencil implementation is capable to have this
sparsity whilst having an error around 1× 10−3. Furthermore, it can be observed that
there is not a big difference between the version 1 and 3. It is only important to note
that Donoho’s interpolating wavelet in version 3 will need around 30% of the points in
order to reach an error around 1× 10−3. Meanwhile, in version 1 only 20% of the points
are needed.
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Figure 5.14: The pressure through time.

Figure 5.15: Meshes of pressure using Don(4,0,low).

In Figure 5.17 the Frobenius error and sparsity of pressure through time are given. The
used threshold value is 1× 10−3, this leads to adding too many points. In the error plot
it can be observed that the error of Donoho’s wavelet is more stable. Furthermore, the
standard inverse transform for Sweldens leads to a larger error, than using the adapted
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inverse. Although the maximal Frobenius errors are similar.

Figure 5.16: Comparing all the wavelets on pressure.

Figure 5.17: Performance per time step on pressure.
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5.3.2 2D Density
The hydro PDE is solved using an AMR. This AMR is only applied to pressure and
density. Therefore, the density data set is considered. In Figure 5.18 surfaces of density
through time are given. The surfaces look very similar to the pressure surface, hence
the union of these two grids will not contain too many extra points. In Figure 5.19 the
meshes at the corresponding time steps are given. Sweldens wavelet with the interpo-
lating boundary stencil is used. In the second and third mesh it is visible that too many
points are added near the boundary. There are more mesh points on the right and upper
side, this is caused by the manner in which the data is split. On the right and top all the
boundary points are detail coefficients, so at this side the boundary stencil implementa-
tion is more sensitive for thresholding. At the left and lower side smoothing coefficients
are at the boundary. As discussed earlier, the tail of the interpolating boundary sten-
cil wavelet is causing high detail coefficient values to influence the boundary points,
especially in the lower scales.

Figure 5.18: The density through time.

In Figure 5.20 and Figure 5.21 the plots for comparing all the wavelets and the behaviour
through time can be seen. The results are very similar to the results of pressure, again
Donoho combined with the lower order boundary stencil is having the best performance.
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Figure 5.19: Meshes of density using Swel(4,4,int).

Figure 5.20: Comparing all the wavelets on density.

Figure 5.21: Performance per time step on density.
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5.3.3 Adapted inverse for Hydro 2D PDE
The performance of the adapted inverse on all the data sets is given in Figure 5.22.
Although the differences are not big, the adapted version of the inverse transform con-
stantly results in a lower Frobenius error.

Figure 5.22: Comparing the different inverses for Sweldens.
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5.3.4 3D results
In 3 dimensions it is more difficult to depict the behaviour of the solution in a plot.
Therefore, these are not shown. The solution slices look very similar to the 2D test case.
In Figure 5.23 and Figure 5.24 the overall performance of the wavelets is depicted. Only
the results of version 1 are shown as they are very similar to the results of version 3.
When comparing the wavelets it is important to keep in mind that only for a sparsity of
30% or less AMR is considered useful. Like before, only Donoho’s interpolating wavelet
with the lower order boundary stencil is able to reach this sparsity with a small Frobenius
error.

Figure 5.23: Comparing all the wavelets on density.

Figure 5.24: Comparing all the wavelets on pressure.

In Figure 5.25 and Figure 5.26, Don(4,0,low) and Swel(4,4,int) are plotted for every time
step. The errors of Donoho and Sweldens are very similar, only the normal inverse of
Sweldens is giving a higher error. Although the error behaves similar for Donoho and
Sweldens, the number of points needed to achieve this error is different. Sweldens is
adding many more points.
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Figure 5.25: Performance per time step on pressure.

Figure 5.26: Performance per time step on density.
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5.3.5 Adapted inverse for Hydro 3D PDE
In Figure 5.27 the different versions of the inverse transform are tested on all 3D hydro
data sets. The maximum error is different for the very small thresholds, however there
is not a big difference in the bigger threshold values. The difference for the smaller
thresholds is not very important, as the wavelets are adding too many points there in
order to consider AMR.

Figure 5.27: Comparing the different inverses for Sweldens.
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6.1 Conclusion
The objective of this thesis is to research the performance of different wavelets for adap-
tive mesh refinement. In literature, Donoho’s interpolating wavelet and Sweldens wavelet
are used for adaptive mesh refinement, however it is not clear which wavelet is the best
choice. Therefore, different versions of these wavelets are tested to answer the research
question:

Which wavelet transform is most stable and has the best
performance in adaptive mesh refinement?

The wavelets have been tested with different boundary stencil implementations, different
versions of the AMR algorithm and different orders N . The tested orders N are 4 and
6. Although N = 6 outperforms N = 4 sometimes, for both Sweldens and Donoho’s
wavelet N = 4 ended up being the most stable choice.
Furthermore, for Sweldens wavelet the interpolating boundary stencil is the best bound-
ary stencil implementation. It adds unnecessary points near the boundary due to the
long tails of the boundary wavelets, but is accurate for all the test problems.
The lower order boundary stencil turned out to be the best performing boundary stencil
implementation for Donoho’s interpolating wavelet. It is always accurate, whilst having
very good sparsity.
Comparing Sweldens wavelet versus Donoho’s interpolating wavelet, Donoho’s inter-
polating wavelet with the lower order boundary stencil implementation is the best.
Sweldens can compete with Donoho’s interpolating wavelet on PDEs with very local
behaviour, however when non smooth behaviour is occurring over the whole domain,
Sweldens wavelet is adding too many points. This is caused both by the update step of
Sweldens, which smoothens out the function, hence local behaviour becomes less local.
Another cause is the interpolating boundary stencil, due to the long tail, on lower scales
behaviour further away from the boundary influences the boundary wavelets.
Sweldens wavelet is a second generation wavelet with an update step, during testing it
was noted that using an adapted inverse transform reduced the error significantly. This
change in the inverse transform is only for wavelets with an update step, hence it does
not effect Donoho’s interpolating wavelet.
Concluding, throughout the different tests, Donoho’s interpolating wavelet with the lower
order boundary stencil was the most stable and best performing wavelet for equidistance
meshes. This is remarkable as the lower order boundary stencil is not used in literature.
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6.2 Recommendations for future work
Using wavelets for adaptive mesh refinement has shown promising results. In this thesis
the focus is on testing the abilities of different wavelets for adaptive mesh refinement.
However, there are still more aspects to be researched.

� The wavelets have been tested on equidistant meshes. Stability issues are known
to occur for non equidistant meshes. Therefore, it would be interesting to compare
the wavelets on non equidistant meshes. In [22] it is suggested that the update step
is one of the causes for instability. This would suggest that Donoho’s interpolating
wavelet will also perform better for non equidistant meshes. However, this is a
hypothesis which is not verified.

� The fast transform (forward and inverse transform) is suitable for parallelisation.
Especially, the 3 dimensional fast transform is slow. In order for wavelet based
AMR to be valuable in different fields of application, speeding up the code is
necessary.

� Both Donoho’s interpolating and Sweldens wavelets are not orthogonal. Donoho’s
interpolating wavelet could also be lifted using a different update step. For ex-
ample, the update step could be utilised to orthogonalise the wavelets instead of
raising the dual order. A hybrid version could also be considered, using one de-
gree of freedom to have one dual vanishing moment and use the other degrees of
freedom for orthogonalisation.

� Adaptive mesh refinement is a part of the collocation methods. Another topic to
be researched is the actual solving of the PDEs. Multigrid would be interesting
to explore. Because the wavelets divide a domain in different scales (layers), each
scale could correspond to a mesh in Multigrid. In other words, the prolongation
and restriction steps would be dictated by the different mesh points in the different
scales.
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Abbreviations
AMR Adaptive mesh refinement
MRA Multiresolution analysis
NAG Numerical Algorithms Group
PDE Partial Differential Equations
SMR Static mesh refinement

Symbols
sj,k Smoothing coefficient at level j and location k.
dj,k Detail coefficient at level j and location k.
sj,k Smoothing coefficient at level j and location k, l.
da

j,k,l Detail coefficient in the x-direction at level j and location k, l.
db

j,k,l Detail coefficient in the x-direction at level j and location k, l.
dc

j,k Detail coefficient in the x, y-direction at level j and location k, l.
Vj Approximation space.
Wj Detail space.
Ṽj Dual approximation space.
W̃j Dual detail space.
W a

j ,W
b
j ,W

c
j Two dimensional detail spaces.

ψ(·) Mother scaling function.
ψ̃(·) Dual mother scaling function.
ψj,k(·) Basis scaling function at level j and location k.
ψ̃j,k(·) Dual basis scaling function at level j and location k.
ϕ(·) Mother wavelet function.
ϕ̃(·) Dual mother wavelet function.
ϕj,k(·) Basis wavelet function at level j and location k.
ϕ̃j,k(·) Dual basis wavelet function at level j and location k.
ψa(·), ψb(·), ψc(·) Two dimensional wavelets.
J2 Densest level, i.e. level with highest precision.
J1 Coarsest level, i.e. level with lowest precision.
N Primal order of wavelet system.
Ñ Dual order of wavelet system.
H = (hk)k∈Z Filter of the primal scaling functions.
H̃ = (h̃k)k∈Z Filter of the dual scaling functions.
G = (gk)k∈Z Filter of the primal wavelet functions.
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G̃ = (g̃k)k∈Z Filter of the dual wavelet functions.
h(ω), g(ω) 2π-periodic primal filters.
h̃(ω), g̃(ω) 2π-periodic dual filters.
P(sj,k) Predict operator.
U(dj,k) Update operator.
PN = (pk)k∈Z Filter of the predict step, with order N .
U Ñ = (uk)k∈Z Filter of the update step, with order Ñ .
PN,R, PN,L Filter of the predict step on the right and left boundaries.
Gj Dyadic grid with 2j points.
M j Mesh at layer j resulting from the mesh refinement.
M Union of the all the meshes M j .
Lneighbour The amount of neighbours added per layer.
Llevel The amount of levels in which adjacent points are added.
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Appendix

Not all the data was shared in the results. If one is interested to see more results, data
is provided in this Appendix. Five different thresholds have been tested for the different
data sets and versions. Only the most interesting threshold per data set and version is
given in the tables. In 1D only version 1 is given as the data of version 2 and 3 are the
same. In 3D the Z-velocity are in a separate table at the end.
If one inspects the tables it can be observed that version 1 and 2 are very similar.
Furthermore, the wavelets have difficulties with the y- and z-velocity of the Hydro PDE.
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Appendix

A.1 Finance PDEs data
A.1.1 1D results

Price Version 1

Sparsity % Normal
inverse

Adapted
inverse

Threshold Don(4,0,int) 2.54 1.84E-03 -
1.00E-03 Don(6,0,int) 3.03 2.12E-04 -

Don(4,0,low) 7.47 9.00E-06 -
Don(6,0,low) 10.55 1.10E-05 -
Swel(4,4,int) 2.83 2.01E-04 2.01E-04
Swel(6,6,int) 3.03 6.14E-04 6.14E-04
Swel(4,4,low) 7.47 1.19E-01 1.19E-01
Swel(6,6,low) 10.64 1.79E-01 1.79E-01

Digital Version 1

Sparsity % Normal
inverse

Adapted
inverse

Threshold Don(4,0,int) 3.27 5.02E-15 -
1.00E-02 Don(6,0,int) 4.35 1.32E-14 -

Don(4,0,low) 3.27 1.00E-16 -
Don(6,0,low) 4.35 1.00E-16 -
Swel(4,4,int) 3.81 8.87E-04 8.87E-04
Swel(6,6,int) 4.20 4.77E-03 4.77E-03
Swel(4,4,low) 3.81 5.22E-04 5.22E-04
Swel(6,6,low) 4.20 1.05E-03 1.05E-03

LV 5 Version 1

Sparsity Normal
inverse

Adapted
inverse

Threshold Don(4,0,int) 10.94 1.27E-13 -
1.00E-04 Don(6,0,int) 9.18 1.28E-13 -

Don(4,0,low) 11.47 1.00E-16 -
Don(6,0,low) 11.62 1.00E-16 -
Swel(4,4,int) 10.89 8.38E-04 8.38E-04
Swel(6,6,int) 9.38 8.85E-04 8.85E-04
Swel(4,4,low) 11.62 8.38E-04 8.38E-04
Swel(6,6,low) 11.47 8.85E-04 8.85E-04

LV 17 Version 1

Sparsity Normal
inverse

Adapted
inverse

Threshold Don(4,0,int) 4.25 1.63E-19 -
1.00E-01 Don(6,0,int) 4.79 1.63E-19 -

Don(4,0,low) 4.25 1.00E-16 -
Don(6,0,low) 4.79 1.00E-16 -
Swel(4,4,int) 4.44 9.78E-04 9.78E-04
Swel(6,6,int) 5.18 3.91E-04 3.91E-04
Swel(4,4,low) 4.44 9.78E-04 9.78E-04
Swel(6,6,low) 5.18 3.91E-04 3.91E-04

LV 53 Version 1
Sparsity Normal inverse Adapted inverse

Threshold Don(4,0,int) 5.71 1.27E-13 -
1.00E-01 Don(6,0,int) 6.05 1.28E-13 -

Don(4,0,low) 5.71 1.00E-16 -
Don(6,0,low) 6.05 1.00E-16 -
Swel(4,4,int) 5.71 4.47E-02 4.47E-02
Swel(6,6,int) 6.05 4.54E-02 4.54E-02
Swel(4,4,low) 5.71 4.47E-02 4.47E-02
Swel(6,6,low) 6.05 4.48E-02 4.48E-02
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A.1 Finance PDEs data

A.1.2 2D results
Version 1

Price Version 1

Sparsity % Normal
inverse

Adapted
inverse

Threshold Don(4,0,int) 1.63 1.96E-04 -
1.00E-03 Don(6,0,int) 1.93 1.42E-04 -

Don(4,0,low) 1.35 1.38E-03 -
Don(6,0,low) 1.44 1.38E-03 -
Swel(4,4,int) 1.64 1.96E-04 4.86E-04
Swel(6,6,int) 2.00 1.42E-04 1.19E-03
Swel(4,4,low) 1.40 1.03E-02 1.68E-02
Swel(6,6,low) 1.56 9.70E-03 1.70E-02

Digital Version 1

Sparsity % Normal
inverse

Adapted
inverse

Threshold Don(4,0,int) 3.47 9.34E-02 -
1.00E-05 Don(6,0,int) 2.66 4.08E-03 -

Don(4,0,low) 3.40 7.65E-03 -
Don(6,0,low) 2.30 7.67E-03 -
Swel(4,4,int) 3.45 4.90E-03 1.46E-02
Swel(6,6,int) 2.73 4.08E-03 2.36E-02
Swel(4,4,low) 3.39 7.65E-03 1.38E-02
Swel(6,6,low) 2.33 7.68E-03 1.44E-02

SLV 5 Version 1

Sparsity % Normal
inverse

Adapted
inverse

Threshold Don(4,0,int) 29.58 1.36E-01 -
1.00E-05 Don(6,0,int) 28.27 8.37E-02 -

Don(4,0,low) 22.80 2.58E-02 -
Don(6,0,low) 16.24 1.41E-02 -
Swel(4,4,int) 44.50 4.41E-03 4.95E-04
Swel(6,6,int) 46.37 7.39E-03 6.38E-04
Swel(4,4,low) 42.05 3.82E-03 2.61E-03
Swel(6,6,low) 43.09 1.20E-02 1.20E-02

SLV 17 Version 1

Sparsity % Normal
inverse

Adapted
inverse

Threshold Don(4,0,int) 8.63 1.45E-01 -
1.00E-03 Don(6,0,int) 10.13 2.84E-02 -

Don(4,0,low) 6.16 1.97E-02 -
Don(6,0,low) 5.93 1.68E-02 -
Swel(4,4,int) 12.04 1.81E-03 1.60E-03
Swel(6,6,int) 17.77 7.64E-03 1.81E-03
Swel(4,4,low) 10.04 3.41E-03 3.46E-03
Swel(6,6,low) 12.28 1.14E-02 1.18E-02

SLV 53 Version 1

Sparsity % Normal
inverse

Adapted
inverse

Threshold Don(4,0,int) 5.14 1.48E-04 -
1.00E-02 Don(6,0,int) 6.91 2.02E-04 -

Don(4,0,low) 3.30 1.48E-04 -
Don(6,0,low) 3.87 1.35E-04 -
Swel(4,4,int) 7.10 3.06E-02 2.93E-04
Swel(6,6,int) 9.54 2.59E-02 2.29E-03
Swel(4,4,low) 5.36 9.17E-03 2.86E-03
Swel(6,6,low) 6.30 1.16E-02 1.15E-02
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Version 2
Price Version 2

Sparsity % Normal
inverse

Adapted
inverse

Threshold Don(4,0,int) 1.63 1.96E-04 -
1.00E-03 Don(6,0,int) 1.93 1.42E-04 -

Don(4,0,low) 1.35 1.38E-03 -
Don(6,0,low) 1.44 1.38E-03 -
Swel(4,4,int) 1.64 1.96E-04 4.86E-04
Swel(6,6,int) 2.00 1.42E-04 1.19E-03
Swel(4,4,low) 1.40 1.03E-02 1.68E-02
Swel(6,6,low) 1.56 9.70E-03 1.70E-02

Digital Version 2

Sparsity % Normal
inverse

Adapted
inverse

Threshold Don(4,0,int) 3.47 9.34E-02 -
1.00E-05 Don(6,0,int) 2.66 4.08E-03 -

Don(4,0,low) 3.40 7.65E-03 -
Don(6,0,low) 2.30 7.67E-03 -
Swel(4,4,int) 3.45 4.90E-03 1.46E-02
Swel(6,6,int) 2.73 4.08E-03 2.36E-02
Swel(4,4,low) 3.39 7.65E-03 1.38E-02
Swel(6,6,low) 2.33 7.68E-03 1.44E-02

SLV 5 Version 2

Sparsity % Normal
inverse

Adapted
inverse

Threshold Don(4,0,int) 29.58 3.43E-02 -
1.00E-05 Don(6,0,int) 28.28 8.32E-02 -

Don(4,0,low) 22.80 1.25E-02 -
Don(6,0,low) 16.24 4.64E-03 -
Swel(4,4,int) 44.53 3.94E-03 4.27E-04
Swel(6,6,int) 46.40 7.39E-03 6.45E-04
Swel(4,4,low) 41.92 4.14E-03 2.61E-03
Swel(6,6,low) 43.03 1.20E-02 1.20E-02

SLV 17 Version 2

Sparsity % Normal
inverse

Adapted
inverse

Threshold Don(4,0,int) 8.66 8.45E-03 -
1.00E-03 Don(6,0,int) 10.17 2.33E-02 -

Don(4,0,low) 6.19 6.35E-03 -
Don(6,0,low) 6.04 3.77E-03 -
Swel(4,4,int) 12.01 1.81E-03 1.60E-03
Swel(6,6,int) 17.90 7.64E-03 1.81E-03
Swel(4,4,low) 10.09 3.25E-03 3.27E-03
Swel(6,6,low) 12.34 1.14E-02 1.19E-02

SLV 53 Version 2

Sparsity % Normal
inverse

Adapted
inverse

Threshold Don(4,0,int) 5.14 1.14E-04 -
1.00E-02 Don(6,0,int) 6.92 2.02E-04 -

Don(4,0,low) 3.32 1.34E-04 -
Don(6,0,low) 3.89 1.35E-04 -
Swel(4,4,int) 7.10 3.06E-02 2.93E-04
Swel(6,6,int) 9.55 2.59E-02 2.29E-03
Swel(4,4,low) 5.38 9.17E-03 2.90E-03
Swel(6,6,low) 6.35 1.16E-02 1.15E-02
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A.1 Finance PDEs data

Version 3
Price Version 3

Sparsity % Normal
inverse

Adapted
inverse

Threshold Don(4,0,int) 1.49 3.10E-04 -
1.00E-02 Don(6,0,int) 9.79 5.35E-05 -

Don(4,0,low) 3.20 6.14E-04 -
Don(6,0,low) 3.56 5.12E-04 -
Swel(4,4,int) 1.49 2.97E-04 4.91E-04
Swel(6,6,int) 9.79 5.10E-05 1.12E-03
Swel(4,4,low) 4.68 1.05E-02 1.01E-02
Swel(6,6,low) 5.80 9.95E-03 9.58E-03

Digital Version 3

Sparsity % Normal
inverse

Adapted
inverse

Threshold Don(4,0,int) 15.34 1.15E-03 -
1.00E-02 Don(6,0,int) 22.51 1.54E-04 -

Don(4,0,low) 11.57 6.34E-04 -
Don(6,0,low) 12.35 5.72E-04 -
Swel(4,4,int) 14.03 1.03E-03 5.50E-04
Swel(6,6,int) 21.64 7.69E-04 5.96E-04
Swel(4,4,low) 10.22 7.89E-04 7.16E-04
Swel(6,6,low) 11.05 2.72E-03 2.72E-03

SLV 5 Version 3

Sparsity % Normal
inverse

Adapted
inverse

Threshold Don(4,0,int) 29.58 1.98E-02 -
1.00E-05 Don(6,0,int) 28.77 9.15E-03 -

Don(4,0,low) 22.80 3.46E-04 -
Don(6,0,low) 16.25 6.32E-04 -
Swel(4,4,int) 44.49 4.63E-03 5.77E-04
Swel(6,6,int) 46.35 7.27E-03 6.37E-04
Swel(4,4,low) 41.93 4.29E-03 2.61E-03
Swel(6,6,low) 42.99 1.20E-02 1.20E-02

SLV 17 Version 3

Sparsity % Normal
inverse

Adapted
inverse

Threshold Don(4,0,int) 5.12 5.51E-03 -
1.00E-01 Don(6,0,int) 7.42 3.98E-04 -

Don(4,0,low) 3.99 5.80E-05 -
Don(6,0,low) 4.70 3.98E-04 -
Swel(4,4,int) 5.80 7.00E-03 2.86E-04
Swel(6,6,int) 10.58 9.52E-03 4.09E-04
Swel(4,4,low) 6.48 2.28E-03 3.05E-03
Swel(6,6,low) 7.32 1.19E-02 1.25E-02

SLV 53 Version 3

Sparsity % Normal
inverse

Adapted
inverse

Threshold Don(4,0,int) 7.08 1.06E-04 -
1.00E-02 Don(6,0,int) 10.96 2.01E-04 -

Don(4,0,low) 4.65 1.29E-04 -
Don(6,0,low) 5.24 1.35E-04 -
Swel(4,4,int) 8.10 3.06E-02 2.90E-04
Swel(6,6,int) 10.30 2.45E-02 2.29E-03
Swel(4,4,low) 6.66 9.17E-03 2.90E-03
Swel(6,6,low) 7.57 1.16E-02 1.15E-02
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A.2 Hydro PDE data
A.2.1 2D results
Version 1

Pressure Version 1

Sparsity % Normal
inverse

Adapted
inverse

Threshold Don(4,0,int) 33.58 1.44E-03 -
1.00E-02 Don(6,0,int) 49.16 9.84E-03 -

Don(4,0,low) 23.97 8.29E-04 -
Don(6,0,low) 27.57 7.85E-04 -
Swel(4,4,int) 36.55 1.96E-02 2.00E-02
Swel(6,6,int) 50.32 1.52E-01 1.77E-02
Swel(4,4,low) 28.83 1.96E-02 2.00E-02
Swel(6,6,low) 32.12 1.55E-02 1.66E-02

Density Version 1

Sparsity % Normal
inverse

Adapted
inverse

Threshold Don(4,0,int) 29.28 2.62E-03 -
1.00E-02 Don(6,0,int) 45.61 1.38E-02 -

Don(4,0,low) 20.68 1.06E-03 -
Don(6,0,low) 24.54 1.01E-03 -
Swel(4,4,int) 32.48 1.76E-02 7.44E-03
Swel(6,6,int) 47.08 1.07E-01 1.46E-02
Swel(4,4,low) 25.45 1.43E-02 7.44E-03
Swel(6,6,low) 29.14 1.33E-02 8.32E-03

Energy Version 1

Sparsity % Normal
inverse

Adapted
inverse

Threshold Don(4,0,int) 36.63 4.76E-04 -
1.00E-02 Don(6,0,int) 50.94 3.58E-03 -

Don(4,0,low) 26.25 2.74E-04 -
Don(6,0,low) 29.72 2.65E-04 -
Swel(4,4,int) 40.06 4.25E-03 2.05E-03
Swel(6,6,int) 53.34 1.53E-02 4.27E-03
Swel(4,4,low) 31.77 1.90E-03 2.05E-03
Swel(6,6,low) 35.43 1.44E-03 2.21E-03

X velocity Version 1

Sparsity % Normal
inverse

Adapted
inverse

Threshold Don(4,0,int) 28.13 6.60E-04 -
1.00E-02 Don(6,0,int) 42.72 3.65E-03 -

Don(4,0,low) 19.10 3.66E-04 -
Don(6,0,low) 22.67 3.51E-04 -
Swel(4,4,int) 31.07 4.53E-03 2.12E-03
Swel(6,6,int) 43.94 4.41E-02 4.64E-03
Swel(4,4,low) 23.83 2.63E-03 2.11E-03
Swel(6,6,low) 27.36 1.78E-03 2.20E-03

Y velocity Version 1

Sparsity % Normal
inverse

Adapted
inverse

Threshold Don(4,0,int) 29.19 3.37E-02 -
1.00E-02 Don(6,0,int) 44.76 2.76E-01 -

Don(4,0,low) 20.06 3.37E-02 -
Don(6,0,low) 23.53 4.00E-02 -
Swel(4,4,int) 29.38 3.85E-02 3.37E-02
Swel(6,6,int) 43.09 2.00E-01 2.53E-01
Swel(4,4,low) 21.37 3.85E-02 3.37E-02
Swel(6,6,low) 24.87 4.14E-02 3.48E-02
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A.2 Hydro PDE data

Version 2
Pressure Version 2

Sparsity % Normal
inverse

Adapted
inverse

Threshold Don(4,0,int) 33.58 1.44E-03 -
1.00E-02 Don(6,0,int) 49.37 9.84E-03 -

Don(4,0,low) 23.97 8.29E-04 -
Don(6,0,low) 27.57 7.85E-04 -
Swel(4,4,int) 36.55 1.96E-02 2.00E-02
Swel(6,6,int) 50.32 1.52E-01 1.77E-02
Swel(4,4,low) 28.83 1.96E-02 2.00E-02
Swel(6,6,low) 32.12 1.55E-02 1.66E-02

Density Version 2

Sparsity % Normal
inverse

Adapted
inverse

Threshold Don(4,0,int) 29.28 2.62E-03 -
1.00E-02 Don(6,0,int) 45.85 1.38E-02 -

Don(4,0,low) 20.68 1.06E-03 -
Don(6,0,low) 24.54 1.01E-03 -
Swel(4,4,int) 32.48 1.76E-02 7.44E-03
Swel(6,6,int) 47.13 1.07E-01 1.46E-02
Swel(4,4,low) 25.46 1.43E-02 7.44E-03
Swel(6,6,low) 29.14 1.33E-02 8.32E-03

Energy Version 2

Sparsity % Normal
inverse

Adapted
inverse

Threshold Don(4,0,int) 36.63 4.76E-04 -
1.00E-02 Don(6,0,int) 50.99 3.58E-03 -

Don(4,0,low) 26.25 2.74E-04 -
Don(6,0,low) 29.72 2.65E-04 -
Swel(4,4,int) 40.06 4.25E-03 2.05E-03
Swel(6,6,int) 53.34 1.53E-02 4.27E-03
Swel(4,4,low) 31.77 1.90E-03 2.05E-03
Swel(6,6,low) 35.43 1.44E-03 2.21E-03

X velocity Version 2

Sparsity % Normal
inverse

Adapted
inverse

Threshold Don(4,0,int) 28.13 6.60E-04 -
1.00E-02 Don(6,0,int) 42.73 3.65E-03 -

Don(4,0,low) 19.10 3.66E-04 -
Don(6,0,low) 22.67 3.51E-04 -
Swel(4,4,int) 31.07 4.53E-03 2.12E-03
Swel(6,6,int) 43.94 4.41E-02 4.64E-03
Swel(4,4,low) 23.83 2.63E-03 2.11E-03
Swel(6,6,low) 27.36 1.78E-03 2.20E-03

Y velocity Version 2

Sparsity % Normal
inverse

Adapted
inverse

Threshold Don(4,0,int) 29.19 3.37E-02 -
1.00E-02 Don(6,0,int) 44.76 2.76E-01 -

Don(4,0,low) 20.06 3.37E-02 -
Don(6,0,low) 23.53 4.00E-02 -
Swel(4,4,int) 29.38 3.85E-02 3.37E-02
Swel(6,6,int) 43.09 2.00E-01 2.53E-01
Swel(4,4,low) 21.37 3.85E-02 3.37E-02
Swel(6,6,low) 24.87 4.14E-02 3.48E-02
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Version 3
Pressure Version 3

Sparsity % Normal
inverse

Adapted
inverse

Threshold Don(4,0,int) 37.68 1.16E-03 -
1.00E-02 Don(6,0,int) 51.78 7.82E-04 -

Don(4,0,low) 29.77 7.85E-04 -
Don(6,0,low) 33.00 7.47E-04 -
Swel(4,4,int) 39.59 1.91E-02 9.60E-03
Swel(6,6,int) 52.49 1.69E-02 5.17E-03
Swel(4,4,low) 32.06 1.91E-02 9.14E-03
Swel(6,6,low) 35.06 1.69E-02 5.18E-03

Density Version 3

Sparsity % Normal
inverse

Adapted
inverse

Threshold Don(4,0,int) 39.83 9.82E-04 -
1.00E-02 Don(6,0,int) 52.46 9.33E-04 -

Don(4,0,low) 31.56 9.84E-04 -
Don(6,0,low) 34.77 9.70E-04 -
Swel(4,4,int) 39.19 1.43E-02 4.85E-03
Swel(6,6,int) 51.65 1.29E-02 6.55E-03
Swel(4,4,low) 31.54 1.43E-02 6.06E-03
Swel(6,6,low) 34.66 1.29E-02 6.50E-03

Energy Version 3

Sparsity % Normal
inverse

Adapted
inverse

Threshold Don(4,0,int) 39.39 2.56E-04 -
1.00E-02 Don(6,0,int) 53.92 2.64E-04 -

Don(4,0,low) 30.05 2.68E-04 -
Don(6,0,low) 33.07 2.59E-04 -
Swel(4,4,int) 41.55 1.74E-03 8.03E-04
Swel(6,6,int) 54.93 1.87E-03 5.25E-04
Swel(4,4,low) 33.26 1.74E-03 8.01E-04
Swel(6,6,low) 36.45 1.87E-03 5.82E-04

X velocity Version 3

Sparsity % Normal
inverse

Adapted
inverse

Threshold Don(4,0,int) 33.17 3.56E-04 -
1.00E-02 Don(6,0,int) 46.78 3.69E-04 -

Don(4,0,low) 25.13 3.56E-04 -
Don(6,0,low) 28.08 3.43E-04 -
Swel(4,4,int) 34.19 1.92E-03 9.64E-04
Swel(6,6,int) 46.47 1.83E-03 7.84E-04
Swel(4,4,low) 26.97 1.92E-03 9.69E-04
Swel(6,6,low) 30.17 1.83E-03 7.75E-04

Y velocity Version 3

Sparsity % Normal
inverse

Adapted
inverse

Threshold Don(4,0,int) 45.92 1.70E-02 -
1.00E-02 Don(6,0,int) 55.89 1.94E-02 -

Don(4,0,low) 39.38 1.70E-02 -
Don(6,0,low) 42.15 1.94E-02 -
Swel(4,4,int) 42.75 2.52E-02 1.01E-02
Swel(6,6,int) 53.67 2.49E-02 1.06E-02
Swel(4,4,low) 35.53 2.52E-02 1.36E-02
Swel(6,6,low) 37.69 2.48E-02 1.53E-02
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A.2 Hydro PDE data

A.2.2 3D results
Version 1

Pressure Version 1

Sparsity % Normal
inverse

Adapted
inverse

Threshold Don(4,0,int) 36.96 3.84E-03 -
1.00E-02 Don(6,0,int) 62.41 3.83E-02 -

Don(4,0,low) 12.39 1.25E-03 -
Don(6,0,low) 15.23 1.20E-03 -
Swel(4,4,int) 36.52 2.50E-03 2.19E-03
Swel(6,6,int) 60.43 5.32E-03 1.97E-03
Swel(4,4,low) 14.40 4.35E-03 4.00E-03
Swel(6,6,low) 17.51 4.37E-03 3.97E-03

Density Version 1

Sparsity % Normal
inverse

Adapted
inverse

Threshold Don(4,0,int) 39.84 2.35E-03 -
1.00E-02 Don(6,0,int) 65.12 2.77E-02 -

Don(4,0,low) 14.04 8.47E-04 -
Don(6,0,low) 16.96 8.11E-04 -
Swel(4,4,int) 39.04 1.39E-03 1.26E-03
Swel(6,6,int) 62.32 3.65E-03 1.14E-03
Swel(4,4,low) 15.13 2.69E-03 2.54E-03
Swel(6,6,low) 18.23 2.71E-03 2.54E-03

Energy Version 1

Sparsity % Normal
inverse

Adapted
inverse

Threshold Don(4,0,int) 43.85 5.37E-04 -
1.00E-02 Don(6,0,int) 69.52 1.39E-04 -

Don(4,0,low) 18.74 2.54E-04 -
Don(6,0,low) 22.61 2.40E-04 -
Swel(4,4,int) 43.16 2.88E-04 2.83E-04
Swel(6,6,int) 66.30 8.13E-04 2.75E-04
Swel(4,4,low) 19.85 6.78E-04 6.51E-04
Swel(6,6,low) 23.47 7.35E-04 7.03E-04

X velocity Version 1

Sparsity % Normal
inverse

Adapted
inverse

Threshold Don(4,0,int) 33.43 7.47E-04 -
1.00E-02 Don(6,0,int) 62.42 2.21E-04 -

Don(4,0,low) 10.31 3.30E-04 -
Don(6,0,low) 12.87 3.23E-04 -
Swel(4,4,int) 30.47 6.80E-04 6.96E-04
Swel(6,6,int) 59.36 1.22E-03 5.09E-04
Swel(4,4,low) 11.35 6.05E-04 5.27E-04
Swel(6,6,low) 14.05 6.13E-04 5.54E-04

Y velocity Version 1

Sparsity % Normal
inverse

Adapted
inverse

Threshold Don(4,0,int) 55.15 1.66E-02 -
1.00E-02 Don(6,0,int) 74.02 1.40E-02 -

Don(4,0,low) 28.76 3.22E-03 -
Don(6,0,low) 32.85 3.39E-03 -
Swel(4,4,int) 54.78 5.99E-03 7.26E-03
Swel(6,6,int) 73.47 8.16E-03 7.48E-03
Swel(4,4,low) 30.91 2.02E-02 2.04E-02
Swel(6,6,low) 34.65 2.34E-02 2.37E-02
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Version 2
Pressure Version 2

Sparsity % Normal
inverse

Adapted
inverse

Threshold Don(4,0,int) 36.96 3.84E-03 -
1.00E-02 Don(6,0,int) 62.77 7.59E-04 -

Don(4,0,low) 12.39 1.25E-03 -
Don(6,0,low) 15.23 1.20E-03 -
Swel(4,4,int) 36.52 2.50E-03 2.19E-03
Swel(6,6,int) 60.44 5.31E-03 1.97E-03
Swel(4,4,low) 14.40 4.35E-03 4.00E-03
Swel(6,6,low) 17.51 4.37E-03 3.97E-03

Density Version 2

Sparsity % Normal
inverse

Adapted
inverse

Threshold Don(4,0,int) 39.84 2.35E-03 -
1.00E-02 Don(6,0,int) 65.12 5.06E-04 -

Don(4,0,low) 14.04 8.47E-04 -
Don(6,0,low) 16.96 8.11E-04 -
Swel(4,4,int) 39.04 1.39E-03 1.26E-03
Swel(6,6,int) 63.04 3.65E-03 1.14E-03
Swel(4,4,low) 15.13 2.69E-03 2.54E-03
Swel(6,6,low) 18.23 2.71E-03 2.54E-03

Energy Version 2

Sparsity % Normal
inverse

Adapted
inverse

Threshold Don(4,0,int) 43.98 5.37E-04 -
1.00E-02 Don(6,0,int) 70.29 1.39E-04 -

Don(4,0,low) 18.74 2.54E-04 -
Don(6,0,low) 22.61 2.40E-04 -
Swel(4,4,int) 43.17 2.88E-04 2.83E-04
Swel(6,6,int) 66.73 8.13E-04 2.75E-04
Swel(4,4,low) 19.85 6.78E-04 6.51E-04
Swel(6,6,low) 23.47 7.35E-04 7.03E-04

X velocity Version 2

Sparsity % Normal
inverse

Adapted
inverse

Threshold Don(4,0,int) 33.43 7.47E-04 -
1.00E-02 Don(6,0,int) 62.72 2.21E-04 -

Don(4,0,low) 10.31 3.30E-04 -
Don(6,0,low) 12.87 3.23E-04 -
Swel(4,4,int) 30.47 6.80E-04 6.96E-04
Swel(6,6,int) 59.51 1.22E-03 5.09E-04
Swel(4,4,low) 11.35 6.05E-04 5.27E-04
Swel(6,6,low) 14.05 6.13E-04 5.54E-04

Y velocity Version 2

Sparsity % Normal
inverse

Adapted
inverse

Threshold Don(4,0,int) 55.15 1.66E-02 -
1.00E-02 Don(6,0,int) 74.02 1.40E-02 -

Don(4,0,low) 28.76 3.22E-03 -
Don(6,0,low) 32.85 3.39E-03 -
Swel(4,4,int) 54.78 5.99E-03 7.26E-03
Swel(6,6,int) 73.47 8.16E-03 7.48E-03
Swel(4,4,low) 30.91 2.02E-02 2.04E-02
Swel(6,6,low) 34.65 2.34E-02 2.37E-02
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A.2 Hydro PDE data

Version 3
Pressure Version 3

Sparsity % Normal
inverse

Adapted
inverse

Threshold Don(4,0,int) 37.29 1.08E-03 -
1.00E-02 Don(6,0,int) 62.48 7.59E-04 -

Don(4,0,low) 12.49 1.25E-03 -
Don(6,0,low) 15.29 1.20E-03 -
Swel(4,4,int) 36.78 2.15E-03 1.46E-03
Swel(6,6,int) 60.67 5.31E-03 1.97E-03
Swel(4,4,low) 14.49 4.35E-03 4.00E-03
Swel(6,6,low) 17.59 4.37E-03 3.97E-03

Density Version 3

Sparsity % Normal
inverse

Adapted
inverse

Threshold Don(4,0,int) 40.15 7.48E-04 -
1.00E-02 Don(6,0,int) 65.15 5.06E-04 -

Don(4,0,low) 14.08 8.47E-04 -
Don(6,0,low) 17.00 8.11E-04 -
Swel(4,4,int) 39.20 1.13E-03 8.28E-04
Swel(6,6,int) 62.35 3.65E-03 1.14E-03
Swel(4,4,low) 15.19 2.69E-03 2.54E-03
Swel(6,6,low) 18.29 2.71E-03 2.54E-03

Energy Version 3

Sparsity % Normal
inverse

Adapted
inverse

Threshold Don(4,0,int) 43.93 2.14E-04 -
1.00E-02 Don(6,0,int) 69.65 1.39E-04 -

Don(4,0,low) 18.77 2.54E-04 -
Don(6,0,low) 22.63 2.40E-04 -
Swel(4,4,int) 43.25 2.88E-04 2.46E-04
Swel(6,6,int) 66.32 8.13E-04 2.75E-04
Swel(4,4,low) 19.87 6.76E-04 6.51E-04
Swel(6,6,low) 23.48 7.35E-04 7.03E-04

X velocity Version 3

Sparsity % Normal
inverse

Adapted
inverse

Threshold Don(4,0,int) 33.47 2.88E-04 -
1.00E-02 Don(6,0,int) 62.62 2.07E-04 -

Don(4,0,low) 10.34 3.30E-04 -
Don(6,0,low) 12.89 3.23E-04 -
Swel(4,4,int) 30.63 3.87E-04 3.32E-04
Swel(6,6,int) 59.38 1.22E-03 5.09E-04
Swel(4,4,low) 11.37 6.05E-04 5.27E-04
Swel(6,6,low) 14.07 6.13E-04 5.54E-04

Y velocity Version 3

Sparsity % Normal
inverse

Adapted
inverse

Threshold Don(4,0,int) 55.31 8.15E-03 -
1.00E-02 Don(6,0,int) 74.02 1.07E-02 -

Don(4,0,low) 28.81 3.22E-03 -
Don(6,0,low) 32.88 3.35E-03 -
Swel(4,4,int) 54.90 5.55E-03 6.19E-03
Swel(6,6,int) 73.47 8.16E-03 7.46E-03
Swel(4,4,low) 30.94 2.02E-02 2.00E-02
Swel(6,6,low) 34.67 2.33E-02 2.34E-02
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Appendix

Z velocity 3D
Z velocity Version 1

Sparsity % Normal
inverse

Adapted
inverse

Threshold Don(4,0,int) 55.26 1.66E-02 -
1.00E-02 Don(6,0,int) 74.10 1.19E-02 -

Don(4,0,low) 28.86 3.01E-03 -
Don(6,0,low) 32.88 3.57E-03 -
Swel(4,4,int) 54.77 5.69E-03 7.30E-03
Swel(6,6,int) 73.26 6.99E-03 6.74E-03
Swel(4,4,low) 30.51 2.02E-02 2.05E-02
Swel(6,6,low) 34.28 2.33E-02 2.38E-02

Version 2

Sparsity % Normal
inverse

Adapted
inverse

Threshold Don(4,0,int) 55.26 1.66E-02 -
1.00E-02 Don(6,0,int) 74.10 1.19E-02 -

Don(4,0,low) 28.86 3.01E-03 -
Don(6,0,low) 32.88 3.57E-03 -
Swel(4,4,int) 54.77 5.69E-03 7.30E-03
Swel(6,6,int) 73.26 6.99E-03 6.74E-03
Swel(4,4,low) 30.51 2.02E-02 2.05E-02
Swel(6,6,low) 34.28 2.33E-02 2.38E-02

Version 3

Sparsity % Normal
inverse

Adapted
inverse

Threshold Don(4,0,int) 55.42 8.52E-03 -
1.00E-02 Don(6,0,int) 74.10 1.18E-02 -

Don(4,0,low) 28.91 3.07E-03 -
Don(6,0,low) 32.91 3.53E-03 -
Swel(4,4,int) 54.88 4.77E-03 6.23E-03
Swel(6,6,int) 73.26 6.99E-03 6.75E-03
Swel(4,4,low) 30.54 2.02E-02 2.00E-02
Swel(6,6,low) 34.29 2.33E-02 2.34E-02
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