<]
TUDelft

Delft University of Technology

Optimal control via reinforcement learning with symbolic policy approximation

Kubalik, Jifi; Alibekov, Eduard; Babuska, Robert

DOI
10.1016/j.ifacol.2017.08.805

Publication date
2017

Document Version
Final published version

Published in
IFAC-PapersOnLine

Citation (APA)
Kubalik, J., Alibekov, E., & Babuska, R. (2017). Optimal control via reinforcement learning with symbolic
policy approximation. IFAC-PapersOnLine, 50(1), 4162-4167. https://doi.org/10.1016/j.ifacol.2017.08.805

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.1016/j.ifacol.2017.08.805
https://doi.org/10.1016/j.ifacol.2017.08.805

Available online at www.sciencedirect.com

IFAC i

CONFERENCE PAPER ARCHIVE

ScienceDirect

IFAC PapersOnLine 50-1 (2017) 41624167

Optimal Control via Reinforcement
Learning with Symbolic Policy
Approximation

Jifi Kubalik * Eduard Alibekov * Robert Babuska ***

* Czech Institute of Informatics, Robotics, and Cybernetics,
Czech Technical University in Prague, Prague, Czech Republic,
{eduard.alibekov, jiri.kubalik} @cvut.cz
** Delft Center for Systems and Control,

Delft University of Technology, Delft, The Netherlands,
r.babuska@tudelft.nl

Abstract: Model-based reinforcement learning (RL) algorithms can be used to derive optimal
control laws for nonlinear dynamic systems. With continuous-valued state and input variables,
RL algorithms have to rely on function approximators to represent the value function and
policy mappings. This paper addresses the problem of finding a smooth policy based on the
value function represented by means of a basis-function approximator. We first show that
policies derived directly from the value function or represented explicitly by the same type of
approximator lead to inferior control performance, manifested by non-smooth control signals and
steady-state errors. We then propose a novel method to construct a smooth policy represented
by an analytic equation, obtained by means of symbolic regression. The proposed method is
illustrated on a reference-tracking problem of a 1-DOF robot arm operating under the influence
of gravity. The results show that the analytic control law performs at least equally well as the
original numerically approximated policy, while it leads to much smoother control signals. In
addition, the analytic function is readable (as opposed to black-box approximators) and can be
used in further analysis and synthesis of the closed loop.

© 2017, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

Keywords: reinforcement learning, value iteration, symbolic regression, genetic programming,
nonlinear model-based control, optimal control

1. INTRODUCTION

Reinforcement learning (RL) algorithms provide a way
to optimally solve dynamic decision-making and control
problems. With continuous-valued state and input spaces,
RL relies on function approximators to represent the value
function and policy mappings. Various types of numeri-
cal approximators have been used: expansions with fixed
or adaptive basis functions (Munos and Moore, 2002;
Busoniu et al., 2011), regression trees (Ernst et al., 2005),
local linear regression (Atkeson et al., 1997; Grondman
et al., 2012), and increasingly popular deep neural net-
works (Lange et al., 2012; Mnih et al., 2013, 2015; Lillicrap
et al., 2015; de Bruin et al., 2016).

Function approximators are difficult to tune, so that con-
vergent learning results. In addition, they can negatively
affect the control performance, as manifested, for instance,
by chattering control signals and steady-state errors. Ex-
amples of such a behavior are often found in papers, in-
cluding the above references, but it is usually disregarded,
as the emphasis in RL is on learning a control policy at all,
typically from scratch. However, if RL is to be regarded
as a viable alternative to other optimal control design
methods, close attention must be paid to the actual control
performance.

In this paper we present a novel method that uses symbolic
regression (SR) to build an analytic representation of the
control policy. Symbolic regression is based on genetic
programming and it has been used in nonlinear data-
driven modeling or data mining, often with quite impres-
sive results (Schmidt and Lipson, 2009; Staelens et al.,
2012; Brauer, 2012; Vladislavleva et al., 2013). To our best
knowledge, there have been no reports in the literature on
the use of symbolic regression for policy approximation
in reinforcement learning. We argue that the effective use
of symbolic regression is a valuable element missing from
current RL schemes and we demonstrate its usefulness.

The specific method employed in this work is a modified
version of Single Node Genetic Programming (SNGP)
(Jackson, 2012a,b), which is a graph-based genetic pro-
gramming method. A basic overview on this methods is
given in Appendix A. For further details, please, refer to
(Kubalik et al., 2016).

The paper is organized as follows. Section 2 outlines
the reinforcement learning approach considered in this
work. Section 3 gives an overview of standard numerical
policy derivation methods and our novel symbolic policy
derivation method is described in Section 4. Simulation
experiments with 1-DOF robot arm are presented in
Section 5, and Section 6 concludes the paper.

2405-8963 © 2017, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Peer review under responsibility of International Federation of Automatic Control.

10.1016/j.ifacol.2017.08.805

Jirt Kubalik et al. / IFAC PapersOnLine 50-1 (2017) 4162—4167

2. PRELIMINARIES

Process model and control goal. The system to be con-
trolled is described by the state transition function xx4; =
f(zg,ug), with g, z311 € X CR™ and up, € Y C R™. The
control goal is defined through a reward function which
assigns a scalar reward 711 € R to the state transition
from xp to Tg41:

Trp1 = ok, ur) (1)

Tht1 = p(Th, Uk, Th41)
The reward function is defined by the user and typically
calculates each individual reward based on the distance of
the current state from a given constant reference state x,
that should be attained. Note that the process model does
not have to be described by explicit equations; one can
use a generative model, such as a numerical simulation of
differential equations.

The goal of RL is find the optimal control policy 7 : X —
U, which in each state selects a control action such that the
expected cumulative discounted reward over time, called
the return, is maximized:

o0
R" = E{ZVkP(xk7W($k>vxk+l)} (2)
k=0
Here v € [0, 1) is a discount factor and the initial state z
is drawn uniformly from the state space domain X. The
return is approximated by the value function V™ : X — R
defined as:

V7T(z) = E{iwip(xi,w(xi),xiﬂ)’xo = x,w} (3)
i=0

An approximation of the optimal V-function V*(z) can be
computed by solving the Bellman optimality equation

V(@) = max|p(a, 7(2), f(z.0) + 7V ((z0)]| @)

To simplify the notation, in the sequel, we drop the hat
and the star superscript: V(z) will therefore denote the
approximated optimal V-function. Based on V(z), the
corresponding optimal policy can be derived in several
ways, as detailed in Section 3.

Fuzzy V-iteration. To compute V(z), the fuzzy V-
iteration algorithm (Busoniu et al., 2010) is used. Given is
the process model and the reward function (1). Define the
set C' = {c1,...,cn} of points distributed over a regular
grid in the state space. Further define a vector of triangular
membership functions (MF) ¢ = [¢1(2),...,on(x)]" so
that each ¢;(x) is centered at ¢;, ie., ¢;(c;) = 1 and
¢i(c;) = 0, Vj # i. The membership functions are nor-
malized so that Zjvzl ¢j(x) = 1,V € X. For a single
state variable x; these functions are defined as follows:

/ J— .
¢1(z;) =max <0, min (1, Z? — ?)) ,
2 (1

¢i(r;) = max (O,min (xj — il Gl mJ)) 5

b)
Ci —Ci—1 Ci+1 — G
i=2,...

aNj -]-7
Tj—CN;—1

¢, (x;) = max (O,min (W, 1)) .

4163

An extension to more dimensions is realized in a straight-
forward way by using the Cartesian product of the mem-
bership functions in the individual dimensions. Finally,
define a finite set of discrete control input values U =
{ul7 u?, ... ,uM} C U. The value function is approximated

by the following basis-function expansion
V(z)=0"¢(x)

where 6§ = [0y,...,0y]" € RN is a parameter vector found
through the following iteration:

0, max| p(ci, u, f(ci,w) 967 9(f (e w) | (5)

for ¢« = 1,2,..., N. This value iteration is guaranteed to
converge (Busoniu et al., 2010) and terminates when the
following condition is satisfied:

10 =07 |]oc <€ (6)
with 6~ the parameter vector calculated in the previous
iteration and € a user-defined convergence threshold. Fuzzy
value iteration is very effective for second-order systems
— computing the optimal value function is a matter of
seconds. However, the computational and memory require-
ments grow exponentially and the method is not practical
for systems above order four. Other methods (Ernst et al.,
2005) can be used for higher-order systems.

3. NUMERICAL POLICY DERIVATION METHODS

There are two principal ways to derive the control policy
from the value function. The first one is based on an
online maximization of the Bellman optimality equation’s
right-hand side, while the second one applies the Bellman
equation offline and uses basis functions to interpolate
online. We term the first method the hill-climbing policy
(H-policy) and the second one the interpolated policy (I-

policy).
3.1 Hill-climbing policy

The optimal control action in any given state x is found as
the one that maximizes the right-hand side of the Bellman
optimality equation (4):

u = argmax {p(m,u’, f(@,u)) + 9V (f(z, u'))] (7)
u' e’

An advantage of this control law is its inherent stability
— the value function is analogous to the control Lyapunov
function (Lewis et al., 2012) and the above control law
boils down to hill-climbing the Lyapunov function. How-
ever, two drawbacks of this method are immediately clear:

(1) The process model must be available for on-line use
in the controller. If the model is computationally
involved, so will be the computation of the control
action.

(2) The maximization is a computationally expensive
procedure. The most straightforward way is to enu-
merate all discrete actions in U and choose the one
that maximizes the argument. This obviously leads
to discrete-valued control action and the associated
drawbacks. For more details and methods to alleviate
these drawbacks refer to (Alibekov et al., 2016a).

Additional properties of the policy given by (7) stem from
the fact that V(x) is approximate and its smoothness is

4164

influenced by the choice of basis functions. This affects
the hill-climbing process and may result in artifacts like
chattering of the control action, whose influence on the
control performance is difficult to estimate a priori.

3.2 Interpolated policy

This method is based on calculating (7) off-line for all
states in set C":

p; = argmax [p(ci,u, flei,u)) + ’yﬂTqS(f(ci,u))} (8)
uelU

where p; is the optimal control action in state ¢;, for
i = 1,2,...,N. These control actions are collected in

vector p = [p1,... ,pN]T € UY and the control action in
an arbitrary state x is then obtained by interpolation:

u=p'e(x) (9)
where ¢ (z) are the same basis functions! as for V(z).
An obvious advantage of this method is its computational
simplicity: most computations are done offline (vector p
is actually obtained for free as a byproduct of the fuzzy
value iteration algorithm) and the online interpolation
is computationally cheap. Another advantage is that (9)
directly produces continuous control actions. However, as
we will see in Section 5, the control signal is not necessarily
smooth and the interpolation can also result in a steady-
state error. Therefore, in the next section, we propose a
symbolic approximation method which is computationally
effective and also yields a smooth control law.

4. SYMBOLIC POLICY APPROXIMATION

We build an analytic approximation of the policy by using
symbolic regression. This general technique is based on
genetic programming and its goal is to find an analytic
equation describing some given data. Here, the specific
objective is to find an analytic equation for the policy
function that closely approximates data sampled from
the interpolated policy. The policy must produce smooth
control and also return as precise value u, of the control
signal at the reference point x, as possible, rendering the
reference state x,. an equilibrium of the closed-loop system:

Ly = f(‘rT’7u7‘) :
Symbolic regression based on genetic programming is
a suitable technique for this task, as we generally do
not have any prior knowledge on the symbolic policy
function sought. We use a variant of Single Node Genetic
Programming, which is described in Appendix A.

When applying genetic programming to a particular sym-
bolic regression problem, one has to define a set of elemen-
tary functions whose combination is sufficient to produce
a precise approximation model. We use the basic arith-
metic operators plus, minus, multiply and three nonlinear
functions — sine, square and hyperbolic tangent. To avoid
over-fitting, we impose a limit on the maximal size of the
evolved symbolic expressions. If no size limits were used,
the genetic programming could produce overly complex
models which would be useless for our purpose. At the
same time, we need the symbolic model to be very precise
at the reference point x, in order to attain a minimal

1 Other interpolation methods can be employed, such as cubic
splines.

Jirt Kubalik et al. / IFAC PapersOnLine 50-1 (2017) 4162—4167

steady-state error. To achieve this, we highly penalize
(weight 10) the error produced by the model at the point
X

For a typical optimal control problem as stated in Sec-
tion 2, the policy surface can be split into saturated parts
where the control signal attains the minimal or maximal
possible value, and a (often rather steep) transition be-
tween the two parts. The transition is generally nonlinear
and its shape follows in a non-trivial way from the model
and from the control goal, stated via the reward function.
Thus, the final policy can be approximated with a com-
bined approximation composed of two constant functions
for the saturated parts and the nonlinear function for
the transition. In this paper, the SR method is used to
evolve the symbolic policy (S-policy, for short) for the
transition only. The training data consist of samples of the
transition itself plus samples on the boundaries between
the transition and the saturated parts of the policy.

5. SIMULATED ROBOT ARM

The policy approximation methods are evaluated and
compared in simulation of a 1-DOF robot arm operating
under the influence of gravity. The equation of motion is:
Ja = Mglsin(a) — (b—|— K2> &+ £u

R, R,

where « is the arm angle measured clockwise from the

upright position and u € [—10, 10] V is the control voltage.
The model parameters are given in Table 1.

(10)

Table 1. Robot arm parameters

Model parameter Symbol Value Units
Arm inertia J 1.91-10=% kgm?
Arm mass M 5.50-1072 kg
Arm length l 420-1072 m
Gravity acceleration g 9.81 m/s?
Damping b 3.10-6 Nms
Torque constant K 5.36-10"2 Nm/A
Armature resistance Ra 9.50 Q

The fully measurable state x consists of the angle o and
the angular velocity &. The reference state x, is given by
the desired reference angle «,. and zero velocity:

]

The reward function is defined as a quadratic function
with a steeper exponential peak superimposed in the
neighborhood of the reference angle:

_ . 2
P(Thy ks Thp1) = —(Tr1 — T1)? — 8(1 — e~ 10@m1=TR)Ty

The parameters of the fuzzy value iteration algorithm are
listed in Table 2. The number of membership functions was
chosen quite large (19x19) in order to get a dense coverage
of the state space domain of interest. To obtain the one-
step-ahead state transitions, the model (10) is simulated
by using the fourth-order Runge-Kutta method with the
sampling period Ts = 0.01s. The discount factor v = 0.99
is selected close to one, so that virtually no discounting
takes place within a typical closed-loop transient which
lasts for about 30 samples (30 ~ 0.74).

The fuzzy value iteration algorithm was applied to the
system for a set of predefined reference states. It converges

Jirt Kubalik et al. / IFAC PapersOnLine 50-1 (2017) 4162—4167

Table 2. Value iteration parameters

Parameter Symbol Value Units
State domain X [-m, 7 x [-40,40] radxrad/s
Number of MF N 361=19x19 -
Discount factor v 0.99 -
Convergence threshold € 0.1 -
Sampling period Ts 0.01 S

in about 70 iterations, yielding value functions such as

the one shown in Figure 1 for the reference angle a, =
—0.7rad.

iy
i

7
i
iy
7
%

Fig. 1. The value function computed for a,. = —0.7rad.

Figure 2 shows a typical closed-loop response obtained
with the I-policy (9) from the initial state zg = [-2.5 0]T.
While the state trajectory is smooth and resembles a time
optimal (bang-bang) response, the control input trajectory
shows transient oscillations. These are caused by the
interpolation artifacts on the steep part of the I-policy
surface visualized in Figure 3.

0
At
e
Dt
3 w w w w
0 0.1 0.2 0.3 0.4 0.5

time [s]

0 0.1 0.2 0.3 0.4 0.5
time [s]

Fig. 2. I-policy: a typical time-domain response suffers
from control input chattering (solid blue curve). S-
policy: control input chattering is absent (dashed red
curve).

Evolved symbolic policies were experimentally evaluated
and compared to H-policy and I-policy. One hundred
simulations were carried out with each policy for three
different reference angles ol = —1.37rad, a2 = —1.05rad
and o = —0.70rad. The simulations were started from
initial states sampled over a regular grid in the state space.
Each simulation resulted in a trajectory for which the
return (2) and the mean absolute angle error (MAE) were

4165

7(X)

2

Fig. 3. The state-input trajectory of Figure 2 superim-
posed on the I-policy surface. The chattering is caused
by the interpolation artifacts clearly visible on the
steep part of the control policy surface.

calculated. The MAE is calculated as the mean absolute
difference between observed angle and the reference angle
over the states visited along the simulation trajectory. The
mean values of R and MAE over the set of one hundred
simulations were used as the performance measures to
compare the three policy variants. The results are in
Table 3. The H-policy performs worse, due to chattering
and steady-state errors, while the I-policy and S-policy
yield similar performance. The main advantage of the S-
policy is the smoothness of the control action, as shown in
Figure 2.

Table 3. Return and mean-absolute error ob-
tained with H-policy, I-policy and S-policy.
Numbers are rounded to two decimal digits.

H-policy I-policy S-policy
o R MAE R MAE R MAE
al -368.24 027 -366.98 0.25 -367.04 0.25
a2 -343.00 0.23 -341.97 0.20 -342.14 0.19
ad -320.08 0.22 -318.04 0.17 -317.92 0.17
mean -343.77 0.24 -342.33 0.20 -342.37 0.20

Examples of well-performing S-policies evolved for the
three desired reference angles are:

u(@r) = sat (alml + agxy + az tanh(0.527) + a4)
u(®?) = sat (alx% + agx1 + agsin(sin(z1) + aq4) + azxs + aG)
u(®?) = sat (alxl + agxs + assin(zy + aq) + a5)
with the function sat(-) defined as follows:

sat(z) = max (—10, min (10, 2))
and the coefficients shown in Table 4. These policies were
selected manually from a set of results obtained by repeat-
edly running the SNGP algorithm (see the Appendix). It
is interesting to note that all the policies involve a linear

PD control law (the linear terms involving 27 and x3) and
one or more smooth nonlinear terms.

Table 4. S-policy coefficients

«, Parameter vector a

al [-25.15 —2.06 21.27 — 54.89]
a2 [1.82 —21.83 —1825 51.60 —1.82 —20.19]
a [-21.53 —2.05 —12.86 0.58 — 18.97]

4166

Figure 4 shows a plot of the S-policy evolved for refer-
ence angle a. Notice that thanks to the smoothness, no
chattering occurs on the state-input trajectory which is
superimposed on the S-policy surface.

Fig. 4. The state—input trajectory of Figure 2 superim-
posed on the smooth S-policy surface. No chattering
occurs.

6. CONCLUSION

The proposed symbolic method offers an alternative way
to policy approximation. An inherent advantage of this
approach is the possibility to interpret and analyze the
resulting policy, which is described analytically. Simulation
results on a 1-DOF robot arm show the evolved sym-
bolic policy exhibits smooth control, contrary to the hill-
climbing and interpolated policies. Moreover, the symbolic
policy outperforms the hill-climbing policy and performs
equally well to the interpolated policy with respect to
the return and the mean absolute angle error. Our future
research will focus on automatic selection of the final
symbolic model based on an accuracy-complexity tradeoff
and on formal analysis of closed-loop stability with the
obtained policies.

7. ACKNOWLEDGMENT

This research was supported by the Grant Agency of
the Czech Republic (GACR) with the grant no. 15-
22731S titled “Symbolic Regression for Reinforcement
Learning in Continuous Spaces” and by the Grant Agency
of the Czech Technical University in Prague, grant no.
SGS16/228/OHK3/3T/13 titled “Knowledge extraction
from reinforcement learners in continuous spaces”. The
authors thank Erik Derner for his suggestions to improve
the paper.

Appendix A. GENETIC PROGRAMMING

Genetic programming (GP) belongs to methods frequently
used to solve the symbolic regression problem. Besides
the standard Koza’s tree-based GP (Koza, 1992), many
other variants have been proposed such as Grammatical
Evolution (Ryan et al., 1998) which evolves programs
whose syntax is defined by a user-specified grammar, Gene
Expression Programming (Ferreira, 2001) that evolves
linear chromosomes that express as tree structures through

Jirt Kubalik et al. / IFAC PapersOnLine 50-1 (2017) 4162—4167

a genotype-phenotype mapping or graph-based Cartesian
GP which represents programs in the form of a directed
graph (Miller and Thomson, 2000).

A Single Node Genetic Programming (SNGP) (Jackson,
2012a,b), used in this work, is a graph-based GP method
that evolves a population of individuals, each representing
a single program node. The node can be either terminal,
i.e. a constant or a variable in case of the symbolic
regression problem, or a function chosen from a set of
functions defined for the given problem. Importantly, the
individuals are not entirely distinct, they are interlinked
in a graph structure so some individuals act as input
operands of other individuals.

Formally, an SNGP population is a set of L individu-
als M = {mg,mq,...,mp_1}, with each individual m;
being a single node represented by the tuple m; =
(s, fi, Suce;, Pred;, O;), where

e ¢; € TUF is either an element chosen from a function
set F' or a terminal set T defined for the problem;

e f; is the fitness of the node;

e Succ; is a set of successors of node i, i.e. the nodes
whose output serves as the input to the node ;

e Pred; is a set of predecessors of node i, i.e. the nodes
that use output of node ¢ as their input;

e O; is a vector of outputs produced by the node.

The population is organized so that the left-most nodes are
terminals followed by function nodes. Every function node
can use as its successor (i.e. the operand) only nodes that
are positioned lower down in the population. This means
that for each m; € Succ; it holds 0 < j < 4. Note that
each function node is in fact a root of a program tree that
can be constructed by recursively traversing its successors
towards the leaf terminal nodes.

A single evolutionary operator called successor mutation
(smut) is used to modify the population. It randomly
picks one individual of the population and replaces one
of its successors by a reference to another individual of
the population making sure that the constraint imposed
on successors is satisfied. Output values of the mutated
node and all nodes higher up in the population affected by
the mutation operation are recalculated.

Finally, the population evolves through a local search-like
procedure. In each iteration, a new population is produced
by the smut operator which is then accepted or rejected for
the next iteration according to a chosen acceptance rule.

The SNGP implementation used in this work to solve
the symbolic regression differs from the one described in
(Jackson, 2012a,b) in the following aspects

e Organization of the population. We use a population
with function nodes divided into head and tail parti-
tions as introduced by Alibekov et al. (2016b). The
head partition nodes can use only other head func-
tion nodes and constant nodes as its input. The tail
nodes can use head nodes, tail nodes, constants and
variables as their input. The head partition therefore
represents a pool of constants that can be used in
expressions rooted in the tail partition nodes.

e Form of the regression model. A hybrid SNGP de-
noted as the Single-Run SNGP with LASSO pro-

Jirt Kubalik et al. / IFAC PapersOnLine 50-1 (2017) 4162—4167

posed by Kubalik et al. (2016) is used, which evolves
generalized linear regression models. The tail parti-
tion nodes represent possibly nonlinear features from
which the generalized linear regression model is built
using the Least Absolute Shrinkage and Selection
(LASSO) regression technique (Tibshirani, 1994). In
this way, a precise, linear-in-parameters nonlinear re-
gression models can be produced.

e Fitness function. The generalized regression models
are optimized with respect to the mean squared error
calculated over the set of training samples.

e Selection strategy used to choose the nodes to be mu-
tated. We use the so-called depth-wise selection intro-
duced by Kubalik et al. (2016). This selection method
is biased toward deeper nodes of well-performing
expressions. The idea behind this strategy is that
changes made to the nodes at deeper levels are more
likely to bring an improvement than changes made to
the nodes close to the root of the expression.

e Evolutionary model. The process of evolving the
population is carried out in epochs. In each epoch,
multiple independent parallel threads are run for a
predefined number of generations, all of them starting
from the same population — the best final population
out of the previous epoch threads. In this way the
chance of getting stuck in a local optimum is reduced.

REFERENCES

Alibekov, E., Kubalik, J., and Babuska, R. (2016a). Policy
derivation methods for critic-only reinforcement learn-
ing in continuous action spaces. In Proceedings 4th
IFAC Conference on Intelligent Control and Automation
Sciences (ICONS), 285-290. Reims, France.

Alibekov, E., Kubalik, J., and Babuska, R. (2016b). Sym-
bolic method for deriving policy in reinforcement learn-
ing. In Decision and Control (CDC), 2016 IEEE 55th
Conference on, 2789-2795. IEEE.

Atkeson, C.G., Moore, A.W., and Schaal, S. (1997). Lo-
cally weighted learning. Artificial Intelligence Review,
11(1-5), 11-73.

Brauer, C. (2012). Using Eureqa in a Stock Day-Trading
Application. Cypress Point Technologies, LLC.

Busoniu, L., Ernst, D., Babuska, R., and De Schutter,
B. (2010). Approximate dynamic programming with a
fuzzy parameterization. Automatica, 46(5), 804-814.

Busoniu, L., Ernst, D., De Schutter, B., and Babuska, R.
(2011). Cross-entropy optimization of control policies
with adaptive basis functions. IEEE Transactions on
Systems, Man, and Cybernetics—Part B: Cybernetics,
41(1), 196-2009.

de Bruin, T., Kober, J., Tuyls, K., and Babuska, R.
(2016). Off-policy experience retention for deep actor-
critic learning. In Deep Reinforcement Learning Work-
shop, Advances in Neural Information Processing Sys-
tems (NIPS).

Ernst, D., Geurts, P., and Wehenkel, L. (2005). Tree-based
batch mode reinforcement learning. Journal of Machine
Learning Research, 6, 503-556.

Ferreira, C. (2001). Gene expression programming: a
new adaptive algorithm for solving problems. Complex
Systems, 13(2), 87-129.

Grondman, 1., Vaandrager, M., Busoniu, L., Babuska, R.,
and Schuitema, E. (2012). Efficient model learning

4167

methods for actor—critic control. IEEE Transactions on
Systems, Man, and Cybernetics, Part B: Cybernetics,
42(3), 591-602.

Jackson, D. (2012a). A New, Node-Focused Model for Ge-
netic Programming, 49-60. Springer, Berlin, Heidelberg.

Jackson, D. (2012b). Single Node Genetic Programming
on Problems with Side Effects, 327-336. Springer,
Berlin, Heidelberg.

Koza, J. (1992). Genetic Programming: On the Pro-
gramming of Computers by Means of Natural Selection
(Complex Adaptive Systems). MIT Press Ltd.

Kubalik, J., Alibekov, E., Zegklitz, J., and Babuska, R.
(2016). Hybrid Single Node Genetic Programming for
Symbolic Regression, 61-82. Springer, Berlin, Heidel-
berg.

Lange, S., Riedmiller, M., and Voigtlander, A. (2012).
Autonomous reinforcement learning on raw visual in-
put data in a real world application. In Proceedings
2012 International Joint Conference on Neural Networks
(IJCNN), 1-8. Brisbane, Australia.

Lewis, F., Vrabie, D., and Vamvoudakis, K. (2012). Rein-
forcement Learning and Feedback Control. IEEE Con-
trol Systems Magazine, 32(6), 76-105.

Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez,
T., Tassa, Y., Silver, D., and Wierstra, D. (2015).
Continuous control with deep reinforcement learning.
ArXiv:1509.02971 [cs.LG].

Miller, J.F. and Thomson, P. (2000). Cartesian Genetic
Programming, 121-132. Springer, Berlin, Heidelberg.
Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., and Riedmiller, M.
(2013). Playing atari with deep reinforcement learning.

arxiv.org/abs/1312.5602.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Ve-
ness, J., Bellemare, M.G., Graves, A., Riedmiller, M.,
Fidjeland, A.K., Ostrovski, G., Petersen, S., Beattie, C.,
Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wier-
stra, D., Legg, S., and Hassabis, D. (2015). Human-level
control through deep reinforcement learning. Nature,
518(7540), 529-533.

Munos, R. and Moore, A. (2002).
discretization in optimal control.
49(2), 291-323.

Ryan, C., Collins, J., and Neill, M.O. (1998). Grammatical
evolution: Evolving programs for an arbitrary language,
83-96. Springer, Berlin, Heidelberg.

Schmidt, M. and Lipson, H. (2009). Distilling free-
form natural laws from experimental data. Science,
324(5923), 81-85.

Staelens, N.,; Deschrijver, D., Vladislavleva, E., Vermeulen,
B., Dhaene, T., and Demeester, P. (2012). Construct-
ing a No-Reference H. 264/AVC Bitstream-based Video
Quality Metric using Genetic Programming-based Sym-
bolic Regression. Circuits and Systems for Video Tech-
nology, IEEE Transactions on, 99, 1-12.

Tibshirani, R. (1994). Regression shrinkage and selection
via the lasso. Journal of the Royal Statistical Society,
Series B, 58, 267-288.

Vladislavleva, E., Friedrich, T., Neumann, F., and Wagner,
M. (2013). Predicting the energy output of wind farms
based on weather data: Important variables and their
correlation. Renewable Energy, 50, 236-243.

Variable resolution
Machine learning,

