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ABSTRACT
A bottom-up building energy modelling at the urban scale based on Geographic Information System and
semantic 3D citymodels can provide quantitative insights to tackle critical urban energy challenges. Never-
theless, incomplete information is a commonobstacle toproduce reliablemodelling results. The residential
building heating demand simulation performance gap caused by input uncertainties is discussed in this
study. We present a data-driven urban scale energy modelling framework from open-source data har-
monization, sensitivity analysis, heating demand simulation at the postcode level to Bayesian calibration
with six years of training data and two years of validation data. Comparing the baseline and the cali-
brated simulation results, the averaged absolute percentage errors of energy use intensity in the study
area have significantly improved from 25.0% to 8.3% and from 19.9% to 7.7% in two validation years, while
CVRMSE2016 = 11.5% and CVRMSE2017 = 13.2%. The overall methodology is extendable to other urban
contexts.
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1. Introduction

The building sector plays an indispensable role in achieving a
low-carbon future as it accounts for more than one-third of total
final energy use and greenhouse gas emissions (International
Energy Agency 2013). Meeting increased energy demand while
achievingdecarbonization targets in rapidly urbanizing societies
has become a common challenge faced by most cities around
the world. Frayssinet et al. (2018) breaks down urban energy
challenges into three aspects, which illustrate why urban energy
modelling has remained an active field for the last 30 years
(Keirstead, Jennings, and Sivakumar 2012).

(1) The urban population is rapidly increasing, with 54% of the
population living in cities in 2014,which is expected to climb
to 66% by 2050 (United Nations 2014). This fact is accom-
panied by increased energy demand per capita by 32% in
the last 40 years (International Energy Agency 2013). Sus-
tainable urban development and holistic energy policies to
balance the increased resource demands are thus crucial
issues.

(2) Renewable energy sources are changing the landscape of
energy market rapidly. Because of the decentralized and
intermittent characteristics of renewable energy sources,
a comprehensive understanding of urban energy systems
is crucial to bridge the gap between energy demand and
supply (International Energy Agency 2014).

(3) Urban heat stress and increased cooling demands caused
by Urban Heat Island (UHI) effects may be further intensi-
fied and become more frequent in the context of climate
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change (Intergovernmental Panel on Climate Change 2007)
and lead to increasing public health problems.

To address these challenges ahead, the building sector
has tremendous potential to reduce energy consumption and
greenhouse gas emissions by improving building energy effi-
ciency such as enforcing appropriate retrofit measures and
adopting energy-neutral buildings design and urban districts
planning (International Energy Agency 2013). In this prospect,
urban scale building energy modelling (UBEM) can be a crucial
enabler to depict the current state of urban energy demand and
predict its future evolution (Reinhart and Davila 2016).

Two urban building energy modelling approaches can be
generally distinguished: top-down and bottom-up methods,
according to Swan and Ugursal (2009). The top-down approach
models long-term total energy demand of the building stock
based on macroeconomic and socioeconomic parameters. It
has a relatively coarse spatial-temporal resolution, often at the
national scale, of energy consumption of the building stock. On
the other hand, the bottom-up approach is more capable of
energy modelling at disaggregated scales.

The bottom-up approach can be further separated into a
statistical method and engineering method (Swan and Ugur-
sal 2009; Kavgic et al. 2010). The bottom-up analytical approach
(Guerra Santin, Itard, and Visscher 2009; Howard et al. 2012;
Mastrucci et al. 2014; Nouvel et al. 2015; Torabi Moghadam
et al. 2018) relies on historical consumption data, and building
stock characteristics data, which are often derived from Geo-
graphical Information System (GIS) and can be further enriched
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with local (census) statistics, to build a mathematical model to
predict urban building energy consumption. One of the advan-
tages of the statistical approach is the ability to predict energy
consumption at large scale without the need for significant
inputs and assumptions as in engineering-based method. Sta-
tisticalmodels, however, are in general, providing less detail and
flexibilitywhen it comes toevaluating the impact of awide range
of energy conservation scenarios of new technologies.

The bottom-up engineering method often requires more
detailed building characteristics data as model inputs, for
instance, occupancy profile, thermostat setting, air infiltration
rate, and so on (for the concerned parameters in this study
see Tables 3 and 4), and it simulates energy demand based
on the science of building physics. The capability to general-
ize and predict system behaviour given previously unobserved
conditions is the most significant advantage of this modelling
approach. Due to those characteristics, it is a versatile approach
to assist decision-making and scenario analysis. For instance, it
has potentials to be used in evaluating (urban) building energy
performance, identifying cost-effective building retrofit mea-
sures, quantifying the impacts of future climate scenarios on
energy consumption and effectiveness of adopting new tech-
nologies, assessing energy demand and supply balance, and
supporting energy-efficient building design and district plan-
ning (Swan and Ugursal 2009; Kavgic et al. 2010; Allegrini
et al. 2015).

Although a bottom-up method is a more comprehensive
tool to assess dynamic energy consumption, the high compu-
tational cost of applying a building energy simulation engine
at the urban scale is a significant challenge. Another obvious
obstacle is how to properly deal with inherent simulation uncer-
tainties. Particularly, input uncertainties either caused by sub-
jective uncertainty or stochastic uncertainty could be significant
factors to cause simulation performance gaps (Keirstead, Jen-
nings, and Sivakumar 2012; Coakley, Raftery, and Keane 2014;
Fonseca and Schlueter 2015; Reinhart and Davila 2016; Nouvel
et al. 2017). In the first case, a single-valued parameter does
exist, but it is unknown to the modeller because of incomplete
information. For instance, the thermal transmittance of the con-
structionmaterial, namely,U-values of walls, roofs, floors, and so
on. In addition, some simulation inputs are inherently uncertain
and fluctuating. For instance, itmakes little sense to define occu-
pancy schedule, thermostat setting of the building with fixed
assumptions, although this is indeed done in practice very often
due to lack of available data.

1.1. Model calibration as ameans of bridging the gap

To minimize input uncertainties and simulation performance
gaps, model calibration and optimization have been exten-
sively studied and applied at building energy simulation (BES).
At BES level calibration, the Bayesian approach (Kennedy and
O’Hagan 2001) is proposed and attempts to infer the best-fitting
parameter values from the posterior distributions of uncertain
parameters. The subjective, uncertain parameters could poten-
tially be reduced to a single value if sufficient data is available;
while the distribution of the stochastic type uncertain parame-
ter could be effectively refined to describe the underlying ran-
domprocess, thus reducing the discrepancy between themodel

prediction and observed energy data (Heo 2011; Booth, Choud-
hary, and Spiegelhalter 2012; Coakley, Raftery, and Keane 2014;
Machairas, Tsangrassoulis, and Axarli 2014).

Nonetheless, bottom-up engineering modelling and calibra-
tion at the urban scale remains a significant challenge as it is way
more expensive to acquire detailed building data at scales or
measured energy consumption data required for validation and
calibration is usually incomplete or at aggregated levels due to
the constrainedof the current registration systemorprivacy con-
cerns. (Keirstead, Jennings, and Sivakumar 2012; Reinhart and
Davila 2016).

Archetype modelling, which seeks to reduce the number
of buildings via segmenting the building stock into a smaller
subset of homogeneous archetypes (energy representative of
sample buildings), seems to be a plausible solution. Among
17 works reviewed by Reinhart and Davila (2016), the number
of archetypes varies from 5 to 3168. In many studies, build-
ing usage type, construction year, geometry, floor area, and
etc., are some commonly used classifiers (Guerra Santin, Itard,
and Visscher 2009; Howard et al. 2012; Mastrucci et al. 2014;
Nouvel et al. 2015; Torabi Moghadam et al. 2018). The TABULA
(Loga, Diefenbach, and Stein 2012) and the follow-up EPISCOPE1

project are notable efforts to develop archetypes among 21
European nations. Monteiro et al. (2018) partition partial resi-
dential building stock of Lisbon into 18 archetypes based on
construction period, size class (single-family, multi-family), roof
type, and neighbouring. Ghiassi and Mahdavi (2017) investigate
three multivariate cluster analysis (MCA) methods, which are
hierarchical agglomerative clustering, K-means clustering, and
model-based clustering, respectively, and each method gener-
ates different numbers of clusters under different scenarios.

Althougharchetypemodellingpotentially reduces the require-
ments of individual building data acquisition. The remained
challenge is that there is no general archetype definition
because fundamental interactions may differ according to local
circumstances. Consequently, the process of classifying and
characterizing building archetype often relies on empirical
assumptions, expert judgments, and examples from the liter-
ature, which can involve many uncertainties and lead to erro-
neous results in someoccasions. Besides, classifying thebuilding
stock based on a few parameters potentially leads to a loss in
thenatural variabilitywhen information thatwould allow further
differentiation is limited or unknown.

Using probabilistic modelling and calibration instead may
be a reasonable approach to incorporate archetype hetero-
geneity and parameter uncertainties more appropriately, how-
ever, there are only a few attempts to do so. Booth, Choud-
hary, and Spiegelhalter (2012) integrate a probabilistic sensi-
tivity analysis with a Bayesian calibration framework (Kennedy
and O’Hagan 2001) based on a monthly average quasi-steady-
state model and calibrate uncertain parameters of a group of
35 physically similar flats using metered electricity data over 61
consecutive winter days. Cerezo et al. (2015), Cerezo et al. (2017)
and Sokol, Cerezo Davila, and Reinhart (2017) iteratively seg-
ment the residential building stock of Kuwait City and Cam-
bridge, Massachusetts respectively into different numbers of
archetypes with increasing levels of details. Among the most
detailed archetype definition, the selected occupant-related
uncertain parameters are further modelled in a probabilistic
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way. The model is based on dynamic simulation engine Ener-
gyPlus and calibrated with monthly or annual metered energy
data of the same year. A threshold is defined for the simulated
errors as a binary likelihood function to filter building-specific
calibration parameters for individual building independently.
The inferred occupant-related uncertain parameters are subse-
quently merged into archetype specific posterior joint distribu-
tions for prediction.

Model calibration is an over-specified and under-determined
problem. In most cases, there are many model inputs but com-
paratively few energy measurements available. This could lead
to over-fitting issues (Kennedy and O’Hagan 2001; Coakley,
Raftery, and Keane 2014). To mitigate this outcome and have
a valid calibration, sensitivity and uncertainty analysis (Saltelli
et al. 2008; Wei 2013) can assist in identifying the most influen-
tial variables affecting the simulation results. The modeller can
thus prioritize data collection and calibration targets or make
more sensible assumptions for the prior probability distributions
of these key uncertain inputs.

1.2. Contributions of the paper

Most existing bottom-up engineering urban energy models
have relied on explicit parameter choices for the building stock
due to limited data availability, and only a few studies have gone
through a calibration process. Simulation performance gaps are
expected if the provided inputs cannot accurately depict the
corresponding buildings and building blocks.

Based on the archetype probabilistic modelling and cali-
bration framework proposed by Cerezo et al. (2015), Cerezo
et al. (2017) and Sokol, Cerezo Davila, and Reinhart (2017), we
further incorporate sensitivity analysis to select the influen-
tial uncertain variables at the corresponding modelling resolu-
tion, which can be either stochastic or subjective uncertainties,
instead of exclusively calibrating occupant-related parameters
based on the empirical assumption. The heating demandmodel
is based on a dynamic urban energy model: CitySim (Robin-
son et al. 2009) and models each building as a single thermal
zone and aggregate to postcode level (tens of households).
Preparation and simulation efforts of using this energy model
are discussed in the text. Instead of using metered data of the
same year, this work expands the training data with six con-
secutive years of annual gas consumption data and validates
the results with two subsequent years of measurement data
to check the validity of the method when new environmen-
tal and weather conditions applied. Rather than using defined
simulated errors as a binary likelihood function to filter building-
specific calibration parameters proposed by Cerezo et al. (2015),
Cerezoet al. (2017) andSokol, CerezoDavila, andReinhart (2017),
this work demonstrates that significant improvements in model
accuracy canbeobtained evenusing simple uncertaintymodels,
i.e. normal distributions with variances estimated from the data.

Data availability is a crucial barrier for such analysis, requir-
ing measurements that span multiple years and cover a large
geographic area for which building models are available. The
study performed in this paper is limited to postcode-6 resolution
(tens of households) and annual gas consumption for this rea-
son, although the methodology is applicable to data sets with
higher resolution. Collecting and harmonizing heterogeneous

local data to perform urban scale energy modelling is often
regarded as a challenging and time-consuming task, this work
provides source references and example procedures to manage
open-source data into a valid 3D city model for urban build-
ing energy modelling which is applicable to most cities in the
Netherlands.

2. Energymodel and simulation inputs

2.1. Urban energymodel: CitySim

Among numerous simulation tools, CitySim is adopted in our
research considering the following characteristics. CitySimmod-
els the dynamic irradiation on the exterior building surfaces
to consider the effects of inter-building obstruction. In addi-
tion, a resistor-capacitor (R-C) thermal model is implemented
in CitySim to calculate the thermal exchange between the out-
door and indoor environment (Robinson et al. 2009). As a con-
sequence, CitySim can simultaneously consider important geo-
metric features at an urban scale, including the building size,
shape, orientation and density in response to local weather
data and at the appropriate level of detail. The simplified build-
ing thermal model not only reduces computational cost but
also eases the burden of managing detailed building level data,
which is often the biggest obstacle at an urban scale simulation.

CitySim requires 3D building models and ground surface
model to simulate environmental interactions in the built envi-
ronment. Building geometry and construction details such as
facade U-values (thermal transmittance coefficient [W/m2K ])
and window to wall ratios (glazing ratio) of each surface, opera-
tion details such as the number of occupants and the occupancy
profile of thebuilding canbe specified in theCitySimXML format
or OGC (Open Geospatial Consortium) CityGML format (Gröger
et al. 2012).

2.2. Data preparation and uncertainty quantification

While the required inputs for runninganenergymodel are signif-
icantly dependent on the adopted simulation engine and mod-
elling purpose, they can, in general, be grouped into the follow-
ing data categories: weather, geometry, construction, energy
system, operation, and energy consumption. These data cate-
gories also apply to CitySim inputs. Tables 3 and 4 summarize
the investigated and modified CitySim parameters in this case
study.

In the final step of data preparation, all heterogeneous
datasets are cleaned, harmonized and integrated mostly by GIS
operations (e.g. FME Desktop2) and Python scripts. The end
results are managed in the PostgreSQL database and some as
GIS layers in shapefile format (Environmental Systems Research
Institute 1998).

2.2.1. Weather data
Historical observation records measured at Schiphol weather
station (approximately 10 km from the city centre of Amster-
dam) are accessed from theRoyalDutchMeteorological Institute
(Koninklijk Nederlands Meteorologisch Instituut, KNMI.3) Also,
diffuse horizontal irradiance values and solar normal irradiance
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values are supplemented from EnergyPlus weather data reposi-
tory, Amsterdam EPW.4 Overall, 8 years of meteorological data
from the year 2010 to 2017 are collected and translated into
CitySim compatible weather files.

2.2.2. Building geometry
In the Netherlands, the Basic Registration Addresses and Build-
ings data (Basisregistratie Adressen en Gebouwen, BAG) man-
aged by Kadaster5 contains detailed, up to date, and georef-
erenced building (BAG.pand) and address (BAG.verblijfsobject)
data of the entire country. Attributes like the year of construc-
tion, building function and building footprint, and etc., are
included in BAG and can be freely accessed viaWeb Feature Ser-
vice (WFS) which ismaintained by Nationaal Georegister (NGR).6

Building geometry is modelled as a level of detail 1 (LOD1)
block model, the coarsest volumetric representation defined
in the Open Geospatial Consortium (OGC) CityGML standard
(Gröger et al. 2012). A LOD1 building model is usually acquired
with extrusion from 2D building footprint with building height
estimated from point cloud data (Ledoux and Meijers 2011). 2D
building footprint in the current implementation is a standard
GIS file in shapefile format (Environmental Systems Research
Institute 1998). Point cloud data (Actueel Hoogtebestand Ned-
erland, AHN3) provides detailed and precise elevation data col-
lected by airborne laser scanning techniques (or LiDAR: Light
Detection And Ranging) and has an average of eight height
points per square meter covering the whole Netherlands. These
open datasets are accessed from PDOK.7 As building refer-
ence height is estimated from AHN3 point cloud data (median
height of the points positioned within the building footprint).
We assume the building reference height has uncertainty range
of 90% to 110%of the estimated height to account for the build-
ing height estimation uncertainty caused by different roof types.
At the time of writing, Dukai, Ledoux, and Stoter (2019) fur-
ther investigate building height uncertainty estimation of the
Netherlands and conclude that LOD1 building geometry gen-
erated based on this method is suitable for most GIS-related
analyses.

The level of detail of the collected data is mostly at build-
ing and postcode scale. To reduce simulation complexity, each
building in this work is modelled as a single thermal zone. This
dramatically simplifies geometric processing complexity, even
though definingmultiple thermal zoneswithin a building is pos-
sible in CitySim. To generate a valid 3D city model for thermal
simulation in CitySim, walls between adjacent buildings were
removed, to prevent CitySim from overestimating heat losses to
the external environment.

2.2.3. Construction data
Construction data refer to the thermal transmittance coefficient
( U-value) of roofs, walls, floors and windows (denoted as Uroof,
Uwall, Ufloor, Uwindow); solar energy transmittance of window
glazing (Gwindow); building infiltration rate (Ninf); window to
wall ratio, window to roof ratio (WWR, WRR); (ground) surface
shortwave reflectance (GSW, SW).While it is impractical to collect
specific construction parameters for each building, some con-
struction parameters, especially U-values, are related to and can
be inferred from the building construction periods. These build-
ing year-dependent data can be found from sources such as

the European Building Stock Observatory8, EPISCOPE and TAB-
ULA project web portals9, Ecofys report (Petersdorff et al. 2005),
Sociale Huursector Audit en Evaluatie van Resultaten Energiebe-
sparing (SHAERE) database (Filippidou 2018). The uncertainty
range of each of the thermal transmittance coefficient ( U-value)
is derived based on theminimumandmaximumvalues found in
three references: (Petersdorff et al. 2005; Loga, Diefenbach, and
Stein 2012; European Commission 2015).

At the stage of data collection, we experienced that U-value
references are generally more accessible and comprehensive
than the other construction parameters. This could be due to
high data collection cost (e.g. building infiltration rate), or the
parameter itself has stochastic variability and therefore is not
readily characterized by a single value. Considering these data
limitations, uncertainty ranges for parameters WRR, Gwindow,
SW,GSWaremadebasedongeneric assumptions andpresented
in Table 4.

The parameter Ninf stands for building air volume change
rate per hour in normal conditions and takes air infiltration
through the envelope, airflow through the doors, windows, and
casual or for ventilation purposes into account (Perez 2014).
Due to the measurement complexity, this is an influential but
one of the least accessible parameters. The uncertainty range is
thus mainly based on the discussion via (Perez 2014) and cross-
referenced with the other studies (Alfano et al. 2012; Bramiana,
Entrop, and Halman 2016).

2.2.4. System data
Although the share of natural gas-powered heating system is
decreasing, the majority of heating demand (80%) is fulfilled
by the combustion of natural gas through boilers or cogen-
eration plants in the Netherlands (Energy Research Centre of
the Netherlands 2015). Table 1 serves as a reference for the
share of household heating system type and efficiency of the
non-profit buildings accessed from SHAERE database (Filippi-
dou 2018). According to this summary table, we adopted 0.80
and 0.95 as a lower and upper bound of the uncertainty range
of heating system efficiency (average per postcode area). Mean-
while, the table clearly shows that the condensing boiler with
an efficiency η ≥ 0.95 is the dominant installation in the existing
building stock. As a consequence, 0.95 is adopted as a baseline
value. Also, accessing detailed heating system type and system
efficiency per building or even postcode level is challenging due
to privacy concerns. As a result, in the current implementation,
heating system diversity and uncertainty is treated as homoge-
neously distributed in the building stock when compared with
simulation inputs.

2.2.5. Operation data
In the context of this research, operation parameters refer to the
number of occupants per building, occupancy schedule (pro-
file), minimum thermostat setting (Tmin), andwindowopenable
ratio (WOR). Occupant per residential building is derived from
postcode statistics published by the Central Bureau of Statistics
(Centraal Bureau voor de Statistiek, CBS10) of years 2008 to 2010.

The minimum thermostat setting of the heating system is
another influential yet uncertain input on heating demand cal-
culation. In the studies (Leidelmeijer and van Grieken 2005;
Guerra Santin, Itard, andVisscher 2009),whicharepartially based
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Table 1. Distribution of heating system types in the Netherlands. Retrieved from
Filippidou (2018).

Type of heating system Frequency Percentage

Condensing boiler (η ≥ 0.95) 930,127 73.7
Improved non-condensing boiler (η = 0.80 − 0.90) 178,557 14.2
Condensing boiler (η = 0.90 − 0.925) 42,026 3.3
Gas/oil stove 40548 3.2
Conventional boiler (η < 0.80) 29,973 2.4
Condensing boiler (η = 0.925 − 0.95) 19,595 1.6
Heat pump 16,722 1.3
μCHP 2751 0.2
Electric stove 484 ≈ 0.0
Total 1,260,783 100.0

Table 2. Thermostat setting (◦C) profiles in Dutch households. Adapted from
Leidelmeijer and van Grieken (2005).

Morning Afternoon Evening Weekend Share

Profile 1 15.2 17.4 14.1 16.2 4%
Profile 2 18.4 18.8 15.6 18.5 16%
Profile 3 19.7 20.2 15.2 20.0 35%
Profile 4 19.6 20.0 11.6 19.8 8%
Profile 5 14.9 20.2 14.7 20.1 11%
Profile 6 20.9 21.2 20.4 21.1 5%
Profile 7 21.6 22.0 15.5 21.7 20%

on the WoON survey11 data in the Netherlands, several differ-
ent temperature setting profiles throughout the different time
of a day and weekend are observed. These are summarized in
Table 2. The weighted average value 18.38◦C is adopted as a
baseline input. This profile also gives an insight and helps the
modeller to quantify uncertainty range of theminimum thermo-
stat setting in averageDutchhouseholdsby taking theminimum
andmaximum temperature as lower andupper bounds from the
weighted average (approximately between 15 ◦C and 20 ◦C).

Window openable ratio (WOR) is rarely mentioned in tech-
nical report and literature reviewed by the authors so that the
baseline value anduncertainty rangeof this parameter arebased
on generic assumptions as presented in Table 4.

2.2.6. Energy consumption data
Metered gas consumption data is not only used to validate sim-
ulation results but also applied to model calibration. Ten years
of annual energy consumption records from 2008 to 2017 at
postcode level are made available via the Liander (distribution
system operator) open data portal.12 To our knowledge, this
is the smallest spatial-temporal resolution energy data of the
study area made publicly available by the time of conducting
this research. The energy consumption records also come with
detailed metadata, such as delivery percentage (network sup-
ply minus customer self-generation), network status, and so on,
which gives the user better control over data quality.

2.3. Input summary

Based on non-exhaustive literature and technical reports, base-
line values and the corresponding uncertainty ranges of the
simulationparameters are summarized in Tables 3 and4 as listed
below.

2.4. Heterogeneous datasets integration and semantic 3D
citymodel enrichment

The entire data harmonization and 3D city model enrichment
process involves several steps. It is accomplished by combin-
ing multiple tools (environments) in use, such as GIS processing
in FME software, geometry processing in Rhinoceros 3D soft-
ware together with Grasshopper plugin, PostgreSQL database
and Python script.

After the data filtering and cleaning process, heterogeneous
spatial datasets are harmonized into aGIS layer: integrated base-
layer (see Figure 1 for thedatamodel),while non-spatial datasets
aremanaged in a database. As the CitySim 3D citymodel isman-
aged in XML format, it can be easily parsed and overwritten by
the developed Python script. The main task done by the Python
script is to retrieve building information from the integrated
baselayer and database and to overwrite the CitySimdefault val-
ueswith thebaseline values or probabilistically sampled for each
building.

3. Methodology

3.1. Implementation

In this case study, 2178 buildings are included in the area
of interest (Figure 2). Considering the resolution of the best
available data, all collected and cleaned open-source datasets
mentioned in the previous section are aggregated at the post-
code level rather than an individual building. At least 84
residential postcodes fulfil simulation data requirements (see
Figure 1) and will thus be used for the model calibration
process.

Because of incomplete floor area information occasionally
found in the GIS layer, building (postcode) volume can be more
accurately estimated than floor area per building (postcode)
when a 3D city model is available. As a consequence, con-
trary to the prevailing convention, the Energy Use Intensity (EUI,
kWh/m3) unit is normalized over cubic meter instead of squared
meter.

3.2. Sensitivity analysis

Depending on the modelling purposes, energy simulation can
sometimes be very sophisticated and requires tens to hundreds
of inputs to run (Swan and Ugursal 2009; Coakley, Raftery, and
Keane 2014; Hsu 2015). Identifying the key parameters influenc-
ing heating demand calculation can be a critical step to have
an effective calibration result, especially when available datasets
and computational resources are constrained.

The Morris method is adopted due to its capability to
give parameter importance ranking with fewer computational
resources (Saltelli et al. 2008). The Morris method is a global
sensitivitymethod to evaluate the influence of uncertain param-
eters over the whole parameter range. The sensitivity analysis
is carried out by the Python script and external library, SALib13

(Herman and Usher 2017), which includes commonly used sen-
sitivity analysis methods.

A stand-alone cubic building with 13.5m in all dimensions
positioned in the centre of the ground surface is set up for the
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Table 3. Data collections applied to the Amsterdam UBEM development.

Data category Dataset Data period Remark Source

Weather Annual hourly observation 2010–2017 a KNMI
Irradiance 1982–1999 b Amsterdam.epw

Geometry Building footprint up to date – BAG (WFS)
Building height 2014–2019 c AHN3

System Heating system statistics 2010–2014 d Filippidou (2018)
Operation PC6 population 2008–2010 e CBS

Occupancy schedule – f ASHRAE
Temperature set-point – 2005 – Leidelmeijer and van Grieken (2005)
Window openable ratio – g –

Construction See Table 4 – – –
Energy PC6 annual gas consumption 2010–2017 h Liander
aThe measurement is made at Schiphol meteorological station, which is approximately 10 km away from Amsterdam centre.
bThis data is based on IWEC data in Amsterdam andmanaged in EPW (EnergyPlus Weather) format. IWEC data is derived from long-term observation sometimes up to 18
years (1982–1999 for most stations). Details refer to https://energyplus.net/weather/sources#IWEC.

cAHN3 point cloud data collection period is scheduled to 2019 Details refer to http://ahn.maps.arcgis.com/apps/Cascade/index.html?appid= 75245be5e0384d47856d2
b912fc1b7ed.

dStatistical distribution data of the heating system type and efficiency collected from the non-profit building stock database (SHAERE) in the Netherlands.
eOnly 2008–2010 is made freely accessible and 2012–2014 data is made available at cost.
fStandardized residential occupancy profile.
gBarely found reliable data source, rational assumption is made for this parameter.
hLiander energy data is better than the CBS data quantitatively and qualitatively for this purpose as it contains several years of consumption data and detailed metadata.

Table 4. Defined baseline values and uncertainty ranges of the simulation inputs.

Parameters Symbol Unit Baseline Uncertainty Source

Building construction parameters
Window to wall ratio WWR – 0.21 U(0.15–0.45) Petersdorff et al. (2005)
Window to roof ratio WRR – 0.00 U(0.00–0.15) –
Thermal transmittance coefficient of roof Uroof W/m2K Table 5 U(0.16–2.60) Petersdorff et al. (2005), Loga,

Diefenbach, andStein (2012) and
European Commission (2015)

Thermal transmittance coefficient of wall Uwall W/m2K Table 5 U(0.21–2.55) Petersdorff et al. (2005), Loga,
Diefenbach, andStein (2012) and
European Commission (2015)

Thermal transmittance coefficient of floor Ufloor W/m2K Table 5 U(0.27–2.09) Petersdorff et al. (2005), Loga,
Diefenbach, andStein (2012) and
European Commission (2015)

Thermal transmittance coefficient of window Uwindow W/m2K Table 5 U(1.68–3.80) Petersdorff et al. (2005), Loga,
Diefenbach, andStein (2012) and
European Commission (2015)

Solar energy transmittance of window glazing Gwindow – 0.76 U(0.30–0.85) –
Surface shortwave reflectance SW – 0.20 U(0.20–0.50) –
Ground surface shortwave reflectance GSW – 0.20 U(0.20–0.50) –
Infiltration rate (air change rate) Ninf Volume/h 0.60 U(0.19–0.81) Alfano et al. (2012), Perez (2014)

and Bramiana, Entrop, and
Halman (2016).

Operation parameters
Minimum thermostat setting Tmin ◦C 18.38 U(15.0–20.0) Leidelmeijer and van

Grieken (2005).
Window openable ratio WOR – 0.25 U(0.00–0.35) –
System parameter
Heating system efficiency Eta – 0.95 U(0.80–0.95) Filippidou (2018).
Geometry parameter
Building height uncertainty B_h – – U(0.90–1.10) Biljecki, Ledoux, and Stoter (2014)

sensitivity analysis. Input uncertainty ranges used in the sensi-
tivity analysis are summarized in Table 4. All 14 inputs (k) with
the corresponding uncertainty ranges are normalized to scale
[0, 1] and divided into 10 levels (p) respectively, which leads
to 1014 input combinations (�). The grid jump size (�) is set
to be 2. The Morris method sequentially steps along each of
the k parameters, thus generating trajectories of k+ 1 points in
the input space (�). A Monte Carlo approach is used to gener-
ate t independent trajectories, for a total number of evaluations
N = t × (k + 1). An increase in t results inmore stable parameter
ranking. Different trajectory numbers (t = 10, 30, 50, 100, 150)
are tested to ensure the stability of the results. The experiment

Table 5. Baseline U-values in different construction periods (Loga, Diefenbach,
and Stein 2012).

Parameters Pre 1965 1965–1974 1975–1991 1992–2005 2006–2014 Post-2014

Uroof 1.68 0.89 0.64 0.36 0.23 0.16
Uwall 1.76 1.45 0.64 0.36 0.27 0.21
Ufloor 1.75 2.09 0.94 0.35 0.27 0.27
Uwindow 2.90 2.90 2.90 1.80 1.80 1.80

reveals that when t � 50, namely N � 750, is sufficient to give
a stable parameter ranking for the further analysis in this case.
The procedure for conducting the Morris method is presented
in Figure 3.

https://energyplus.net/weather/sources{#}IWEC
http://ahn.maps.arcgis.com/apps/Cascade/index.html?appid=75245be5e0384d47856d2b912fc1b7ed
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Figure 1. The UML diagram shows the data model and data filtering criteria in this study. The spatial resolution of each data is illustrated on the left. The integrated
baselayer is harmonized from different source layers (Building, Address, and Census data), and the data filtering rules are indicated with the constraints headers on the
right.

Figure 2. 3D city model of the partial districts in Amsterdam-Oost. Buildings (postcodes) coloured in dark have sufficient data to perform heating demand simulation
and calibration.

With the setting mentioned above, the operation parame-
ter Tmin (minimum thermostat setting) is found to have the
most significant influence on annual heating demand calcu-
lation, followed by construction parameters Uwall and Ninf .
Furthermore, the result presented in Figure 4 clearly shows
that construction parameters, especially U-values of the wall,
floor, window, and roof have significant to moderate influence

on annual heating demand calculation. Meanwhile, building
height (B_h), building surface shortwave reflectance (SW), win-
dow to roof ratio (WRR), ground surface shortwave reflectance
(GSW), and window openable ratio (WOR) are insignificant.
The ignorable result of SW and GSW might be caused by
the experimental setting, where no surrounding buildings are
presented.
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Figure 3. The procedure to perform Morris sensitivity analysis in this study.

Figure 4. Sensitivity analysis result based on a simple cubic buildingwith k = 14,
p = 10,� = 2, and t = 50. Diagram shows parameter importance ranking based
the average elementary effectμ∗ .

Further investigations revealed that in this sensitivity anal-
ysis based on CitySim environment, simply providing system
efficiency (Eta) alone cannot effectively calculate the associated
influence on heating EUI when another CitySim module input,
the maximum heating thermal power, is not adjusted accord-
ingly. Nevertheless, it is challenging to collect detailed informa-
tion of maximum thermal power of the heating system at this
spatial level, and thusprior knowledgeof this parameter remains
ambiguous. As a consequence, this sensitivity analysis result is
interpreted based on 13 useful parameters in the end.

3.3. Postcode probabilistic modelling

The building stock of the studied area is classified into 18
archetypes based on Dutch national reference home stan-
dard (Agentschap NL – Ministerie van Binnenlandse Zaken
en Koninkrijksrelaties 2011, 2013) and EPISCOPE and TABULA
project (Loga, Diefenbach, and Stein 2012) as we can asso-
ciate explicit energy-relevant building parameters, e.g. asso-
ciating building construction U-values based on the building
constructionperiod, from the correspondingdatabase. Basedon
this classification scheme, each residential postcode in this case
study is assignedwithonearchetypedefinitionbasedon its aver-
aged construction period and dwelling type, see Figure 5. While
the Dutch standard and TABULA have six and four dwelling

types respectively, they are aggregated into three main types in
this research: single-family house (SFH), terrace house (TH) and
multi-family house (MFH).

According to the sensitivity analysis result, calibrating the key
uncertain parameters ismost likely tominimize heating demand
simulation performance gaps. As a consequence, two key uncer-
tain parameters (Tmin and Ninf ) are selected, and the corre-
sponding uncertainty ranges are divided into 5 sections, respec-
tively, with an uninformative prior distribution assumption (uni-
form probabilities). These prior distributions are assigned to
individual postcode and will be calibrated independently in the
next step. We note that this implicitly assumes a single building
model (and unique values of Tmin and Ninf) per postcode area.
When more data is available for calibration, a more fine-grained
approach could be taken.

We choose the first (Tmin) and the third parameters (Ninf )
for calibration instead of the second one (Uwall) because Uwall,
Uroof, Ufloor are often bound together and correlated to the
construction year; or alternatively dependent on the effective
year built, if the building has undergone the major building
retrofit. This indicates calibrating Uwall alone is likely to lead
to an over-fitting result if not taking Uroof, Ufloor into account,
while calibrating additional Uroof, Ufloor will lead to a substan-
tial increase in complexity. This is under consideration for the
future works.

3.4. Bayesian calibration framework

All of the previous steps lead to two important outputs, explicit
characterization of the building stock according to the assigned
archetype, which is grouped into a vector xp, and two key uncer-
tain parameters, Tmin and Ninf, denoted as a random vector
�p, where the index p refers to the postcode. Tmin and Ninf
are each divided into 5 levels with a uniform prior probability
distribution respectively, and this leads to totally 25 input combi-
nations. Together, (xp,�p) thus can be interpreted to generate
25 models for each valid postcode. We are particularly inter-
ested inwhich input combination, θp, ismost likely to be correct,
given the simulation model and the metered data Epy , where y
is the measurement year in the training set. This is determined
using the posterior probability P(θp|Epy), calculated according
to Bayes’ theorem (1), where P(Epy|θp) is the likelihood function
and P(θp) is prior probability.

P(θp|Epy) = P(Epy|θp)P(θp)
P(Epy)

(1)
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Figure 5. The chart on the left shows the adopted archetype classification rules. The chart on the right shows eachpostcode is independently assignedwith uninformative
prior assumptions of Tmin and Ninf.

and

P(Epy) =
∑
θNinf

∑
θTmin

P(Epy|θp) × P(θp) (2)

In reality, there are many (independent or correlated) factors
that can affect likelihood function, and the explicit form does
not exist. As a consequence, we assume the likelihood function
P(Epy|θp) can be described by a Gaussian normal distribution
function as shown below.

P(Epy|θp) ≈ P(Epy ;μpy , σp) = 1

σp
√
2π

exp

(
− (Epy − μpy)

2

2σ 2
p

)

(3)

where Epy is the measured EUI (kWh/m3) of the individual post-
code p of the training year y; μpy is the simulated EUI of the
corresponding postcode of the same year given the specific
input combination θp; the standard deviation σp accounts for
the inherent variability of energy consumption in the postcode.
We estimate the value of σp as 6.8% of Ep, where Ep is the aver-
age EUI of the individual postcode over the six training years.
This estimate follows from a least squares fit of the linear model
(component-wise)

epy =
∑

q∈postcodes
aqδqp +

∑
z∈years

bzδzy + npy (4)

where the dependent variable, epy = Epy/Ep, is the normalized
postcode EUI and aq and bz are fitting coefficients per post-
code q and year z. The postcode and year are used as features
with ‘one-hot’ encoding via the Kronecker deltas (δij = 1 if i = j,
and 0 otherwise). The resulting distribution of the residuals npy

is shown in Figure 6. Besides a few high-end outliers, the nor-
malized residual errors collected from the least square fitting
approximates to a normal distribution and with a standard devi-
ation ≈ 0.068, see Figure 6. This result gives us a confidence
to assume that 6.8% of Ep can be used as σp in Equation (3) to
describe typical EUI variations.

4. Result and discussion

In this case study, we developed an urban building heating
demand model with CitySim for the partial districts of Amster-
dam based on open-source data collections and the model is
calibrated with six years of measured consumption data.

In the training phase, annual metered data from the year
2010 to 2015 are used to train the model (Figure 7). The prior
probabilities of P(�p) are initialized as a uniform distribution,
so that each value of P(θp) is equiprobable. An iterative calibra-
tion process uses the posterior probability of theN year as a new
prior of the N+ 1 year. When the training phase is complete,
the input combination P(θp) with the highest posterior proba-
bility is selected as a calibrated input for each valid postcode to
rerun heating demand simulation with 2016 and 2017 weather
data. Validation is performed by comparing the baseline sim-
ulation result as well as the calibrated simulation result to the
measurement data, using the absolute percentage error defined
in Equation (5). Coefficient of variation of the root mean square
error (CVRMSE) defined in Equation (6) is also applied tomeasure
howwell themodel fits themeasured values at validation period
2016 and 2017, respectively.

PE = |EUImetered − EUIsim
EUImetered

| × 100% (5)
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Figure 6. Residual distribution of the normalized EUI data.

Figure 7. Visualizing the Bayesian inference process of the example postcode 1094 SH throughout the training phase. The joint probability distribution is visualized in a
2D grid in the top, while marginal probability distributions of Tmin and Ninf are presented in the bottom. From left to right: the prior probability, the posterior after use of
the 2010 data, and the posterior after use of data up to and including 2015.

CVRMSE = 100
y

×

√√√√∑Np
i=1(yi − ŷi)2

Np
(6)

where Np is the number of postcode EUI measurements, yi is
the metered EUI for the ith postcode, while ŷi stands for the
simulated EUI, and y is the mean of the Np metered EUI values.

Comparing the baseline and the calibrated simulation results
(Figure 8 and Figure 9), the averaged absolute percentage error

at postcode level of the validation years, 2016 and 2017, has
improved from 25.0% to 8.3% and 19.9% to 7.7% respectively.
Meanwhile, postcodes with absolute percentage error less than
10.0% has increased from 23.8% to 75.0% in 2016 (number of
calibrated postcodes = 84) and from 32.9% to 78.8% in 2017
(number of calibrated postcodes = 85). Besides, the results
show CVRMSE2016 = 11.5% and CVRMSE2017 = 13.2%. This indi-
cates that a representative set of parameters was estimated for
the calibrated postcodes.
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Figure 8. Baseline and calibrated simulation results of the partial postcodes presented in absolute percentage error. The horizontal line indicates 5% of allowable
percentage error suggested by the ASHRAE standard.

The proposed Bayesian calibration framework suggests that
in the absence of specific information about probability dis-
tributions, significant improvements in model calibration can
be obtained by using uniform prior distributions and assum-
ing the likelihood functions for energy intensity to be Gaussian.
The standard deviation σp of the Gaussian distribution function
(Equation (3)), which accounts for the inherent variability of the
postcode EUI, can be derived from 6.8% of Ep (average EUI of
the individual postcode over the training years). This is based
on a distribution analysis of normalized residual errors result-
ing from the simple least square fitting (Equation (4)), where the
dependent variable is the normalized postcode EUIs of the train-
ing years and two variables, postcode and year are adopted as
classifiers.

Following the proposed urban scale calibration methodol-
ogy, the calibrated UBEM shows acceptable error ranges when it
is served as guidance to assist urban planning, retrofit measures
assessment, or toprovidedata-drivendecision support (Reinhart
and Davila 2016). Themethodology and probabilistic modelling
also help the modeller to depict the diversity of building stock
more accurately.

We note it is beneficial to test if the calibrated parameters can
also lead to a better simulation performance at the building level
or higher temporal granularity (e.g. monthly or weekly). Validat-
ing our results at a finer spatial-temporal resolution is however
not feasible, because the best available open-source measure-
ment data is at the annual and postcode level. It is also interest-
ing to investigate the calibration performance when adopting
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Figure 9. Comparison between the postcode metered gas consumption EUIs and simulation EUIs. The dash lines indicate 5% of allowable percentage error suggested
by the ASHRAE standard.

other uncertain parameters (rather than Tmin andNinf ) from the
sensitivity analysis result to perform probabilistic modelling and
calibration. Those pointsmentioned above are under considera-
tion for future work. In the remainder of this section, we discuss
distinct possibilities to improve our research.

4.1. Generalizability of themethodology

Constructing and calibrating an urban building energy model is
often recognized as a data-hungry process. This study presents
an approximate data scope required by this methodology and
the efficacy of the calibration results with inputs entirely based
on open-source data. In practical situations, data availability
and granularity and the critical energy influential parameters
vary in different urban areas. Nevertheless, thanks to the crowd-
sourcing Open Street Map14, most cities around the world can
already be characterized by the primary data (e.g. building foot-
print, function, or year built). Building height can be estimated if
the Digital SurfaceModel (DSM) andDigital TerrainModel (DTM)
are available. Base on these fundamental data sources, further
information can be stepwise enriched via GIS processing (e.g.
inferring dwelling geometry types) or connecting to the open
building (energy) information database, technical reports, and
literature to assume the explicit values and uncertainty ranges
of the local construction parameters. At a minimum, historical
energy consumption data as a training data is required. Through
sensitivity analysis, themodeller can determine themost appro-
priate way to perform location-specific archetype classification
and choose the vital uncertain parameters for probabilisticmod-
elling and Bayesian calibration. While there is not yet a stan-
dardized approach and it often relies on how themodeller inter-
prets and deals with the variations that could happen in those
intermediate steps according to different local circumstances,
we expect the methodology to apply to other urban areas as
long as the aforementioned fundamental data is available and
can be extended to higher data resolutions. The critical energy
influential parameters can be identified and collected.

4.2. Data availability and levels of detail

The impact of data availability and granularity on simulation
results is evident. As for what kind of spatial and temporal data
are suitable for the specific modelling scale and task, sensitivity
analysis such as the Morris method provides a very efficient and
interpretable way for prioritizing calibration targets. Neverthe-
less, narrowing down the data collection scope can sometimes
be a challenging task already, as the influence of the specific
input could be unknown in the early development phase. As a
consequence, it is worth to discuss and apply the levels of detail
(LODs) concept to energy simulation parameters, according to
the modelling domain, spatial and temporal scale of modelling.

This could possibly start with reviewing and summarizing the
current works, as many studies have tried to identify the crit-
ical variables on different modelling scales and purposes, but
no comprehensive review addressing this perspective exists yet.
Secondly, sensitivity analysis can be a powerful tool in assisting
such a task when high quality and high granularity data is not
directly available. When interpreting sensitivity analysis results,
one should be cautious that the result is model specific, and the
defined uncertainty range has a strong influence on the results.
By performing the aforementioned analysis, this could result in
a hierarchical LOD framework for energy modelling, which can
serve as a guideline for future UBEM development.

4.3. Heterogeneous dataset integration

The open-source data collections used for this case study may
not be the best datasets available. For instance, open-source
CBS postcode 6 population data is comparatively old, and non-
profit building stock databases could be a valuable source if
accessibility is authorized. Nevertheless, it is believed that the
sources listed in Table 3 provide a good basis for further UBEM
development in the Netherlands.

Harmonizing and integrating multi-datasets with differ-
ent spatial-temporal resolutions is often considered a time-
consuming and complex task. Although the data integration
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workflow and the specific data model tailored for the project
requirement have been made from scratch, to increase data
interoperability and to facilitate data exchange for multi-scale
andmulti-domain simulations, it is worth to consider alternative
ways to maintain 3D city models.

An international standardized format such as CityGML, which
is based on the Open Geospatial Consortium (OGC) standard
(Gröger et al. 2012), and possibly with the support of the Energy
ADE (Agugiaro et al. 2018), can be an alternative option. CityGML
is based on the Geography Markup Language (GML) to rep-
resent and exchange virtual 3D city models. It can define 3D
geometry, semantics, ontologies and appearance of most rele-
vant topographic objects of different spatial scales on varying
levels of detail (LODs). Besides the existing CityGML thematic
modules (bridge, building, city furniture, and so on), it is possi-
ble to extend the new classes and attributes by the Application
Domain Extension (ADEs) such as Energy ADE, Utility Network
ADE (Kutzner and Kolbe 2016), etc., where the Energy ADE is
highly relevant to the urbanbuilding energymodelling purpose.
More future works are required to understand and test how the
Energy ADE can support multi-scale and multi-domain simula-
tion and how the standardized datamodel can fit diverse energy
simulation engines and simulation applications.

4.4. Bayesian inference and calibration

It should be reminded that in the proposed Bayesian inference
and calibration framework, applying a Gaussian normal distribu-
tion to describe the likelihood function, is an assumption as no
explicit function exists. The current implementation might fall
short to accurately describe the real likelihood distribution for
the respective input combinations; for instance, the simulation
variability caused by other input uncertainties are not incorpo-
rated in this formulation. This is an issue tobeaddressed in future
works.

In a rigorous sense, the parameter posterior distributions
should be interpreted on a postcode basis in this study.
However, if the parameter posteriors of the specific building
archetype (not necessarily confined to the archetype definition
of this study) show a statistically significant pattern, the parame-
ter posteriors might be able to apply to the untrained postcodes
or buildings to fill the spatial and energy data gap often seen at
urban scale modelling.

Computation time is another aspect to be addressed. Accord-
ing to the current implementation, calibrating two parameters
requires 25 simulation runs in total, and this process is iteratively
conducted 6 times given 6 years of annual gas consumption
data. This is 150 simulations per city model in total. Depending
on the partitioned city model scale of the test site and geome-
try complexity (Figure 2), this can require a significant amount of
time. A small scale simulation with 226 buildings took approxi-
mately 27 h; medium scale with 589 buildings took about 3.75
days; the most extensive scale simulation with 1363 buildings
required almost 10 days to complete the expensive training
phase on a personal computer with a 4 core 3.60 GHz proces-
sor and 16GB RAM. Although CitySim simulation model scales
well in general, such time constraint could still become an obsta-
cle to developing UBEM into an interactive platform for decision
support applications.

Table 6. Ten building characteristics are used to calculate definite energy label in
the Netherlands (Rijksdienst voor Ondernemend Nederland 2017).

Construction year Dwelling type
Type of glass Facade insulation
Room insulation Floor insulation
Heating system type Hot water supply type
Ventilation system Solar panels and solar water heater

4.5. Accelerating building stock retrofit through a
calibrated UBEM

One practical use case of the calibrated urban energy model
could be to perform extensive scale building performance map-
ping and labelling. In the Netherlands, registration of a certi-
fied energy label when selling, releasing or delivering a house
is enforced by law since January 2015. Based on the certified
energy label, the house owner can take suggested building
retrofit measures if necessary. A provisional energy label, cal-
culated based on publicly registered data such as construction
year, etc., is no longer sufficient after January 201515 (Rijksdi-
enst voor Ondernemend Nederland 2017). However, registering
a definite energy label, which is calculated based on ten building
characteristics as listed in Table 6, requires an authorized expert
to evaluate an individual house, which is a labour-intensive and
time-demanding task. This might explain why more than 50%
of buildings did not yet have a definite energy label by the end
of 201816, thus slowing down the building renovation process.
Following the building renovation rates achieved over the years
2010–2014, Filippidou (2018) points out that attaining the short-
term goals of upgrading to an average energy label B in the
non-profit Dutch housing stock by the end of 2020 is not proba-
ble. Based on this fact and the urgent need, calibrated UBEM is a
powerful and versatile alternative to perform large-scale build-
ing performance mapping and labelling and comes with the
capability to carry out retrofitmeasures assessment and scenario
analysis. Also, when the calibrated UBEM is developed into a
decision support environment, visualizing energy consumption
patterns and retrofit saving potentials could potentially increase
citizen engagement, which is one of the critical factors to ensure
a successful energy transition.

5. Conclusion

In this paper, we have investigated the urban scale residen-
tial heating demand simulation performance gaps caused by
input uncertainties and examined the effectiveness of applying
the Bayesian calibration approach to resolve this common chal-
lenge. The methodology applied in this project has successfully
carried out an urban scale heating demand modelling based on
a LOD1 3D city model of the mixed-use districts in Amsterdam,
constructed entirely from open-source data, and calibrated 84
residential postcodes basedon the Bayesian approach, provided
with six consecutive years of gas consumption data. The effec-
tiveness of the Bayesian calibration framework is validatedwhen
comparing the baseline and the calibrated heating demand sim-
ulation results with two additional years of measurement data.
Although the model calibration and validation are performed at
an aggregated postcode level due to data restriction, we expect
the overallmethodology is applicable to higher data resolutions.
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The code used for the calibration process can be found on the
GitHub repository17.

To ensure an effectivemodel calibration, performing sensitiv-
ity analysis is well-advised. The result derived from the efficient
and effective Morris method indicates that thermostat setting
has the most significant impact on annual heating demand sim-
ulation in terms of Amsterdambuilding stock, followed by build-
ing construction parameters such as U-values and infiltration
rate. Besides, a LOD1 city model should be sufficient to produce
acceptable annual heating results based on CitySim.

Modelling the critical uncertain parameters in a probabilistic
way can appropriately reflect the imperfect state of knowledge
about the urban environment. With the help of Bayesian infer-
ence and adequate observation data, parameter uncertainties
can be further reduced, and consequently establishing a more
reliable UBEM and potentially applying the inferred parame-
ters inother engineering-basedmodels forprediction. Following
this framework and adjusting according to the local context,
calibrated bottom-up heating demand energy models can be
developed in most cities in the world as long as sufficient built
environment data is provided, and the utilities are willing to
disclose partial energy consumption data.

The calibrated urban building energy model would be most
needed by municipalities, urban planners, utilities and engi-
neering consultancies who might show keen interest to per-
form energy policy assessment, scenario analysis. It also has
the potential to perform large-scale building performance map-
ping and labelling to prioritize building retrofit targets and to
accelerate building stock renovation and energy transition.

Notes

1. EPISCOPE: https://episcope.eu/welcome/.
2. FME: https://www.safe.com/.
3. KNMI: https://projects.knmi.nl/klimatologie/uurgegevens/selectie.cgi.
4. EnergyPlus Weather (EPW): https://energyplus.net/weather/sources.
5. Kadaster: https://www.kadaster.nl/bag.
6. National Georegister: http://www.nationaalgeoregister.nl.
7. PDOK: https://www.pdok.nl/nl/ahn3-downloads.
8. European Building Stock Observatory: https://ec.europa.eu/energy/en/

data-analysis/building-stock-observatory.
9. The TABULAWebTool: http://webtool.building-typology.eu/#bm.

10. CBS: https://www.cbs.nl/nl-nl/dossier/nederland-regionaal/geografisc
he%20data/gegevens-per-postcode.

11. WoOn: https://www.wooninfo.nl/.
12. Lianderopendata: https://www.liander.nl/over-liander/innovatie/open-
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