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Abstract. Manufacturing imperfections are an inherent aspect of the production process, af-
fecting the reliability and performance of all engineered components, including actuators. This
work investigates the effects of manufacturing uncertainty in coil assembly. Given the manufac-
turing tolerances of geometrical and material properties of wires and coils, the coil’s electrical
response is studied from a probabilistic perspective. While many researchers acknowledge these
uncertainties, they often do not quantify their effects on the system’s response. We propose the
use of copulas to model nonlinear relationships and quantify the probabilistic dependence be-
tween design variables (i.e., wire and coil’s properties) and their effects on electrical responses.
Additionally, tolerances of the design variables are determined through unstructured expert
elicitation. The results show the impact of the thickness of the wire’s insulation in the perfor-
mance of the coil. Furthermore, we establish a design space that is studied probabilistically,
allowing for probabilistic design optimization.
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1 INTRODUCTION

Variations in manufacturing imperfections are expected during the manufacturing of coil as-
semblies used in actuators. The coil’s electrical properties depend on the wire’s geometrical
and material parameters in addition to the coil’s geometry, and its positioning with respect to
the entire topology of the actuator. Consequently, many parameters, such as electrical prop-
erties, may vary between coils depending on the tolerances of the manufactured wire and coil
assembly. Therefore, manufacturing tolerance is critical for the overall performance, reliability,
and efficiency. However, achieving higher manufacturing precision leads to rapidly increasing
costs and, beyond a certain level, such fine precision may become unnecessary depending on
the specific application. Therefore, it is of interest to know what variables engineers have to
consider when designing, manufacturing, and assembling devices to improve quality control.

Linear actuators are types of devices that produce force for a linear motion, i.e. to move
objects in a straight line. Such devices are ubiquitous in various applications, from everyday
uses, such as standing desks, to more industrial applications, such as assembly lines in manu-
facturing, to high-tech applications in scientific equipment, where precise movement control is
in nanometers [1]]. Achieving precise control requires the precise manufacturing and assembly
of such devices. Probabilistic approaches to quantify uncertainties in the design stage can serve
to improve quality control. More specifically, understanding the probabilistic dependencies be-
tween the variables involved in the manufacturing and assembly processes of linear actuators
and studying how they affect the performance metrics help engineers to design devices under
uncertainties and make improvements based on desired outcomes.

In this work, we aim to identify the probabilistic dependencies between the variables in-
volved in the production of actuators, and how they can be characterized from a probabilistic
point of view. More specifically, we study the dependence between design uncertainties, such as
material properties, manufacturing and assembly tolerances, and how these uncertainties affect
the performance of the actuator.

In actuator design, researchers often consider uncertainties but do not quantify their effects.
Two common approaches to overcome the lack of uncertainty quantification are mentioned in
[2] : 1) designing under uncertainty using robust design optimization methods, in which the
uncertainty characterization is captured by a range of uncertain conditions, and ii) avoiding
certain manufacturing processes and opting for alternative designs that are less sensitive to
uncertainties. On the other hand, the finite element method (FEM) is commonly employed to
analyse the behaviour of actuator designs, which can be computationally intensive. This limits
the number of uncertainties that can be studied. E.g., an article by Jigi Wu et al. [3] only
considered magnet material uncertainties. Similar approaches are found in [4, 5].

Uncertainty Quantification (UQ) methods vary from classical approaches, such as Monte
Carlo (MC) simulations and Polynomial Chaos Expansion (PCE) to deep learning surrogate
models [6]. While PCE can fall short due to orthogonal basis assumptions, and machine learn-
ing techniques are usually black boxes, copulas provide the advantage of having probabilistic
interpretations, as well as their capability to model nonlinear relationships.

A general framework for UQ has been previously proposed using copulas [7]], which consid-
ers complex input dependencies (e.g. multi-physics) via vine-copulas, as well as similar works
which address multidimensional correlations [8]]. While the frameworks exemplify methodolo-
gies on e.g. truss structures, or multiscale composite material, as per the authors’ knowledge, it
has never been applied to electric motors.

Existing methods for estimating uncertainties in manufacturing and assembly are often lim-
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ited due to their dependence on complex processes, machine variability, and handling condi-
tions. To address the challenge of acquiring uncertainties of manufacturing and assembly of
actuators, we propose uncertainties of the design variables through expert elicitation. Further-
more, to expand on the proposed uncertainties, and quantify their effects, probabilistic depen-
dencies were studied using copulas and the implications of these uncertainties were examined.

The remainder of the document is as follows; copulas are briefly introduced in Section[2] The
multiphysics nature of actuators and the corresponding probabilistic modelling using copulas is
explained in Section [3| The results are presented and discussed in Section |4, with concluding
remarks in Section [5l

2 PROBABILISTIC DEPENDENCE VIA COPULAS

Copulas are flexible functions used to model multivariate probabilistic dependence [9]]. The
advantages of copulas become apparent for nonlinear relationships between random variables,
because classical approaches, such as using multivariate normal distributions and Pearson cor-
relation coefficients, fall short of explaining nonlinear behaviour. Copulas are prevalent in
the finance sector [10], and in recent years, they have been applied more frequently to engi-
neering problems [11]. The viability of copulas originates from Sklar’s theorem [12]], which
states that for a joint distribution function H with margins F;, there exists a copula C' for all
(11, ..., zq) € R? such that

H(zq,...,xq) = C(Fi(x1), ..., Fg(xq)) (1)

The margins F; are cumulative distribution functions (CDF), describing non-exceedance prob-
ability F'(x) = P(X < z). If the same underlying physics governs two systems, their depen-
dence structure (and thus their copula) is likely to be similar. Therefore, system behaviour can
be characterized via copulas. The common measure of dependence for copulas utilises rank
correlations, which assess the relationship between variables based on their relative rankings
within the dataset, rather than their values. In this work, Kendall’s rank correlation (7) [[13], is
used as a metric to check the significance of the bivariate distribution.

There are two common types of copula families - elliptical and Archimedean. Elliptical
copulas are always symmetric. Archimedean copulas, on the other hand, can model various
dependence structures, including some symmetries and tail dependencies. Tail dependence
measures how strongly extreme values of random variables are correlated. Probabilistically, the
upper tail (A\Y) and lower tail (\") dependence coefficients are

A\ = lim P(X1 > F7'(t) | Xo > Fy (1)) ()
t—1-

M= lim P(X, < F7Y(t) | Xy < Fy (1)) (3)
t—0+

defined as the limit (if it exists) for \¥ and A" as the conditional probability. It represents the
asymptotic probability that X is greater than the threshold F; '(t), given that X, is greater
than F; ' (t), as t approaches 1 from the left. Since ¢ is arbitrarily close to 1 but never exactly 1,
this captures the probability of extreme co-movements in the upper tail of the joint distribution.
For lower tail dependence, it is the opposite, with the condition that is less than or equal to
the quantile function evaluated at ¢, as ¢ approaches 0 from the rightt. When \V = A\l = 0,
implies no tail dependence. Our work has two dominant types of copulas: Gaussian and Frank.
These copulas are elliptic, have no tail dependence and are characterized by a single parameter.
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Gaussian and Frank copulas are defined as

CGaussian(ua v; p) = (I)((I)il(u)v (I)il(v); /O) (4)
—0Ou __ —0v __
Crrank (4, v) = %ln (1 + (e 6_10)(_6 1 1)> . (5)

where for Gaussian copula, ® ! is the inverse of standard normal CDF, and the dependence be-
tween two variables is controlled by correlation coefficient p. The dependence in Frank copula
is described by parameter 6, with 6 > 0 indicating a positive relationship, and ¢ < 0 negative.
Similar to the Gaussian copula, it has symmetric dependence, however, it captures strong cen-
tral dependence and weaker dependence in its tails. To facilitate a more intuitive interpretation
of the dependence structure, the copula unit space (u,v) is transformed into standard normal
space (2, z,). This transformation is achieved by applying the inverse CDF of the standard
normal distribution. It is defined as z, = ®'(u) and 2, = ®~!(v), where u and v are uniform
0, 1] variates. If u and v originate from a Gaussian copula, the transformed plot will exhibit
characteristics consistent with the bivariate normal. The visualization of the Gaussian copula in
unit space is shown in Figure[Ta] and the standardized copula is shown in Figure[Tb] and Frank
copula is shown in Figure [2a] and in standard normal space Figure [2b]

Gaussian Copula, T=0.7

Standardised Gaussian Copula, T= 0.7
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Figure 1: Bivariate Gaussian copula of (u,v) with Kendall 7 = 0.7 in (a) unit space, and (b) standard normal
space.

3 PHYSICAL MODEL OF THE ACTUATOR

The actuator under study is a Permanent Magnet Linear Synchronous Motor (PMLSM) with
a single-sided permanent magnet (PM) configuration as depicted in Figure 3]

It employs rectangular wire for the winding. It features a configuration of four magnets,
three coils, and six stacks. Each coil is wound with 261 wire turns while stacking refers to
the arrangement of multiple coils positioned on top of one another. For an application-specific
case, a 10 kg load is assumed for the motor. This case has been selected because mechanical
performance, such as force ripples are less present in coreless motors; however, manufacturing
tolerances are relatively more significant. The design variables and the associated uncertainties
and the multiphysics model used to study this case are described in subsequent sections.
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Standardised Frank Copula, T= 0.7

Frank Copula, T=0.7
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Figure 2: Bivariate Frank copula of (u,v) with Kendall 7 = 0.7 in (a) unit space, and (b) standard normal space.
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Figure 3: Illustration of a cross-section of a coreless linear motor, with 4 magnets and 3 coils. Epoxy is filled and
encapsulates the coils. Each coil has 261 turns and is a 6-stack configuration.

3.1 Design variables of the actuator

The initial design variables are acquired from and adjusted for high-voltage applications,
resulting in a set of 20 input variables. Their description and uncertainty characterization are
indicated in Table m Out of the 20 input variables, 18 are considered random variables. The
exceptions are the air gap length between the coil and PM due to complex dependencies on the
tolerances of epoxy and cooling plates. The rectangular part has a strong influence on the force,
but is considered to be invariant, because the manufacturing tolerance is considered to reflect
on the bent part, which considered has no contribution to the force.

The uncertainties presented in the table define the lower and upper bounds. Since obtain-
ing precise uncertainty estimates is challenging, the uncertainty bounds were acquired through
expert elicitation, by sending a questionnaire to experts with the design variables, and request-
ing their estimates of expected deviations. The generalized Beta distribution is used for the
majority of the variables as it offers the advantage of being bounded and allows for nonsym-
metric distributions. The Beta probability distribution function is defined on the interval [0, 1],
meaning that the random variable X ~ GBeta(a, 3,2y, xy) defined in the range [zp, zy]
has to be transformed into the variable Z ~ Beta(a, ) through an affine transformation.
Thus, Z = ﬁ The uncertainty distributions are assumed to be symmetric, hence the
shape parameters were chosen to be equal, resulting in a Gaussian shape distribution, with
the advantage of being bounded. Given that the distributions depend on the manufacturing pro-
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cesses, which are difficult to describe [2]], the parameters of the beta distributions are assumed
a = [ = 7.5. This choice should be validated. These parameters result in Beta distributions
with E[Z] = 0.5 and standard deviation 0 = 0.125, which transformed to the original variable
results in F[X]| = % and ox = %, respectively. Uniform distributions were chosen to
represent less well-defined uncertainties.

Design variable Expected Support Probability
[units] value range Distribution
Width wire [mm)] 0.06 +2% GBeta
Height wire [mm] 1.27 +2% GBeta
Thickness insulation [mm)] 0.015 +10% Uniform
Pole pitch [mm] 42 +1% GBeta
Length rect. part [mm] 70 - Deterministic
Radius of bobbin [mm)] 4 +1 turn thickness GBeta
Height of PM [mm] 10 4+0.1 mm GBeta
Length of PM [mm] 70 +0.15 mm GBeta
Height stainless steel [mm] 0.25 +1% GBeta
Height epoxy layer [mm] 0.2 +2.5% GBeta
Height cooling plate [mm] 1 +1% GBeta
Height kapton [mm)] 0.05 +12 pym GBeta
Distance between coils [mm] 1 +1 turn thickness GBeta
Airgap length [mm] 0.5 - Deterministic
Density epoxy [kg/m?] 1300 +10% Uniform
Density steel [kg/m?] 8000 +0.3% GBeta
Specific heat capacity epoxy [J/(kg°C)] 1100 +10% Uniform
Thermal cond. epoxy [W/(mk)] 1.2 +20% Uniform
Resistivity [§2 - m] 1.724e-8 +0.5% Uniform
Remanence [T] 1.23 +3% GBeta

Table 1: Set of design and material properties used to run the simulation. Uncertainty of the variables was acquired
via unstructured expert elicitation.

3.2 Multiphysics model of the actuator

A comprehensive multi-physics model has been developed as a design tool for actuator topol-
ogy optimization. This model evaluates actuator performance across various topologies under a
given motion profile and mass load. It integrates electrical, magnetic, mechanical, and thermal
behaviours to achieve a thorough assessment. The design illustration can be seen in Figure [3]

For clarity, the model is structured into three main components: Inputs, Physical Models,
and Outputs.

1) In the inputs block: we pre-define the geometric dimensions of the components of the
actuator, namely, wire’s height, thickness, with a certain thickness of enamel layer; number
of turns for one coil; stacks of coils for one phase; together with the dimension of the epoxy
potting layer, Kapton insulation layer, and the stainless steel cooling plates. In addition to the
geometric structures, the environmental conditions and the materials’ properties are predefined
in this block. Most importantly, the fourth-order (position, velocity, jerk and snap) motion
profile (shown in Figure 4a)) and mass load are prescribed.

6
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2) The core of the model is the multi-physics model. First, the prescribed motion profile
dictates the mechanical requirements, enabling the evaluation of force density, motor constant,
and different voltage components (seen in Figure [db]), which are inherently coupled with elec-
trical excitations and magnetic field modeling. Second, a harmonic modelling technique based
on Fourier analysis [15}[16] is employed to solve the 2D magnetic field distribution of the ac-
tuator, considering the structure of PMs and coils. Additionally, the inductance of the winding
is modelled by analyzing the flux linkage induced by a unified single-phase current excitation,
enabling precise calculation of inductive voltage components. Lastly, a 3D thermal equivalent
circuit (TEC) [17] is implemented to predict the thermal behaviour of the system. This thermal
model is coupled with the copper losses, determined by the computed three-phase current re-
quired to achieve the motion profile. Notably, the TEC model accounts for the bent geometry
of the coils and their anisotropic thermal conductivity.

3) The model generates a diverse set of performance metrics, including fill factor; force
density; steepness; motor constant; and terminal voltage, which includes Electromotive force
(EMF) as well as resistive and inductive voltage components; phase currents; power consump-
tion (copper losses and mechanical output); magnetic field distribution; and coil/insulation tem-
peratures, etc. These outputs facilitate a comprehensive evaluation of different topological de-
signs and aid in assessing the impact of uncertainties on actuator performance.

3.3 Performance metrics of the actuator

As mentioned in the previous section, several performance metrics are defined to evaluate
the motor design: namely voltage, force density, power density, motor constant, fill factor, and
temperature (calculated via TEC).

3.3.1 Voltage

Voltage calculations are based on the motion profile (as seen in Figure ). The total voltage

1.0 & . R E—— 1500
i i B i
no\
i 1000
8 05
5 — 500
- =
o
8 0.0 E 0
[T A T B Snap S
g Jerk = 500 —— Resistive voltage
c -05 Acceleration 1000 Inductive voltage
——- Velocity — EMF
10 - Position ~1500 —— Total voltage phase A
0.00 0.05 0.10 0.15 0.00 0.05 Ojl_o 0.15 0.20 0.25
time [s] ime (s)
(a) (b)

Figure 4: Required voltage is obtained based on motion profile. (a) Motion profile; (b) Voltage of a single phase

has three components: resistive, inductive, and electromotive force (EMF), for each of the three
phases. The equation associated with one of the phase voltages is as follows:

dl, dly dl,
Van - IaRa Laa_ Ma 7 Mac_ Ea 6
T hea gy MarTgy + MaeTgr ¥ ©)
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where the first component (/,R,) is the resistive voltage, three inductive voltages with (L,,)
self-inductance, and (M,,, M,;,) mutual inductances and the EMF component (£,) which is
proportional with the speed of the mover. Subscripts a, b, ¢ signify the three-phase electrical
system. The EMF equation is given as

a)\n,pm a)\n,pm 8_1' o a)\n,pmy

E, = = = 7

ot Jr Ot Ox ™
where A is the flux linkage in one phase, which is calculated from the 2D harmonic model.
3.3.2 Force density

Force density quantifies the force per unit volume of the actuator and is defined as
F
Force density = , (8)
V;zol

where F' is the force exerted by the actuator, calculated as the product of its mass and the
acceleration derived from the motion profile, plus the friction force.

3.3.3 Power density

Similar to force density, power density describes the power output relative to volume and is
given by
I- ‘/tot

Power density = T
vol

)

3.3.4 Motor constant

The motor constant is given by the ratio F/I. It quantifies how much force the actuator gen-
erates with a unit current excitation. Force is position independent, linear with current, and
maximized if 6y = 90. Therefore, it can expressed as follows

E.I, 37 . .
F, = nzzb - = 5 Aol sin(6) = K I sin(6) (10)
where K is the motor constant, and 6 is the commutation angle, which is the phase shift between
the magnet’s magnetic field and the coil’s magnetic field.

3.4 Filling factor

The filling factor is another key design variable used in the design considerations, affecting
thermal management and electrical performance

ACOH uctor
#conductor an

Filling Factor =
& Atotal

where Aconductor 18 the conductor cross-sectional area. It is calculated as the ratio of the con-
ductor to the total available area, which includes enamel.
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3.5 Probabilistic modelling

The multiphysics simulation was executed for 60,000 iterations, with each iteration sam-
pling variables from the predefined probability distributions, following a standard Monte Carlo
approach. All simulation data were stored in a CSV file, including the sampled design vari-
ables and the corresponding results. Bivariate copulas were fitted to the data to analyze the
dependence structure between inputs and outputs. The fitting was performed using pyvinecop-
ulib [18]]. The following copulas with rotations were analyzed: Gaussian, Student, Clayton,
Gumbel, Frank, BB1, BB6, BB7, BB8. The most appropriate copula model was selected based
on the Akaike Information Criterion (AIC) because it penalizes overfitting, and allows a fair
comparison between models.

4 RESULTS & DISCUSSION

This section presents the results of bivariate probabilistic modelling. Section {.1] discusses
the results between inputs and outputs of the model and Section discusses dependencies
between outputs, studying the design space probabilistically.

4.1 Dependencies between design variables and performance metrics

Small uncertainties in the assembly and material properties propagate and amplify in the
performance of the manufactured component. For example, the variability ranges observed in
the input parameters result in voltage peaks ranging from 1342 V at the 5th percentile to 1639
V at the 95th percentile, and temperature ranging from 82 °C at the 5th percentile to 114 °C,
95th percentile, as shown in Figure [5]
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1000 1000
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o ||II||II|.. o .|| ||||II|||II|.....__
80 90

1300 1400 1500 1600 1700 1800 100 110 120 130
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Count
Count

o
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Figure 5: Multiphysics model outputs distributions shown in (a) voltage, and (b) temperature

The bivariate distributions between the inputs (design variables) and outputs (simulation
results) reveal that the wire insulation thickness is the most significant input variable, as it
shows the highest rank correlation with voltage. On the other hand, the coil width, which
is a latent variable determined by the wire’s geometric properties, exhibits the highest rank
correlation with the same variable. The best-fitted copula between the thickness of insulation
and all performance metrics is the frank copula, indicating a stronger correlation at the median,
i.e., values closer to the reference design. The standardised scatter plot of the data transformed
to standard normal, along with the standard normal transformation of the fitted copula contour
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plot is shown in Figure [6a The insulation thickness affects the geometrical properties of the
assembled coil, such as its width and height, and this insulation significance is apparent for the
effective coil dimensions (as seen in Figure [6b). The significance of insulation thickness, for
performance and reliability is further highlighted in

Thickness of |nsu|at|on Width of coil [mm]
13.500 13.593 14.993 16.500 52.968 53. 473 54. 974 56. 499 57.021

1.793~ 4 } ! ! 1 -1.0 1.793+ } 1
T © 085 T B ¥ =
51658- & 2 D 51658- & 2 -0.8'g
e 2 5 e g o)
> i) -0.6Q &) ] a
S1441-2 o 2> L1441-2 o ’O-GQ
5 3 PY-EE B =
g g 4z g |8 048
%1.338* o —2 <] g1.338* o -2 .0’.. [
8 g 02% g g ¢ 02%
) 5 o G
> S I > S 4 . I

1.310- 1.310-

-4 -2 0 2 4 -4 -2 0 2 4
Thickness of insulation [Standardized] Width of coil [Standardized]
(a) (b)

Figure 6: Standardized copula results between (a) thickness of wire insulation and voltage, and (b) width of the
coil and voltage. In standard axes, the median value is at (0,0). The contour plot is shown directly from the fitted
copula.

Some of the design variables do not show a strong dependence under the defined uncertain-
ties. For example, variations in the thermal conductivity of epoxy exhibit a weak correlation
with the analysed performance metrics, such as temperature (see Figure [7a). However, two

Thermal cond e oxy{W/g_m K)] Wire cross-section [mm?]

0.960 0.975 1.440 0.0740  0.0752 00762 0.0772" 0.0783
135.017 . - 0.150 17931 ' mg-0.150
f s 3¢ I
N 0125 X -0.125
O 116.29- 5 2 @ 51658- 7 2 3
i ° -0.100 § < 2 -0.100 §
= S a} > S =}
g 0218-2 0 00758 21441-Z 0 -0.075 2
g 5 2 3 3 3
= - fe) o - Qo
& 81.94- 5 -2 00508 o1 338- -2 : 00505
<4 . o o [} : - o
£ B8 I—o.ozs = e : I—o.025
g (e}
= -4 > > -4
78.17- 1.310-
-4 -2 0 2 4 -4 -2 0 2 4
Thermal cond. epoxy [Standardized] Wire cross-section [Standardized]
(a) (b)

Figure 7: Standardized copula between (a) thermal conductivity of the epoxy and temperature and (b) cross-
sectional area of the wire and voltage. In standard axes, the median value is at (0,0). The contour plot is shown
directly from the fitted copula.

regions of interest can be identified: lower temperatures are not achievable at lower thermal
conductivities, indicating that epoxy thermal resistance (proportional inverse to the thermal
conductivity) is more significant in the system design. Conversely, at higher thermal conductiv-
ities, the thermal resistance from the epoxy becomes less dominant, allowing for better cooling.
This illustrates a clear example of a probabilistic design space, where possible designs can be

10
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probabilistically determined under uncertainties. Similarly, in contrast to the wire insulation, the
cross-sectional area of the wire does not exhibit a strong correlation to any of the performance
metrics, see Figure This relationship has a weak tail dependence, at lower cross-sectional
area, the voltage variations are relatively smaller, compared to higher cross-sectional area. De-
sign variables such as the bobbin radius, PM length, stainless steel height, PM height, Kapton
height, epoxy layer height, cooling plate height, coil spacing, density, and specific heat capacity
generally do not exhibit strong bivariate dependence on the performance metrics (see Tables [2]
in the appendix). While wire resistivity does impact the total resistance, its influence is less
significant compared to the geometric parameters.

4.2 Dependencies between performance metrics

The performance metrics describe the motor’s efficiency. Analyzing the dependencies be-
tween performance metrics, such as voltage, temperature and motor constant allows defining
the probabilistic design space. The probabilistic design space describes, for instance, under
which voltage or what temperature ranges can be achieved from a probabilistic view.

In our case study, an important consideration is that this study focuses solely on uncertainties
by introducing small variations in the design variables and analyzing their effects. If the design
space were expanded, i.e. different topologies of the actuator were considered, the bivariate
dependence could change due to nonlinear physical behaviour emerging at different parameter
ranges. Nevertheless, several key insights are gained. An interesting tail dependence between
voltage and motor constant has been observed. Figure [8al shows that at low voltages, higher
motor constants are achieved, the inherent reason for this is that optimal design requires less
current to achieve the same force and motion profile, which leads to higher motor constant and
lower voltage, that’s why we see the low voltage is highly correlated with higher motor constant.
Vice versa for the high voltage-low K;; however, the motor constant presents more variability
in these range of values (upper left side of the figure). It is also observed that the expected
design variables are still strongly correlated (central part of the figure), exhibiting very small
variations in performance metrics, as explained in the previous section. When these optimal
geometric proportions are altered, the motor constant deviates more significantly from expected
values, resulting in increased variability, however, with a strong dependence showing motor
inefficiency (lower right side of the figure).

Relatively similar results can be observed with temperature, showing that a higher required
voltage also results in a higher temperature of the motor (Figure[8b)). Interestingly, frank copula,
which has no tail dependence has a better fit than other copulas with tail dependences based on
the AIC. The lower and median voltage values exhibit similar temperature behaviour to the
motor constant; however, the upper tail seemingly has more spread than the motor constant did.
Table [3|in the appendix summarizes bivariate dependencies between performance metrics.

S CONCLUSIONS & FUTURE WORK

In this paper, the propagation of the uncertainties associated with manufacturing, assembly
and material properties to the performance metrics of a coreless linear motor are quantified with
probabilistic methods. First, expert elicitation is performed to estimate design uncertainties, and
probability distributions are defined. Secondly, a standard Monte Carlo approach is utilised with
60,000 runs of a multiphysics model of the coreless linear motor capturing the interdependen-
cies between electrical, mechanical, magnetic and thermal behaviours. Then, bivariate copulas
are fitted between the inputs and outputs of the model, quantifying the bivariate probabilistic
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Figure 8: Probabilistic design space given by the standardized copula between (a) voltage and motor constant and
(b) voltage and temperature. In standard axes, the median value is at (0,0). The contour plot is shown directly from
the fitted copula. Figure a) shows motor inefficiency, by requiring higher voltage for the same application, and b)
shows the temperature increase with higher voltage.

relationship and mapping the probabilistic design space. The results show that the uncertainty
of the thickness of insulation plays the most important role in the design of the coreless linear
motor. By increasing insulation thickness, it increases the mass of the actuator, while also af-
fecting the ratios between the width of the coil and magnet, decreasing the overall efficiency.
Other dependence structures, such as the bivariate copula between the thermal conductivity of
the epoxy and temperature or the copula between the cross-sectional area of the wire and volt-
age do not show a dominant dependence under uncertainties; However, the scatter plots reveal
regions of interest, indicating ranges of possible design configurations where performance met-
rics exhibit favorable characteristics or heightened sensitivity to specific parameter variations.
Tables [2and [3|in the appendix summarize all bivariate dependencies indicating the best-fit cop-
ula and rank correlation. The color scheme ranges from green, indicating a positive correlation,
to red, representing a negative correlation. Text in bold highlights the discussed copulas in this
paper. There are several limitations to this work. To manufacture and assemble these actua-
tors is very costly, limiting the validation of these results. If we consider validation with only
the coils, this would imply completely different assumptions, which would be invalid for this
case study. Additionally, only a bivariate case was considered, which does not capture complex
dependencies between multiple variables. Vine-copulas could be considered for multi-physics
case studies.
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APPENDIX
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Table 2: Bivariate dependencies between design variables and performance metrics, indicating the best-fit copula

and rank correlation. Green color signs a positive correlation while red represents a negative correlation. Text in

boldface indicates the discussed copulas.
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Table 3: Bivariate dependencies between performance metrics, indicating the best-fit copula and rank correlation.
Green color signs a positive correlation while red represents a negative correlation. Text in boldface indicates the
discussed copulas.
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