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Abstract
Yes, convolutional neural networks are domain-
invariant, albeit to some limited extent. We ex-
plored the performance impact of domain shift for
convolutional neural networks. We did this by
designing new synthetic tasks, for which the net-
work’s task was to map images to their mean, me-
dian, standard deviation, and variance pixel inten-
sities. We find that the performance drop due to
domain shift is related to the shift in pixel values
between source and target domain. Colour space
transformations seemed to notably impact the net-
work’s performance, opposed to geometric trans-
formations. For the last domain shift we find that
the network manages to beat a baseline, from which
we can conclude the domain shift is not too severe.
Additionally, the findings reveal a less dominant
role for feature transferability, for our synthetic re-
gression tasks.

1 Introduction
Convolutional Neural Networks (CNN) are the backbone
of computer vision tasks and have proved their practicality
amongst others in image recognition, classification, and seg-
mentation. 2012 marks the year in which CNNs gained trac-
tion, as a result of performance advancement in both image
classification and speech recognition [1, 2, 3]. Although deep
learning practices are well established in the machine learn-
ing domain, interpretability and transparency continue to re-
main a challenging subject [4]. For illustration, deep neural
networks (DNN) are susceptible to adversarial examples [5].
As a result, the network is likely to be flawed [5]. An example
like this stresses the need of attaining a better understanding
of the potential capabilities and limitations of deep learning
applications.

Deep learning architectures like DNNs are not omniscient
and do not have unlimited capabilities [6]. Such as the net-
work’s capacity to generalise well on unseen data (target do-
main) with a different distribution compared to that of the
training data (source domain) [7]. This is called domain shift.
As CNNs are a class of DNNs, the same principles apply.
Domain adaptation is the ongoing study to mitigate these ef-
fects [8, 9, 10]. It keeps, however, an ongoing search to have

a complete and effective domain adaptation strategy. After
all, there are always new poses, lighting, and angles that are
unfamiliar to a CNN when encountered in the target domain.

Image classification tasks are known to poorly perform as
a result of domain shift [7, 11]. In the former studies, the net-
works were exclusively trained for image classification tasks.
However, for this setting, we will utilise CNNs to solve re-
gression tasks. For regression tasks, we expect to see simi-
lar to different results. The difference between image clas-
sification and regression in this setting is the effect domain
shift will have on either one or both of the domains. We will
see that for regression tasks the distribution of the features
and labels is different for both the source and target domain.
Whereas, an image displaying a traffic sign of a roundabout
after inverting to its negative still depicts a traffic sign of a
roundabout [12] i.e. only the distribution of the features is
different for both domains. Aside from performance, feature
transferability can be studied. As is reported by Yosinski et al.
[13], the transferability of features decreases as the gap of do-
main discrepancy increases. As the study was conducted for
image classification tasks, it is worth exploring what can be
said about feature transferability for regression tasks.

Newly designed synthetic tasks will be developed that are
used in all of the experiments. The network’s task is to pre-
dict the correct, or within a small error margin, a continuous
value. Images in the dataset are mapped to their mean, me-
dian, variance, and standard deviation pixel intensities. These
tasks are considered easy for humans and are common im-
age processing operations, but can they be learned by the net-
work? CNNs have been chosen as means of regressor since
they are a popular approach.

To date, a limited number of studies have investigated the
capabilities and applications of CNNs in combination with
regression tasks [14, 15, 16]. In [16], the network’s task was
to estimate the age of a person given a picture of their face.
It is worth exploring more in-depth, how the performance of
CNNs is impacted by domain shift in the realm of regression.

The objective is to study the effect of domain shift on the
performance of CNNs using regression tasks. The work will
explore to what extent CNNs are capable of learning these
newly designed synthetic tasks. Is the network able to learn
to predict the correct image statistics? How is the network’s
performance impacted as a result of domain shift in this par-
ticular setting? And, what can be said about feature transfer-



ability for the proposed tasks? For the first 2 questions we
will see that 3 out of the 4 image statistics can be sufficiently
learned by the network (i.e. beat the set baseline). As for the
third question, it may seem like feature transferability might
not be as important in the setting of regression tasks.

Together with our peers, we will contribute, albeit limited,
to the understanding of how CNNs behave to regression tasks.
Hence no new techniques or solutions will be recommended.

2 Background Information
In the section, we briefly discuss the relevant background in-
formation. Starting with the topic of CNNs. Followed by the
theory on domain shifts. And ending with the related work.

2.1 Convolutional Neural Networks
CNNs are specific types of deep learning models that act on
data from a regular grid (e.g. images), with the goal to de-
tect and learn low-level patterns, such as edges and shapes,
to higher-level patterns like objects that are embedded as fea-
tures in the spatial structure of the input [17]. Here, we will
solely focus on vanilla, shallow CNNs. For more detailed
information about the inner workings and computational pro-
cesses of CNNs please consult one or more of the following
[18, 19].

2.2 Domain Shift
An example of domain shift, for a supervised task, is to cor-
rectly identify exhibits in museum spaces [20]. Images in the
source domain are centered and photographed in non-adverse
conditions [20]. Subsequently, images in the target domain
display the same exhibits, only this time the images were
captured in an egocentric fashion, resulting in new angles,
viewpoints, lighting, additional glare, transparency, and clut-
ter [20]. The distribution shift is likely to cause the network
to preform bad on the target domain.

Domain Shift is a recurring generalisation problem in ma-
chine learning [21]. The nature of the existence of this prob-
lem arises from a discrepancy between the source domain and
the target domain. Both domains are labeled, these labels we
will call from hereinafter: targets. Due to a different distri-
bution of the target domain, compared to that of the source
domain, the network may not be able to perform well on the
test dataset. While both domains capture the same kinds of
objects.

The domains each consist of a feature space X and target
space Y . Sample instances of these spaces are respectively
denoted as: X = {x1, ..., xn} and Y = {y1, ..., yn} [10].
Now, the goal for the network is to learn the correct mapping
function f(·), such that: such that f : X → Y [10]. Next, the
correct model is learned by feeding the network samples from
the source domain denoted by: S = {(xi, yi)}ni=1, which
are the product of X × Y [22]. After training the model is
evaluated on the samples of the target domain, denoted by:
T = {(xi, yi)}ni=1 [22].

2.3 Related Work
To the best of our knowledge, the performance impact of
domain shifts for CNNs, is not studied for these research-
specific synthetic tasks (i.e. map images to their mean, vari-
ance, standard deviation, and median value). The aforemen-
tioned works [7, 11], we deem the most related to this specific
work. The work that has been done in both studies was un-
der the same denominator: measure the performance impact
of domain shifts in CNNs. Both studies have been conducted
for medical datasets, and equal performance drops have been
reported.

Hosseini et al. [12] explored the limits of CNNs, and
whether these would be capable of capturing the semantics of
the training data. This was done by training the network on
regular, non-transformed images, and evaluating the model
on negative images. Despite the images retaining their ini-
tial structure and semantics after transformation, the model’s
accuracy showed a decrease of up to 60% [12].

In the three studies mentioned [7, 11, 12], image classi-
fication tasks were utilised. Even though loss and accuracy
are not a one-to-one relationship, for our regression tasks, we
expect to see similar results.

Because of domain discrepancy, the transferability of fea-
tures in higher layers decreases [23]. Yosinski et al. [13] dis-
cussed the strong dependence between the chosen dataset and
task, and the features computed in the higher layers of the
trained network. Again, the experiments in [13, 23] involved
image classification. In the setting of regression tasks, the se-
mantics of an image, and the ordering of the pixels are not of
importance anymore. This will only hold if the pixel values
are not changed by transforming the images or reshuffling the
pixels. Thus, we expect domain discrepancy to be alleviated
in case of regression, due to the absence of those two factors.

3 Experimental Setup
In this section, we briefly go over the experimental setup. We
will talk about the datasets used, the synthetic tasks, domain
shifts, baselines, the architecture and parameters, and lastly
training and evaluation. In that specific order.

3.1 Datasets
The MNIST database [24] was used as a dataset in all ex-
periments. This dataset was chosen since we know what the
images are. The database consists of 28 × 28 grayscale im-
ages of handwritten digits. The 60.000 training images were
split into 40.000 training images, and 20.000 validation im-
ages. These two datasets are the source domain. 10.000 im-
ages were used for testing the model, the target domain. All
images were normalised before the new targets (mean, me-
dian, variance, standard deviation) were calculated and used
in the experiments. Normalisation makes sure the data have a
zero mean and unit variance [25].

In addition, artificial images, consisting of just noise were
created. These images were used in experiment 5. The im-
ages had a mean, median, variance, and standard deviation
that was within the range for each of the statistics of the orig-
inal images in the test dataset.



3.2 Synthetic tasks
Newly created synthetic tasks were used in the experiments,
these were: mapping images to their mean, median, variance
and standard deviation, pixel intensities. These statistics are
easy to compute, and so to control for. For all of the statistics,
the following notations hold:

• n : the number of total pixels in the image: 28·28 = 784

• yi : the target (mean, median, etc.) for the image i in the
dataset

• xi : the image i in the dataset

Hereafter, a mathematical notation of all four statistics is pro-
vided:

• Mean: yi = mean(xi) = 1
n

∑n
j=1 zj , such that: zj is

pixel j in image xi.
• Median: yi = median(xi) = {(n + 1)/2}thvalue in

the list of all pixel values.
• Variance: yi = var(xi) = 1

n

∑n
j=1(X − zj)

2, such
that: X is the mean pixel intensity of image xi.

• Standard Deviation: yi = std(xi) =
√
V , such that:

V is the variance pixel intensity of image xi.

3.3 Domain Shift
For this instance, data transformations were applied to both
the training dataset and the test dataset. Transformations were
used as a tool to create different distributions of the features
and targets for both domains. 3 different kinds of transfor-
mations were individually applied, either on the training data
or on the testing data, see figure1 for visuals of the transfor-
mations. These transformations were arbitrary chosen. It was
important to have at least two different types of transforma-
tions e.g. one related to geometry transformations, and one
to the image pixel values. Evaluation of the tasks; how well
they performed, are measured by the Mean Absolute Error
(L1) loss function. In (1), n is the total number of examples
in the test dataset. The training, validation, and test loss are
calculated by the L1 loss.

L1 =

∑n
i=1 |f(xi)− yi|

n
(1)

3.3.1 Rotation
In experiments 1, 2, and 3, the images of either the source do-
main or the target domain were rotated. In experiments 1 and
2, 45 and 180 degrees rotations respectively, were applied to
images in the test dataset. In experiment 3, random angels
in the range from 0 to 360, were applied to the images in the
training dataset. The applied angles fit to a uniform distribu-
tion between 0 and 360 degrees. To explore if it would make
any difference to which domain the rotation would be applied,
experiment 3 was designed. No other angels, such as 10 or 70
degrees were picked as individual experiments. Since those
angles would be too close to 0 or 90 degrees rotations, and
thus would not contribute to more insights.

3.3.2 Inversion
Experiment 4, was created as a follow-up to the work of Hos-
seini et al. [12]. The images of the test dataset were inverted
to their negatives: p, = 255 − p, also used by [12]. Due to
this colour space transformation, the statistics of the images
changed accordingly. See figure 2, for the mean pixel inten-
sity distribution shift. Additionally, this experiment would
give us more insights into the correlation between the applied
image transformation and the performance of the network.
Since images retained their original shape and semantics af-
ter the image transformation had been applied.

3.3.3 Noise
For experiment 5, we applied the same rotations as we did in
experiment 3 on the source domain, for the MNIST dataset.
The network was evaluated on the target domain containing
noisy images, as described in the section 3.1. This experiment
had as purpose to tell us more about the importance of struc-
ture in the image, and subsequently the feature transferability
within the networks for the synthetic tasks.

(a) Rotated by 45 degrees

(b) Rotations between 0 and 360 degrees

(c) Inversion

(d) Noise

Figure 1: From top to bottom: first we see (a), images of the target
domain, used in experiment 1; second, we have (b), depicting the
images of the source domain, used in experiment 3; third, we have
(c), images of the target domain, used in experiment 4; and lastly
we have (d), images of the target domain, used in experiment 5. 180
degrees rotated images have been omitted in this visual.



3.4 Baseline
A baseline was set in all experiments to compare the net-
work’s performance and draw conclusions. First, we took
a prediction constant ŷconst = median(ytest1 , ..., ytestn ). In
experiments 1, 2, 3, and 5, the prediction constant was calcu-
lated for the targets in the test dataset. In experiment 4, we
took the targets in the training dataset (ytrain1 , ..., ytrainn ) to
calculate the prediction constant. Since we work with the L1
loss, we took the median value of each of the statistics. Next,
in all 5 experiments, for each of the statistics, the baseline
was calculated before each batch of runs, with randomly ini-
tialised weights in the network (denoted as rw) by: yrw =
L1(ytesti , ŷconst), for i = 1, ..., n and yi as targets of the test
dataset. Lastly, we calculated the test loss, on the trained
network, for each task, with: ŷtrain = L1(ytesti , ŷpred). If
ŷtrain < ŷrw, the network had sufficiently learned the task
by outperforming the baseline.

3.5 Architecture and Parameters
We used the network architecture1 of [26] but only used one
output node as we have a regression task. No additional modi-
fications were made. For more information about the network
and settings, see Appendix A.

The overall aim was to keep the model small and concise
for two reasons. First, we work with a relatively small dataset
and tasks that are not too demanding for the network. Second,
by keeping the model small, it should make it more straight-
forward to reason about the network’s abilities and therefore
to comprehend the results.

The (hyper)parameters that were used can be found in Ap-
pendix A. Before the actual experiments were carried out,
the parameters and settings were fine-tuned through trial-and-
error. The Adaptive Momentum Estimation (Adam) opti-
mizer was used and is known to be robust and give good re-
sults quickly [27].

3.6 Training and Testing
To measure the impact of domain shift on the performance of
the network, 5 different experiments were conducted. Dur-
ing all experiments, the training and testing setup remained
the same. Each experiment, in turn, consisted of 4 sub-
experiments, one for each of synthetic tasks respectively. The
sub-experiments were each executed 10 times, for each run a
unique random seed. For run i, the random seed was set to
i. This way we could examine how consistent the network
would be for the returned test losses. The training of the net-
work was done for a maximum of 40 epochs. This was an ar-
bitrary chose, keeping in mind the computational limits of the
machine. To prevent the network from overfitting the training
data, early stopping was implemented. The network would
stop training after registering 5 times an increased validation
loss. This number was arbitrarily chosen. In all the experi-
ments, the training batch size was set to 64. For predicting
the mean, standard deviation, and median pixel intensities of
the images, a learning rate of 5e-07 was used throughout all

1The code that was used for training, testing, and plotting is
available on https://github.com/JulianBiesheuvel/Research Project
CSE3000

of the experiments. In the case of the variance, the learning
rate was set to 3.7e-06 instead and again used for all of the 5
experiments.

4 Results
The results of each individual experiment will be presented
in this section. Table 3 and Table 2 are a compression of
multiple tables, see for more information Appendix B.

4.1 Experiment 1: Trained on non-transformed
images, tested on 45 degrees rotated images.

For this experiment, images in the target domain were 45 de-
grees rotated, no transformations were applied on the images
in the source domain. As can be seen in Table 3, with ex-
ception of the median pixel intensity, the network managed
to learn to predict the mean, standard deviation, and variance
pixel intensity, as for all three the average test loss outper-
forms the baseline. From Table 3, it can be concluded that
the network was the most consistent for predicting the stan-
dard deviation pixel intensities, and the least consistent for the
mean pixel intensities, over all the 10 runs. In addition, this
shows that the network is not biased towards smaller num-
bers, as the variance, with a significantly higher average test
loss, is more consistent.

4.2 Experiment 2: Trained on non-transformed
images, tested on 180 degrees rotated images.

For this experiment, images in the target domain were 180 de-
grees rotated, no transformations were applied on the images
in the source domain. As it was the case for experiment 1,
the mean, standard deviation and the variance are here once
again outperforming the set baseline (Table 3). Also in Table
3, it can be seen that all the average test losses for all four
statistics have outperformed the test losses for the statistics in
experiment 1. This observation can be explained by the ap-
plied rotation. Images containing a digit 8, will after rotation
resemble the digit 8, the same goes for the digit 1. However,
compared to experiment 1, the coefficient of variation for the
standard deviation is lower, suggesting it was even easier for
the network to be consistent for this task.

4.3 Experiment 3: Trained on randomly rotated
images, tested on non-transformed images.

For this experiment, images in the source domain were ro-
tated between a random angle of 0 and 360 degrees, no trans-
formations were applied to the images in the target domain.
As can be concluded from Table 3, we see little to no differ-
ence compared to the results observed in experiment 1 and
2. For the mean, standard deviation and median task, the
network turned out to be less consistent. This supports the
idea that it indeed matters to what domain the rotation trans-
formation is applied. In learning to predict the median pixel
intensity, it did not make any difference to what domain the
rotation was applied, as the average test loss did not outper-
form the baseline.

https://github.com/JulianBiesheuvel/Research_Project_CSE3000
https://github.com/JulianBiesheuvel/Research_Project_CSE3000


4.4 Experiment 4: Trained on non-transformed
images, tested on negative images.

For this experiment, images in the target domain were in-
verted to their negatives, no transformations were applied to
the images in the source domain. As a product of the ap-
plied colour space transformation, the pixel values of the im-
age changed accordingly. Whereas this was not the case in
experiment 1, 2, and 3. See figure 2 for the mean pixel in-
tensity distribution shift, for the the targets in the test dataset.
Most notable depicted by Table 3, is that only the mean task
outperformed the set baseline. However, in Table 1 we see
that the network was actually capable of outperforming the
baseline for the median pixel intensities a few times. This is
interesting, since the network was not capable of doing so for
the median pixel intensities in experiment 1, 2 and 3. If we
compare these results found by Hosseini et al. [12], keeping
in mind that the study entailed an image classification task,
we can generally conclude that regression tasks show similar
performance drops.

4.5 Experiment 5: Trained on randomly rotated
images, tested on noisy images.

For this experiment, images in the source domain were ro-
tated between a random angle of 0 and 360 degrees, and im-
ages in the target domain were artificially created consisting
of just noise. Table 3, shows that none of the sub-experiments
has outperformed the baseline for that task. However, if we
take a look at Table 4, we see that for the mean, standard
deviation and variance the network was actually capable of
outperforming the baseline in nearly half of the runs. Conse-
quently, the coefficients of variation turn out to be a lot higher.
Nevertheless, it is fascinating to see that the spatial structure,
such as edges and shapes, seem to be of lesser importance in
these synthetic tasks in this setting.

4.6 Convergences & Performance non-shifted task
Table 2 depicts the average number of epochs and standard
deviation that was needed for the network to converge, ac-
cording to our set early stopping criteria. Generally speaking,
the network had a not direct one-to-one interrelationship be-
tween Table 2 and Table 3. This is supported by values shown
for experiment 4 in Table 2. These are nearly similar to those
of experiments 1, 2 and 3, for which the sub-experiments in-
deed outperformed the baseline, whereas this is not the case
for experiment 4. Overall, we assume that predicting the me-
dian pixel intensity, in case of experiment 1, 2, and 3, would
not benefit from more epochs, to get test losses that beat the
baselines. As this would potentially lead to overfitting the
network.

After each epoch, the learned model was evaluated on
the validation dataset. Since this dataset originates from the
training dataset, there were no distribution shifts. Therefore,
validating the network can be considered as a non-shifted
task. By judging from the plotted training, validation and test
losses (Appendix C), we found about equal performance be-
tween the validation loss and the training loss. This suggests
the network has learned the right model for the task.

Figure 2: This plot depicts the distribution shift for the targets in
the test dataset. On the left we have the original mean pixel inten-
sity distribution of the non-transformed images in the target domain.
On the right we have the new distribution of the targets in the test
dataset, after the images were inverted.

Median
ŷrw: 255

Run ŷtrain #Epoch
1 259.13 29
2 258.46 22
3 253.54 27
4 250.48 11
5 256.23 15
6 259.27 23
7 260.68 38
8 263.98 33
9 251.14 26
10 252.30 17

Table 1: The test losses (ŷtrain), and the baseline ( ˆyrw), are depicted
for each image statistic in experiment 4. For the runs in which:
ŷtrain < ˆyrw, the test losses are highlighted. This table is part
of a larger table that can be found in B

Number of Epoch Before Halt

Mean Standard Deviation Median Variance
Experiment µ σ µ σ µ σ µ σ
1 30 10 30 6 24 8 32 10
2 30 10 30 6 24 8 32 10
3 29 10 29 7 29 9 26 9
4 30 10 30 6 24 8 32 10
5 31 8 31 9 27 8 30 9

Table 2: For each experiment and all image statistics, the average
(µ) and standard deviation (σ) number of epochs before the network
halts is depicted. This table is a compression of the 5 tables, one for
each experiment, that can be found in Appendix B.



Test Loss (L1)

Mean Standard Deviation Median Variance
Experiment ŷavgtrain σ Cv ŷrw ŷavgtrain σ Cv ŷrw ŷavgtrain σ Cv ŷrw ŷavgtrain σ Cv ŷrw
1 3.6 1.0 0.28 8.8 5.4 1.0 0.18 9.6 1.8 0.3 0.19 0.0 472 113 0.24 1485
2 2.8 1.0 0.34 8.8 3.8 0.6 0.16 9.7 1.7 0.4 0.23 0.0 359 118 0.33 1498
3 2.9 1.0 0.35 8.8 5.0 1.8 0.35 9.7 1.6 0.5 0.29 0.0 438 101 0.23 1498
4 157.3 11.5 0.07 189.2 37.4 12.4 0.33 9.7 256.5 4.5 0.02 255.0 7291 998 0.14 1498
5 10.2 3.8 0.37 9.1 10.3 8.1 0.79 9.8 1.3 0.4 0.31 0.0 1621 1100 0.68 1518

Table 3: This table is a compression of the 5 tables, one for each experiment, that can be found in Appendix B. The average test losses
(ŷavgtrain), over 10 runs, are depicted together with the standard deviation (σ) of the test losses. The coefficient of variation is calculated as
such: Cv = σ

ŷ
avg
train

. The coefficient of variation tells us how consistent the network was i.e. was there a lot of variability within the 10 test

losses? As a fourth measure, the baseline (ŷrw) for each sub-experiment was given, to compare with the average test loss. If ŷavgtrain < ŷrw,
we can conclude the network outperformed the baseline.

Mean Standard Deviation Median Variance
ŷrw: 9.12 ŷrw: 9.83 ŷrw: 0.0 ŷrw: 1517.64

Run ŷtrain #Epoch Run ŷtrain #Epoch Run ŷtrain #Epoch Run ŷtrain #Epoch
1 12.61 40 1 10.34 32 1 1.39 37 1 813.64 26
2 14.53 40 2 19.21 40 2 0.93 39 2 2346.90 40
3 9.94 40 3 26.74 25 3 1.34 30 3 736.67 25
4 15.94 31 4 3.38 23 4 0.96 23 4 3106.85 40
5 6.92 20 5 4.75 40 5 1.29 15 5 792.86 26
6 6.93 19 6 3.65 16 6 2.21 15 6 2595.30 40
7 14.30 30 7 17.36 31 7 1.37 32 7 3376.52 40
8 7.92 28 8 3.60 21 8 1.02 27 8 985.66 18
9 7.71 40 9 6.32 39 9 1.66 27 9 778.08 25
10 5.37 26 10 7.17 38 10 0.91 22 10 672.69 19

Table 4: Depicted are: the test losses (ŷtrain), the number of epochs till convergence, and the baseline ( ˆyrw), for each image statistic in
experiment 5. For the runs in which: ŷtrain < ˆyrw, the test losses are highlighted.

5 Discussion & Limitations
The goal was to determine whether CNNs were invariant to
domain shifts, while learning different kinds of image statis-
tics. We will highlight the most notable findings and point
out the limitations.

First of all, the common denominator in experiments 1, 2,
3, and 5 was the inability of the network to outperform the
baseline in predicting the median pixel intensity. Why the
network is not capable of learning the median value in these
cases, is not clear to us. Experiment 4, was the only experi-
ment in which there was a distribution shift in both the source
and target domain. As said earlier, experiment 4 had some
successes predicting the median pixel intensity by beating the
baseline. Therefore it might be the case that the network’s
filters are more favoured towards higher pixel values for pre-
dicting the median pixel intensity.

Second, the inability of the network to outperform the
baseline for the standard deviation and variance pixel intensi-
ties in experiment 4 is worth mentioning (Table 3). The poor
performance of the standard deviation can be due to the poor
performance of the variance. Since the variance is used in
calculating the standard deviation. Based on the baselines for
each statistic in experiment 4, we can only speculate about
the recorded test losses. One guess is that the network with

the randomly initialised weights has a bias towards predicting
smaller values in case of this experiment.

Third, in experiment 5 the importance of spatial structure,
such as edges, shapes, and objects were studied. As the re-
sults showed us, given the setting in which the experiments
were conducted, the structure and ordering of the pixels in
the image seem not to be dominant in how well the network
performs. The importance of spatial structure and ordering
seems to be curbed for these tasks. This is backed by the re-
sults obtained in experiment 4. Since the distributions for the
standard deviation and variance did not shift by inverting the
images, see figure 3, where it was the case for the mean dis-
tribution (2), we can compare these statistics to the standard
deviation and variance in experiment 5. From this we can
see that while the images in experiment 4 retain their origi-
nal semantics, shapes and structure, the network performed
on average worse, compared to the average test losses for
the standard deviation and variance in experiment 5. Even
though, the network was more inconsistent in experiment 5,
as opposed to experiment 4 (Table 3).



Lastly, the importance of the type of transformation applied
to the images are discussed. As the targets are a direct prod-
uct of the pixel intensities, it matters what kind of application
is applied to the images. We have seen that rotation trans-
formations have little to no effect on the initial distributions
of the targets (mean, median, etc. pixel intensity). Colour
space transformations, such as inverting, do have a signifi-
cant impact on the distributions of the targets. Not only the
feature distributions are shifted, but also the target distribu-
tions, in whatever domain we are operating. This is why we
might have seen bad results in case of experiment 4, since
the distributions of the features and targets are different in
both domains. This statement can be supported by the nature
of experiment 5. In this experiment, only the feature space
encountered a big distribution shift: from rotated images to
noisy images, but the target distribution between the two do-
mains were nearly identical. Still, this yielded satisfactory
results in experiment 5.

(a) Distribution inverted images

(b) Distribution non-transformed images

Figure 3: Both plots show the distribution of the standard deviation
pixel intensity for images in the test dataset. In (a) we see the distri-
bution for negative images (inverted). In (b) we see the original dis-
tribution of the test dataset, before any transformation was applied
to it. (a) and (b) are of the same shape. As the standard deviation is
calculated by the variance, we therefore can say, without showing a
plot, that the distributions are equal for the variance as well.

5.1 Limitation
Although the MNIST database is easy and fast to use in
projects, and it is easy to see what the data is (e.g. digits),
it also comes with the drawback of interpretability of the re-
sults. Instead of 2D data, we could have opted for 1D data
instead. In addition, the data could be optionally crafted by
ourselves, to have more control over it. It is worth recreat-
ing the experiments in similar fashion, but without using the
MNIST database, and just use our own data and see if we
obtain similar results.

For experiment 5 we would have liked to conduct one ad-
ditional experiment in which we would train the network on
noisy images, and evaluate the network on non-transformed
MNIST images. To have more certainty about our outcomes
and conclusions.

Moreover, just one dataset and one network were used in
this work. This is in itself already a limitation. Network ar-
chitectures that might be simpler or more complex, with for
example dropout in order to generalise better, have an advan-
tage over the network used here.

Since we worked with synthetic tasks, the results found
here do not say anything about other regression related tasks
i.e. it does not say something about it’s generalisation to other
tasks.

6 Conclusion
The goal of this work was to investigate if convolutional neu-
ral networks were invariant to domain shifts, while their task
was to learn to predict image statistics. We measured this by
the network’s performance. First, we applied different kinds
of transformations (e.g. geometric and colour space trans-
formations) to either the source domain or target domain, or
we created artificial data ourselves to work with. These data
transformations and new images were utilised to achieve a
distribution shift between the source and target domain. Inte-
gral to this research question, was the question if the network
would be able to learn the synthetic tasks we newly designed
for this work. The tasks encompassed predicting the mean,
median, standard deviation and variance pixel intensities of
the images in the dataset. We found that not all statistics could
be sufficiently learned by the network. As an additional sub-
question, we explored the importance of spatial structure and
ordering of the images to these synthetic tasks. The findings
suggest that the importance of spatial structure is question-
able.

Lastly, the type of image transformation applied to the
images, does seem to matter to the performance of the net-
work. Geometric transformations had less notable impact
than colour space transformations had.

Preferably more work is needed to investigate and under-
stand how convolutional neural networks behave to regres-
sion tasks, and how the results compare to what we found
here. Since the scope of our work has been limited, we can
not say anything about how well this concept translates to
other kinds of regression tasks.



7 Responsible Research
This research had been conducted for the Delft University of
Technology, for the Course CSE3000. The code and data are
available online for reproducibility purposes hereby follow-
ing the guidelines recommended by the Netherlands Code of
Conduct for Research Integrity [28]. In addition, the code
that was used as sample code for the research, originating
from (personal)blogs, have been cited and people have been
credited for their work. The MNIST database is an open on-
line database publicly available on the Internet. The database
does not consist of any harmful or privacy-sensitive data. We
do not see any potential application to use our contributions
that might be harmful to others, or negatively impact their
lives.
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Appendix A Model Architecture Convolutional Neural Network

Convolution Max-Pool Convolution Max-Pool Dense

1@28x28 16@25x25 16@13x13 32@10x10 23@5x5 1x10 1x1

Figure 4: The model architecture that was used in all experiments.

Net(
(cnn1): Conv2d(1, 16, kernel_size=(3, 3), stride=(1, 1))
(relu1): ReLU()
(maxpool1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(cnn2): Conv2d(16, 32, kernel_size=(3, 3), stride=(1, 1))
(relu2): ReLU()
(maxpool2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(fc1): Linear(in_features=800, out_features=10, bias=True)
(fc2): Linear(in_features=10, out_features=1, bias=True)

)

Figure 5: The (hyper)parameters used in training and testing of the network.



Appendix B Losses & Convergences
For all of the following tables hold: ŷrw is the set baseline, and ŷtrain the returned test loss (L1) while evaluated the trained
network.

Mean Standard Deviation Median Variance
ŷrw: 8.75 ŷrw: 9.62 ŷrw: 0.0 ŷrw: 1484.73

Run ŷtrain #Epoch Run ŷtrain #Epoch Run ŷtrain #Epoch Run ŷtrain #Epoch
1 2.79 40 1 4.40 37 1 1.76 29 1 498.69 33
2 2.95 40 2 4.53 31 2 1.64 22 2 562.91 22
3 4.28 32 3 5.58 40 3 1.64 27 3 666.30 28
4 2.34 29 4 5.47 29 4 1.76 11 4 359.88 40
5 4.69 40 5 7.29 34 5 2.14 15 5 420.15 40
6 2.85 23 6 4.38 23 6 2.11 23 6 582.61 18
7 5.28 18 7 6.40 22 7 2.19 38 7 511.57 18
8 3.12 26 8 4.51 26 8 1.29 33 8 300.90 40
9 3.44 40 9 5.96 32 9 2.39 26 9 372.44 40
10 4.71 15 10 5.70 28 10 1.54 17 10 447.22 40

Table 5: Experiment 1: Trained on non-transformed images, tested on 45-degrees rotated images.

Mean Standard Deviation Median Variance
ŷrw: 8.82 ŷrw: 9.72 ŷrw: 0.0 ŷrw: 1498.11

Run ŷtrain #Epoch Run ŷtrain #Epoch Run ŷtrain #Epoch Run ŷtrain #Epoch
1 2.15 40 1 3.04 37 1 1.36 29 1 368.19 33
2 1.82 40 2 3.29 31 2 1.42 22 2 418.02 22
3 4.52 32 3 4.71 40 3 1.85 27 3 586.96 28
4 1.79 29 4 3.11 29 4 1.33 11 4 234.61 40
5 2.29 40 5 4.20 34 5 1.79 15 5 255.15 40
6 2.80 23 6 4.39 23 6 2.32 23 6 486.08 18
7 4.17 18 7 4.57 22 7 2.20 38 7 413.08 18
8 2.47 26 8 3.42 26 8 1.18 33 8 254.55 40
9 2.62 40 9 3.67 32 9 2.05 26 9 254.29 40
10 3.55 15 10 3.57 28 10 1.55 17 10 319.80 40

Table 6: Experiment 2: Trained on non-transformed images, tested on 90-degrees rotated images.



Mean Standard Deviation Median Variance
ŷrw: 8.82 ŷrw: 9.72 ŷrw: 0.0 ŷrw: 1498.02

Run ŷtrain #Epoch Run ŷtrain #Epoch Run ŷtrain #Epoch Run ŷtrain #Epoch
1 2.11 40 1 3.69 40 1 1.64 23 1 375.49 33
2 2.11 40 2 4.19 23 2 0.98 40 2 420.62 22
3 5.41 28 3 9.41 19 3 1.62 32 3 583.68 21
4 1.96 26 4 4.40 32 4 0.95 40 4 425.89 28
5 3.03 40 5 6.19 37 5 1.89 19 5 336.75 40
6 2.65 27 6 3.73 34 6 1.74 33 6 462.79 23
7 3.35 17 7 4.24 34 7 2.38 18 7 439.92 18
8 2.36 21 8 3.70 21 8 1.17 40 8 263.84 40
9 2.66 38 9 5.30 23 9 1.98 29 9 590.11 24
10 3.53 14 10 5.38 26 10 1.39 17 10 485.49 14

Table 7: Experiment 3: Trained on randomly rotated images, tested on non-transformed images.

Mean Standard Deviation Median Variance
ŷrw: 189.20 ŷrw: 9.72 ŷrw: 255 ŷrw: 1498.11

Run ŷtrain #Epoch Run ŷtrain #Epoch Run ŷtrain #Epoch Run ŷtrain #Epoch
1 156.90 40 1 33.47 37 1 259.13 29 1 7052.71 33
2 150.89 40 2 34.76 31 2 258.46 22 2 6748.63 22
3 179.47 32 3 16.95 40 3 253.54 27 3 5781.65 28
4 137.79 29 4 57.40 29 4 250.48 11 4 8279.89 40
5 160.22 40 5 35.52 34 5 256.23 15 5 8311.17 40
6 153.41 23 6 45.08 23 6 259.27 23 6 6655.73 18
7 167.79 18 7 23.47 22 7 260.68 38 7 6019.74 18
8 160.55 26 8 30.48 26 8 263.98 33 8 8105.52 40
9 146.41 40 9 47.76 32 9 251.14 26 9 8565.63 40
10 159.97 15 10 49.24 28 10 252.30 17 10 7388.10 40

Table 8: Experiment 4: Trained on non-transformed images, and tested on negative images.

Mean Standard Deviation Median Variance
ŷrw: 9.12 ŷrw: 9.83 ŷrw: 0.0 ŷrw:1517.64

Run ŷtrain #Epoch Run ŷtrain #Epoch Run ŷtrain #Epoch Run ŷtrain #Epoch
1 12.61 40 1 10.34 32 1 1.39 37 1 813.64 26
2 14.53 40 2 19.21 40 2 0.93 39 2 2346.90 40
3 9.94 40 3 26.74 25 3 1.34 30 3 736.67 25
4 15.94 31 4 3.38 23 4 0.96 23 4 3106.85 40
5 6.92 20 5 4.75 40 5 1.29 15 5 792.86 26
6 6.93 19 6 3.65 16 6 2.21 15 6 2595.30 40
7 14.30 30 7 17.36 31 7 1.37 32 7 3376.52 40
8 7.92 28 8 3.60 21 8 1.02 27 8 985.66 18
9 7.71 40 9 6.32 39 9 1.66 27 9 778.08 25
10 5.37 26 10 7.17 38 10 0.91 22 10 672.69 19

Table 9: Experiment 5: Trained on randomly rotated images, tested on noisy images.



Appendix C Training, validation, and test-losses
The graphs are captured at the first run, out of 10, for each sub-experiment individually.

C.1 Plots Experiment 1

(a) Predicting the mean pixel intensity (b) Predicting the median pixel intensity

(c) Predicting the standard deviation pixel intensity (d) Predicting the variance pixel intensity

Figure 6: For this experiment, images in the target domain were 45 degrees rotated, no transformations were applied on the images in the
source domain.



C.2 Plots Experiment 2

(a) Predicting the mean pixel intensity (b) Predicting the median pixel intensity

(c) Predicting the standard deviation pixel intensity (d) Predicting the variance pixel intensity

Figure 7: For this experiment, images in the target domain were 180 degrees rotated, no transformations were applied on the images in the
source domain.



C.3 Plots Experiment 3

(a) Predicting the mean pixel intensity (b) Predicting the median pixel intensity

(c) Predicting the standard deviation pixel intensity (d) Predicting the variance pixel intensity

Figure 8: For this experiment, images in the source domain were rotated between a random angle of 0 and 360 degrees, no transformations
were applied to the images in the target domain.



C.4 Plots Experiment 4

(a) Predicting the mean pixel intensity (b) Predicting the median pixel intensity

(c) Predicting the standard deviation pixel intensity (d) Predicting the variance pixel intensity

Figure 9: For this experiment, images in the target domain were inverted to their negatives, no transformations were applied to the images in
the source domain.



C.5 Plots Experiment 5

(a) Predicting the mean pixel intensity (b) Predicting the median pixel intensity

(c) Predicting the standard deviation pixel intensity (d) Predicting the variance pixel intensity

Figure 10: For this experiment, images in the source domain were rotated between a random angle of 0 and 360 degrees, and images in the
target domain were artificially created consisting of just noise.
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