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THE ANALYSIS OF PLATES OF ABRUPTLY
VARYING THICKNESS WITH THE AID
OF THE METHOD OF DIFFERENCES

The well-known method of differences for the analysis of plates of constant
thickness, which until a few years ago was very laborious, deserves renewed
attention because the advent of the electronic computer has removed this
drawback.

It is now also of interest to extend the method to plates whose thickness changes
abruptly at regular distances in two directions. Plates with apertures are a
special case. It is shown that the difference equation for a plate of abruptly
varying thickness, as derived in this paper, can also be used for establishing
the conditions for arbitrary boundaries. This equation gives directly, i.e.,
without having to introduce “‘external” points as is usually done in the
existing literature, a difference equation for the points at the edge and the
points located at a distance of one mesh width therefrom.

The theory is further elucidated with the aid of a worked example, and the
results are verified by means of tests performed on a model by employing the
moiré method.

Attention is called to the possibility of programming the entire procedure.

0 Introduction

In isotropic plates of constant thickness, and therefore of constant stiffness
with respect to bending, the state of stress under load is governed by the well-
known biharmonic differential equation of the displacements w perpendicular
to the plane of the plate:

KAAw =q . ... )

where ¢ is the load, K is the flexural stiffness of the plate, and A is the Laplace
operator:
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Furthermore, % denotes the thickness of the plate, E the modulus of elasticity

of the material, and » is Poisson’s ratio. Analytical solutions of the differential
equation (1) are known for suitably chosen plate shapes and boundary con-



ditions usually not of a complicated character (see, inter alia, the extensive
bibliography in [1] and [2].

In those cases where the plate has a more complicated perimeter and the
boundary conditions along the perimeter can vary as well, it is usually not pos-
sible to arrive at a straightforward analytical solution by a simple procedure,
and often such a solution is not possible at all.

One of the methods to which one can then have recourse is the calculus of
differences. In that case the plate is not treated as a continuum. The analysis
is, instead, confined to a number of suitably chosen points of the plate whose
displacements w are introduced as unknowns [1, 2, 3]. At each point the diffe-
rential equation [1] is replaced by a linear equation in the displacements of
that point and of a number of adjacent points.

If this procedure is performed for n points of the plate, the problem of sol-
ving the differential equation (1) is reduced to solving zn independent linear
equations with #» unknowns.

The method is attractive only if such a set of » equations can be solved in a
simple manner.

Before the development of electronic computers a direct solution could be
obtained in something like a reasonable time only for n < 20, so that efforts
were made to find possibilities for solving the sets of equations by iterative
methods. SOUTHWELL’s relaxation method [4] can be mentioned as an example
of this.

Since these procedures were still very laborious, the analysis of plates with
the aid of the calculus of differences was, until fairly recently applied only to a
limited extent. However, now that electronic computers are available, this
difficulty has been removed, and it has become an attractive proposition to
make more ample use of this method.

For this reason, too, it is advantageous to extend the method to plates in
which abrupt changes of thickness occur. The need for this was felt in analysing
the stress distribution in a strip floor supported on columns [5] and floors with
cantilevered balconies [6].

1 Application of the calculus of differences to plates of constant
thickness

The procedure for the calculus of differences as applied to the determination
of the action of forces in plates of constant thickness is, briefly, based on the
following:

For plates of constant thickness the differential equation is:

KMw=4q . . . ... ... ...

The expressions for the moments (m) and shear forces (g) are:
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The sign convention for these quantities is defined in Fig. 1.

In the method of differences the plate is disposed in a difference network,
usually a pattern of rectangles or squares formed by straight lines (see Fig. 2).
The intersection of two net lines is called a ‘net point’. The single plate portion
enclosed by four lines is referred to as a ‘panel’. The difference equation for a
net point can be directly derived from the differential equation (1) by trans-
forming the differential operations into difference operations.

For a square network (4; = i, = 4) the principal arrays of differences, re-
ferred to the co-ordinate axes of Fig. 2, are indicated in Fig. 3 (see, for example,

ref. [2]).

a* 0 1 9 a* 0 1
e = =t =
Y 4= t]x1+6y‘ 2” 0 Q 0 44 6x‘+ 6x’0y’+17_y‘ X o

a:
v

Fig. 3. Central difference arrays in replacement of Kl
differential expressions at the central point.




Thus, for net point 33 the difference equation (array AA) is as follows:
K[20ws3— 8 (was -+ wss +was +wsa) +2 (waz 4 waz +waa+w2a) +
+ (w13 +ws1 +wss+wss) | = gA* N )

For plates with abrupt changes in thickness it is not possible to describe the
behaviour by means of one differential equation. Hence in that case the differ-
ence equation cannot be derived from a differential equation. The equation
in question can, however, be directly derived, as will be done in Chapter 2.
In order to enable the reader to familiarise himself with the procedure that
will then be employed, this derivation will now first be given for flat plates.
To this end, an analogy model
13 will be used whose mode of
functioning corresponds to
that of the plate schematised
2 2 % according to the calculus of
‘ differences (Fig. 4), lateral
y contraction being neglected.
as The load, which is conceived
as being concentrated at a
number of regularly spaced
points of the plate, is trans-
mitted by both bending and
torsion.
In the model the plate is
53 replaced by a number of flex-
. A , Ao urally stiff beams of zero tor-

r T 1
sional stiffness which coincide

Fig. 4. Analogy model, comprising flexurally stiff . . .
beams and torsional panels, for a flat plate loaded in with the lines of the differ-
bending and torsion. ence network. The flexural

stiffness of these beams is AK.

In the model the torsional share of the load-transmitting action is provided by

plates with stiffness K which are attached by means of hinged connections to

the intersection points of the beam grillage

g 3. (M ) formed in this way!). Consider the equilibrium
of point 33 (Fig. 4).

i l The load at point 33 is gAsdy, where ¢ is the

3

M. M.,

32 33 s

My =M, Myy=M,, .
i 5 load per unit area and A, and Ay are the mesh
Fie 4 R, <Mt 2 =M width in the x-direction and y-direction respect-
18 wa. g ively.

1) A model of this kind is employed by Licurroot for the analysis of plates by means of the
grid framework method. However, he considers the model to be unsuitable in this form, and
he distributes the torsional stiffness of the panels over the adjacent beams and uses the resulting
grid framework for his calculations (LicuTrooT, E.: A grid framework analogy for laterally
loaded plates. Int. J. Mech. Sci., 1964, Vol. 6, pp. 201-208).
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This load must be in equilibrium with the sum of the shear forces transmit-
ted by the beams (Rp) and by the reactions that the torsional panels produce
at point 33 (Ry), so that:

glxzy - Rb+Rw s e e e e e e e e e e e e e e e e e (5)

The sum of the shear forces transmitted by the beams (R;) is (Fig. 4a):

_ — [Mz]s242[ Myz]s3— [ Mz]3a n —[Mylas+2[My]33—[My]2s

R

(6)

Next, the moments of equation (6) will be expressed in the displacements of
the net points.
The moment in the x-direction at point 33 is:

N [Mz]ss i

[Mz]ss = —AyKnz, thus x, = K

The relation between the moment and the displacements will now be establish-
ed by introducing the approximation that the curvature x, has a constant
value over the adjacent beam portions 32-33 and 33-34 respectively. The
moment will then be proportional to the rise of the arc 32-33-34 of the de-
flection curve, which is equal to:

w3z — 5 (wsa+wsa) = —(ws2— 2wss +ws4)
Suppose point 33 is horizontally restrained; then:

Wse = Frzha®; waz = 0; was = Lugly?
Therefore:

w3z — 2ws3 -+ waa
}.zz

:%z

Expressed in the moment at point 33:

wsz — 2w+ waa B [Mz]s3 1

sz Zy K

Hence:

w3z — 233 -+ w34
[Mz]ss = —ﬂyK—r



The moments occurring in equation (6) are then:

w31 — 2w32+ws3

[Mx]az = -AyK 12
w32 —2w33 W34
A T

[Mo]s ; Kw33—2w34+w35
olas = — Ay K —————

lxz
w53 — 2wz +wsas <7)
[My]43 —_ “‘AzK -
[Mylss = —AaK wig —2tss |- 02
[Mylos = —2aK g —2twes + W13
Substitution of equation (7) into equation (6) gives:
Ry — 1,K ws1 — 4wse +6wss—4wss+wss K wss —4waz -+ O6wsg —dwoz + w13 ®)

P P

For determining the reactions produced by the torsional panels at the net points
consider Fig. 4b. The hinged connections transmit
vertical forces (P) which, for reasons of equilibrium,
can have no other distribution than that indicated
in Fig. 4b. The panelis therefore subjected to NADAI’s
loading case, in which a twist xy constant over the
area of the panel and equal to the following value
(e.g., for panel I) occurs:

— w33+ W34 — Wag | Wos
[xzy]1 = )
aly

The torsional moment in this panel is then:

— w33+ W34 — Wy +Was

[m,;y]l——-—K ﬂxly ............(9)

A section at an angle of 45° with respect to the edges of the panel is subjected
to a bending moment having the value P. The moment acting upon a section
perpendicular thereto is of the same magnitude but with the opposite algebraic
sign. The moments under consideration are the principal moments in the
plate; the sum of the principal moments is therefore zero. The distributed shear
force is proportional to the first derivative of the sum of the principal moments
and is therefore also zero. From the equilibrium of a portion of the panel cut
off by the line a—a (Fig. 4b) it is, however, apparent that a total shear force
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of magnitude P has to be transmitted. Since the distributed shear force is zero,
a concentrated shear force of magnitude P must act upon the edges. A section
parallel to one of the sides of the panel is therefore subjected to a distributed
moment mgzy as also two opposite concentrated shear forces 3P. From the
equilibrium of the portion cut off by the section it then follows that:

so that:
P = mey

or more particularly for panel I:

Pr = 2[myys — oK BT Waa s (10)
Aoy
The total reaction produced at point 33 is:
Ry = Pi1— P+ Pmi— Py =
_ 9K W33 — W34+ Waa — Wa3 n W33 — W3 Wz — W32 n
W33 —wWsz+ Wiz —Wag | Ws3— Wiz Waa— W34
Azhy Azhy
_ ok 4w33—-2w34—2w23—2w32;§w43—{—w24+w22 +wa+waa . an
ahy

Substitution of equations (8) and (11) into equation (5) yields the difference
equation for point 33:

w31 —4wsz +6wsz —4wsa+wss  wsz— 4wz 61wz —4waz +wis
+
Azt Ayt
8wz —4wsa — dwes — 4wss — 4wz + 2wea + 2wee 4 2ww42 + 2wy
lleyz
For a square difference network (4, = 4, = A) the equation (12) is identical
with equation (4).

K

J:q. .(12)

The equation is valid for all net points that are located at a distance of at
least two mesh widths from the edge. For points at one mesh width from the
edge and for points at the edge the difference equation must be modified be-
cause these points undergo the effect of the edge. How this can be done will
be dealt with in detail later on.

The difference equations for all the net points together form a set of linear
equations in the displacements. An electronic computer will mostly be used
for solving this set.

When the displacements have thus been obtained, the moments and shear
forces can be determined from them.



The bending moments in the beams of the analogy model can be determined
with the aid of equation (7). These moments can be expressed in terms of plate
moments per unit width.

Thus, at point 33 of Fig. 2 the following expressions are obtained for the
bending moments:

was — 2w3z + w34
el = =85 1 (13)
B K w23—2w33+w43 J . . . . . . . . . . . . .
[mylss = — —

The constant torsinal moments in the panels of the analogy model can be de-
termined with the aid of equation (9) and be directly used for the plate. For
example, for panel 33-32-22-23:

w33 — W3z -+ Wag —Wa3

[May]t = —K ™ (4

For determining the shear forces in the analogy model, the share thereof due
to torsion will first be examined more closely. The reactions P at the corners
of the torsional panels cause shear forces of magnitude §P which — as has been
shown in the foregoing — manifest themselves as constant concentrated forces
along the edges. In ‘translating’ the shear forces in the analogy model into
those for the actual plate, it must be borne in mind that these concentrated
shear forces partly cancel one another along the panel sides which they have
in common. _

Thus if, for example, the panels IT and III undergo the same amount of
tilt, the shear forces —4Prr and §Prr will just cancel each other. With different
amounts of tilt of the panels, as will generally be the case, the resultant shear
force in the x-direction will be:

Qr = $Pmi—3Pu

Since no discontinuity can be expected to occur at the side shared in common
by the panels, this shear force, converted for the plate, is uniformly distributed,
so that:

, Pmn—Pn
Pl

9z = Ay

The shear forces in the beams of the analogy model, converted for the plate,
are likewise uniformly distributed. The sum of the shear forces in the analogy
model, e.g., in the portion 32-33, in the beam and the adjacent torsional
panels IT and IIT is:

_ [Mz]ss—[Mz]s2

Q2 P

+ $Pur—3Pu



For the plate, expressed in shear force per unit width:

- ey Drobmelnade L

2 Plates with abrupt changes of thickness

Fig. 5 shows part of a plate with abrupt, i.e., stepwise, changes of thickness;
the usual difference network is also shown. At the difference lines the thickness
of the plate may undergo a sudden
increase or decrease. In the most
general case all the panels will differ
from one another in respect of thick-
ness. Each panel in the diagram is . .
indicated by a Roman numeral. The 2l | "
stiffness of a panel is denoted by K Vil I | Xl 5
followed by the relevant Roman nu- a s 33 ] 3
meral as a subscript. A L B A

. . . 42 43 44 |
In the derivation of the difference ]

equation the effect of the flange ac- Ixss " &
tion and of lateral contraction (Pois-
son’s ratio) will be ignored.

With regard to flange action the
following can be noted. The starting Fig. 5.
point in the derivation of the elemen-
tary plate equation is that the loading gives rise only to moments and shear
forces. In slabs whose middle surface is not a flat plane — e.g., because the
edges are thicker than the central portion — ‘flange action’, however, addition-
ally produces normal (direct) forces in the plane of the plate. Although it is
possible in principle to introduce flange action into an analysis according to
the method of differences, an investigation of the problem [7] revealed that
in most cases this action can quite safely be left out of account.

The analogy model already described will again be used for establishing the
difference equation (Fig. 5). The difference in relation to the flat plate (of
constant thickness), however, is that now the flexurally stiff beams as well as
the torsional panels all have different stiffness values. Since the beams of the
model are assumed to have zero torsional stiffness, they can be conceived as
being composed of two beams disposed freely side by side and each having a
stiffness equal to §4 times the plate stiffness of the adjacent parts of the plate.

J

) By expressing the moments of equation (15) in the displacements and then rearranging
them, the well known formula is obtained:
[my+my)ss— [my+m, s
Qe = 2
(4




At the net points the beams which are in a direct line with each other are assumed
to be joined to each other by a flexurally stiff connection. In this way nodes
(junctions) of four beams which cross one another at right angles and are all
separate from one another, but which undergo the same displacement, are
obtained. From the following treatment of the problem it will appear why the
beams in the analogy model are
interconnected in this particular
way.

As the thickness of the plate
does not vary within a mesh of
the difference network, the stiff-
ness of each torsional panel is
constant. On considering the
equilibrium of point 33 it is appar-
ent that the same equations as
those which were derived for the
flat plate (equations (5) and (6))
are valid for this case, too, since
equilibrium equations are not

Fig.6. affected by variations of thickness.
The next step consists in express-
ing the moments of equation (6) in terms of displacements of the plate.

Consider the bending, in the x-direction, of the beam located on the net-
work line 31-32-33-34-35 along the edge of the panels VII-II-I-XII and
having an abruptly varying stiffness equal to }2 times the value of K for these
respective panels. The beam in question is represented in Fig. 6, together with
the diagram of the displacements w and of the moment Mj.

At the net points the beam portions with different stiffnesses are rigidly inter-
connected (so as to transmit bending). Because of this, the bending moment
will have the same magnitude to the left and to the right of each net point;
the curvature will undergo an abrupt change there.

To the left of point 33:

[Mq]ss 1
[Mz]ss = — 34y Kipear; so that xnp = — %Zy K
To the right of point 33:
Mylss 1
[My]ss = —%AyKixr; so that xp = — [ %;3 K

The relation between the moment and the displacements will now be calcula-
ted with the approximation that 1 and »ir have a constant value over the ad-
jacent beam portions 32-33 and 33-34 respectively.

The moment will then be proportional to the rise of the arc 32-33-34 of the
deflection curve, which is equal to:
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w33 ———%(wsz —I—w34) - % (w32 —2ws3+ w34)

Suppose point 33 to be horizontally restrained; then:

waz = dunde?; waz = 0; wss = Lrrds?
Therefore:
w32 —2ws3+wss
e, = $[nr o)
Az
Expressed in the moment at point 33:
w3z —2ws3+wsa [Mx]33 {1 4 1 ]
Ag? Ay K1 K
Iz
(') A
x 13
vi v
)4 2<923+933)
2
2Ky (K,+K") 2K,
S22 - 272 7373
) C)—r ))il
7 A\ N\
|
Vil L[} (faz‘l‘“sa"'fu) X
e
_ Esz"‘faa) + 913+/‘933+9u) fastfa
A lj -2 7
4 e S PV
X Xy xry x "
31 /32\ f33\ 34\ . 35
G/ -\ S/
Vil n v Xl
12) és) Au.
2K 2 <933+943> Ky
272 - - 5297
P 7 p7
K, +K
IX —-2( ';:Lﬂl)
x"y
X
53
943
75

Fig. 7. Coefficients of the difference equation (12a).
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Hence:
K:iKn w3z — w33+ w3a

Mylss = —4

[Mzlss Y K1+ K 8 Aa?
The moment at point 33 of the beam along the edge of the panels VIII-TII-
IV-XI can be determined in the same way. The sum of the two moments at
point 33 of the two beams is then:

KiKn KmiKiv | wss—2wss+wsa

Y|Ki+Ka ' KoKy Aa?
The expression between square brackets will from now on be referred to as the
‘equivalent stiffness’. To simplify the formulae the following notation is intro-
duced:

[Mz]ss = —4

KyuKi KyvinKm KuKvr KiKvy
Joz = + ge3 = -+
Kyvu+Kua  Kvio+Km Kn+Kvi  Ki+Kv
£ KuKi. KKy p KimnKn KivK:
= o~ 3 —
%= Kn +K1 K+ Kiv > Kim+Kn  Kiv+Ki
KiKxn KivKx1 Kix K KxKiv
Saa = g13 = +
Ki+Kxu = Kiv+Kxr Kix+Km = Kx+Kiv

Then the moments occurring in equation (6) will be:

[Malsz = —hufon ws1— 2ws2 + wss3
Az?
[Mylss = —iufis w3z — 2ws3z+ws4
Az?
[Malss = —Ayfos wss —2ts4 + W35
o (7a)
........... a
wss— 2wz + wss3
[Mylas = —ﬁxgw—’jyz—
[M,]ss = _Mgaaw_%:w
Ay?
—2
[My]es = —hages M%"me
7
Substitution of equation (7a) into equation (6) gives:
w31 — 2wss +wss w32 — w3z + w:
Ry = Myfse L_# — Uy fis Li;gﬁ_.f_“
w3z —2wzs+w w3 — 2wa3 -+ w
4 Ayfoa 33—2%“——35 + Angas %ﬁ‘”‘? ... (8a)
T Y
wiz—2wsz+w was— 2woez +w
Y 43 - :;3 B Aagen 33 : 23 13
y y
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The reactions produced at the net points by the torsional panels are determi-
ned in the same manner as has been described with reference to plates of con-
stant thickness in Chapter I. Each torsional panel produces a reaction P equal
to twice the stiffness multiplied by the twist of the panel concerned (equation
10).

The total reaction produced at point 33 is:

. — 9K W33 — W34+ Waa — Wa3 © 9Ky w33 — Wa3 W33 — W3z
Ay Azhy
1 9K w33 — W32 - Wiz — W43 L 9Ky W33 — W43+ Waa — W34 (1)

Substitution of equations (8a) and (11a) into equation (5) gives the difference
equation for point 33:

w1 —2wsz -+ wss w32 — 2w3s +wsa

2
a2 e fas P
w3z — 2w3s -+ wss w53 — 2wa3 -+ wss
+f34 —T 843 —"'*"i;{-**"“
w4z — 2w33z +wea w3z —2wes+ w13
—2g33 ——mM—— —_—_—
Ayt Ayt
W33 — W34+ Wag — Wag W33 — Wag —+ Wea — W32
K 2K
+2Ky Y + 2Kn T
w33 — W3z Wiz — W43 W33 — W43+ Wi — W34
K; K = . 12
+ 2K YR + 2K1v P q (12a)

The first six terms of equation (12a) are flexural terms; the others are torsional
terms. In Fig. 7 the coeflicients of equation (12a) are represented in the form
of an array of differences.

It is an obvious suggestion to check the validity of equation (12a) for some
particular plate shapes. In the case of a flat plate (constant thickness) the
equivalent stiffnesses f and g are equal to K, so that equation (12a) becomes
identical with equation (12) for such a plate.

For a plate whose difference panels alternately have a stiffness K and zero
stiffness in checkerboard fashion the equivalent stiffnesses f and g are zero. The
load could in that case be transmitted only by the torsional resistance of the
panels. In general this is possible only for certain special loads and/or bounda-
ry conditions.

A rectangular plate with the above mentioned checkerboard pattern and
having two opposite edges unsupported can be rolled up in the form of a cy-
linder, i.e., any deformation not associated with torsion can freely occur. This
phenomenon can be verified with a simple little test, which also constitutes a
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justification of the choice of the analogy model. In point of fact only the
beams which are in a direct line with each other are rigidly interconnected,
so that in this case the beams cannot transmit bending.

The remaining flexural stiffness of the plate with checkerboard pattern is so
small that it can be assumed that the equivalent beams such as 33-34 of panel
I and 32-33 of panel III are not rigidly interconnected.

In Chapter 1 it was already noted that for the points located at a distance
of one mesh width from the edge of the plate, and for the edge points them-
selves, the difference equation has to be modified, depending on the nature of
the boundary condition. In establishing the difference equation for these points
it must be taken into account that one or more of the adjacent points to be
considered are located outside the plate.

In the existing literature this problem is solved by giving these ‘external
points’ a judiciously chosen displacement appropriate to the relevant bound-
ary conditions. Since the number of unknown external points is equal to the
number of boundary conditions, the displacements to be applied to these points
are uniquely determined. For example, for a restrained (rigidly fixed) edge
the displacements given to the external points located at a distance of one mesh
width from the edge are equal to the displacements of the internal points lo-
cated at the same distance from the edge. For more complicated boundary
conditions, such as those at unsupported edges and corners, expressing the dis-
placements of the external points in those of the internal points is a rather la-
borious task.

A quicker result is obtained by making use of the difference equation —
derived in the foregoing — for plates with abrupt changes in stiffness (equation
12a). This equation in fact directly yields a difference equation for the points
at the edge and at a distance of one mesh width from edge. It does this without
having recourse to external points. Three boundary conditions will now be
considered as examples:

a. Restrained edge

In Fig. 5 the network line 24-34—44 will be assumed to be a restrained edge
(rigidly fixed), with the plate situated to the left thereof.

To the right of this network line all the stiffnesses are infinitely large, while
the displacements of the point on this line are zero. The difference equation
for point 33 can now be determined as follows:

For otherwise constant plate thickness the equivalent stiffnesses f and g are:

Sa2 = K; fas = K; fas = 2K
g3 = K; gass = K; gis = K

Substitution of these stiffnesses into the array of Fig. 7 yields the array accor-
ding to Fig. 8a for a square-meshed network (4 = 4, = A).
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If the displacements of the edge are to have prescribed values, then the array
represented in Fig. 8b is obtained.

b.  Unsupported edge

It will be assumed that the network line 13-23-33-43-53 in Fig. 5 represents
an unsupported edge, the plate being to the left thereof. To the right of this
line all the stiffnesses are zero.

The difference equation for point 33 can now be determined as follows:

For constant plate thickness the equivalent stiffnesses f and g are:
J2 =K; fos=0; fauu=0
g3 = 3K g33 = 3K g3 = 3K

Substitution of these stiffnesses into the array of Fig. 7 yields the array accord-
ing to Fig. 8¢ for a square-meshed network (1, = 4, = ).

poj=

1 . v
2 |8 2 |82
1|82 1 |=s 2 a2
! 2 |8 I 2 |8 2I
1 1
7
a. Restraint K X w = ga%. b. Restraint K £ w = ¢ga4.
_Jos J1
LR 2 |-7]2
Jl1 —6 48 1 |=7 13 |4 [os
2 |4 [ 2 |4
_los 05

c. Unsupported edge K Z w = }qgAs. d. Unsupported re-entrant angle K £ w = At

Fig. 8. Difference arrays for points in the vicinity of edges for a square-meshed difference
network (4, = 1, = 4).

c.  Unsupported re-entrant angle

In Fig. 5 the angle 43-33-34 is assumed to be a re-entrant angle where two
unsupported edges of the plate intersect.

The difference equation for point 33 can be determined from the general
equation by supposing a plate of zero stiffness to be present within the right
angle.
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For constant plate thickness the equivalent stiffnesses f and g are:
S = K; fis = 3K; fas = 3K
g3 = K; gss = }K; gas = 3K

Substitution of these stiffnesses into the array of Fig. 7 yields the array accord-
ing to Fig. 8d for a square-meshed network (1; = 4y = A).

From the foregoing it will be apparent that the general difference equation
(12a) can be used for writing down the difference equations for all points of the
plate. For those panels of the difference network which coincide with, for in-
stance, an aperture or an infinitely stiff part of the plate it is merely necessary
to insert K = 0, or K = oo into the equation.

Thus, for example, plates of constant thickness with apertures constitute a
special case of the plate with abrupt changes in thickness.

When difference equations have in this way been established for all the points
of the plate determined by the difference network, the problem has been re-
duced to the solving of a set of linear equations expressed in the displacements.
The matrix of the coefficients of this set of equations has some special properties
which, on the one hand, provide a check on the calculated coefficients and
which, on the other hand, can be used in solving the set.

In the first place it is to be noted that the sum of the coefficients in equation
(12a) (see also Fig. 7) is zero because the sum of the coeflicients of each part
constituting equation (12a) is zero.

In physical terms this can be explained by considering that, in the case of a
rigid vertical displacement @ of an unloaded plate, the plate itself will offer
no resistance to such displacement. Now if for each w in equation (12a) the
value @ is substituted, only the right-hand member will be zero (¢ = 0) if the
sum of the coefficients is zero. ‘

Also in the case of rigid rotation about an arbitrary line, with a linear rela-
tion between the displacements, the right-hand member of equation (12a)
must be zero. For the matrix this means that there exists a relation between
the coeflicients of each row.

Both properties provide a check on the magnitude of the coefficients.

The same argument is applicable to points located beside or at unsupported
edges; for this reason the same checks are valid also for the relevant row of
the matrix of coefficients. However, for points located beside restrained edges
or edges with hinged bearings, the same is not applicable, if the condition that
the displacement at the edge is zero has already been utilised.

If a prescribed deformation of the edge is accepted as a permissible condition,
then a somewhat different array of differences will be obtained, for which the
checks in question will indeed be valid. In that case, for a restrained edge the
array represented in Fig. 8b instead of that in Fig. 8a should be used.

Another important property is the reciprocity relationship which exists
between the coefficients in the equations for various net points. Let a;; denote
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the coefficient of the displacement w; in the equation for point 7 and let aj
denote the coefficient of the displacement w; in the equation for point j; then
the reciprocity relationship in question is expressed by a;; = ay.

This property can be derived with the aid of Maxwell’s theorem. The con-
sequence of this is that the matrix of coefficients is symmetric about the prin-
cipal diagonal, provided that also for those points which are affected by the
boundary conditions, the difference equations are determined with the aid of
equation (12a).

For the solving of linear equations having a symmetric matrix of the coeffi-
cients with the aid of an electronic computer, special programmes can be em-
ployed which require less machine time and which, for a given memory capac-
ity, enable larger sets of equations to be dealt with than programmes for equa-
tions having an arbitrary matrix. Besides, the relatively large number of noughts
in the matrix may be an advantageous feature if solution programmes are used
which utilise this property.

As it has proved possible to employ equation (12a) for all points of the differ-
ence network, including the points in the vicinity of the edge and at the edge
itself, it may be worth while to make a special programme for this.

The moments and shear forces are determined by a procedure similar to
that described with reference to plates of constant thickness in Chapter 1.

This will be demonstrated with regard to the bending moment for point 33
of Fig. 5.

At the side of panels I and II the following holds true:

[malss = —2 KiKir w32 —2wss+wsa
Ki+Kn Ag?
And at the side of panels IIT and IV: oo oo (139)
[alss = —2 KimKrv  wse—2wss+ws4
K+ Ky Aa?

Here the distributed moments which are valid for a zone of width 14, beside
the network line have been directly written down.
The torsional moment in, for example, panel 33-32-22-23 is:

[yl = — K Btz (4
Aahy
Just as was done in the treatment of slabs with constant thickness, the torsional
share of the shear force will first be considered more closely.

In plates with variable thickness the concentrated shear forces will likewise
partly cancel one another along the edge that the panels share in common.
Now, however, only a part of the difference of the concentrated shear forces
is uniformly distributed; the rest continues to exist as a concentrated shear

force.
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It can be demonstrated that in the most general case — if, for instance,
Kt > K — there exists in the panels IT and III a uniformly distributed shear
force in the x-direction whose magnitude is:

Kn

—— X Prii— P
Kin

roj=

9z = 7

and in the panel with stiffness K there exists along the common edge a con-
centrated shear force of the following magnitude:
KIII—KII

R, =} ——Pm
Kt

To clarify this, three limiting cases will be considered:

If K1 = K, the concentrated shear force does not occur, and the uniformly
distributed shear force in the two panels is:

, Pm— P
9z = 2 .
v
b. If Kir = 0, there is only a concentrated shear force at the edge of panel III:
s g
Ry = % Pm
¢. If Kir > Ko and the two 3=
panels have the same tilt, .
. . 613 19 24 28 3132 33
then there is no uniformly S R
distributed sh & 14 _q 14' 20 250290 32 34. 351 3%
istributed shear force, 2 a.o’s' o 261 300 30 351 36,335. PR
. . ; B
but in the panel with . 20‘t_14| 7| 14| 20| 25| 29| 32 34,»5 34}
. . 1l 7
stiffness Kyr there exists 1ol 131 o 13| 19] 24] 28] v /32J_ N
- 1N
along the common edge a - to) 1252 18 2| 7 _,1_5_.r 2!
concentrated shear force: | 17L11' 41 1) 17) 22),23 2]
I 6] 10! 3| 10| 16,47 18
Ry = 2P111~——P11 | r- ‘t r A0
s zp;;m_m i
intheb | 1,2 3! '
Theshearforcesinthebeams | __ _146, e x
I 5ol
of the analogy model are, ! 9L,§L_‘L {
converted for the plate, uni- : | l
formly distributed over a | l |
y
L Jmee J

zone of width }4 beside the | 77
network line.

Fig. 9. s ol i “ha | 2
Square ideal internal panel of a i R ]
strip floor supported on columns.
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Hence, if Kur > K, the uniformly distributed shear force in the x-direction
on the length 32-33 at the side of panel II will be:

K
—X Pin— P,
_ [ma]ss—[mq]se L1 K WM
c Ao 2 Ay
Ky
—[m —[m
_ [mz]33— [ms]32 i K [maylaox—[may Ju
- Ao Ay
and on the length 32-33 at the side of panel III:
K;
ML [y Jurr— [y iz e e e (15a)

_ [ma]ss—[mae]se n K
N Ao Ay

Furthermore a concentrated force acts along the edge
of panel III:

Kii— K
R, — 1 UL AL
% Km

_ Km—Kn
K

P

[mxy] 111

3 Worked example

The theory which has been presented in the foregoing will now be further
elucidated with the aid of an example relating to the analysis of the forces
acting in a ‘strip floor’. This type of floor constitutes an intermediate case
between flat slab floors and floors supported on beams which span from column
to column. The essential difference is that the structural behaviour of the beam-
and-slab floor is such that the beams and slabs can, with satisfactory approxi-
mation, be analysed separately, whereas in the strip floor (comprising thickened
strips extending from column to column) the floor structure must be considered
as a whole. Also, in the strip floor the column heads will, generally speaking,
not be (or be only slightly) enlarged or flared, since thickened strips are pro-
vided. The actual shape of the column head can be ignored, so that analysis
by means of the method of differences is possible [5].

Fig. 9 represents a square ideal internal panel subjected to a uniformly
distributed loading ¢. By ‘ideal internal panel’ is to be understood a panel
which is located at such a distance from the edge of a floor of this kind that,
for uniformly distributed loading, the lines connecting the columns can be re-
garded as lines of symmetry for the deflection surface.

The thickness of the slab /; is two-thirds of the thickness of the strip Az, so
that —if K denotes the stiffness of the central part — the stiffness of the thickened
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strip is (he/h1)3K = 3.375 K. The width of the strip is 3/7 of the centre-to-centre
spacing of the columns.

Because of the symmetry, it is necessary only to consider a half quadrant
(namely, the triangle BCD) of the square panel. The slab is provided with a
square-meshed difference network with a mesh width 4 = a/7.

The width of the slab and the width of the strips have been so chosen that
the transition from slab to strip coincides with a network line. The column
supporting the slab is conceived as a ‘point bearing’, so that the condition ap-
plicable at point 36 is: w = 0. For the other points along the three boundary
lines of the octant under consideration the boundary conditions (slope and
shear force at right angles to the said boundary lines are zero) are satisfied by
extending the network symmetrically outwards beyond the three symmetry
lines (see Fig. 9).

For each point of the slab the equation (12a) is valid. In all, this yields a set
of 35 equations for the 35 unknown displacements 1 to wss (wss = 0).

When these equations have been solved, the moments and shear forces can
be determined from the calculated displacements.

The way in which the equations are established will now, by way of example,
be shown for the points 1, 5 and 27.

Point 1: Equation (4) is valid for this point

A4
20w1*‘8[w2+w2+w2—|“WZ]+2[w9+w9+w9+w9]+[w3+w3_l_w3+w3] — q7
or:

gt
20w; — 32wz 48wy +4ws = X

To obtain a symmetric matrix, the equation is multiplied by 1/8. This is asso-
ciated with the fact that only one-eighth of the slab is being considered.

4

95101 — 4wz 4wy +0.5ws = 0.125 97 ............... (1)

Point 5: Equation (12a) is valid for this point
The equivalent stiffnesses are:

3.375Kx3.375K KxK

fs =S 3.375K13.375K TKIK 2
Kx3.375K Kx3.375K
— — 1.542857K
& K13375K | K+3.375K 2
ga =K
Ze = 3.375K
Therefore:
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2.187500[w18—2w12—|—w5]—2X2.187500[w12—2w5+w12]+
+2.187500[ws —2w12+wis] +
—I—l X [w3-—2w4—|-w5]—2 X 1542857[w4—2w5+w6] —{—3375[w5—2we—|—w7] -+
+2 % 8.375[ws —wia+wis—we] +2 X 3.375[ws —we -+ wis—wiz] +
gt

+2 x 1[ws — w12+ w11 —wa] +2 X 1[ws —ws+wn —wiz] = X

To obtain a symmetric matrix, this equation as a whole is multiplied by .
On rearranging:

0.5w03—4.542857w4+-20.585714ws—11.667857ws -+

}'4
—|—1.6875w7—|—2w11—17.5w12+6.75w13—|—2.1875w13:0.5% o ()

Point 27: Equation (12a) is valid for this point also

~ 3.375K x3.375K n KxK
" 3.375K+3.375K ' K-+K

_ 3.375K x3.375K n K x3.375K
"~ 3.375K+3.375K = K-+3.375K

ﬁs = gog — 3375K

= 2.187500K

fz3 = g3

= 2.458929K

f27 = g27

Therefore:

3.375[wag —2wag +2war] —2 x 2.458929[wes — 2war + wes ]+

+2.1875[war— 2wasz +wis] +2.1875[w1s — 2wes +war | —

—2x2.458929[ waz—2war + was] +3.375[wer—2wag -+ wag| +

+2 % 3.375[war — waz+waa—was] +2 x 3.375[war — was+ws1 — wes ] +
gat

+2 x3.375[w27_w23+w24—-w23] +2x [w27_w23+w22—“w23] = —E

On multiplying this equation by } for the same reason and rearranging the
terms:

2. 1 875w13+w22—~ 1804‘2858&)23 —|—675w24+26523216w27—

A4
—95.167858w35+3.375ws9+3.375ws1 = 0.5 ’% e . . ()

All the equations can be built up in this way. The set of equations is set down
in Table I (see pp. 22 and 23).

The solution of these equations, as determined with the aid of an electronic
computer, is given in Table II.
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Table I. (first part)

wy

2]

Wy

Wy

We

Wy

wg

OO O b ON -

10

—4
12.5
—4
0.5

0.5

—4
10.271429
—4.542857

0.771428

0.5
—4.542857
20.585714

—11.667857
1.6875

2.1875

0.771428
—11.667857

32.833929
—13.5
1.6875

6.75
6.75

3.375

1.6875

—13.50
35.4375
—13.5

6.75
—27
6.75

3.375

1.6875
—13.5
1.6875

—13.5

1.6875

11
-8

le I. (second part)

W10

wn

Wy

Wi

Wie

N=R--R K-} G ON =

-8
23

-8

1
-8

21.542857
—9.085714

2
—17.5
6.75

1

—9.085714
43.358928

1.542857 | —23.335714

3.375

—17.
6.7

2.1875

6.75

—27
6.75

1.542857

—23.335714

69.042857
—27
3.375

6.75
—27
6.75

3.375

6.75
—27
6.75

3.375

74.25
-27

6.75
—27

6.75

3.375

—13.5

3.375
—27
35.4375

6.75
—13.5

1.6875

-8
22.542857
—9.085714
1.542857

2.1875

—17
6.75

1
—9.085714
41.171428
—23.335714

3.375

—17.
6.7

2.1875




Table I. (third part)

Wiy Wao Way W Wag Way Wap Wag Waq
1
2
3
4
5
6 3.375
7 3.375
8 1.6875
9
10
11 1
12 6.75 2.1875
13 —27 6.75 3.375
14 6.75 —27 6.75 3.375
15 6.75 —13.5 1.6875
16 1
17 1.542857 —8 3
18 |—-23.335714 3.375 2 —17.5 6.75 2.1875
19 65.667857 —27 3.375 6.75 —27 6.75
20 —27 70.875 —27 6.75 —27 6.75
21 3.375 —-27 33.75 6.75 —13.5
22 10.542857 | —9.085714 1.542857 1
23 6.75 —9.085714 43.442853 | —23.335714 3.375 —18.042858
24 —27 6.75 1.542857 | —23.335714 65.667857 —27 3.375 6.75
25 6.75 —-27 6.75 3.375 —27 70.875 —27
26 6.75 —13.5 3.375 —27 33.75
27 1 —18.042858 6.75 26.523216
28 3.375 9.208933 —27 6.75 —25.167858
29 3.375 6.75 —27 6.75 3.375
30 1.6875 6.75 —18.5
31 3.375 3.375
32 3.375
33 1.6875
34
35
Table I. (fourth part)
Wag Way W Wy W Wag Wag Wap oAtk
1 0.125
2 0.50
3 0.50
4 0.50
5 0.50
6 0.50
7 0.50
8 0.25
9 0.5
10 1
11 1
12 1
13 1
14 1
15 0.5
16 0.5
17 1
18 1
19 3.375 1
20 3.375 1
21 1.6875 0.5
22 0.5
23 9.208933 1
24 —27 6.75 3.375 1
25 6.75 -27 6.75 3.375 1
26 6.75 —13.5 1.6875 0.5
27 |—25.167858 3.375 3.375 0.5
28 73.333925 —27 3.375 —-27 10.125 1
29 —27 70.875 —27 6.75 —27 6.75 3.375 1
30 3.375 —27 33.75 6.75 —13.5 1.6875 0.5
31 —27 6.75 33.75 —27 3.375 3.375 0.5
32 10.125 —27 6.75 —27 77.625 —27 —27 10.125 1
33 6.75 —13.5 3.375 —27 33.75 6.75 —13.5 0.5
34 3.375 3.375 —27 6.75 37.125 —27 0.5
35 1.6875 10.125 —13.5 -27 42.1875 0.5




TableIl. Displacementsin gA4/K

(A = 1/7a)

w, = 83.2289 w3 = 59.8927 w,ys = 42.3732
w, = 81.8197 wyy = 56.5443 w,ye = 40.7655
wy; = 77.8793 wy; = 55.3466 Wy, = 44.5941
wy, = 72.2690 wye = 72.2321 wys = 37.3359
w; = 66.4242 wy; = 66.2487 wyy = 31.8817
wg = 61.7240 wys = 59.8976 wyo = 29.7643
w, = 58.4810 wyy = 54.6436 wy, = 28.2032
ws = 57.3246 wyo = 50.9553 wy, = 20.9734
w, = 80.3921 wy = 49.6216 wyy = 17.9229
wye = 76.3961 w,yy = 59.7801 wyy = 11.5967
wy; = 70.6940 wy; = 52.7368 wy; = 6.9448
wy, = 64.7264 wy, = 46.7134 wge = 0

Next, the moments (equations 13a, 14a) and the shear forces (equation 15a)
can be determined from the calculated displacements.

To illustrate this, some more examples will now be given.
In the strip at point 5 (equation 13a):

12— 205+ w12

my — —3.375K = - — 11.4601¢22 = 0.2338¢a2

In the slab at point 5:

w12 — 2ws + w12
22

At the transition of strip and slab at point 5:

9w K x3.375K ws—2ws-+ws
K+3.375K A2

At the transition of slab and strip at point 27:

- xiiii??i w%_QZ‘;”erZB — —1.3647¢2 = —0.0278¢a2

In the panel 12-5-6-13 (equation 14a):

92— W5+ We— W13
22

my = —K = 3.3956¢42 = 0.0693¢a2

— —1.7660g42 = —0.0361ga?

my =

My =

Moy — —3.375K - — —0.4505¢42 = —0.0092¢a?

In the panel 11-4-5-12:

w11 — W4+ W5 — Wiz

May = —K = —0.1228¢42 = —0.0025¢a?

22
In the strip extending between points 12 and 5 (equation 15a):
1
_ [mz]iz—[ma]s 3375 [May]strip + [May]s1an

f= = P P
— [10.5667 —11.4601-0.1335—0.1228]
— 0.8827¢2 — —0.1261¢a
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In the slab extending between points 12 and 5:

[mxy] strip [mzy] slab

1
[mz]12— [ma]5 "~ 3.375

T = 7 + 7

= [3.1309—3.3956+0.1335—0.1228]

= —0.2540g4 = —0.0363¢a
The concentrated shear force along the edge of the strip between points 12 and
5 is:
3.375—1

z = — —3—3;,‘75— [mxy]strip
2.375
= — = .4’ = — -3 = . 2
o X 04505 = —0.317q2 = 0.0065a

The distribution of the moments and shear forces is shown in Fig. 10.

A preliminary indication as to the reliability of the method can be obtained
by carrying out a number of equilibrium checks.

For the quadrant ABCD in Fig. 9 the requirement is that the following
equilibrium condition must be satisfied:

B Cc
_ Z s + Z My — 49gA2% 3.54 = 171,523
A D

since the torsional moments and shear forces must — for reasons of symmetry —
be zero along the edges of the quadrant.

B
From summation of the moments it follows that: — Z mg = 121.5639
A

C
+ my = 49.9166
g = o

total 171.4805
The relative error is only 0.129/g0.
Other equilibrium checks, more particularly those for shear force, also yield-
ed very satisfactory results.

4 Model test

With a view to verifying the analysis, a Perspex model was made in which the
moments were determined with the aid of the moiré method.

Some results are given in Fig. 11.

As already stated, Poisson’s ratio was assumed to be zero (v = 0) in the ana-
lysis. For this reason there cannot be complete agreement with the results of
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Fig. 11. Comparison of the. calculated moments (— ) and the moments determined
from the model tests (— - —-).
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the model test, since for Perspex » ~ 0.4. From the curvatures determined by
means of the moiré method the moments were calculated with » = 0, so that
actually it is not the moments but the curvatures that are compared.

Except in the vicinity of the column, there can be said to be very good agree-
ment between the calculated values and the results obtained from the model
test.

Because of the relatively large dimension of the mesh width of the difference
network, the moments in the vicinity of the column are not accurately represent-
ed. In addition, the actual dimensions of the support have not been taken
into account. Hence it is necessary to carry out a supplementary calculation
for determining the pattern of forces acting in the vicinity of the support. For
this the relevant literature should be consulted [5, 8, 9].

5 Concluding remarks

From the foregoing treatment of the subject it appears that the calculus of
differences offers good possibilities for the analysis of plates (slabs) of abruptly
varying stiffness and with arbitrary boundary conditions. As compared with
the grid framework method, in which both the displacement and the slope in
two mutually perpendicular directions at the net points are taken to be un-
known, the present method has the advantage that only one-third of the num-
ber of equations have to be solved. The advantage claimed for the grid frame-
work method over the difference method is that fictitious ‘external’ points
need not be considered. This advantage is shared by the method presented in
this paper.

The method can be extended in various ways. For example, it is being in-
vestigated how a similar kind of analysis could be established for slabs support-
ed on beams.

If the loading consists of point loads, the results obtained should be treated
with caution. The same can be said with regard to slabs supported by columns.
It can be endeavoured to increase the accuracy by employing a finer network
or by incorporating a more specifically analytic part in the solution procedure.

Finally, the author would like to express his indebtedness to various members
of the Stevin Laboratory (Applied Mathematics section) and of the Institute
T.N.O. for Building Materials and Building Structures for their valuable com-
ments and suggestions.
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