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Abstract. The focus of this paper is on acceleration of strong panigid coupling algorithms

for fluid-structure interaction. Strong partitioned coupl requires the solution of a coupled
problem at each time step during the simulation. Hereto, raderface residual is defined
such that the kinematic and dynamic interface conditiongherfluid-structure interface are
satisfied when it amounts to zero. Subsequently, the coppdetem is formulated as a mini-
mization problem of the interface residual which can effitiebe performed using Newton’s
method. However, Newton’s method cannot be applied whefiuideand structure solvers

are considered black-boxes since the Jacobian of the aterfesidual is not available. For
this reason, Quasi-Newton methods were developed thabaippate either the Jacobian or
the inverse Jacobian of the interface residual directlyrfrimput/output information.

In this contribution we present a new algorithm that uses chmeque from multi-
fidelity optimization — called space-mapping — to efficigipierform the minimization of the
interface residual. The space-mapping technique exphattemputationally inexpensive low-
fidelity model in order to accelerate an expensive high-tigehodel using black-box infor-
mation only. The space-mapping algorithm is applied to tiigessonic panel flutter problem
in order to demonstrate its effectiveness. The speedup redefvith respect to a Quasi-
Newton algorithm — is found to be 1-1.5 for typical time stees. It is expected that higher
speedups can be obtained when problems are consideredetiiaiteé strong coupling as the
time step decreases, e.g. due to the added mass effect ver&nuitture is in interaction with
an incompressible fluid.

Keywords: Fluid-structure interaction, Partitioned, Strongly cded, Space-mapping, Quasi-
Newton

1. Introduction

Fluid-structure interaction plays a major role in many felé&Examples are flutter or
buffeting of wings, bio-fluids in deformable vessels or wimderaction with cable stayed
bridges. However, the computational cost related to highlifidmodels — especially when
the interaction is strong — limits their direct use in indyst

The aim of this research is to accelerate the sub-iteratiooggs necessary to obtain
the transient solution of a high fidelity fluid-structureardction problem in a partitioned



fashion using off-the-shelf lower fidelity fluid models. Tkds an increasing demand for
coupling algorithms that are efficient, stable and compatiith standard CFD solvers as
well [4,10]. Space mapping [5,6] is a technique from mulliefity optimization that aims to
accelerate the iterative process — necessary to find a higlityfidolution — by exploiting a
computationally cheap lower fidelity model using black-oermation only. We will present
a new algorithm that uses space mapping to accelerate thigesation process of a fluid-
structure interaction problem and study #peedupvith respect to a common Quasi-Newton
algorithm: the Quasi-Newton Inverse Least Squares (QN-#l§orithm [2,4,10] . The QN-
ILS algorithm uses the inverse least squares method to xippeite the inverse Jacobian of
the interface residual that needs to be minimized in ordebtain the high fidelity solution.
The QN-ILS method has succesfully been applied to strongiypted FSI problems [2,4,10].

Approximation of a Jacobian from input/output informatisnalso required in the
Aggressive Space Mapping (ASM) algorithm [5,6]. Hereto,intyaBroyden’s methodhas
been used in the space mapping community [5,6]. Broydentbodeuses information of two
recent iterates to approximate the Jacobian form inpuyilduhformation. The method has
also been used in the FSI community [7,8] and in the first workmace mapping accelerated
algorithms for FSI [9]. In contrast to Broyden’s method, theerse least squares method
uses information from several previous iterates and isetbes often more succesfull. In
this contribution the inverse least squares method is chimsapproximate the inverse of the
space mapping Jacobian. This results in the AggressiveeSyapping Inverse Least Squares
(ASM-ILS) algorithm defined in section 3.3.

We apply the ASM-ILS algorithm to a simple linear academst fgoblem: the super-
sonic panel flutter problem [9,12]. We give the panel anahdieflection and obtain the free
response with the Newmark-time-integration scheme [13]. The speedup is subsequently
studied for different parameter settings and time stegssizsection 5.

2. Problem formulation

A typical FSI model consists of a fluid model defined on a defirla domair(2,
which is in interaction with a structure model defined @n The Arbitrary Langrangian
Eulerian (ALE) formulation is used for the fluid in order tdkéainto account the movement
of the structure which is modeled using a pure Lagrangiamt@daition. The fluid domain
and structure domain both have a fluid-structure interadtiterfacel’} and T which are
identical, such that both domains are coupled [1]. We usertbethod of lines: A spatial
discretization technique is used to obtain the semi-dis@gstems of equations describing
the dynamics of each physical system before a time-integratocedure is employed.

Let the vectorv denote the discrete state vector of the fluidipand vectoru the
discrete state vector of the structure(inat the new time level**!. Hiding the dependency
on the solution of previous time levels, the coupled probé¢nime step”™*! is formulated as

[2];
VviE(w) =0 veRY W
r’(u;(v)) =0 ue RN, (2)



Here,r/ denotes the residual of the discrete fluid equationsramide residual of the discrete
structure equations. The functign: RY: — R maps the structural state vectoe R": to
the interface displacement vectore R"7, hencex = ¢, (u). The functiong, : RYs — RM
maps the fluid state vectere R/ to the interface pressugee R™7, hencey = ¢,(v).

Given a certain interface displacement vectothe following sequence of function
evaluations

y=¢&(v) for v=arg min [t/ (v;x)]], 3)
veR™s

defines thehe fluid operatorF : RV — RN
y = F(x). (4)

Evaluating the fluid operator requires solution of the mimation problem in (3) up
to a certain tolerance; and the evaluation of the map to find the interface pressure from
the fluid state vector. The minimization of is in general performed with a CFD solver and
requires the adaption of a grid due to the deformation of thid iomain.

Likewise, given an interface pressuyréhe sequence of function evaluations

x=&(u) for u=arg min [[r(uy)l ©)
ucRNs

defines thestructure operatosS : RV — RM
x = S5(y). (6)

Evaluation of the structure operator requires the solubicthe minimization problem in Eq.
(5) up to a certain tolerance and evaluation of the mag§, to find the interface displace-
ment from the structure variables. The kinematic and dynanterface conditions require
continuity of the interface displacement/velocity andceequilibrium on the fluid-structure
interface. These conditions are satisfied when [2,3,4]

R(x) =0 with R(x) =S80 F(x)—x, (7)

whereR : RV — R is theinterface residuafunction.

Strong coupling algorithms aim to minimize the interfacgideal R to a certain toler-
ancee; using a minimum number of (expensive) fluid operator evadnat We aim to obtain
the solutionx™ given by

x" = arg min ||R(x)|], (8)

x€RNT
as efficiently as possible.

Whene; = ¢, = ¢, = 0 we findu = u* andv = v* satisfying Eqg. (1) and (2) and
the unique interface displacement and pressure are foamdt = £, (u*) andy* = £,(v*)
respectively. We can think of Eq. (8) as an optimization probthat needs to be solved at
every time step of the simulation. Methods that were oridyrdeveloped for multi-fidelity
optimization can be applied to the minimization problem . E8) and this can possibly
result in efficient coupling algorithms. In this contribwti we investigate the application of
space mappingp,6,14] to minimize the interface residual in Eq. (8).



3. Space Mapping

Space mapping is an optimization technique conceived bylBafil4] and initially
applied to problems in the field of electromagnetics. Siheeunderlying principles of space
mapping are quite general, it provides a framework that eaadplied in many other areas as
well [5]. A space mapping algorithm requires the definitidm@omputationally inexpensive
low-fidelity model (hereafter named the coarse model) anubaes mapping function. These
are the topics of sections 3.1 and section 3.2 respectMéhtgn the space mapping function is
approximated by a linearization and the Jacobian is apprateéd from input/output informa-
tion the Aggressive Space Mapping (ASM) algorithm resultee ASM algorithm is outlined
in section 3.3 and applied to the minimization problem (8).

3.1. Coarse fluid model

Let ¥/ (v, z) denote the residual of the discrete fluid equations desgyihi simpli-
fied fluid model. The simplified fluid model has the interfacspticemenz € R"’ as an
argument. Given an interface displacemegrthe sequence of function evaluations

y=4&() for v=arg min |[/(v;2)|| (9)
verMNf
defines the coarse fluid operatpr= F(z), such that the coarse fluid-structure interaction

problem becomes
R(z) =0 with R(z) =So F(z)—z. (10)

In Eqg. (10) we only use a coarse fluid operator since we assuaha tluid operator evaluation
is far more expensive than a structure operator evaluatdtinough a simplified structure
operator could also be used in Eq. (10) this is not considiardds contribution.

The solution of the coarse fluid-structure interaction peobis given by

z* = arg min ||R(z)]|. (11)
z€RNT

The minimization in (11) — up to a toleranég — is assumed to be computationally very
inexpensive when compared to the minimization of the fine ehoelsidual in Eg. (8). In
order to use coarse model information to accelerate themmation of the interface residual
of the high fidelity model we need to somehow relate the coasidual function to the fine
residual function. Since the coarse and fine residuals dieedein different function spaces
this is accomplished by a space mapping function.

3.2. space mapping function

The fine and coarse fluid model differ and therefore it holasth # z*. Yet, the models are
similar since they aim to model the same phenomenon. In eocsprantify the misalignment
between the fine and coarse model we define a misalignmertidaran the fluid-structure
interface

r(z,x) = [|R(z) = R(x)l], (12)



using a suitable norm. For a giverit is useful to know whictz yields the best approximation
to R, hence with the smallest misallignentFinding the best for a givenx defines the space
mapping functior? : RN — RN
z = P(x) = arg min r(z,X). (13)

z€RNI
In order to evaluate the space mapping function numerieadlgcond “auxiliary” fluid-structure
interaction problem needs to be solved with the coarse flp&tator. This problem can be
solved with fixed point iterations or a Quasi-Newton aldaritand defines th@ner method.
Evaluation of the space mapping function requires a singbemsive evaluation of the fine
fluid operator and several cheap evaluations of the coarskediierator to perform the map-
ping. An example of the numerical evaluation of the spacepimgpfunction (using fixed
point iterations) is given in algorithm 2. The space mapgingtion can be used to conve-
niently reformulate the rootfinding problem (7) which forthe basis of the Aggressive Space
Mapping algorithm discussed in the next section.

3.3. The Aggressive Space Mapping algorithm

The following definition is cited from [5]
Definition 1 A space mapping functioR is called a perfect mapping i#f* = P(x*).

Substitutingx* into the space mapping function defined by Eq. (13) and uséimitions
(8), (11) and (12) it follows thaP is a perfect mapping. It is now possible to apply a Quasi-
Newton method to the new rootfinding problem

K(x)=0 with K(x)=P(x) -z (14)

with £ : RY — RN which is theouter method. This results in the Aggressive Space
Mapping (ASM) algorithm as defined in [5,6]. If the coarseidesl functionR behaves in a
similar fashion as the fine residual functi®@we now have
ok _0oP
ox  Ox
and it is likely that the Quasi-Newton algorithm convergastér when applied to the new
rootfinding problem (14). The ASM algorithm consists of tweps:

I, (15)

1. Solve for the coarse fluid-structure interaction solu#ibas defined in Eq. (11).
2. Apply a Quasi-Newton algorithm to the rootfinding problasdefined in Eq. (14) .
In order to apply the inverse least squares method to appedgithe Jacobia%E of

the rootfinding problem in step 2, substitute

k-1
X" e xP 4 Z cF(xt — x") (16)
i=0



into Eqg. (14) and linearize the space mapping function. Eselt is

k-1
K(x") = P(x" + Z A(x' —x")) -z 17)
i=0
TP
~ kY % e kit Kk
~P(x")—z"+ (8}() ZZOCZ(X x")
k-1 4
~pf -z + ) (' -ph). (18)
i=0

The coefficients? are subsequently found from minimization of the linearizsidualC (x"<*)

k-1

k . ko ox k(i k
c’ = arg min —z" + - — , 19
rg min ||p ;:0 ¢; (P —p")l| (19)

in a least squares sense. The minimization can be performelebinverse least squares
Jacobian approximation given in [4]. We define the diffeesmectors

Api — pz' o pk:
, ) 20
{Axa = H(x) — Hix), )

fori = 0,...,k — 1. The operatofH{ in (20) is defined by = S o F. We assemble the
matricesV* andW* as

{Vk = [Ap”“‘1 ApF—2 .. Apo} (21)

Wk = [AXZ_l AXI;{_Z AXQ_J )

The economy size QR-decompositionVf is used for the Least Squares minimization, that
isVF = Q*R*. The coefficient vectat® = [c} b ... ¢k, ] is subsequently found from solving

chk — QkT(Z* . pk) (22)

The updatec*+! is then computed from

k-1
XX+ i —x), (23)
=0
which can be written as
xF = xF + WEeF 4 (24)

wherer* = R(x*). The Aggressive Space Mapping algorithm with Inverse L&agtares
approximation of the Jacobian (ASM-ILS) is summarized goaithm 1. Each time a space
mapping function evaluation is required (in algorithm heli3 and line 19) we use algorithm

2 to solve forp*. A natural question is whether the ASM-ILS algorithm is mefécient
than a Quasi-Newton algorithm — with inverse least squapgscximation of the Jacobian

— directly applied toR(x) = 0. Intuitively, this depends on the cost of a coarse residual



evaluation in comparison to the cost of a fine residual ev@oand to what extent equation
(15) is satisfied. We will analyze the speedup of the ASM-Ilgbathm in more detail in
section 4.

Algorithm 1ASM - ILS Algorithm 2 Evaluaingp® = P(x*)
Require: x°,z*, ¢; Require: x*, 20,
L k=0 Li=0
2 VEkp =1 2 rf = R(xF)
3 p* =P(x") 3 ¥ = R(z")
4 while|\rk|‘>q do & Whi|e‘|f'i—rk‘|>es do
5. if k =0then 5 zitl =SoF(z') —r*
6 x=x"+(ViP)7 (2" — p¥) 6 =i+l
7. ese 7. F :So]}(zi)—zi
8: fori=0tok —1do g end while
o Axy, = x5, — x5, 9. return p* =z’
10: Ap' = p' — pF
1% end for
12 vk = [Apk’1 ApF=2 . Apo]

13 Wk = [AX’;[I Ax’;_f2 Axg_l]
14 Caculate V¥ = QFR*

15: Caculate R¥ck = Q¥ (z* — p*)
16; xktl = xk + Wkek 4 ¢k

172 endif

18 k=k+1

19 pf =P

20. end while

21 return x* = x*

4. Estimated speedup

The speedup of the ASM-ILS method with respect to the QN-IL&huad is deter-
mined by the decrease of computational effort per time siejbtain the fine model solution
x* up to a tolerance;.

Let w} andw’ be a measure of the cost (flops or CPU time) necessary to évalua
R(x") and R(z’) respectively. The average cost per time step of a fine andeaonodel
residual evaluation is then found from

i=ng Jj=nc
1 Z. 1 |
wp = — whb and w,= — w?, 25
f nf ; f c n, ; c ( )

wheren; andn,. are the total number of fine and coarse residual evaluatesysec-
tively (including the iterations necessary to fizig per time step. The total cost per time step
of the ASM-ILS method is subsequently estimated by

W m wing +winl, (26)
whereas the total cost of the QN-ILS method is estimated by
We ~ w?n? 27)

In Eq. (26) and (27), the superscrigtrefers to a quantity associated with the ASM-ILS al-
gorithm and the superscrift refers to a quantity accociated with the QN-ILS algorithrheT



estimates in Eq. (26) and (27) are based on the premise th&drtiest part of the computa-
tional effort is spent to evaluate the coarse and fine relsdiughe computation, neglecting all
other (overhead) costs. Numerical experiments justify fliemise. The estimated speedup
per time step is then given by

we n?
S, ~ = , 28
W

where we have used that! ~ w?.
The ASM-ILS method is more efficient than the QN-ILS methodjf > 1 The
speedup becomes insensitive to the number of coarse residuaations: i

sufficiently small. The choice for the inner iterative maths not that important in thls case
as long as it results in a stable algorithm for the evaluatidhe space mapping function. To
obtain a metric of the total speedup of a simulation we define

p ~ Z WA’
where the sum is taken over all the time steps in the numentagration.

(29)

5. Numerical test case and results

In this section the ASM-ILS algorithm will be applied to a gile academic test prob-
lem —the supersonic panel flutter problem —in order to atkesgpeedup as defined in section
4. To this end, a structure model, fine fluid model en coarse fhadel are defined in section
5.1, 5.2 and 5.3 respectively. Finally, numerical experita@re performed in section 5.4 in
order to investigate the influence of physical parameteddiare step sizes on the speedup of
the ASM-ILS algorithm.

e e - C;nite difference grid points

i
Mod Uoos Poos Poo

finite element nodes

2h T oh

Figure 1. Schematic representation of the panel flutterlprob

5.1. Structure model
The flexible panel is governed by the Euler Bernoulli beanmaéiqu

{p tp 8t2 + 8:(:2 |:1E£2 ?)2715} = —Ap(llf) (ZIZ’) € FP>
w

(£5) = 5o (£5) =0,

(30)
oz



In Eq. (30),p, denotes the density of the panglthe thickness of the panek the Youngs
modulus, Poisson’s ratio] = L¢3 the moment of inertia and the vertical panel displace-

127p
ment. The forcing term is given by the pressure differenc tve panel
Ap =pi(z) —p () €T, (31)

wherep; denotes the pressure of the fluid on the fluid-structure faterd’, and p., the
freestream pressure, see figure 1. The boundary value prdBI@) is discretized using the
finite element method with Hermitian shape functions suel e nodal unknowns are dis-
placementandrotations.

5.2. Fine fluid model

The high fidelity fluid is governed by the two-dimensional ieasly linearized poten-
tial equation
Vi - B (%) =0 inqy,

a2, Dt

= r
v(z,y) =0 onl',,
U(.T,y) = % onrpu

whereg denotes the perturbed fluid potential avid, anda., are the freestream Mach number
and freestream fluid speed of sound. The substantial deevat(32) is given by

D 0 0
E = a -+ Mooaooa_l‘ (x,y) - Qf. (33)

The linearized potential equation is valid for subsonic flamd supersonic flow but is not
applicable in the transonic regime. The horizontal velocdmpononent. and vertical com-
ponentv of the fluid are recovered from the potential according to

86 86

u:uoo%—% and “:a_y (x,y) € Q. (34)
The interface pressure on top of the panel is given by Belir@tuation [11]
D¢
p[(flf) = Poo — pooﬁ ([L’) S 1—‘p- (35)

The fluid boundary value problem (32) is discretized usirgfthite difference method. The
finite difference grid conforms with the finite element me$khe panel.

5.3. Coarse fluid model

Using the piston analogy model (see [12]), the interfacequree is approximated by

M2 -2 Ow ow
pr() = Poc + pocMsca ( aE T o + Mootio

The piston analogy is valid fa¥/,, > 1.6. The pressure in Eq. (36) directly depends on the
deflection of the panel. The computational effort is therefoegligible compared to the use
of the fine fluid model.

) (x) € I, (36)



5.4. Numerical experiments

The similarity parameters are the Mach numbgg, the fluid-to-structure mass ratio
¢ and the ratio of characteristic time-scaledefined by

Poo L LaZ!
— d \= = , 37
‘ Pplp . (pptp) /2L (ET)~1/2 57)

The values of these parameters — for each test case undeteation — are collected in table
1. Linear stability analysis is used to obtain the criticad number, i.e. the Mach number
which separates the stable from the unstable regime. Theatflach numbed/.. = 2.27

and circular frequency,, = 460 rad/s of test case FSI-1 agree with the values reported in
[12].

Test case M., ¢ A
FSI-1  2.27 5.47e7 % 1.47e?
FSI-2 228 7.4le™? 147e72
FSI-3 233 3.00e”! 1.47¢2

Table 1. Similarity parameters of the 2-D FSI test cases

The Newmarkg time integration scheme is used to integrate the structodeflaid
equations of motion. This scheme is known to be second omberrate and unconditionally
stable fory = 1/2 and5 = 1/4. We use the a-form implementation, see [13].

The panel is released from an initial displacement equdlgdltttermodes® = 0.1¢,
see figure 2. The corresponding steady fluid potegtiel depicted in figure 3. The simu-

_Z

Figure 2. Initial panel deflection® = 0.1¢. Figure 3. Steady initial fluid field.

lations are performed at the critical Mach numbgfs. The observed frequency,. in the
simulation is then equal to the critical frequency obtaibgdinear stability analysis. The
nondimensional coupled peridd, = 2wa../w.-L is divided in 10, 30 and 70 time steps for
each test case to study the influence of the time step on tleel sjpe The coupled periods of
test case FSI-1, FSI-2 and FSI-3 dfé = 8.2, P2 = 7.0 and P2 = 3.5 respectively. The
numerical parameters used in the simulations are asseintiigole 2. The fluid grid size and
number of finite elements in table 2 correspond to a test ceesed in [15].



Description symbol value

Fluid grid size N, x N, 321 x 193
Number of Finite Elements N, 129
Number of time steps Ny 20 U 60 U 140
Time step At 2P../N,
Outer tolerance €r 1-10°¢
Inner tolerance €s 1-1077

Table 2. Numerical parameters

An inner product of the panel displacement with the fluttedmis defined by

1 L
ag(t) = ———— x)w(x, t)dz. 38
0 foe(x)dx/oau ) (38)

The inner product is used to plot the time history of the paaftr it is released from its
initial deflection. An example is given in figure 4 which shothke fine and coarse model
responses. Both responses demonstrate that the pandhtescih the flutter mode at the
predicted frequency,, = Z%%= = 539rad/s.

LP.,

—¥— Fine model
0.25 —O&— Coarse model ||

time [-]
Figure 4. Panel responsg for test case FSI-2 wittht = P2 /30.

Figure 5 shows the interface residual convergence for aechospresentative time
step of the simulation. It can be seen that the ASM-ILS atbarioutperforms the QN-
ILS algorithm when we choose the convergence critetion= 1 - 107%. An improvement
is already visible after the first iteration and becomesebetith the adaption of the space
mapping Jacobian.



=
o

Iteration k

Figure 5. Interface residual convergence during a reptagea time step of test case FSI-2,
At = P2 /30. QN-ILS algorithm (-), ASM-ILS algorithm (- -) .

The estimated speedup per time step is shown in figure 6. Téedsp is around
Sy L= 5 for most time steps in the simulation smg}a Is negligible, see figure 7.
f

25¢ b

0 10 20 30 40 50 60
time step

Figure 6. Estimated speedup per time step, test case FSh2\wi= P2./30.
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Figure 7. Average work ratio per time step, test case FSIt@ i = P2 /30.

Table 3 lists the total speedup of the simulations usingethfiit time step sizes. The
influence of the time step size is large and demonstratesthsppeedup is obtained when the
time step size becomes too small. In this case only 3 iteratiwe sufficient to converge and
it becomes difficult to obtain a speedup larger than 1. Inrehto fluid-structure interaction
problems involving incompressible fluids the added masef$ not causing problems when
small time steps are considered. The speedup obtainedneith3M-ILS method is therefore
limited in this case. The influence of the physical paranseterthe speedup achieved with
the ASM-ILS algorithm is surprisingly small. This requiresther investigations.

Testcase At = P,./10 At=PFP../30 At=P./70
FSI-1 156 (= 6/4) 1.30(~4/3) 1.28(~4/3)
FSI-2 154 (~6/4) 1.31(~4/3) 0.998 (~ 3/3)
FSI-3 144 (~6/4) 1.30 (=4/3) 0.999 (=~ 3/3)

Table 3. Estimated total speedépof the simulations .

Table 4 shows the observed speedup measured by the totali@BWatio. Slightly
lower efficiencies are measured due to the overhead costhahe higher for the ASM-ILS
algorithm than for the QN-ILS algorithm. The CPU time ratimssed in table 4 fluctuate for
constant parameter settings. The estimated total speentugdble 3 therefore yields a better
efficiency metric for comparison.



Testcase At = FP../10 At=P../30 At=P,./70

FSI-1 1.44 1.23 1.29
FSI-2 1.45 1.19 0.95
FSI-3 1.29 1.19 0.97

Table 4. Observed speedup of the simulations .

6. Conclusion

We develop a new coupling algorithm for the efficient simiglatof fluid-structure
interaction using the Aggressive Space Mapping (ASM) tepe The space mapping tech-
nique exploits a computationally cheap low-fidelity fluid debin order to accelerate the sub-
iteration process necessary to find the solution of an exypehggh fidelity fluid model using
black-box information only. We use the inverse least scgiatgorithm to approximate the
space mapping Jacobian and define the speedup as the rdt@anrhputational work neces-
sary in the QN-ILS algorithm divided by the computationalrvaecessary in the ASM-ILS
algorithm.

The observed speedup is 1-1.5 and depends strongly on #hstap size. No speedup
is obtained by the ASM-ILS algorithm when the time step beestoo small. This can be
explained by the fact that a compressible fluid model is ugadwiacks the problem afdded
masswhen the time step size decreases. From this observatismexpected that the ASM-
ILS algorithm performs better at small time step sizes wherstructure is in interaction with
an incompressible fluid. In future research we would like (tb include a non-linear high
fidelity fluid model; (2) study the performance of the alglonit when incompressible fluid
dynamics is used; (3) study the influence of the use of difiiel@v-fidelity fluid models on
the speedup obtained by the space mapping algorithm.

The results motivate to continue the development of spagging algorithms for the
efficient simulation of strongly coupled fluid-structuréaraction problems.
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