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Assessing Formal Verification in SPARK
A Case-Study Evaluation of Formal Verification Tooling

DINU BLANOVSCHI, Delft University of Technology, The Netherlands

Abstract: Formal verification promises stronger correctness guarantees than conventional testing, yet it is often perceived as too costly or
specialised for everyday software development. This thesis investigates whether SPARK — Ada’s provable subset — can deliver industrial-
strength verification for representative algorithms and concurrent systems. Two separate questions guided the work: how well does SPARK
work with (RQ1) sequential algorithms; and (RQ2) concurrent systems.

We implemented and formally proved insertion sort, quick-sort, and a generic statically-allocated hash-map to SPARK’s highest
assurance level, achieving full functional correctness, as well as two concurrent case studies: a Publisher / Subscriber channel and a novel
10 multi-reactor pattern runtime task scheduler, where we combined SPARK with TLA* model checking to capture liveness and safety
properties that SPARK cannot express directly. Across all sequential examples, proof overhead averaged ratios of 6-10 lines of specification,
while for the concurrent case-studies, the TLA* models averaged ratios of 1.7 lines, per every line of executable code.

The study shows that (i) SPARK is practical for non-trivial sequential algorithms, unless they make use of the heap; (ii) concurrency
still requires external formalisms, but the combination remains tractable; and (iii) careful specification design, not solver performance, is
the dominant cost driver. These findings confirm that correctness-by-construction is attainable within undergraduate project scope and
provide quantitative benchmarks for future work.

Keywords: formal verification; Ada; SPARK; TLAY; functional correctness

1 Introduction

The most widely used practice to prove software correctness is through testing, which, while effective in general, does not
inspire full confidence in the system. Approaches that emerged as a result include, but are not limited to, property-based
testing [15, 19], fuzzing [9, 44], model-checking [18], and formal verification [36]. Given that there are cases where software
failures could prove catastrophic, such as in the avionics [51], defense, military, and automotive industries [64], stricter
guarantees of correctness are not only recommended, but necessary [10, 34, 41, 48]. Formal verification is one such approach
to verification that can inspire great confidence in the correctness of the system [34].

One such language for critical software that has built-in support for formal verification is SPARK, the provable subset of
Ada [56]. SPARK has multiple levels to which programs can be checked, according to the requirements [59]. GNATprove! is
the tool responsible for actually formally verifying SPARK code [38]. It has made formal verification accessible for SPARK
programs, yet challenges remain, particularly around concurrency and scalability to large codebases.

The goal of this project is to understand the correctness-by-construction approach to software engineering [25], as well
as its limitations, with a specific focus on SPARK. To achieve this, we implemented several formally verified case studies:
an implementation of insertion sort, a quicksort implementation [2], a generic HashMap implementation [1], all verified
to SPARK’s highest level of assurance (full functional correctness [59]), as well as a bounded publish / subscribe channel
implementation backed by a circular buffer, and a novel I0-optimized work-stealing multi-threaded task scheduler, first
implemented in SPARK, and then modeled in TLA* separately (and checked with TLC), to get a better understanding of how
SPARK is able to reason about concurrency.

The research (sub-)questions that guided this work are as follows:

RQ1 How can SPARK be used to formally verify sequential algorithms, and implementations of data structures? And if it
cannot, why not, and what other tools can be used for this purpose?

RQ2 How can SPARK be used to formally verify concurrent systems? And if it cannot, why not, and what other tools can
be used for this purpose?

This paper is structured as follows. Section 2 offers the theoretical foundations, as well as an introduction to how the
tools used actually work. Section 3 follows with an in-depth description of the properties we want to check, contracts,
and interfaces, of each of the case studies implemented, as well as the prior background. Section 4 describes the high-level
approach to the implementations (and the scheduler in Section 5 as it deserves its own section). Finally in Section 6 we present
and discuss our implementation results, and in Section 7 we conclude with answers to the research questions. Section 8
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reports on responsible research. Code is included in this paper in order to show the constructs available in SPARK / TLA* and
briefly explain the high-level proofs for the case studies. For the full specifications / implementations, readers are referred to
the code repository (see Appendix B). We assume some prior knowledge of Ada, and as such we will not be explaining Ada’s
syntax, but only the parts relevant for formal verification. learn.adacore.com is a great resource to pick up Ada in order to be
able to understand the code in this paper [56].

2 Theoretical foundations

This section covers the background, starting with what formal verification is in subsection 2.1. subsection 2.2 introduces the
inner workings of SPARK, and then the theory behind TLA* and TLC is described in subsection 2.3.

2.1 Formal verification and why it matters

Formal verification is an approach that attempts to prove the correctness of software through formal means. As it is typically
implemented today, the programmer is asked to annotate their source code, indicating all of the contracts that specific interfaces
uphold, and letting a tool extract these contracts and verify that the actual implementation matches the specification derived
from the contracts, through the use of formal methods, the basis of which is Floyd-Hoare logic [4, 5], or one of its many
extensions, such as Owicki-Gries logic [8, 52] or separation logic [23].

Formal verification has a few similarities to property-based testing (PBT) [15, 19]. Formal verification and PBT are both
about proving functional properties of the code. With a formal proof that some property will hold for all the possible outputs
of a given function, there will no longer be a need to check that property through PBT. The main difference between them is
their approach: formal verification is static while PBT is dynamic. This difference between them gives rise to a few trade-offs,
although they can be used complementarily to prove different properties. Table 1 summarizes the trade-offs between PBT
and formal verification.

Table 1. Trade-offs between PBT and Formal verification

Criterion ‘ PBT ‘ Formal verification
Up-front investment small big
Debugging effort debug counterexample | counterexamples rarely found
Performance exploring entire input state-space infeasible fast
Assurance provided medium highest

Software certification standards such as 1S026262-1:2018 and EN50716:2023 either highly recommend or mandate formal
verification in safety-critical software [41, 48], and DO-178C:2012 even allows formal verification to replace some of the
other forms of testing [34, 38]. Since the inception of its predecessor, DO-178B in 1992 [10], no aircraft-related fatality has
been attributed to DO-178B/DO-178C-certified software [38], which speaks volumes about their reliability. There was an
exception to this, namely the Boeing 737-MAX crashes in 2018 and 2019, due to assigning a wrong Design Assurance Level
(DAL) to the Maneuvering Characteristics Augmentation System (MCAS), and therefore not certifying it to the level required
[49]. If Boeing would have attempted to certify the software at the proper DAL, they would have identified the problems long
before the crashes happened [49]. This goes to show what could happen when protocols are not followed properly.

The formal specification step is typically the bottleneck in the process of developing new software, but once it is finished, the
software will be extremely reliable [25, 33]. Despite the bottleneck of formalization in general, programming and specification
in SPARK are still up to 3 times faster than the industry average in codebases aiming for certifications, with far fewer defects
[25, 32].

Given the critical importance of software reliability in domains such as avionics and defense, and SPARK’s widespread use
in these domains, ensuring algorithmic correctness in SPARK programs is both necessary and impactful.

2.2 A brief explanation of how it all works in SPARK

GNATprove is the tool responsible for formal verification in SPARK. It does 3 things in order to prove program correctness:
flow analysis (such as uses of uninitialized variables), proving program integrity (by statically proving the absence of runtime
errors, such as buffer overflows, integer arithmetic overflows), but the one of most importance for this project is proving
functional correctness. In order to achieve this, it generates a lower-level version of the code, which is intended to be
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consumed by Why3, a platform for deductive reasoning about programs [31, 35]. The verification condition (VC) generation is
then offloaded to Why3, which converts the program into a set of VCs, which are then turned into a set of goals in Satisfiability
Modulo Theory (SMT) and then discharges them to SMT solvers.

The SMT solvers then have to come up with proofs for the individual goals; a proof implies that the respective contract
holds in the source code. In case such a proof cannot be found after exploring a predetermined number of nodes, or after a
timeout, GNATprove is also able to use Why3 for finding a counterexample to the current rule, and then presents it to the
programmer. A counterexample implies that the contract does not hold, and as such, further specification is required. In
cases where the SMT solvers cannot find a proof, nor come up with a counterexample, it typically means that either more
contracts are needed, or that the goals are really hard to prove, which is a known limitation of GNATprove [58].

The supported SMT solvers include Z3 [26], cvch [46], colibri [43], and Alt-Ergo [40], but by default GNATprove only
uses cvc5 [61]. As such, the logical foundations on which SPARK is based on are First-Order logic and Floyd-Hoare logic [4,
5].

Ada provides the following constructs for concurrent code, as part of the language [56]: tasks, analogous to threads from
other languages, entry methods, aka rendezvous points, which allow for message passing between different tasks without the
use of mutable shared state, protected objects, which allow for simpler and more efficient synchronization between tasks
than entry methods, and semaphore objects. These constructs shaped some of the design decisions behind SPARK, and as
such, SPARK tooling is partially able to reason about uses of Ada’s concurrency features, but has limitations in reasoning
about other forms of mutable state in concurrent contexts, such as lock-free atomics.

Tasking profiles in Ada, such as Ravenscar and Jorvik, are sets of restrictions on how to write concurrent code; Ravenscar
is intended for high-integrity software with hard safety requirements, whereas Jorvik is a newer profile that lifts some
restrictions from Ravenscar, intended for real-time software, but not necessarily in the safety-critical category [63].

In the context of concurrency, a safety property can be thought of as “nothing bad ever happens,” while a liveness property
can be interpreted as “something good eventually happens” Ravenscar’s restrictions allow SPARK to prove some safety
properties, but liveness properties require a different approach altogether.

The specific safety properties that SPARK can guarantee include the absence of data races, mutual exclusion with protected
objects, and under the Ravenscar tasking profile, also the absence of deadlocks (partially). SPARK by itself is unable to reason
about liveness nor the other safety properties.

2.3 Ashort introduction to TLA* and model-checking

Here we introduce TLA* [11, 22, 27, 69], its model checker TLC [18], and how we can take advantage of them to verify our
concurrent systems.

TLA™ is a specific form of logic, in which we can express first-order logic, as well as set theory and temporal logic. We
are interested in temporal logic because we need it to express and verify safety and liveness properties that SPARK cannot
express by itself.

Formally put, a model is a 3-tuple: (S, I, T), where S is the set of all possible states, I is the set of initial states (I C S), and T
is the set of possible transitions in the system (T C S X S).

A model checker is a tool that checks models, by exhaustively analyzing all possible states and transitions in the modelled
system, in order to prove certain properties of this system. To model-check a TLA* model with TLC, the I set has to be finite,
but S and T can be infinite. If they are infinite, then the model-checker either stops when all the transitions it can take have
been explored already, or it is stopped manually.

Manna and Ashcroft have shown that a concurrent program can be described in terms of a non-deterministic sequential
program [6]. For example, running two threads in parallel, where the first thread runs statements [S1; S2] and the second
runs statements [S3; S4], is the same as non-deterministically choosing between any of the following possible behaviors,
each of which corresponding to a sequential program:
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[S1;S2; 53; 54]
[S1;53;52; 54]
[51:52] || [53:54] = CHOOSE 4 1>1:5%: 5452

[S3;54;51;52]
[S3;S1; 54; S2]
[S3;S1;52; 54]

This process is called task-interleaving. To prove a concurrent system holds a certain property, we should prove that
said property holds for all the possible task-interleavings. This is fundamentally what TLC does when model-checking a
concurrent TLA* specification: with a bit of modelling, statements are essentially transitions in T.

The number of possible behaviors grows quite quickly: with only 2 threads, each doing n and m atomic assignments
respectively, the number of task-interleavings is (m + n)!/(m! + n!), so Ashcroft in 1975 published another paper in which he
tries to optimize this: he realized that he can keep track of the current state storing the next instruction that each thread
would run, and then check if any two threads accessed the same state in the next instruction; otherwise the order in which
they ran wasn’t relevant, as the results would be the same [7]. With this insight, model checkers can now perform faster, as
they would have to check much fewer states. The way this is implemented in TLC is through keeping a set of hashes (called
fingerprints) for the already visited states, and whenever multiple different transitions lead to the same state, that state is
explored just once rather than multiple times [18].

Another insight is that we can apply Hoare logic to concurrent algorithms. This is what Owicki explored in her thesis [8].
She noticed that Hoare logic can be used to verify the individual threads, and then reason that the way they interact with the
task-interleaving approach does not violate their assertions. This is called Owicki-Gries logic.

TLA™ is a fundamentally different logic. It is based on first-order logic, set theory, and TLA. TLA (temporal logic of actions)
itself is a logic that introduces, among other things, the following temporal operators [11]:

e Always: written as OF, it means that temporal formula F will always hold.
e Eventually: written as OF, it means that temporal formula F will hold at some point in the future. Formally it is
defined as ©F £ —-O—F [11].

Those can be combined to give “eventually always”: ¢OF. This can be understood as F will be true at some point, and then
it will stay true forever.

As an alternative to TLC, TLAPS (TLA™ Proof System) is a formal verification tool for TLA* specifications [30]. As of now,
it does not support the full set of features of TLA*, and is still in active development [72], so a possible future extension
would be formally verifying the concurrent systems in TLAPS, once all features are supported.

3 Problem Description

In order to understand how SPARK can be used for formal verification, a couple of case studies have been implemented. The
goal was to achieve full functional correctness in all of the sequential algorithms and liveness and safety in the concurrent
ones. As such, this section will cover the specific properties that the implemented case studies abide by. The goal of the case
studies is then to implement the algorithms / structures / systems in such a way that the properties we describe here hold.
An algorithm / system will be considered correct only if it conforms to the properties described here.

The problems have been ordered in increasing order of complexity, to be able to introduce the key constructs learned
along the way one step at a time.

Given that SPARK is unable to reason about liveness, to properly reason about the concurrent systems, once we had a
working system in SPARK, we created models in TLA* [11, 22], and then checked them with TLC [18].

3.1 Sorting algorithms

Sorting algorithms are algorithms that, as the name implies, sort a list of items. They are used in many more complex
algorithms and as such have great utility.

A sorting algorithm is correct if it modifies the list such that, the sorted list, e.g. the new version of the list, after invoking
the sorting algorithm, is (1) a permutation of the input, which (2) is sorted.

As such, the two post-conditions that are enough to fully prove the correctness of a sorting algorithm are:
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e Weak_Sorted(A): for all I in A'First+1..A'Last => A(i-1) <= A(i), where A'First and A'Last refer to
the first and last indices of the array A, respectively.

e Multiset_Unchanged(A, A'Old): Keeps the old values, or more formally put, is a permutation of the old array.
Expanding the definition: for all X in Integer => Occ(A, X) = Occ(A'Old, X), where Occ(A, V) refers to
the number of occurrences of V in array A, and A' 01d is SPARK’s way to refer to the old value of parameter A before
the call.

Inspiration for the specifications and proofs came from the spark-by-example examples on sorting [42, 54].

The chosen sorting algorithms were insertion sort and quick-sort [2]. Insertion sort was previously proven in spark-by-
example [42, 54]. They have two implementations for insertion sort, one of them does the insertion in an unoptimized way,
whereas the other does it the optimized way. Spark-by-example, at the time of writing, only has proofs for the unoptimized
version, with a “Version of Insertion_Sort using Rotate (not proved)” comment on the optimized version (using rotate) [54].
We have formally proven the optimized version. There was no implementation or proof for quick-sort in spark-by-example.

3.2 Hash map

A hash map is a key-value data store. That is, it maps specific keys to specific values, and the values can later be retrieved
from the map by their specific key.

Ada already has hash maps defined in the standard library [56], as well as structures in SPARK for exposing those interfaces
with contracts that allow for formal verification of the client code, but not of the implementations themselves [53, 57]. It
doesn’t have a standard hash map with a fully formally verified implementation. This case study is about formally verifying a
bounded, statically allocated hash map. SPARK is able to reason about static allocations, but has very limited support for
dynamic allocations. Recent work on SPARK has introduced aliasing analysis, allowing GNATprove to formally verify some
heap structures, although full separation logic is still out of reach, due to poor support in SMT solvers [45].

For the hash map, the following contracts have been created for each of the functions / procedures:

3.2.1 Checking if a hash map contains a key. This function doesn’t have any pre- or post-conditions, as it only returns a
boolean informing us of whether the given key is in the map or not.

function Contains_Key (HM : Hash_Map; Key : K) return Boolean;

This brings up a crucial insight about SPARK: this function can be used to specify that the hash map will have a certain
key in the pre- and post-conditions of Insert and Delete_Key, even though we don’t know what will actually happen when
we run this function.

3.2.2  Fetching a value. This function returns the value associated with the given key in the given hash map. Of course,
the map has to have the given key, and so that is the pre-condition. There is no post-condition, as we cannot guarantee
anything about the contents of the returned value at this point, but similarly to Contains_Key, this function can be used as a
post-condition for the other procedures, even though the implementation details are hidden.

Given the generic nature of our implementation, we cannot always be sure that null is a valid value, and as such, the key
must exist in the map.

function Get_Value (HM : Hash_Map; Key : K) return V
with Pre => Contains_Key (HM, Key);

3.2.3 Insertion. For insertion, the pre-condition is that the bucket that the key will go in is not full, if the key doesn’t exist
already in the bucket. If the key does exist, then we will just replace the value. In either case, in the end, the hash map will
contain the key, and the value will be equal to the given value.

procedure Insert (HM : in out Hash_Map; Key : K; Value : V)
with Pre => (if not Contains_Key (HM, Key) then not Bucket_Key_Is_Full (HM, Key)),
Post => Contains_Key (HM, Key) and then Get_Value (HM, Key) = Value;

When we verify the implementation, we should show that the implementation makes the post-condition true, i.e.
Contains_Key (HM, Key) and then Get_Value (HM, Key) = Value, but, when verifying client code using the func-
tion, the client code doesn’t need to know anything about how either Contains_Key or Get_Value are implemented, it only
needs to know that calling those functions after calling Insert will have the results we put as post-condition; this preserves
encapsulation.
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3.2.4 Deletion. Deleting a key is somewhat similar, the key has to exist the in map before we call this method, and so that is
the pre-condition. The post-condition says that the key will not be in the map after the procedure finishes.

procedure Delete_Key (HM : in out Hash_Map; Key : K)
with Pre => Contains_Key (HM, Key), Post => not Contains_Key (HM, Key);

3.25 Additional contracts. There are additionally the following boiler-plate contracts omitted from the definitions above for
brevity, but still required for a fully correct implementation of hash maps:

e All_Buckets_Have_Unique_Keys (HM): a type invariant, which encodes the property that there are no duplicate
keys in the hash map.

e No_Changes_Other_Than_To_Key (A, B, K):Describing the contract that if key Key is in B and it is different from
K, then the key Key is also in A, and furthermore, Get_Value(A, Key) = Get_Value(B, Key).

The following conjunction makes sure that, in the case that we are modifying the hash map, (1) none of the keys previously
in the map disappear, and (2) none of the new keys in the map are different from Key, or to put it differently, no other new
keys appear in the map:

No_Changes_Other_Than_To_Key(HM, HM'0Old, Key) and then No_Changes_Other_Than_To_Key(HM'Old, HM, Key)

3.3 Publish/Subscribe channel

A publish/subscribe channel, or pub/sub for short, is a channel in which multiple tasks can publish messages, and multiple
tasks can subscribe and receive messages from it. This is conceptually similar to the “Observer pattern” in object-oriented
programming [12], though they are often implemented very differently.

We have implemented a bounded publish / subscribe channel, that is, a channel which might drop some of its messages, in
order to save space, in case subscribers lagged behind too much.

Given its bounded nature, the liveness property of all messages being delivered to all subscribers is impossible to prove,
unless the tasks that interact with the channel synchronize in some other way. We can however, prove that all messages will
be either delivered or missed, eventually, for each of the subscribers, provided there is at least one fair process that keeps
polling each subscriber (as in, the process will not fail or be starved indefinitely).

This is expressed in TLA™ as follows:

variables
SeenVersions = [x \in ReceiverIds |-> [m \in MsgRange |-> FALSE]];
\* maps subscribers to messages that they saw
MissedVersions = [x \in Receiverlds |-> [m \in MsgRange |-> FALSE]];
\* maps subscribers to messages that they missed

\A r \in ReceiverlIds: \x for all subscribers
\A m \in MsgRange: \x for all messages
<>( \* eventually
[1(SeenVersions[r][m]) \* the message will always be delivered to this subscriber

\/ [1(MissedVersions[r][m]) \x or, the message will always be missed by this subscriber

This makes sure that no message will ever be able to switch between delivered and missed after they have been either
delivered, or missed.

3.4 10-optimized task scheduler

Work stealing is an approach to task scheduling, in which each thread has a queue of tasks (units of computation). Other
threads, when they do not have any work to perform, will “steal” some work from one of the other busy threads [16]. This
approach is different from work-sharing, where the scheduler runs separately and dispatches threads to different processors,
whereas in work-stealing, the processors themselves take the initiative to take on work from other threads, and as such, there
is no need for a dispatcher thread. Work stealing has been formally proven to achieve optimal performance for the restricted
class of fully-strict computations (i.e. tasks only ever synchronize with their direct parent) [14, 21, 24, 50], and even for some
computations that are not fully-strict [29], with experimental results showing that it is also more energy-efficient [37].
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Several libraries / runtimes have been implemented for multi-threaded work-stealing task schedulers. We have identified 2
different categories: compute-optimized and IO-optimized task schedulers, each with their own strengths and weaknesses.
Examples of Compute-optimized work-stealing task scheduler libraries / runtimes include Cilk in C [13], Rayon in Rust
[39, 55], TPL for .NET [28], a fork/join framework in Java [20], and the Parasail LWT scheduler for Ada 2022, in Ada [47,
71], while examples of I0-optimized work-stealing task schedulers include the goroutine runtime in Golang (specifically
netpoller [70]) [65], the multi-threaded scheduler in Tokio in Rust [73], and Akka in Java/Scala [60]. The critical component
in an I0-optimized scheduler is an IO reactor: an event loop software design pattern in which we can register events, and at
the next iteration of the event loop, we check whether any events we are interested in have happened (such as, we have some
data we can read on a socket), and then demultiplexes them, invoking the appropriate handlers.

Given the already existing Parasail LWT compute-optimized work-stealing task scheduler written for Ada 2022, in Ada
[47, 71], this case study was about implementing a similar, asynchronous IO-optimized work-stealing task scheduler in Ada.
As such, the ultimate goal for this project was to offer a solution to the C10k problem, fully implemented in Ada. A solution
to the C10k problem is a system that can handle large amounts of concurrent sockets, with the name standing for 10.000
connections [17]. It doesn’t need to do Input/Output very fast (which would be through-put), but it must be able to handle
a lot of connections with minimal latency [17]. As such, it needs help from the scheduler and an IO reactor, to be able to
schedule individual tasks only when they have some I/O available.

The general properties of this system we would like to check are:

(S1) Liveness / safety, no starvation: once a task has some IO available, or the timer it was waiting on expires, and is marked
as ready as a result, it will run eventually (weak fairness, unbounded, needs to be checked as a liveness property)
or within a bounded amount of time (can be checked as a safety property, e.g. never at any point in the program’s
execution is there a task that hasn’t been polled within this time; this is called bounded fairness or, specifically in the
case of our system, size-parametric fairness, as in, the bound depends on the size of the system).

(S2) Safety: Tasks do not run while they indicated that they are waiting on a timer or some IO.

(S3) Safety: Once a task has finished, it doesn’t get scheduled again.

(S4) Safety: No tasks are dropped before they finish, raise an error, or are cancelled.

4 Implementation
4.1 Insertion sort

The approach in insertion sort is to build a sorted array, one item at a time. To achieve this, it starts from a sorted array
containing the first element, which is already sorted. At each step, it takes the next element, and inserts it at the right position
in the sorted list. As such, the following code listing gives a high-level overview of the algorithm:

-- if A'Length < 2 then return
-- if A(A'First) > A(A'First + 1) then swap(A, A'First, A'First + 1)
for I in A'First + 1 .. A'Last - 1 loop

pragma Loop_Invariant (Weak_Sorted (A (A'First .. I)));

pragma Loop_Invariant (Multiset_Unchanged (A, A'01d));

ipt := insert_point (A, I, A (I + 1)); -- find position to insert the next element
if ipt < I + 1 then
move_forward (A, ipt, I + 1); -- rotate A(ipt..I+1)
end if;
end loop;

The loop invariants mentioned above are enough to fully prove the correctness of the sorting algorithm.

The first invariant says that on each iteration of the for loop the array is sorted up until index I. move_forward has
as a pre-condition that the array is sorted up until index I, and as a post-condition that it is sorted up until index I + 1.
insert_point does not modify the array. To prove the invariant, GNATprove uses induction: it first proves that it holds before
the loop (the base case, p(0)), and then proves that the body of the loop, during an arbitrary iteration, makes the invariant for
the next loop iteration hold (induction step, p(k) — p(k + 1)). If it can show both of them, then the loop invariant will hold
after the loop, and so we managed to prove that we sorted the entire array. The base case is proven due to the swap in the if
right above the loop. The induction step is proven by the post-condition of move_forward.
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The second invariant is much easier to explain. move_forward has as a post-condition thatMul tiset_Unchanged(A, A'0ld)
So in our main loop, the induction step is trivial to prove, and in the base case we can show that it also holds, as the ar-
ray is either unchanged or we swapped the first 2 elements (and swap has the same Multiset_Unchanged(A, A'Old)
postcondition).

4.2 Quicksort

The quick-sort approach is to partition the array into a sub-array of elements that are smaller than the pivot and a sub-array
of elements that are larger than the pivot, and then recursively calling the sorting algorithm on these sub-arrays [2].
As such, the algorithm was modeled roughly as follows:
pivot := A (A'First);
i := A'First + 1;
Jj A'lLast;

while i < j loop
pragma Loop_Invariant (Multiset_Unchanged (A, A'0ld));
pragma Loop_Invariant (A (A'First) = A'0Old (A'First));
pragma Loop_Invariant (for all P in A'First .. i - 1 => A (P) <= pivot);
pragma Loop_Invariant (for all P in j + 1 .. A'Last => A (P) > pivot);

-- increment i until A(i) > pivot
-- decrement j until A(j) <= pivot
-- swap if 1 < j

end loop;

-- if A(i) > pivot then decrement i -- (make sure A(i) <= pivot)
-- swap(A, i, A'First) -- (put pivot in right place)
-- sort(A(A'First..i-1)) -- (sort left part)

-- sort(A(i+1..A'Last)) -- (sort right part)

Fig. 1. Quick-sort call graph example: the blue cells are the pivots, and at each level, it shows the array before and after partitioning.
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Figure 1 displays the recursive calls that this procedure makes, for an example array. Similarly to the insertion sort, we have
the Multiset_Unchanged property as a loop invariant for the partitioning algorithm, preserved by the swap. We also have
the loop invariants that to the left of i, there are only smaller or equal elements, and that to the right of j, there are only larger
elements. We can prove these invariants by showing that before the swap on line 13, A(i) > pivot and A(j) <= pivot,
and so after the swap, A(i) <= pivot and A(j) > pivot. We then continue the main loop in the partitioning part.

4.3 Hash Map

Flat hash maps are implemented as a set of entries, where each entry holds a single key-value pair [1]. They make dealing
with hash collisions quite difficult, and so we would like to use separate chaining to handle hash collisions. With separate
chaining, our hash map is a set of buckets, where each bucket is a list of entries.

When a key is inserted, it gets hashed, then we take the hash modulo the number of buckets, and then place the key and
value in the corresponding bucket.

To retrieve the value corresponding to a key, we compute its hash, modulo the number of buckets, and look for it in the
corresponding bucket.

And finally, to remove a key from the hash map, we hash the key, look it up in the corresponding bucket, and remove it
from the list, by shifting all elements after it one slot forward, and finally setting the size of the bucket to the old size minus
one.

We assume that our key-hashing function is pure, but there is no way to require that when instantiating a generic package
in SPARK, which is how the hash map interface was designed, to make it work with all possible data types.

4.4 Publish / Subscribe channel

We have implemented a pub-sub channel, with 2 subscribers, and any number of publishers. More subscribers can easily be
added, although due to how generic packages, GNATprove and the Jorvik profiles interact together, this couldn’t be made a
generic parameter. Future work could be figuring out how to make this more ergonomic, but from a formal verification point
of view, 2 subscribers and 200 subscribers are not that different.

type Version is new Natural;
type Msg_Buffer_Index is new Natural range 1 .. Msg_Buffer_Size;
type Msg_Buffer_Array is array (Msg_Buffer_Index) of M;

protected type Pub_Sub_Channel is

procedure Publish (Message : M);

entry Subscribe_1 (Message : out M; Missed : out Natural);

entry Subscribe_2 (Message : out M; Missed : out Natural);
private

procedure Get_V

(Message : out M; Missed : out Natural; Sub_V : in out Version)
with Pre => Sub_V < Version'lLast;
procedure Clear;

Msgs : Msg_Buffer_Array := (others => Default_Message);
Subs_1_V : Version :=
Subs_2_V : Version := 0;
\% : Version :=
end Pub_Sub_Channel;

We will quickly go over the important elements:

|
S

|
S

o A Version refers to the version of the channel, e.g. the index of the last message put in the channel. The channel
itself has a Version (line 18).

e The Msgs (line 15) is a circular buffer of messages: once it is full, we overwrite the first element, and then the second,
and so on.

e Each subscriber has a Version (lines 16-17), which refers to the last message that the given subscriber has received.
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e Publish will publish a message in the channel. It will increment the version of the channel, and put the message in
the buffer, at the right position. Any task can call this procedure.

e Each subscriber has its own Subscribe entry method. An entry method allows for an entry guard, which makes sure
that the code will not continue until the guard evaluates to true. The guards for the Subscribe_1 and Subscribe_2
methods are Subs_1_V < V and Subs_2_V < V respectively (defined in the body of the protected type). Internally, to
share the logic, both functions call Get_V(Message, Missed, Subs_1_V / Subs_2_V).

The implementation of Get_V can be described roughly as:

(1) Compute the next version from the given subscriber (New_Sub_V := Sub_V + 1).

(2) Ifitis larger than the size of the buffer, and the new version from step 1 is smaller than V - Msg_Buffer_Size, that
means we missed some messages: Set Missed toV - Msg_Buffer_Size + 1 - New_Sub_V, and set New_Sub_V to
V - Msg_Buffer_Size + 1.

(3) Get the message associated to version New_Sub_V in the message buffer, store it in output parameter Message.

(4) Set Sub_V to New_Sub_V.

Given that SPARK verifies that no two threads ever call functions on protected objects at the same time, and that we
maintain the invariant that all subscribers have versions that are smaller than or equal to the version of the channel in
sequential code, we can prove that the they will hold for our concurrent code as well, no matter how different tasks interact
with the publish / subscribe channel.

SPARK doesn’t allow pre- and post-conditions involving the protected type’s state variables, so proving correctness will
have to happen outside of SPARK.

4.4.1 TLA* for publish / subscribe channel. We make use of the following variables:

variables
Q = [i \in QI |-> NullMessagel; \x the buffer of messages
VC = 0; \* the version of the channel

VS = [x \in Receiverlds |-> 0]; \% the subscriber versions

We will present the code for receiving a message on a subscriber (self), which can be done atomically (within a single
action; due to the channel being a protected type, and as such, implements mutual exclusion, this level of granularity is
enough):
await VS[self] < VC; \* wait for a message to be available
VS[self] := \x update the subscriber version

IF VC > QSize /\ VS[self] < VC - QSize
THEN VC - QSize + 1
ELSE VS[self] + 1;
message := QL((VS[self] - 1) % QSize) + 1]; \x get the message at the associated position in the buffer

The TLA* full code is available in Appendix C. The full model exhaustively visits 871,132 states of which 386,111 are
distinct.

5 10-optimized asynchronous task scheduler

In subsection 5.1, we offer a short overview of the scheduler, then in subsection 5.2 we introduce the architecture of the
scheduler, and then in subsection 5.3 we model this architecture in TLA*, to prove the properties we described in subsection 3.4.

5.1 High-level overview

Because Ada does not have language-level support for asynchronous programming yet, we defined our own version of a task,
based on coroutines [3], similar to Future types in Rust, which are what Tokio fundamentally works with, Tokio being the
asynchronous runtime we have used in part as a reference [73]. Due to this design choice, the scheduler is non-preemptive,
and the scheduled computations have to collaborate with the scheduler in order to achieve peak performance; in practice this
means that all futures should save their state, return control to the scheduler every so often, and will later continue when
they are scheduled again.

A simplified interface containing the most important elements of the scheduler is presented here, for the full interface see
Appendix D.
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Global queue

Active | 3 ' 5 6 16 17 20
Blocked | 4 | 19 27|

Worker 1 | Local queue 1 | Worker 2 Local queue 2 Worker 3 | Local queue 3 | Worker 4 | Local queue 4 |
Active | 1 [2] 7] 8 Active | 12 [13] 14| 9 Active | 21 [22] 23 Active | 14| 9 [25] 26
Blocked | 10 | 11 Blocked | 15 || 18 Blocked | 24 Blocked

Fig. 2. High-level scheduler overview. Tasks can be either ready (green), running (blue), blocked (red), or dead (gray, only tasks 14 and 9 in
Local queue 2 in the example above, as they were stolen by worker 4).

type Future is abstract tagged limited null record;

procedure Poll (F : in out Future; Finished : out Boolean) is abstract;

procedure Spawn (F : Future); -- Spawn a future in the runtime

procedure Spawn_RT (Root : Future); -- Spawns the runtime on the given future.

-- This procedure returns when this future completes, and all the sub-tasks it spawned also complete.
procedure Wake_In_Future (Time: Ada.Calendar.Time);

-- Tells the scheduler to not poll this Future until the specified time

procedure Wake_On_IO_Read (Socket : Socket_Access);

-- Tells the scheduler to not poll this Future until we have something to read from the given socket
procedure Wake_On_IO_Write (Socket : Socket_Access);

-- Tells the scheduler to not poll this Future until we can write to the given socket

function Get_Available_Data return Natural;

-- If the previous poll ended with Wake_On_IO_Read / Wake_On_IO_Write

-- then, this gives us the number of bytes we can read right now,

-- or the number of bytes we can write until the kernel will have to flush (and therefore block us)

5.2 Scheduler & 10 multi-reactor architecture and implementation

Figure 2 depicts the scheduler architecture. The basic design pattern we rely on is an IO multi-reactor. Every worker has its
own local queue, which consists of active tasks and blocked tasks (the tasks in the blocked queues are in the IO reactor as
well). The IO reactor is an event loop-based software design pattern, which demultiplexes incoming requests / events and
invokes the appropriate handlers. Modern, high-performance IO reactors make use of kernel APIs, such as epoll (Linux [66]),
the more recent io_uring (Linux [67]), kqueue (BSDs, MacOS [68]), or IOCP (Windows [62]). Due to the complexity of
integrating multiple APIs for different kernels into the reactors, we have decided to stick to kqueue-only. Possible future
work could include extending the reactor to other kernel APIs.

The inspiration for the global queue was taken from the architecture of Tokio’s multi-threaded scheduler [73]. Here we
cover our architecture as well as implementation details.

5.2.1 Futures. A future is a basic computation. It is not blocking, but can be polled to advance it a single step. It is similar to
coroutines [3].

5.2.2 Tasks. A task is an unit of work in the scheduler. It has an associated Future — the actual computation, — as well as
some metadata, including its (1) state (currently running, ready, or blocked), (2) if it is blocked, what is it blocked on, and (3)
if it was previously blocked on IO but when polled the kernel indicated that IO is ready, we also store how much data is
available now.

5.2.3 10 reactor. Tasks can be blocked on (1) timers or (2) IO. In the case of IO, blocked tasks are handled with the use of an
IO reactor. The IO reactors allow us to register “interests” in specific events from the kernel, and then when we receive those
events, they tell us which specific tasks we should wake.



12« Dinu Blanovschi

In our case, the IO reactors are implemented with kqueue, the kernel queues in BSD-based systems, through which we can
subscribe to certain events from the kernel (such as notifications that some file descriptor — for example a socket — has data
we can read); we get those notifications by actively polling (see kqueue(2) [68]). All the tasks that are blocked on IO have
registered “interests” in the kqueue corresponding to the events they need in order to continue.

When we poll the kqueue, we unblock the tasks corresponding to the events we get from the kernel, and then move them
from the blocked to the active queues, within the same queue structure (see subsubsection 5.2.5 and subsubsection 5.2.6). All
registered events are one-shot within the kqueue, so they need to be registered again with a new Wake_On_IO operation, if
the corresponding tasks need more IO.

5.2.4 Workers. A worker is an OS-level thread that executes tasks. Every worker has its own queue of tasks (subsubsec-
tion 5.2.5), as well as access to the global queue (interactions described in subsubsection 5.2.7) and the local queues for the
other workers managed by the scheduler (for work stealing, see subsubsection 5.2.8). The IO multi-reactor pattern allows for
horizontal scaling, by using multiple reactors instead of just one; in our design, every single queue has its own IO reactor

(including the global queue).

5.2.5 Local task queues. Local task queues have 2 queues of tasks: Active and Blocked. Both have the same size: 256 task
slots. As the names imply, the active queue contains ready tasks, and the blocked queue contains blocked tasks.

Task slots can additionally be “dead,” as in, indicating that they were either finished or stolen by another worker.

The local queue’s scheduling algorithm happens according to a clock-based schedule, where the “hand” of the clock moves
through the list of active tasks, polling each one; for simplifying the implementation, the clock starts from the back of the
queue and moves forward. Changes to task states are flagged immediately, but not processed until we finish a clock cycle.
That is why we can see that task 7 is blocked in Figure 2, despite being in the list of active tasks: it was just polled, and
indicated that it would block on either a timer or IO. When we finish the clock cycle, we “sweep” through the set of active
tasks, remove completed / stolen tasks, move blocked tasks to the blocked queue, and if they were blocked on IO, we also add
them to the interest list of the IO reactor.

Invariants:

(LQ1) Active queue: To the left of the clock hand, there are only ready tasks. (safety)

(LQ2) Blocked queue: Tasks in the blocked queue are always blocked. (safety)

(LQ3) Blocked queue: Tasks in the blocked queue, which are blocked on IO, always have interests registered in the corre-
sponding IO reactor. (safety)

5.2.6 Global queue. The global queue is a queue that contains tasks that currently do not belong to any local worker
(similarly to local queues, it is also made up of a queue of active tasks and a list of blocked tasks). Whenever tasks’ active
queues are empty, they first try to pull from the global queue (see subsubsection 5.2.7).

Invariants:

(GQ1) Active queue: Tasks in the active queue are always ready. (safety)
(GQ2) Blocked queue: Tasks in the blocked queue are always blocked. (safety)
(GQ3) Blocked queue: Tasks in the blocked queue always have corresponding registered interests in the global IO reactor.

(safety)

5.2.7 Pushing to and pulling from the global queue. When a task’s queue is full, and we attempt to push a new task (for
example, if the currently running task spawns a new task), we try to “push” half of the tasks in the active queue to the global
queue, to make sure that we have space for the new task. A similar operation is provided for the blocked queues.

When worker threads do not have any work to do (their active queue is empty), they try to “pull” tasks from the global
queue first. When this happens, the global blocked queue gets polled first (so that all blocked tasks that are ready get moved
into the global active queue). Then we pull either 128 tasks or the size of the global active queue, whichever is smaller. Unlike
pushing, there is no operation to pull from the global queue of blocked tasks. “Unblocking” them happens when they are
polled and we notice that they are no longer blocked, so we move them to the global active queue. This happens right before
we try to pull tasks from it into the local worker queues.

There is another operation, called “push-pull,” during which, we swap the entire active task queue of one of the local
queues, with the same number of active tasks from the global queue, after some predetermined amount of clock cycles
performed on the local queue (currently 10). The global queue also has its own clock pointer, specifically for this operation, so
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that no tasks stay ready indefinitely in the global active queue. This operation is required to guarantee the size-parametric
fairness.

5.2.8 Work-stealing. Work stealing happens when a worker has no ready tasks, and it cannot pull from the global queue
because that has no ready tasks either. It then proceeds to look at the other workers’ queues, and attempts to steal at most
Size / 2 ready tasks from one of them, specifically from the right side of the “clock hand,” e.g. tasks that the victim worker
already polled during its current clock cycle.

5.3 TLA* modelling

Here we describe the highlights of the TLA* specification of our scheduler design. It attempts to model all the details, and is
an almost one-to-one mapping from the source Ada code. This gives us the highest possible assurance of our design, but
due to the exhaustive search of the state space employed by TLC, exploring all possible behaviors becomes computationally
unfeasible with >2 workers scheduling >6 futures.

We have first modeled the entire scheduler in a single TLA* specification, in order to check all properties except for the
size-parametric fairness, which we will cover in the next paragraph. All of the other properties can be safely checked on a
single-worker scheduler, given that the only interaction between multiple workers is work-stealing, but all the properties
except for size-parametric fairness we have to check are preserved by it (253,286,771 states generated, of which 99,661,607
distinct, to the depth of 1172).

For the fairness, we simplified our specification to not model the kqueues explicitly, and a few other small optimizations.
Another thing we had to implement was a Round-Robin token so that the specific worker processes synchronize, in order
to prevent any from being starved indefinitely (we assume the OS-level scheduler handles this for us, so none of the
worker threads are indefinitely starved); our size-parametric fairness property depends on this, as well as individual futures
cooperating with the runtime, and individual poll operations completing within a small amount of time. This allows us to
verify that all tasks will be scheduled within (Clock_Cycles_Until_Push_Pull + 1) X Num_Workers X Num_tasks ticks of
being marked as ready (we define a tick as any of the workers polling a future). We have model-checked this for a model of
our scheduler with a single worker thread, and it holds (checked 251,226,207 states, of which 71,774,420 distinct, stopped
after diameter got to 68070; all possible interactions with the global queue preserve this property), and for a multi-worker
scheduler (2 workers, same workload), we have let it run but it turned out to be computationally unfeasible (we stopped it
after exploring 1,973,421,146 states, of which 443,743,574 distinct, up to a depth of 387), so we offer a proof here. The only
interaction that is not checked in the single-worker scheduler is work-stealing, and given that we only ever steal tasks after
they have run in the current clock cycle of the victim queue, the number of ticks until they would be scheduled again is
always smaller than or equal to the number of ticks it would have taken on the single-worker version of the scheduler, and as
such, we can extend our previous proof to multi-worker schedulers.

6 Implementation results and discussion

Table 2. Final line counts

Algorithm / System | Executable code After verification (SPARK) TLA™ specification Ratio
Insertion sort 100 838 - 8.3
Quick sort 70 966 - 13.8
Hash map 100 644 - 6.4
Pub/Sub channel 100 - 170 1.7
Scheduler 2487 - 4249 (full) / 3164 (fairness) | 1.7/ 1.27

As we can see from Table 2, the full formal specifications usually have 6-10 times the lines of code of the original, non-

verified versions, which implies that, on average, we need 6-10 lines of specifications for every single line of executable code
in our sequential algorithms, and 1-2 lines of TLA+ specification for every line of executable code in our concurrent systems.

We have benchmarked our scheduler against tokio [73] on two different C10k scenarios [17] on CPU wall time, where in
the scheduler-heavy one, our scheduler managed to outperform Tokio by a significant margin (Cohen’s d = 1.71, p-value
= 1.66 X 107°), whereas on the other, more I0-heavy benchmark tokio won by a very large margin (Cohen’s d = 7.05, p-value
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= 1.1x107%). The result aligns with expectations: Mio—the IO reactor underlying Tokio—has benefited from a long production
history, whereas the reactor presented in this work was implemented from the ground up within a four-week timeframe.
Details about this comparison, along with the hardware and software specs can be found in Appendix E.

7 Conclusions

Formal verification in SPARK, complemented with TLA*, can deliver industrial-level correctness guarantees on both sequential
algorithms and realistic concurrent systems—within the scope, time, and resources of an undergraduate project. Across
five case-studies we wrote 6800 lines of specification for 2800 lines of executable Ada, a 6 — 10 X overhead for sequential
code and ~ 1.7X for the concurrent TLA* models. Performance measurements show that a formally verified I0-optimised
scheduler can outperform the production-grade Tokio runtime on scheduler-heavy workloads (large effect size d = 1.71),
while falling behind on IO-bound tasks (d = 7.05). These results demonstrate that correctness-by-construction need not
preclude competitive performance.

7.1 Answers to the research questions

RQ1 Sequential verification. SPARK’s prover fully verified insertion sort, quicksort and a generic static hash-map, exposing
only minor SMT time-outs. Hence, SPARK is practical for non-trivial sequential algorithms—except where pervasive
heap allocation is unavoidable.

RQ2 Concurrency. SPARK alone can establish absence of data races as well as selected safety properties, but cannot
express liveness. Combining SPARK with TLA* allowed us to specify and model-check fairness and progress in a
publish/subscribe channel and a work-stealing scheduler, showing the approach is tractable in practice.

7.2 Key lessons learned

Specification effort, not solver speed, is the main cost driver. Careful contract design reduced unprovable obligations far
more effectively than switching SMT solvers or increasing solver timeouts.

The learning curve is real but finite. With solid programming experience, one can reach productive SPARK proficiency in
weeks, not months.

Hybrid toolchains pay off. Off-loading liveness reasoning to TLA* avoided convoluted pseudo-concurrency encodings in
SPARK contracts. High-fidelity models of real software systems in TLA* are still unfeasible to exhaustively explore, so a
certain level of abstraction is required for TLC to finish within a reasonable amount of time.

7.3 Threats to validity

7.3.1  Model-checking scalability. TLC explored up to the depths of 68070 (1 worker) and 387 (2 workers) in the scheduler
fairness model; larger parameter spaces may reveal unseen behaviours.

7.3.2  Hardware and OS bias. Benchmarks ran on a single macOS 13 system, using kqueue; results may differ on other kernels
with different APIs, such as epoll or IOCP.

7.3.3  Assumption still left unproven in quick-sort. We have encountered a problem when trying to check the Mul tiset_Unchanged
property on the sub-arrays after the recursive calls, despite that being the post-condition of sort, and thus already proven,
the reason being SMT solver timeouts. We have left it as an assumption (with pragma Assume(...)). Because Occ is itself a
recursive definition, the goal cannot be simplified any further. After running the automated provers for several hours without
success, we conclude that an automated proof is probably unattainable.

7.4 Future work
Possible future work includes:

(1) Pub/Sub channel, Scheduler: Use TLAPS instead of TLC for actual formal verification of TLA* models, once it supports
all required features.

(2) Scheduler: Implement epoll- and IOCP-based polling as well to bring it to Linux-based and Windows systems.

(3) Scheduler: Implement timeouts on Wake_On_IO operations.

(4) Scheduler: Optimize when there are no ready tasks, it does blocking kernel polls without a timeout, so it does not use
the CPU at all.
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8 Responsible Research

We considered the ethical implications of our research. Given that SPARK is widely used in high-integrity software, and
Ada’s motto is “when software has to work,” using SPARK can greatly reduce the number of bugs in software. Depending on
what that software does, it can have beneficial or detrimental (malicious actors writing bug free code) ethical implications.
It is a tool, and therefore has to be used responsibly by its users. Nevertheless, we do not really foresee anyone using the
specific case-studies presented in this paper for any malicious uses.

All source code, SPARK contracts, TLA* models and build scripts are archived in a public GitHub repository (Appendix B)
under the permissive MIT license, enabling free reuse in academic and industrial settings. The full commit history is retained
to document design iterations. Alire 2.1.0 (gprbuild 22.0.1, gnat_native 14.2.1), GNATprove 14.1.1, and TLC 2.15 were used; exact
invocation flags can be found in the alire. toml, . gpr files and TLA* Toolbox models to guarantee bit-for-bit reproducibility.
The TLC model logs, the benchmark source code and individual benchmark measurements, are present in the repository as
well. The machine specs for the benchmark are provided in Appendix E.

No personal or sensitive data were processed; all inputs are synthetic.

8.1 ChatGPT prompts

e Rephrase the paragraph below to improve academic clarity and coherence.
o Identify and correct any grammar / spelling errors in the text provided.
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C Publish / Subscribe channel TLAT model

——————————————————————————————— MODULE pubsub -----=-===-==--——————————
EXTENDS Naturals, Integers, TLC, Sequences

CONSTANT QSize

CONSTANT NumReceivers
CONSTANT NumMessages
CONSTANT NullMessage

ASSUME QSize >= 1
ASSUME NumMessages >= 1

QI == 1..QSize

QV == Nat

ASSUME NullMessage \notin QV
QVOpt == QV \union {NullMessage}
QT == [QI -> QVOpt]

SenderId == 0
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ReceiverIds == 1..NumReceivers

MsgRange == 1..NumMessages

VersionType == 0..NumMessages

Processes == SenderId \union ReceiverlIds

SeenOrMissedTy == [Receiverlds -> [MsgRange -> BOOLEAN]]
EmptySeq == [i \in 1..0 |-> TRUE]

(* --algorithm pubsub

variables
Q = [i \in QI |-> NullMessagel;
VC = 0;

VS = [x \in ReceiverIds |-> 0];
SentEnd = FALSE;

SeenVersions = [x \in ReceiverIds |-> [m \in MsgRange |-> FALSE]];
MissedVersions = [x \in ReceiverlIds |-> [m \in MsgRange |-> FALSE]];

define
SafetySeenOrMissed == \* safety
\A r \in Receiverlds:
\A m \in MsgRange:

SeenVersions[r][m] => ~(MissedVersions[r]l[m])

EventuallySeenOrMissed == \* liveness
\A r \in Receiverlds:
\A m \in MsgRange:

<>([1(SeenVersions[r][m]) \/ [1(MissedVersions[r][m]))

Typelnvariant == \* safety
/\ Q \in QT
/\ VC \in VersionType
/\ SeenVersions \in SeenOrMissedTy
/\ MissedVersions \in SeenOrMissedTy
end define;

fair+ process Sender \in {SenderId}

variables
sent = 0,
begin
SenderWhileLoop:
while sent < NumMessages do
VC := VC + 1;
QL((VC - 1) % QSize) + 1] := sent;
sent := sent + 1;
end while;
SenderEnd:

SentEnd := TRUE;
end process;
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fair+ process Receiver \in Receiverlds
begin
RecvLoop:
while ~ SentEnd \/ VS[self] < VC do
await VS[self] < VC;
MissedVersions[self] :=
IF VC > QSize /\ VS[self] < VC - QSize
THEN [x \in VS[self] + 1 .. VC - QSize |-> TRUE] @@ MissedVersions[self]
ELSE MissedVersions[self];
VS[self] :=
IF VC > QSize /\ VS[self] < VC - QSize
THEN VC - QSize + 1
ELSE VS[self] + 1;
SeenVersions[self][VS[self]] := TRUE;
end while;
end process;

end algorithm; *)
\* PlusCal -> TLA+ Translation omitted

D Full scheduler interface

type Sched_Cx is limited private;
type Sched_Cx_Access is access all Sched_Cx;

type Future is abstract tagged limited null record;
procedure Poll
(F : in out Future; Sched_Cx : Sched_Cx_Access; Finished : out Boolean)

is abstract;

type Future_Access is access all Future'Class;
procedure Spawn_RT (Root : Future_Access);

procedure Spawn (Sched_Cx : Sched_Cx_Access; F : Future_Access);
procedure Wake_In_Future

(Sched_Cx : Sched_Cx_Access;

Time : Ada.Calendar.Time := Ada.Calendar.Clock);

procedure Cancel (Sched_Cx : Sched_Cx_Access);

function Get_Available_Data (Sched_Cx : Sched_Cx_Access) return Natural;
function IO_EOF (Sched_Cx : Sched_Cx_Access) return Boolean;

type Bytes is array (Positive range <>) of Interfaces.C.unsigned_char;

type File is private;
type File_Access is access all File;

function Open_Read (Path : String) return File_Access;
function Open_Write (Path : String) return File_Access;
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function Open_Append (Path : String) return File_Access;
procedure Advise_Read_Sequencial (File : in out File_Access);
procedure Close (File : in out File_Access);

procedure Read
(File : File_Access; Buffer : in out Bytes; Count : out Natural)
with Pre => Buffer'Length >= Count;
-- Read Count bytes from File into Buffer.
-- Buffer'Length must be at least Count.
procedure Write (File : File_Access; Buffer : Bytes; Count : out Natural);

procedure Wake_On_IO
(Sched_Cx : Scheduler.Sched_Cx_Access; File : File_Access);

type Listener_Socket is limited private;
type Socket is limited private;

type Listener_Socket_Access is access all Listener_Socket;
type Socket_Access is access all Socket;

type Address_IPv4 is array (1 .. 4) of Interfaces.C.unsigned_char;
type Port is range 0 .. 65535;

function Connect_Socket

(Address : Address_IPv4; P : Port) return Listener_Socket_Access;
function Accept_Socket (LS : Listener_Socket_Access) return Socket_Access;
procedure Close_Listener (Socket : in out Listener_Socket_Access);
procedure Close (Socket : in out Socket_Access);

procedure Read
(Socket : in out Socket_Access;
Buffer : in out Bytes;
Count : out Natural)
with Pre => Buffer'Length >= Count;
-- Read Count bytes from Socket into Buffer.
procedure Write
(Socket : in out Socket_Access; Buffer : Bytes; Count : out Natural);

procedure Mark_TCP_NoDelay (Socket : Socket_Access);

procedure Wake_On_Connection_Requested
(Sched_Cx : Scheduler.Sched_Cx_Access; Listener : Listener_Socket_Access);

procedure Wake_On_IO_Read
(Sched_Cx : Scheduler.Sched_Cx_Access; Socket : Socket_Access);

procedure Wake_On_IO_Write
(Sched_Cx : Scheduler.Sched_Cx_Access; Socket : Socket_Access);
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E Scheduler comparison to tokio

We have benchmarked both our scheduler and the one in tokio [73], and Table 3 and Table 4 show the results. We observe
that our scheduler outperforms Tokio’s on CPU wall time on scheduler-heavy workloads (Table 3), while Tokio outperforms
ours on I0-heavy workloads (fewer tasks, more IO / task, Table 4).

Implementation ‘ n ‘ U ‘ o ‘ 95% CI ‘ 99% CI
Our scheduler | 24 | 330.83ms | 123.97ms | 280.17ms - 381.50ms | 264.25ms - 397.42ms
Tokio 24 | 731.04ms | 306.97ms | 605.59ms - 856.49ms | 566.17ms - 895.92ms

Table 3. CPU wall time benchmark results: showing a Cohen’s d coefficient of 1.71, and a p-value of 1.66 X 10~° (10000 connections, 2
iterations of 1024 bytes)

Implementation ‘ n ‘ i ‘ o ‘ 95% CI ‘ 99% CI
Our scheduler | 10 | 148.90ms | 2.13ms | 147.51ms - 150.29ms | 147.07ms - 150.73ms
Tokio 10 | 123.40ms | 4.65ms | 120.36ms - 126.44ms | 119.41ms - 127.39ms

Table 4. CPU wall time benchmark results: showing a Cohen’s d coefficient of 7.05, and a p-value of 1.1 x 102 (1000 connections, 10
iterations of 1024 bytes)

Machine specs for the benchmark: 2017 MacBook Pro, Intel(R) Core(TM) i7-7700HQ CPU @ 2.80GHz, 16GB RAM, running
MacOS Ventura 13.7.6.
Software versions:

$ alr exec -- gcc --version
gcc (GCC) 14.2.0
$ alr toolchain
gprbuild 22.0.1 Default
gnat_native 14.2.1 Default

tokio pinned to commit 99a03a502eb69309024406b0@7c85cabb965f53d4 (Jun 16, 2025)
$ cargo --version

cargo 1.89.0-nightly (056f5f4f3 2025-05-09)

$ rustc --version

rustc 1.89.0-nightly (ce7e97f73 2025-05-11)
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