Detecting Code Smells 1n
Android Applications

Master’s Thesis

Dustin Lim

Detecting Code Smells 1n
Android Applications

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE
in
COMPUTER SCIENCE
by

Dustin Lim
born in The Hague, the Netherlands

o]
TUDelft

Software Engineering Research Group
Department of Software Technology
Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
www.ewl.tudelft.nl

www.ewi.tudelft.nl

(©2018 Dustin Lim. All rights reserved.

Detecting Code Smells in
Android Applications

Author: Dustin Lim
Student id: 1514202
Email: lim.dustin@gmail.com

Abstract

Code smells are patterns in programming code which indicate potential issues
with software quality. Previous research resulted in the development of code smell
detectors: automated tools which traverse through large quantities of code and return
smell detections to software developers.

The Android platform has become very popular over the years but is relatively
new in terms of scientific research. This research investigates the detection perfor-
mance of existing detectors, tools that were not designed with Android in mind, on a
dataset of Android apps. In addition, multiple smell detectors and source code metrics
are combined in a machine learning approach to develop an Android-specific smell
detector.

Thesis Committee:

Chair: Dr. A. Zaidman, Faculty EEMCS, TU Delft
University supervisor: Dr. A. Zaidman, Faculty EEMCS, TU Delft
University supervisor: Dr. F. Palomba, Faculty EEMCS, TU Delft
Committee Member: Prof. Dr. A. van Deursen, Faculty EEMCS, TU Delft
Committee Member: ~ Dr. D.M.J. Tax, Faculty EEMCS, TU Delft

lim.dustin@gmail.com

Preface

The final hurdle is often challenging; this is at least true in my experience. Friendly people
gave me advice that this hurdle would have its ups and downs. That turned out to be true,
but then again I knew that the end goal was certainly worth it. I am very happy to present
this master thesis as part of my Master of Science degree in Computer Science at the Delft
University of Technology.

One year ago I was in search of a thesis project. I would like to thank Andy Zaidman
who helped me in my search and agreed to be my university supervisor. He also helped me
connect with Fabio Palomba; his experience related to my thesis subject proved enormously
helpful to me. I would like to thank Fabio for agreeing to be my daily supervisor and for
having all those meetings with me.

I would like to thank Arie van Deursen and David Tax for joining my thesis committee
and taking their time to read what is hopefully pleasant reading material. Finally, I would
like to give special thanks to my friends Isabeau Dieleman and Daan van Campen. Isabeau
generously offered to read and provide feedback for multiple drafts of my thesis. Something
I am very grateful for. Daan was a consistent weekly source of moral support and fun humor.

Dustin Lim
Delft, the Netherlands
January 17, 2018

iii

Contents

[Prefacel iii
Contents v
(I__Introduction 1
LI Research Context| 1
L2 Research Motivation| 1
(L3 ThesisOutlinel. 2
Background and Related Work| 3
R.1 CodeSmellsl. e 3
[2.2 Definitions of Investigated Code Smells| 4
2.3 Measuring Detection Performance| 7
2.4 __Android Platform Overviewl 8
2.5 Related Work| 10
Constructing a Smell Oracle| 13
3.1 AppSelection| 14
[3.2° Preprocessing| 15
B3~ Manual Smell Detection]o i i 23
BAResults] o oot 30
Study I: Using Existing Smell Detectors on Android Apps| 31
4.1 Methodology| 31
B2 Results]. oot 34
M43 Conclusionl 35
Study II: Constructing an Android-specific Smell Detector| 37
5.1 Methodology| 37
B2 Results.o 41
5.3 Conclusionl 42

CONTENTS

|6 Threats to Validity|

7__Ceonclusion|

Bibliography

A~ Manual Smell Detection Analysis |
IA.1 Feature Envy|
A2 LargeClass|
[A.3 LongMethod
A4 Message Chain|

vi

43

45

47

Chapter 1

Introduction

This chapter describes the context behind this research, research motivation and an outline
of the thesis.

1.1 Research Context

Code smells are patterns in programming code that indicate potential issues with software
quality. Code smells are different from software bugs, as they do not make programs run
incorrectly. Instead, the quality issues implied by code smells produce software that is
harder to develop and maintain. The two concepts are however related, as code smells can
make software more susceptible to future software bugs.

Previous research produced several techniques for detecting the various types of code
smells [24, (17,120, [18]]. This research was generally done in the context of desktop applica-
tions. The goal was to use detection techniques to develop code smell detectors: automated
tools that traverse through (large quantities of) code and display smell detections. Devel-
opers can then decide whether to remove these smells. In contrast to desktop applications,
less research has been done on code smell detection for mobile applications.

This thesis explores this mobile domain, in particular for the Android platform. The goal
was to perform two initial studies on: (1) the performance of ‘traditional’ smell detectors
on Android apps and (2) the development and testing of an Android-specific smell detector.

1.2 Research Motivation

It is tedious for developers to manually traverse code and find code smells for any decent-
sized application. In addition, developers may not be aware of the various code smells and
the reasoning behind them. Smell detectors automate this process and can potentially help
improve software quality on a large scale. Given the trending popularity of mobile applica-
tions, it was therefore interesting to investigate code smell detection for such applications.

1

1. INTRODUCTION

1.3 Thesis Outline

The thesis consists of four main chapters. In Chapter 2] background information and related
work is presented on code smells and detection techniques. This includes scoping the code
smells investigated to five specific types, out of a larger catalogue.

Chapter |3| describes the construction of a dataset of code smells present in a selection
of Android apps. This ‘truth data’ is an important prerequisite to determine the detection
performance of tools/techniques with respect to these apps. This enables the two subsequent
studies in this thesis.

Chapter [] covers Study I, on the performance of ‘traditional’ code smell detectors on
Android apps. Such detectors were generally developed to accept desktop software. Note
that effective smell detection techniques for desktop software do not necessarily extend to
mobile apps.

Chapter [5|covers Study II, on the development and empirical testing of a novel Android-
specific smell detector. This study attempts to improve on the detection performance ob-
tained in Study I. The novel detector was constructed using a machine learning approach.

Following the four main chapters, Chapter[6]discusses possible threats to validity. Chap-
ter[7] concludes on findings made and proposes future work.

Chapter 2

Background and Related Work

This chapter provides the background of this thesis. This includes definitions and sum-
maries of all significant concepts. In addition, this chapter also provides references to pre-
vious related work.

2.1 Code Smells

The concept of code smells was first introduced by Fowler and Beck (1999) [13]]. They
defined smells as ‘structures in the code that suggest (sometimes they scream for) the pos-
sibility of refactoring’. Refactoring is the process of restructuring code without changing
its outward behaviour. These code structures imply poor software design and can appear
‘smelly’ to developers inspecting the code. Through refactoring, code smells are removed
and as a result software design is improved.

Fowler and Beck presented 22 types of code smells. Each smell contained a description
of relevant code structure(s), the design issues implied by the smell and general strategies
for refactoring. For the scope of this thesis, a comprehensive investigation of all 22 smells
was infeasible. Instead a limited set of five smells was selected, listed in Table [2.1]

Table 2.1: Code smells within scope of thesis.

Code smell Overview

Feature Envy A method that is more interested in the features of
another class than its own parent class.

Large Class A class that is too bloated in size.

Long Method A method that is too bloated in size.
Message Chain A chain of method invocation expressions.
Spaghetti Code A class with very little structure.

Although each of the 22 code smells imply poor design, their real-world impact on soft-
ware maintainability is not necessarily the same or significant. The five code smells that
were selected have been observed by Palomba et al. to significantly affect software main-

3

2. BACKGROUND AND RELATED WORK

tainability [19]. Removing Feature Envy reduced the fault-proneness of code: the number
of bug fixes over time on affected software components. Removing Large Class, Long
Method, Message Chain and Spaghetti Code reduced the change-proneness of code: the
number of code changes (commits) on affected software components. All other things be-
ing equal, lower fault- and change-proneness translate to simpler software maintainability.

In summary, the scope of this thesis was limited to the five smells in Table 2.1 which
were deemed impactful on software maintainability.

2.2 Definitions of Investigated Code Smells

This section defines the five code smells investigated. Most of the code smell descriptions
given by Fowler and Beck [[13]] contain abstract elements. As a result, they are open to
personal interpretation. Smell detection techniques are generally developed by deriving
suitable concrete metrics from these abstract descriptions. This section contains the inter-
pretation of the five code smells as used within the thesis. Unless stated otherwise, they
were directly summarized from Fowler and Beck.

2.2.1 Feature Envy

Affects class methods. In Object Oriented Programming (OOP), data and related func-
tionality is organized into classes. The Feature Envy smell is present whenever a method
located in one class is clearly more interested in the features of another class. Alternatively
phrased, a method has stronger dependencies on another class compared to its own. Gen-
erally this translates to the method accessing a lot of data (attributes) of another class. In
terms of software design, this smell implies that the method is strongly coupled to another
class and therefore in the wrong location. The refactoring strategy is to simply move the
method to the envied class. A basic example of Feature Envy is shown in Listing Here,
the getAddressLabel () method is smelly and should be moved from the Person to the
Address class.

Listing 2.1: Example of Feature Envy.

class Person {
private Address address;

[...]

// Smelly method, envies ‘Address’ class.
public String getAddressLabel () {
return address.getStreetAndNumber () + "\n" +
address.getZipCode () + " " +
address.getResidence () ;

Fowler admits that many cases are not straightforward in practice. Sometimes only part
of a method is envious. It is also possible that a method envies several classes, to varying

4

2.2. Definitions of Investigated Code Smells

degree. Finally, a method may have many dependencies on its current class, in addition
to strongly envying another. All of these non-trivial cases are more likely for methods
with larger method bodies. Fowler suggests to split such methods into smaller ones and to
reassess them separately.

Part of the Feature Envy definition is abstract. Detection of this smell requires a method
to determine ‘envy’, originating from a method towards a class. Given a measure for envy,
one could then compare the envy of a method towards its its parent and other classes.

2.2.2 Large Class

Affects classes. The Large Class is an OOP class that has become too bloated over time.
Such large classes are generally hard for developers to understand and work on. This is due
to limitations in human cognition, which is heavily taxed when reading and understanding
source code. In addition, large classes often break the single responsibility principle. This
design principle states that any given class should only have one reason (responsibility)
for which it needs to be changed [16, ch. 8]. The reasoning behind this is that application
responsibilities should be decoupled, so changes to one responsibility within a class cannot
unexpectedly break others. A related concept is cohesion, the degree to which the elements
inside a class belong together. The Large Class is refactored by separating off attributes and
methods into smaller classes.

Part of the Large Class definition is abstract. Fowler specifies no specific metric(s) nor
threshold values for which to consider classes as being too large. According to SourceMak-
ing [23]], signs are whenever a class contains too many fields, methods, or lines of code.
This is however still vague.

2.2.3 Long Method

Affects class methods. Similar to the Large Class smell, a Long Method is a method that
has become too bloated. In terms of software design, long methods are also generally hard
for developers to understand and maintain. The refactoring strategy is to decompose the
method into smaller methods, which can then be invoked from the original method. A given
heuristic is that whenever a block of code in a method could use commenting, it should be
extracted instead. If extracted methods are named after their purpose, developers may not
even need to read their bodies while seeing the original method. An example of a refactored
Long Method is shown in Listing

Part of the Long Method definition is abstract. Fowler specifies no specific metric(s)
nor thresholds for which to consider methods as being too large. SourceMaking states that
methods containing more than 10 lines of code should start raising concerns [23].

2. BACKGROUND AND RELATED WORK

Listing 2.2: Example refactoring of Long Method.

class Foo {
public void aRefactoredLongMethod() {
queryDatabase(..);
displayResults(..);
logResults(..);

// Extracted smaller methods
public void queryDatabase() { .. }
public void displayResults() { .. }
public void logResults() { .. }

2.2.4 Message Chain

Affects method invocation expressions. A Message Chain occurs whenever code requests
an object for another object, which it then asks for another object and so on. An example
of such a method invocation chain is shown in Listing Here, a message is sent to an
instance of class A, which returns an instance of class B which is then sent the actual desired
message.

This smell indicates that the chain of method invocation expressions (and therefore its
parent method and class) is too strongly coupled to the modelled relationships between
classes. Changes to any relationship would require all involved message chains throughout
the program to be updated as well. This makes it harder for developers to evolve software. A
design principle related to this smell is the Law of Demeter, which states that classes should
only communicate with their immediate relational neighbours. Refactoring this smell is
done by adding delegation methods to break up the chain. An example of this is shown in

Listing [2.3]

Listing 2.3: Message Chain example.

// This smelly chain reaches ’through’ class A to class B.
instanceOfClassA.getClassB() .doSomething();

// --- After refactoring --—-
instanceOfClassA.doSomething(); // chain is broken

class A {
public void doSomething() { // delegation method, hiding class B
self.getClassB() .doSomething();

A straightforward metric which can be used for smell detection is the chain length of
method invocation expressions. Fowler specifies no particular thresholds, therefore the ‘cor-

6

2.3. Measuring Detection Performance

rect’ one is open to interpretation.

2.2.5 Spaghetti Code

Affects classes. As the exception, Spaghetti Code was not defined by Fowler but instead
introduced as an anti-pattern by Brown et al. [6]]. Anti-patterns are bad solutions to common
software design challenges. This is similar to the concept of code smells. However, while
code smells are only indications of design issues, anti-patterns are universally bad. Within
this thesis, Spaghetti Code was treated as another code smell.

Spaghetti Code occurs when an OOP class is implemented in a procedural manner. In
procedural programming languages, methods (called procedures) operate on data structures
that are part of a global program state. Key differences compared to OOP are the complete
decoupling of data from methods and the absence of classes. Even though Java is object-
oriented, it is still possible to misuse Java classes in a procedural manner. This may occur
with developers who are not yet skilled with object oriented code. Spaghetti Code classes
are hard for developers to understand because they lack the object-oriented structure that is
normally expected.

Brown et al. supplied a very broad description of symptoms for Spaghetti Code. A
more concise description was given by Moha et al. [17]: “Spaghetti Code is revealed by
classes with no structure, declaring long methods with no parameters, and utilising global
variables. Names of classes and methods may suggest procedural programming. Spaghetti
Code does not exploit and prevents the use of object-orientation mechanisms [...].”

Note that this represents procedural programming on an object oriented class level.
Methods are written as if they were procedures and class attributes are used as global state.
In addition to understanding such classes, maintaining them can also become problematic.
As attributes are procedurally accessed and modified from multiple methods, changing one
method may unexpectedly affect others within the class.

2.3 Measuring Detection Performance

The concept of measuring detection performance enables the validation and comparison
between different code smell detection techniques. A code smell detector may include the
ability to detect multiple code smell types, each with their own detection performance. Two
mainstream performance metrics are precision and recall.

The task of detecting code smells can be modelled as a binary classification problem.
This is where a dataset of instances is given, for which each instance must be classified
as either positive or negative. For code smell detection, the instance dataset consists of
software components that can be affected by a single code smell. A code smell detection
technique effectively classifies each component as being either smelly or non-smelly.

Precision and recall are two important metrics used in binary classification. In this
context, they are calculated using: (1) the dataset of software components, (2) the set of
components classified as smelly and (3) the set of components actually affected by the code
smell. These three sets are drawn in Figure The calculations for precision and recall
are:

2. BACKGROUND AND RELATED WORK

False Negatives True Negatives

True Positives False Positives

(1) Dataset \

(3) Truly smelly (2) Classified smelly
Figure 2.1: Steps to calculate precision and recall.
True Positives

precision 2.1
fecision True Positives 4 False Positives @D

True Positives
Recall = — - 2.2)
True Positives + False Negatives

Both metrics assume values in the range [0, 1]. Precision is the fraction of smells re-
turned by the detector that are truly smelly. Recall is the fraction of true smells in the code
that are being found. It is desirable for a detection technique to have both precision and
recall as close as possible to 1.

A recurring pattern in code smell detection techniques is the use of metrics that correlate
with a code smell, combined with a chosen threshold value to classify smelly instances.
The threshold value can be varied in such cases and is directly related to the precision and
recall of the technique. A stricter threshold with a smaller detection range is less likely
to produce false positives (improved precision) but more likely to produce false negatives
(worse recall). The reverse holds for a less strict threshold.

2.4 Android Platform Overview

This section briefly describes the Android platform. The focus is on those aspects that are
specific to Android and are relevant to the detection of code smells.

8

2.4. Android Platform Overview

24.1 Integrated Development Environment (IDE)

Android apps are written using Android Studio [3]], a dedicated IDE from Google. The
first stable release of Android Studio was in December 2014. Before this time, apps were
developed using the Eclipse IDE [8] and the Android Development Tools (ADT) plug-in
from Google. ADT was eventually deprecated in June 2015. Due to a transition period, it
is possible to encounter Android projects that have not yet migrated to Android Studio.

2.4.2 Software Development Kit (SDK)

Android Studio exposes two different development kits using distinct programming lan-
guages. The Android SDK is written in Java, while the Android Native Development Kit
(NDK) is written in C/C++. Developers use these respective languages to program against
a development kit. In general, code smell detectors are created for a specific programming
language. The existence of Android source code in two languages could have complicated
matters with respect to running existing detectors.

However, the Android documentation states that the NDK is only meant for a particular
set of use-cases and normally not needed [[1]. Examples of use-cases are apps that demand
real-time computing (such as graphically intensive games) and apps that require the use of
legacy C/C++ libraries. Given this information, the scope of this research was adjusted to
investigate Android apps solely using the Android SDK. As a result, only smell detection
tools for Java needed to be considered.

2.4.3 Android App Architecture

The Android SDK is fully documented [2]. It is also fully object-oriented. Developers
extend from building blocks supplied by the SDK to create their own applications. Some
frequently used object classes are:

e Activities (android.app.Activity): An activity represents “a single screen with
an user interface (UI)”. For example, an e-mail app may have separate activities for:
(1) browsing a list of messages, (2) viewing a single message and (3) composing a
new message. As a user enters and navigates through an app, activities involved are
continuously being created and destroyed. These (and more) states and transitions
between them represent the activity lifecycle.

For each new screen in an Android app, developers create a class that inherits from the
Activity class. This class contains many placeholder methods which are invoked
throughout the lifecycle of the activity. These are methods such as onCreate (),
where an activity is expected to initialize its user interface. Through method overrid-
ing, custom behaviour is achieved.

e Fragments (android.app.Fragment): A fragment assumes the responsibilities of
an activity for a portion of the user interface. More complex interfaces can consist of
multiple ‘panes’, either side-by-side or overlapping. Instead of managing the whole

9

2. BACKGROUND AND RELATED WORK

UI, an activity can delegate parts to one or more fragments. The relationship between
activities and fragments is highlighted in Figure[2.2]

e Views (android.view.View): While activities and fragments manage the user inter-
face, the actual elements visible on the screen are represented by views. The View
class forms the basis of many subclasses for displaying buttons, sliders, drop-down
lists and more. Views are laid out in a tree hierarchy, managed by their parent activity
or fragment.

Tablet Handset
Selecting an item Selecting an item
updates Fragment B starts Activity B
Activity A contains Activity A contains Activity B contains
Fragment A and Fragment B Fragment A Fragment B

Figure 2.2: Android Activities and Fragments. Image from SDK documentation.

2.5 Related Work

Related work can be divided into (1) proposed smell detection techniques and tools, (2)
empirical studies on the results between detection tools.

2.5.1 Techniques and Tools

Feature Envy Atkinson and King [4] proposed a basic technique to, within each method
body, track the distinct field references towards classes other than its own class. An external
class with many referenced fields was deemed a location to move the method to. By setting
a threshold value, methods could be accepted or rejected as smelly. The authors created the
Look# tool for the C# language that implemented this technique, among others.

A more elaborate technique was proposed by Tsantalis and Chatzigeorgiou [24]]. They
introduced the notion of an entity set corresponding to an entity (attribute/method/class): the

10

2.5. Related Work

set of entities that is used by or uses the entity. For methods, this was the set of attributes and
methods accessed from it. For classes, this was the set of attributes and methods declared in
it. An additional list of rules described cases in which certain elements should be excluded
from the entity set. The Jaccard similarity coefficient between method- and class entity sets
was then used as a metric for envy. This technique was integrated in the JDeodorant plug-in
for Eclipse and Java.

While the first two techniques use the structural information of source code, a different
approach is to analyse the way identifiers are used [S][20]. This lexical approach attempts
to group fields and methods based on the names developers have chosen for them. The
derived clustering is then compared to the current situation to suggest method refactorings.
For Java, TACO [20] is a textual-based smell detector.

Large Class DECOR [17] is “a method that embodies and defines all the steps necessary
for the specification and detection of code [...] smells”. It is a framework in which code
smells are described using ‘rule cards’. Each card contains a logical conjunction of code
metrics and corresponding thresholds. The metrics used for Large Class included the num-
ber of dependencies on data classes, LCOMS (Lack of Cohesion Of Methods), the sum of
declared attributes and methods, and the presence of certain keywords in the class name.

An indirect approach is to focus on opportunities to apply the Extract Class refactoring,
instead of finding the smell itself. Note that the detection of attributes and methods that
should be extracted from a class also detects instances of the Large Class. The focus here
is on class cohesion. Fokaefs et al. [10] used a clustering algorithm on the attributes and
methods of a class. For the distance between elements the Jaccard distance was used on
their corresponding entry set. The notion of entity sets was reused from Tsantalis and
Chatzigeorgiou [24]].

Long Method The traditional method to measure method length is to count the number
of lines of code (LOC) in the method body. However, this metric does not account for cases
in which a large LOC is justified. For example, while a method containing a long switch
statement with short cases has large LOC, breaking it up is a questionable refactoring.

Existing detection techniques mostly use the LOC metric. DECOR and PMD [22] both
use a threshold value of 100. Checkstyle [7] uses a threshold value of 150. Tsantalis
and Chatzigeorgiou [25]] implemented a more elaborate technique into JDeodorant. They
used the control flow graph corresponding to method code to extract code slices in which a
variable is either being computed or updated. After passing a set of rules, such slices were
proposed to be eligible for the extract method refactoring. Note that such proposals contain
detections of the Long Method smell.

The TACO [20] textual-based smell detector is capable of detecting this smell. It finds
a Long Method whenever it detects sets of statements in a method that are semantically
distant from each other.

Message Chain A basic technique to detect this smell is to find instances of consecu-
tive (chained) method invocations in the code. By definition, a method invocation in a

11

2. BACKGROUND AND RELATED WORK

‘chain’ of length one cannot be affected by Message Chain. Finding consecutive invoca-
tions is possible by traversing the Abstract Syntax Tree (AST), a tree representation of typed
code. However, returning all chains with length > 2 is very lenient, returning the maximum
amount of false positives. Stench Blossom [[18] is a tool that returns the ‘strength’ value of
the Message Chain smell based on the chain length.

DECOR uses the number of transitive invocations (NOTT), which is the number of con-
secutive method invocations through different classes. The rationale behind this metric was
to ignore instances of consecutive invocations on the same class. An example of this is the
chain aString.trim() .length (), where the quality issue implied by the code smell is
non-applicable. The NOTI threshold used in DECOR is 4.

Spaghetti Code The DECOR rule card for Spaghetti Code is based on the summary of
the smell made by the authors. This summary was given in Section[2.2.5] For reference, the
rule card used by DECOR is shown in Figure 2.3] The rule on line 2 is the intersection of
the six rules lines 3-8.

1 RULE_CARD:SpaghettiCode {
2 RULE : SpaghettiCode

{ INTER LongMethod NoParamete Nolnheritance

NoPolymorphism ProceduralName UseGlobalVariable } ;
3 RULE:L()ngMel‘h()d { METRIC LOCMETHOD VERY_HIGH 10.0};
4 RULE : NoParameter { METRIC NMNOPARAM VERY_HIGH 5.0 };
5 RULE : Nolnheritance {METRIC DIT 1 0.0 };
6 RULE : NoPolymorphism { STRUCT NO_POLYMORPHISM };
7 RULE : ProceduralName { LEXIC CLASS_NAME

(Make, Create, Exec...) };

8 RULE : UseGlobalVariable { STRUCT USE_GLOBAL_VARIABLE };
9 bi

Figure 2.3: DECOR rule card for Spaghetti Code.

2.5.2 Empirical Studies

Fontana, Braione and Zononi (2012)[[L1]] explored the spectrum of smell detection tools at
the time for Java. This produced seven detection tools: Checkstyle, DECOR, inFusion,
iPlasma, JDeodorant, PMD and Stench Blossom. Each of these tools support the detection
of at least one of the five code smells investigated in this thesis. Three tools were dropped
in the experimental phase. iPlasma was dropped being the predecessor of inFusion, while
DECOR and Stench Blossom did not produce results that were easily exported.

The results of their experiments suggested that the four remaining tools (Checkstyle,
JDeodorant, inFusion and PMD) did not meaningfully agree in their results. While the
tools were individually useful, the authors suggested that developers use more than one tool
for any given code smell.

12

Chapter 3

Constructing a Smell Oracle

For the two studies performed in this thesis, we needed the ability to measure the detection
performance for a given technique or tool. As described in Section [2.3] performance can
be expressed in terms of precision and recall. These metrics were calculated over a given
dataset of source code, by comparing the set of candidate code smell detections from a
technique/tool with the set of actual smell instances. Given a fixed dataset of Android
source code, these metrics allowed direct comparisons between different techniques and
tools.

However, the set of actual smell instances in Android code was not trivial to obtain.
In general, such data does not inherently exist for any source code project. In addition,
there would be no need to research code smell detection if an automated program existed
that could perfectly produce actual smell instances. Regardless, actual smell instances still
needed to be obtained in some way. The ‘truth provider’ of this information will be referred
to as the smell oracle. This is named after the concept of the oracle machine: an abstract
machine capable of perfectly solving complex, even non-computable problems.

The solution for obtaining a smell oracle was to manually create one. Given the defini-
tions of the five investigated code smells in Section[2.2] a selection of Android app projects
was manually inspected for code smells. These manually detected smells were then used to
form the smell oracle, with its ‘coverage’ limited to exactly the source code of the selected
Android apps. Although this procedure was valid in theory, there were some considera-
tions. Firstly, the manual inspection of large quantities of code was expected to be very
time-consuming. Secondly, the validity of this procedure and the resulting smell oracle was
strongly dependent on correct judgement during manual code detection. After considera-
tion, it was determined that there was no other viable way to obtain an oracle. As an aside,
the practice of using human judges has been used before in research to validate the output
of novel detection techniques.

This chapter covers the construction of the smell oracle. Section[3.T|describes the proce-
dure for selecting and gathering the Android apps that were included in the dataset. Section
[3.2] describes a preprocessing stage that was applied to the dataset in order to reduce the
amount of manual work required. Section[3.3]|describes the manual smell detection process,
while Section [3.4]discusses the completed oracle.

13

3. CONSTRUCTING A SMELL ORACLE

3.1 App Selection

It was infeasible to gather and manually inspect source code for the complete universe of
Android apps. Therefore, a selection of apps was made. In consultation, it was decided that
at least five Android apps should be included in the source code dataset and smell oracle.
Several selection criteria were used to find apps that were considered suitable.

The Android apps needed to be (1) open-source. This ensured that the corresponding
source code of the apps would be freely available. The apps also needed to be (2) rela-
tively small in source code quantity. This criterion was judged using the total number of
classes en methods of the app. As mentioned earlier, manual inspection of source code
was expected to be very time-consuming. Limited time resources dictated the selection of
either more smaller apps or fewer larger apps. Selecting (even) fewer apps risked obtaining
a distribution of code smells that was biased towards the coding style and experience of
fewer developer teams. Although the validity of the smell oracle would not be affected, the
intent was for the dataset of Android code and derived performance metrics to generalize as
much as possible. This made the selection of smaller apps more desirable. Finally, the apps
should be (3) popular in use. This made the dataset of Android code more significant and
useful. This criterion was judged using the number of app user ratings in the Play Store,
Google’s dedicated application store.

The Play Store itself was potentially a large source of Android apps to select from.
However, it would not have been trivial to randomly select apps conforming to criteria (1)
and (2), as the necessary information is not listed in the store. Palomba et al. [21, Table I]
proposed an automated approach to link the content (bug reports, feature requests) in user
app reviews back to the involved software components. Although this research was not
directly related to the thesis, the set of 10 Android apps involved proved to be useful. These
apps all passed criteria (1) and (3), with criterion (3) being satisfied given the presence of
least 10.000 user ratings on the Play Store.

Table 3.1: Android apps included in the smell oracle.

App Description Classes Methods User ratings
Cool Reader E-book reader 114 1721 236.161
Focal Camera app 81 839 12.413
SMS Backup Plus Backup utility 80 557 57.864
Solitaire Game 30 357 116.058
WordPress Blogging app 469 5656 98.383
Amaze File Manager File manager 140 1247 9.196

From these 10 apps five were selected conform criterion (2), listed in Table [3.1] These
apps contained a small amount of classes and methods relative to the original 10. It should
be noted that no previous empirical research was found exploring distributions of size met-
rics in Android projects. Although Java projects are a superset of Android projects and rep-

14

3.2. Preprocessing

resent a broader research domain, any thresholds classifying small/medium/large projects
would not necessarily translate to Android.

An important consideration with respect to app selection was the estimated size of the
resulting smell oracle. With an oracle containing relatively few smell instances, the accuracy
and significance of derived detection performance metrics would be negatively affected.
This notion held for each of the five code smells under investigation. Given our initial app
selection, we projected that Spaghetti Code would only have few smell instances. For this
reason Amaze File Manager was retroactively added as a sixth app in order to broaden the
scope and collect more ‘data’. This app was found by browsing F-Droid [9]], a repository
of open-source Android apps, until an app with size metrics similar to the original five was
found.

3.2 Preprocessing

The source code of the apps selected in Section 3.1 was downloaded via the F-Droid reposi-
tory [9]]. Even though the apps were intentionally chosen to hold back the quantity of source
code, it became clear that the number of classes and methods in Table [3;1'] was still too large
to manually inspect. Therefore, a preprocessing stage was used to reduce the quantity of
code that would have to be inspected. A diagram of the extended process used to create the
smell oracle is shown in Figure

Source Code

) "Too time-consuming"
e Java File d

e JavaFile > Smell Oracle
[]
[Prel:;’Jrogessor] Represents
arsing
e Class M |
e Class Smell %nl:a " Feature Envy
s Class [Preprocessor] s Classes mell Letection Large Class
. .. Filtering ¢ Methods Long Method
e Method e Invocation chains Spaghetti Code
s Method Message Chains
s Method = ’
asse
* -)) Code Smells
e Invocation chain
e Invocation chain
e Invocation chain
L]
e Classes
Language Constructs e Methods — Discarded

e Invocation chains

Failed

Figure 3.1: Extended process used to create the smell oracle.

15

3. CONSTRUCTING A SMELL ORACLE

The first preprocessing stage was to parse all relevant language constructs from the
source code. The five code smells under investigation affected either classes, methods or
method invocation expressions. Instead of manually traversing a folder hierarchy of Java
files, it would be easier to extract just these constructs. This produced a dataset of Java
language constructs. Note that with respect to the original source code these constructs may
overlap. For example, the code from a parsed method will also be present in its parsed
parent class. Through parsing, it was possible to shift from having to inspect many source
code files to the simpler task of iterating through a list of language constructs. An overview
of the parsing results is shown in Table [3.2]

Table 3.2: Number of language constructs parsed in preprocessing.

Constructs: Classes Methods Invocations

Amaze File Manager 187 1247 10.327
Cool Reader 214 1721 8577
Focal 125 839 3856
SMS Backup Plus 97 557 2394
Solitaire 30 357 1411
WordPress 728 5656 29.940
Total 1381 10.377 56.505

The quantities involved in Table [3.2] were still far too large to manually inspect. The
second preprocessing stage filtered out trivial instances from the set of parsed language
constructs. Trivial instances are defined as being very unlikely to be affected by a code
smell, based on one or more code metrics. By removing these instances without the use
of a human expert, the number of instances to manually inspect was significantly reduced.
Filtering was used carefully and was intended not to affect the validity of the smell oracle.
In theory, filtered out constructs would have been removed in the same way if inspected
manually. However, this was dependant on the filtering stage not accidentally removing
smelly instances.

Both parsing and filtering were implemented in a preprocessor tool. This tool was
written in Java and is publicly available on GitHu For parsing, the Eclipse IDE provided
the Eclipse Java Development Tools (JDT), a framework which helps with parsing Java
code. For filtering, filtering rules were applied to parsed language constructs, for each
of the five code smells. The rules used are listed in Table [3.3] They were based on the
definitions of the corresponding code smells, as covered in Section Explanations for
the choice of filtering rules are supplied later in this section. An overview of the output of
the preprocessor is shown in Table It breaks down the number of language constructs
left for manual inspection, for each code smell and each Android app.

The output of the preprocessor produced quantities that were almost viable for man-
ual inspection. The specific combinations of WordPress-MessageChain and WordPress-
FeatureEnvy left relatively many instances compared to other combinations. Completely

Ihttps://github.com/DustinLim/mscthesis-preprocessor

16

https://github.com/DustinLim/mscthesis-preprocessor

3.2. Preprocessing

Table 3.3: Filtering rules used in preprocessing.

Code smell Affects Passes through filter iff:

Feature Envy Methods Another class exists for which this method has larger
envy (Equation than towards its own class.

Large Class Classes Body contains > 438 lines of code (LOC).

Long Method Methods Body contains > 80 LOC.

Spaghetti Code Classes Body contains > 2 methods that have > 80 LOC.

Message Chains Invocation chains Chain has length > 2 and traverses > 2 different

declaring classes.

Table 3.4: Overview of preprocessor results.

Feature Envy Large Class Long Method Message Chain Spaghetti Code
Parsed constructs
From all apps 10.377 1381 10.377 44.511 1381
Construct type Method Class Method Invocation chain Class
Filtered constructs
Amaze File Manager 146 15 26 208 5
Cool Reader 329 15 18 163 7
Focal 90 7 4 124 0
SMS Backup Plus 73 1 1 56 0
Solitaire 94 2 2 26 0
WordPress (901)* 34 36 (650)* 6
Total Remaining 732 74 87 577 18

* = Combination dropped from smell oracle.

discarding WordPress from the dataset would have significantly reduced the number of
instances left for Large Class, Long Method and Spaghetti Code. As a compromise, Word-
Press was discarded for just the Feature Envy and Message Chain smell. With respect to the
validity of the oracle, this posed no issue as long as the same combinations were ignored

for determining precision and recall.

The remainder of this section (3.2.1H3.2.5) justifies and describes the implementation of

each of the filtering rules listed in Table 3.3

17

3. CONSTRUCTING A SMELL ORACLE

3.2.1 Filtering Rule: Feature Envy

Rule reasoning Recall that Feature Envy occurs whenever a method accesses the data of
another class more than its own parent object. This abstract description was turned into a
filtering rule using a metric for envy.

A basic envy metric was chosen. In Java, a method can access entities outside of its
declaration in two ways. Firstly, field access expressions directly access data attributes of
an object. Secondly, method invocation expressions invoke the functionality of an object.
These invocations can be either on accessor methods (getters and setters) or other methods.
Accessors expose access to data similar to direct field access. In the case of non-accessor
methods, note that methods generally perform their functionality using class data. There-
fore, method invocations were considered as an indirect form of data access. Combining
the above, the following metric was created for the envy between a method m and class c:

Expr, (m,c) = Set of expressions in method m of type ¢, which bind to class c.

EnVY(m7 C) = |EXPrFieldAccess (m7 C) | + ’ExprMethodInvocation (m7 C) | (3 1)

The filtering rule in Table [3.3] was based on this metric. It was chosen as the least
discriminating rule conforming to the definition of Feature Envy. If no classes exist for
which a method has larger envy than towards its parent class, it is not affected by the smell.

Implementation The Eclipse JDT framework was used to parse the Abstract Syntax Trees
(AST’s) from Java files. An AST is a tree graph where the nodes represent language con-
structs and edges model their hierarchy. A basic snippet of Java code and its corresponding
AST is shown in Figure[3.2] For entire Java files, parsed AST’s are more complex, contain-
ing many depth levels for classes, methods, statements, expressions, etc. In addition, the
Eclipse JDT framework also offered resolving of bindings. A binding is a relation between
two AST nodes, potentially in different trees. An example is the binding of an identifier
node (containing a string name) to its corresponding declaration node in another location.

The filtering rule was implemented by collecting MethodDeclaration nodes from all
parsed AST’s. For each method declaration, descendant nodes of type FieldAccess and
MethodInvocation were collected. Both node types contained bindings to their respective
FieldDeclaration and MethodDeclaration node. After following these bindings, the
final step was to visit their ancestor ClassDeclaration node. This provided a collection of
all points of data access within a method, grouped by class. This was sufficient information
to apply Equation 3.1

Caveats In practice, it was not possible for all field access and method invocation con-
structs to contribute to Equation [3.1] This is due to the possibility of unresolved AST
bindings. Given a source code folder targeted by the preprocessor, the Eclipse JDT frame-
work would be unable to resolve bindings towards destinations not located there. This issue
occurred with bindings that would have resolved to classes in external libraries.

18

3.2. Preprocessing

Add

RN

Mul

/N

Const Const Const
parser ’ |

37 + 21

3 7 21

Figure 3.2: Java code snippet and its corresponding AST.

Note that the Feature Envy refactoring procedure of moving a method towards an envied
class is not applicable for library classes not “owned” by the Android app developer. De-
velopers not owning their external libraries is generally the case in software development.
As a result, it was deemed appropriate to ignore any unresolved bindings with respect to

Equation [3.1]

3.2.2 Filtering Rule: Large Class

Rule reasoning Recall that the Large Class occurs when a class is too bloated in size. A
traditional size metric which is often used is the number of Lines Of Code (LOC). It was
reasoned that classes with ‘normal’ LOC would be safe to filter out. Indeed, such classes
would appear to contradict the definition of the Large Class. A boxplot of the distribution
of class LOC on the selected Android apps is shown in Figure [3.3] The upper outer fence
(defined as Q3 + 3« IQR) is not drawn in the boxplot but lies at 438. By definition, classes
with higher LOC were extreme outliers. By setting the class LOC threshold equal to the
upper outer fence, only extreme outliers passed the filter.

Implementation The implementation of the LOC metric was unexpectedly non-trivial. If
the number of plain text lines were to be used directly, this would also count white- and
comment lines. Both are meant to improve code presentation and readability; it would be
inappropriate to count them towards the size of the class body. A second complication
concerned code formatting. Differences in coding style and experience between developers
may produce the same code using a different number of lines. An example of coding style
is whether curly braces appear on a separate line. The LOC metric should be invariant to
these issues.

The Eclipse JDT offered a solution. From a parsed AST, it was possible to reverse the
operation and obtain Java code again. As differing coding styles would parse to the same
AST, this reverse operation would produce ‘prettyprinted’ code with consistent formatting.
It would also exclude code comments due to the way they were parsed into the AST, not

19

3. CONSTRUCTING A SMELL ORACLE

1800
+ +
180
1600 | + +
160 +
1400 +
140t

-
o
o
o

+ ++ HH H +

Class LOC

=

0 [- L
1

All apps All apps

1200 |]
o 120t
L] O
-
S 100}
Q
800 . <
o 80r
| | =
600 6ol
400 -] 40+
200 -]
1

Figure 3.3: Boxplot of class LOC in se- Figure 3.4: Boxplot of method LOC in
lected Android apps. One extreme outlier selected Android apps. Two extreme out-
is not shown. liers are not shown.

being actual code. For the LOC metric, text lines were counted from the prettyprinted code
instead of the original code.

3.2.3 Filtering Rule: Long Method

Rule reasoning Recall that the Long Method smell occurs whenever a method is too
bloated in size. Similar to the Large Class filtering rule, methods with normal LOC were
filtered out. A boxplot of method LOC on the selected Android apps is shown in Figure[3.3]
A threshold value of 80 lines of code was used for the filtering rule, located around the 99th
percentile.

Existing smell detection tools as described in Section [2.5] have used threshold values
of 100 and 150. Considering that the filtering rule was not meant to classify the smell but
merely remove unlikely instances, the filtering threshold was chosen lower than existing
detection thresholds.

Implementation Implementation was similar to the implementation for the Large Class
filtering rule. From a parsed MethodDeclaration AST node, prettyprinted Java code was
obtained with consistent formatting and without comments. The LOC metric was calculated
by counting lines from this textual representation.

20

3.2. Preprocessing

3.2.4 Filtering Rule: Message Chain

Rule reasoning The Message Chain smell occurs whenever a chain of method invocations
traverses through multiple classes. The filtering rule chosen was a direct translation from
this definition. Each method invocation had a corresponding class declaring the method. By
definition, chains that are only length one or that do not traverse multiple declaring classes
could not be affected by Message Chain.

Implementation The AST structure of an invocation chain is shown in Listing Itis
a path of successive MethodInvocation nodes. The first step for the implementation was
to collect all method invocation nodes from the AST’s. Next, this set was transformed
into the set of invocation chains in the source code. This was done by discarding all
MethodInvocation nodes that had another method invocation node as its parent. This
left only those nodes that were the root of their respective chain.

Chain length was determined using the number of successive MethodInvocation nodes
from each root. Next, the number of declaring classes traversed was determined by follow-
ing the binding from each MethodInvocation to a MethodDeclaration node and inspect-
ing its ancestor class. For reference, Table[3.5|shows the frequency table of traversed classes
over all invocation chains that were parsed.

Listing 3.1: AST structure of an invocation chain

// MethodInvocation node structure
MethodInvocation (

<expression node>,

<method name>

// Example invocation chain of length two
variable.methodA () .methodB();

// Corresponding AST, one chain contains multiple MethodInvocation nodes

MethodInvocation (
MethodInvocation (
"variable",
"methodA"

)
"methodB"

3.2.5 Filtering Rule: Spaghetti Code

Rule reasoning Recall that Spaghetti Code occurs when classes have “no structure, declar-
ing long methods with no parameters, and utilising global variables. Names of classes and
methods may suggest procedural programming [...].” A reasonable filtering rule was a

21

3. CONSTRUCTING A SMELL ORACLE

Table 3.5: Frequency table of traversed classes in invocation chains.

Traversed classes Count Percent

1 43284 97.24%
2 1202 2.70%
3 24 0.05%
4 1 0.00%

more relaxed version of this description: a class containing at least two or more long meth-
ods. Methods were considered long using the same filtering rule used for the Long Method

(method LOC > 80).

Implementation For each ClassDeclaration node, descendant MethodDeclaration
nodes were collected. The Long Method filtering rule was then applied to each method
node. A class would pass the Spaghetti Code filter whenever two or more long methods

remained.

22

3.3. Manual Smell Detection

3.3 Manual Smell Detection

The preprocessor produced a parsed and filtered dataset of Java constructs from Android
source code. Each construct represented either a class, method, or method invocation chain
and was associated with one of the five investigated code smells. The final step for con-
structing the smell oracle was to manually inspect the filtered constructs. Each construct
was either accepted or rejected as being affected by the associated code smell.

Workflow In total, 1475 code constructs were manually inspected. The preprocessor was
written to produce its output files in the comma-separated values (CSV) format, a represen-
tation of tabular data. A simplified example of this output is shown in Table Each row
represented a code construct, with the columns listing construct properties. One property
was a generated command line statement, which would open a text editor at the location
of the code construct. Another property was a generated unique identifier (UID) for each
code construct. The CSV format was easily converted into a spreadsheet, used to manually
extend the dataset. In particular, a true-false judgement for the smelliness of each construct
was added in the first column. More detailed analysis was written in the second column.

Table 3.6: Preprocessor output table used with manual smell detection.

Smelly? | Analysis || Android App | UID | Xed command *
output output output

* = xed is the Xcode text editor invocation tool [28]].

Methodology The validity of the smell oracle was dependent on accurate manual smell
detection. The source code for each code construct was inspected and judged for the pres-
ence of a code smell according to the following criteria:

e The code construct matches the abstract and concrete description of the code smell.

e The application of the corresponding refactoring is appropriate.

The remainder of this section describes the manual detection process for each of the
investigated code smells.

3.3.1 Feature Envy - Smell Detection

The preprocessor was extended to add the following properties for each of the methods:

e Internal envy: A list of field and invoked method names that resolved to the parent
class of the method. The size of this list equals the envy value (Equation of the
method towards its parent class.

23

3. CONSTRUCTING A SMELL ORACLE

e Envied classes: A dictionary containing fully qualified class names as keys and lists
of field and invoked method names as objects. Each list contains the names that
resolved to the class name in the key. As these are envied classes, each list contains
more elements than the internal envy list.

e Ignored: A list of field and invocation names that remained unresolved using Eclipse
JDT. Refer to Section - Caveats for the discussion behind this list.

At least one envied class was listed for each method. The presence of Feature Envy
was judged by tracking the names in Envied classes back to the method body. If the entire
method should be moved to the envied class, this was accepted as Feature Envy. If the names
were concentrated in part of the method, an alternative consideration was whether that part
of the method should be moved. This was also considered an accepted instance. Each
accepted and rejected method was provided with a short analysis. A complete overview of
this analysis can be found in Appendix Table highlights a few notable recurring
patterns.

Table 3.7: Notable Feature Envy analyses.

Analysis Instances

[Rejected] Method delegates its invocation to another class. 94
Method delegation occurs whenever a method contains no actual logic, for-
warding the invocation instead:

public boolean isDonationSupported() {
return mDonationService.isBillingSupported();
// invocation delegated to DonationService class

In this example there is zero envy towards the parent class, with one ref-
erence to the DonationService class. Moving the method is however not
justified, given that method delegation is a valid software pattern. Its pur-
pose is to hide the delegate class from clients using the parent class of the
method, reducing class coupling. As an aside, the method delegation pat-
tern is also the refactoring strategy for the Message Chain smell.

[Accepted] Refactoring (part of) method appears appropriate. 82
These methods, or part of them, should be moved to an envied class.

[Rejected] Envy is spread over multiple classes. 76
In this case there was no clear refactoring towards a particular envied class.

The classes most envied shared a similar number of references towards it.

If this was not the case, the method could have been moved to the strongest

envied class.

24

3.3. Manual Smell Detection

[Rejected] Method uses an utility class. 59
External references are due to usage of the services of an utility class. Ex-

amples of utility classes are those facilitating threading, on-disk file man-
agement and math operations. Refactoring was not justified because the
methods represent custom usage of a general-purpose class.

[Rejected] Envy is towards superclass of the class declaring the 58
method.

These methods fall outside of the scope of the Feature Envy smell. In
object-oriented programming, fields and methods are inherited from any
superclasses.

[Rejected] Method manages collection of envied class. 56
These methods work with multiple instances (arrays, lists, dictionaries) of

the envied class. It is not possible to move such methods to the envied class,

given that it models a single instance.

3.3.2 Large Class - Smell Detection

The preprocessor was extended to add the following properties for each of the classes:
lines of code (LOC), number of attributes (NOA) and number of methods (NOM). The
LOC metric was used previously for the filtering rule, NOA and NOM were included as
additional size metrics.

It became apparent that the inspection of class bodies from top-to-bottom was a difficult
cognitive task. Especially with unfamiliar code, reading the class body was too granular
of a strategy to detect a Large Class. Instead, a higher level class overview was used for
manual smell detection. A polymetric view was generated for each class using the inFusion
tool. Polymetric views are metrics-enriched visualizations of software entities and their
relationships [15 p. 7]. The inFusion tool itself was commercial software that is no longer
publicly available. In this case, an old copy of the software was retained from previous
work.

Figure [3.5|outlines the polymetric view. Class methods and attributes are separated and
grouped based on their Java access level. Method squares grow based on the number of
lines in the body. Attribute squares grow based on frequency of use within the class. As an
interactive tool, clicking a square displayed the corresponding code in an editor.

Using these polymetric views, a class was accepted if a subset of attributes and methods
represented one of multiple class responsibilities. In that case, the subset should be extracted
into a separate class. The complete analysis is shown in Appendix [A.2] Table 3.8 highlights
a few notable recurring patterns.

Anonymous classes Anonymous classes are nameless class instantiations either at an at-
tribute declaration, or inline inside a method. An example is shown in Listing[3.3] The An-
droid SDK incentivises frequent use of anonymous classes for implementing interfaces such
as View.OnClickListener and Handler.Callback. Anonymous classes were counted

25

3. CONSTRUCTING A SMELL ORACLE

public protected and package (Java) private
visibility visibility visibility

methods

-

-
I
laasd

[

- -~
abstract method

attributes /
accessors

Figure 3.5: Polymetric class view from inFusion. Image taken from help files.

towards the size of their outer class. This is due to their purpose of executing a block of
code at an later time.

Table 3.8: Notable Large Class analyses.

Analysis Instances

[Rejected] Class size inflated due to inner class(es). 16
In Java, an inner class can be declared inside the declaration of another

(outer) class, as shown in Listing [3.3] It was decided not to count inner

classes towards the size of their outer class. The reasoning behind the

Large Class is that a class should not manage too much data or functionality.
However, an inner class is in itself an encapsulation of data and function-

ality. Although inner classes could be extracted from their outer class, this

would accomplish little in terms of code quality. These classes were no

longer bloated when their their inner classes were ignored.

[Accepted] Multiple class responsibilities visible. 16
These classes contained signs of containing multiple responsibilities. This

was based on either the naming of attributes and methods, or the presence

of comment blocks dividing the class body into sections.

[Rejected] No obvious refactoring. 12
Even though these classes appeared large, it was unclear which at-

tributes or methods should be refactored. A concrete example is the
GeneralDialogCreation class from Amaze File Manager. This class con-

tained static-only methods that displayed all possible dialogs.

[Accepted] Too many attributes. 10
Classes with a clear excessive amount of attributes.

[Accepted] UI class managing too much UL 10
An Android-specific analysis. These are either Android activities or frag-
ments that should delegate part of the Ul to a separate class.

26

3.3. Manual Smell Detection

Total accepted instances: 43
Total rejected instances: 31

Listing 3.3: Example of an inner class and anonymous class.

class OuterClass {
class InnerClass { [Attributes], [Methods] }

public void anOuterClassMethod () {
Button button = (Button) findViewById(R.id.myButton);

// Declare anonymous OnClickListener to respond to button tap
button.setOnClickListener (new View.OnClickListener () {
@override
public void onClick (View V) {
// Block of code

3.3.3 Long Method - Smell Detection

The preprocessor was extended to add the LOC metric for each method. The complete
analysis is found in Appendix Table[3.9 highlights a few notable recurring patterns.

Table 3.9: Notable Long Method analyses.

Analysis Instances

[Accepted] Visible method section(s) to extract. 18
Generally these methods have comments visibly highlighting sections of

code to extract. An alternative observation was that many Android methods
overridden by developers made the Long Method more apparent. Methods

such as Activity.onCreate (Bundle) are points for developers to per-

form their initialization. It is easily visible whenever large sections of code
initialize separate things, making refactoring straightforward.

27

3. CONSTRUCTING A SMELL ORACLE

[Accepted] Contains large inline anonymous class(es). 17
Android uses an event system, by which developers can react to various

events. These include touch events from the user and general system events.
Frequently developers declare one or more anonymous classes within a sin-

gle method to respond to multiple events. Although anonymous classes are

not inherently bad, they can cause a bloated parent method. A method

should perform a single task, while the anonymous classes handle various

events. They can be refactored into inner classes, or can be declared as an
attribute outside of the method.

[Rejected] Contains if-else or switch conditional with many small cases. 15
Breaking down a conditional with many small cases did not generally re-

duce code complexity.

[Accepted] Contains if-else conditional with large cases. 14
These methods were easily identified for refactoring. As the construct rep-

resents a decision point, the if/elseif/else cases are easily refactored into
separate methods.

Total accepted instances: 58
Total rejected instances: 29

3.3.4 Message Chain - Smell Detection

The preprocessor was extended to print the following supporting information for each invo-
cation chain: (1) the method names in the chain, for example

.getColorPreference().randomize().saveToPreferences()
and (2) the resolved parent classes for each method in the chain:

[com.amaze.filemanager.activities.BasicActivity,
com.amaze.filemanager.utils.color.ColorPreference,
com.amaze.filemanager.utils.color.ColorPreference]

The complete analysis is in Appendix [A.4] Table[3.10]highlights a few notable recurring
patterns.

Table 3.10: Summary of manual Message Chains detection.

Analysis Instances

[Rejected] Some invoked types are part of the Java/Android platform. 230
Classes from the Java or Android platform can not be modified to shorten

a message chain. Ignoring these invocations, the chain no longer traverses

more than one class.

28

3.3. Manual Smell Detection

[Accepted] Hide Delegate applicable. 84
The suggested refactoring for the smell can be applied.

[Rejected] Part of chain invokes local methods inherited from super- 57
class. In object-oriented programming, inherited superclass methods are
treated as being local.

[Rejected] Static method pattern is present. 50
Services.getScanner().getDownloadDirectory()}.

Although this example chain passed through a services and scanner class,
the first invocation was on a static method. This is a legitimate software
pattern, exposing methods for global use.

Total accepted instances: 101
Total rejected instances: 465

3.3.5 Spaghetti Code - Smell Detection

Notably, all preprocessed classes were manually rejected for this smell. It was not easy to
troubleshoot this result. The filtering rule used (class contains > 2 methods that have > 80
LOC) was already a very relaxed version of the Spaghetti Code definition. Still, a possibility
remains that smelly instances were erroneously filtered out.

A more likely cause is that our interpretation and judgement of Spaghetti Code was
too strict for any of the classes to pass. To reiterate the description by Moha et al. [17]:
“Spaghetti Code is revealed by classes with no structure, declaring long methods with no
parameters, and utilising global variables. Names of classes and methods may suggest
procedural programming. Spaghetti Code does not exploit and prevents the use of object-
orientation mechanisms [...].” The same paper highlighted two concrete examples [17,
p. 12] of Spaghetti Code in XERCES v2.7.0, a framework for building XML parsers in
Java. Interestingly, the methods in these two examples do accept parameters, in contrast to
the description of the smell. It appears that, at least in that research, classes were accepted
as smelly if ‘enough’ of the definition was applicable as judged by a majority vote between
their four experts. It was not clear for this research where to draw this line.

A final consideration is that there were simply no affected classes in the given dataset
of Android code. It should be noted that the Android operation system is relatively young,
initially being released in 2008. With Object-oriented programming being a mainstream
programming paradigm by that time, it is possible that developers are less likely to write
procedural code resulting in the Spaghetti Code smell compared to other software platforms.

For reference, Table supplies a summary of the detection results.

29

3. CONSTRUCTING A SMELL ORACLE

Table 3.11: Summary of manual Spaghetti Code detection.

Analysis Instances
[Rejected] The long methods have parameters. 6
[Rejected] Method override(s) of Android callbacks. 5
[Rejected] Utility class with static methods and little attributes. 3
[Rejected] Long method which updates UI. 3
[Rejected] Constructor long method. 1
Total accepted instances: 0
Total rejected instances: 18

3.4 Results

Table [3.12] gives an overview of the constructed smell oracle. The quantities of code con-
structs between each of the stages as described in Figure [3.1|is also included.

Table 3.12: Summary of constructed smell oracle.

Code Smell Affects Parsed Preprocessed Included in Oracle
Feature Envy Methods 10.377 730* 84*

Large Class Classes 1381 74 43

Long Method Methods 10.377 87 58
Message Chains Invocations 56.505 566%* 101*
Spaghetti Code Classes 1381 18 0

* = WordPress app not included.

30

Chapter 4

Study I: Using Existing Smell
Detectors on Android Apps

The smell oracle constructed in Chapter 3| was used to explore the detection performance of
existing code smell detectors on Android apps. In this context, the existing detectors were
specifically for Java and designed without the Android platform in mind. The empirical
study aimed to answer the following research questions:

e RQ1: How well do existing smell detectors perform on Android apps?

e RQ2: Are the smells detected by different detectors the same or are they different?

Section describes the methodology used to answer the research questions. Section
[.2] presents the results obtained and corresponding analysis.

4.1 Methodology

The methodology consisted of a selection of smell detectors to include in the study, a method
of converting of Android Studio projects into Eclipse projects and the generation of unique
identifiers from smell detector results.

4.1.1 Included Detectors

Detectors were taken into consideration from the related work as covered in Section 2.5
Only Java detectors were suitable to run on Android code. Table lists the detectors that
were considered, including their supported code smells. In consultation, it was decided to
include the highlighted detectors in the study. Together they covered all of the code smells
in the smell oracle. Where possible, covering the same code smell with multiple detectors
would enable answering RQ2. Notably, only one detector supported Spaghetti Code and
only two supported Message Chain.

DECOR [[17] is a conceptual framework in which code smells are described using ‘rule
cards’. These cards contain a logical conjunction of code metrics and thresholds. A concrete
implementation of DECOR and its rule cards was created by Palomba et al. [20]], which was

31

4. STUDY I: USING EXISTING SMELL DETECTORS ON ANDROID APPS

Table 4.1: Considered Java smell detectors.

Detector Feature Envy Large Class Long Method Spaghetti Code Message Chain
Checkstyle X X

DECOR X X X X
inFusion X X

iPlasma X X

JDeodorant X X X

PMD X X

Stench Blossom X X X X
TACO X X

JSpIRIT X X

Bolded = Included in study.

made available for this study. This implementation was in the form of an Eclipse project, in
which an Android project path could be set for smell detection. Running the Eclipse project
would then initiate a detection run. After each run, detections were printed to the console.

JDeodorant is a smell detector in the form of an Eclipse plug-in, meant to be used
alongside development. To use it, an Android project needed to be loaded into Eclipse
after which a detection run could be initiated. After each run, detections were presented
in a dedicated view of the Eclipse IDE. JDeodorant v5.0.64 was installed from the Eclipse
Marketplace and used in this study.

TACO [20] is a textual-based smell detector that analyses identifier names to determine
code cohesion and detect related code smells. Similar to TACO, this detector was made
available for this study in the form of an Eclipse project. After each run, detections were
written to an output file.

JSpIRIT [26] is a smell detector in the form of an Eclipse plug-in. The detection strate-
gies in it follow those presented in a book by Lanza and Marinescu [[15]. Similar to JDeodor-
ant in use, an Android project needed to be loaded into Eclipse. Detections were presented
in a dedicated view within Eclipse.

As one of only two detectors supporting the Message Chain smell, Stench Blossom [18]]
was also considered for inclusion. Stench Blossom is an Eclipse plug-in which displays
visual indicators in the presence of code smells within the code editor. However, this de-
sign made it infeasible to collect detection output without manually scrolling through each
source file and writing down all detections.

4.1.2 Conversion of Android Studio Projects

The six Android apps included in the smell oracle were a mix of Android Studio and older
Eclipse projects. This posed a challenge as it was not possible to initiate a detection run of
JDeodorant and JSpIRIT within Android Studio.

32

4.1. Methodology

While Google provides an automated migrator from Eclipse projects to Android Studio
projects, the reverse was unsupported. For this study, reverse migration was done manually
by modifying the Android Studio project folders into the correct structure for Eclipse. In
addition, the gradle-eclipse-aar plugin [14], developed by a third party, proved essential.
Android Studio packages library dependencies as * . aar files that are unreadable in Eclipse.
The gradle-eclipse-aar plugin unpacked such aar resources into resources compatible with
Eclipse.

4.1.3 Generating Unique Identifiers

The performance of detection tools was measured through precision and recall, as defined
in Section[2.3] In this context, true positives are smell detections that are also present in the
smell oracle. False positives are smell detections that are not present in the smell oracle.
Finally, false negatives are instances in the smell oracle that remained undetected.

In order to determine true and false positives, instances in both (1) detector output and
(2) smell oracle were translated into unique identifiers. This enabled the matching of in-
stances between the two. Unique identifiers are strings that can represent a class, method
or invocation chain in the code. They are unique in that different locations in Android app
source code always translate into different identifiers. The two sets of identifiers corre-
sponding to (1) and (2) were then compared. Unique identifiers were generated according
to the following syntax:

FE-<appname>-<classname>.<methodname>@LN<line>

LC-<appname>-<classname>

LM-<appname>-<classname>.<methodname>Q@LN<1ine>

MC-<appname>-<classname>.<methodname>Q@LN<line>:<column>

SC-<appname>-<classname>

Here, {FE, LC, LM, MC, SC} refers to code smell involved, line refers to the line
number in the Java file and column refers to the character number on the line. Some exam-
ples of identifiers that were generated are:

e FE-AmazeFileManager-AboutActivity.switchIcons@LN190
e [C-Cool Reader-FileBrowser

e MC-Focal-SettingsWidget.openWidgetsToggleDialog@LN443:16

33

4. STUDY I: USING EXISTING SMELL DETECTORS ON ANDROID APPS

4.2 Results

The performance results that were obtained are shown in Table 4.2] broken down by code
smell and detection tool. The number of true positives (TP), false positives (FP) and false
negatives (FN) produced precision and recall. The F1 was also taken into consideration,
which is defined as the harmonic mean of precision and recall. It reduces the two values to
a single performance metric.

Table 4.2: Existing detector performance.

Detector TP FP FN Precision Recall FI score
Feature Envy

JDeodorant 10 30 74 0.25 0.12 0.08
JSpIRIT 25 425 59 0.06 0.30 0.05
TACO 8 580 76 0.01 0.10 0.01
Large Class

DECOR 35 20 8 0.64 0.81 0.36
JDeodorant 25 140 18 0.15 0.58 0.12
JSpIRIT 33 105 10 0.24 0.77 0.18
Long Method

DECOR 18 11 40 0.62 0.31 0.21
JDeodorant 0 0 58 NaN 0.00 NaN
TACO 43 275 15 0.14 0.74 0.11
Message Chain

DECOR 9 94 92 0.09 0.09 0.04
Spaghetti Code

DECOR 0 40 O 0.00 NaN NaN

The detection of Feature Envy in the Android apps was relatively poor. The best pre-
cision achieved was only 0.25 from JDeodorant and the best recall was only 0.30 from
JSpiRIT. Detection of Large Class went significantly better. DECOR was the best per-
forming detector, with decent precision (0.64) and good recall (0.81). For Long Method,
DECOR preferred precision above recall, while TACO did the reverse. JDeodorant notably
did not return any detections. For Message Chain, DECOR performed poorly. Finally,
Spaghetti Code could not be benchmarked as the smell oracle included no actual instances
of the smell.

In terms of overlap between the tools, Table .3 shows the fraction of detections in the
union of two detectors that are in their intersection. In this comparison Message Chain and
Spaghetti Code are missing due to the absence of multiple detectors covering these smells.
According to the fractions obtained, the detectors have relatively little overlap. The largest
overlap occurred with only 0.21 (21%) overlap between DECOR and JspIRIT in the case of
the Large Class.

34

4.3. Conclusion

Table 4.3: Overlap between detectors

Detectors Overlap

Feature Envy
JDeodorant U JSpIRIT 0.04
JDeodorant U TACO 0.02

JSpIRIT U TACO 0.05
Large Class

DECOR U JDeodorant 0.13
DECOR U JSpIRIT 0.21
JDeodorant U JSpIRIT 0.18
Long Method

DECOR U TACO 0.06

4.3 Conclusion

RQ1: How well do existing smell detectors perform on Android apps?

The detectors that were included performed relatively poor on each of the smells. The
best result was obtained with DECOR for the Large Class smell (F1 score 0.36), with all
other results being significantly worse.

RQ2: Are the smells detected by different detectors the same or are they different?

Considering the fraction of overlapping smell detections, the different tools detect dif-
ferent smell instances. The largest overlap found between detectors was only 0.21, meaning
that 79% of smell detections were unique to one of both detectors.

35

Chapter 5

Study II: Constructing an
Android-specific Smell Detector

Using a machine learning (ML) approach and selection of code metrics, a novel Android-
specific smell detector was constructed in this study. A precedence exists for this approach,
performed by Fontana et al. [12] for Java code in general. The main goal of this study was
to improve on the performance values as obtained for traditional smell detectors in Chapter
Ml The research question for this study was:

e RQ1 How does a ML-based Android-specific smell detector perform compare to ex-
isting Java detectors?

Section describes the methodology used to answer the research questions. Section
[5.2] presents the results obtained and the corresponding analysis.

5.1 Methodology

The methodology consisted of design choices made in the various stages of the machine
learning process.

5.1.1 Machine learning model

Within the field of machine learning, the problem of code smell detection in combination
with an oracle fell into the category of supervised learning: problems where a dataset of
correctly classified objects is available. Indeed, the language constructs added to the smell
oracle (Chapter[3) were identified as part of the smelly class, while the language constructs
that were not added are implicitly part of the non-smelly class. The union between the
oracle and its complement set, also known as the universe, is equal to the set of all parsed
language constructs that were parsed from the Android source code.

Learning from this dataset of labeled objects, supervised learning attempts to classify
unlabelled new objects. Within the field of supervised learning, this was an example of a
two-class classification problem, with smelly and non-smelly as the possible classes.

37

5. STUDY II: CONSTRUCTING AN ANDROID-SPECIFIC SMELL DETECTOR

The Android-specific smell detector was a combination of four distinct two-class clas-
sification problems: for the Feature Envy, Large Class, Long Method and Message Chain
smell. The Spaghetti Code smell could not be included due to a lack of smelly instances
in the smell oracle. With all parsed language constructs labelled as non-smelly, an ML-
approach would have no data to learn about the smelly class. The traditional supervised
learning model as applied to smell detection is shown in Figure[5.1]

Labelled Objeh /7
+ Test data
Features \

-_—

Machine Learning
algorithm

Training data Trained Classifier

Performance evaluation

Figure 5.1: Supervised learning model.

This model was applied four times for the different code smells. The smell oracle and set
of all parsed language constructs were used to derive a labelled dataset. For the features of
the objects, a combination of classification outputs from the existing detectors investigated
in Study I and code metrics chosen using the analysis from the manual smell detection
process in Section [3.3] was used.

The set of labelled objects was split into a training and test set to prevent overfit-
ting. Overfitting would result in overly optimistic performance results, occurring whenever
training- and test data overlap. Many ML-algorithms exist, based on different probabilis-
tic models. A limited selection of popular algorithms was chosen and compared in terms
of detection performance. No single best algorithm exists for all problems, therefore the
construction of the Android-specific detector was an exercise of exploration.

5.1.2 Design Choices

Weka [27] was used to design the classifier. Weka is a suite of machine learning soft-
ware which provides data visualization tools and implementations of machine learning al-
gorithms. Multiple design choices were made within Weka to obtain the optimal classifiers.

38

5.1. Methodology

Class balancing The two classes in the labelled dataset were strongly imbalanced. Due
to the nature of code smells, the ratio between smelly and non-smelly objects was heav-
ily skewed towards the non-smelly class. This posed a problem, as ML-algorithms would
simply ‘learn’ to classify every unknown new object as non-smelly and achieve great perfor-
mance. The trained classifier would however learn nothing about distinguishing between the
two classes, through the supplied features. Within Weka, a class balancer filter was applied
to compensate this. This filter attached weights to the objects in the dataset to effectively
give the smelly/non-smelly classes a 50-50 distribution.

Feature normalization Some ML-algorithms do not work properly without feature nor-
malization. For example, when using the Euclidean distance between objects in feature
space, features with a larger spread in values will more strongly contribute to this distance.
Within Weka, a normalization filter was applied. It scaled all numeric features to the [0,1]
range.

Chosen Features The features used were the classification outputs of existing detectors
combined with manually determined code metrics based on the analyses made in Section
[3.3] Broken down by code smell, the chosen code metrics were:

Feature Envy (method objects)

e internalEnvy: Numeric, the value of envy (Eq. [3.1) between the method and its
parent class.

e externalEnvy: Numeric, the largest envy value between the method and an external
class.

e numberOfEnviedClasses: Numeric, the number of external classes with higher
envy compared to internal envy.

e parentClassInheritsFromAndroidClass: Nominal, a boolean string stating whether
the type hierarchy of the parent class contains a qualified name of the pattern android. *.

e jdeodorant, jspirit, taco: Nominal, boolean strings stating whether or not
each respective smell detector classified this method as smelly.

Large Class (class objects)

e loc, noa, nom: Numeric, the lines of code, number of attributes and number of
methods metric values.

e locSumOfInnerClasses: Numeric, the lines of code of the class subtracted by the
sum of lines of code of any inner classes.

e numberOfAnnotatedOverride: Numeric, the number of methods in the class ex-
plicitly marked using @Override.

e parentClassInheritsFromAndroidClass: The same feature as was added for the
previous smell.

39

5. STUDY II: CONSTRUCTING AN ANDROID-SPECIFIC SMELL DETECTOR

e decor, jdeodorant, Jjspirit: Nominal, boolean strings stating whether or not
each respective smell detector classified this class as smelly.

Long Method (method objects)

e locOfLargestCodeBlock: Numeric, the lines of code of the largest code block in
the method. In Java, each block is a section of code surrounded by accolades. This
includes if-statements and for-loops.

e parentClassInheritsFromAndroidClass: The same feature as was added for the
previous smell.

e decor, jdeodorant, taco: Nominal, boolean strings stating whether or not each
respective smell detector classified this class as smelly.

Message Chain (invocation chain objects)

e numberOfTraversedClasses: Numeric, number of distinct classes traversed in the
invocation chain.

e numberOfTraversedMutableClasses: Numeric, similar to the previous feature but
excludes classes of the patterns android. * and java. *, which can not be refactored.

e parentClassInheritsFromAndroidClass: The same feature as was added for the
previous smell.

e decor: Nominal, boolean string stating whether or not decor classified this invocation
chain as smelly.

Explored Classifiers With no single classifier that works best for all classification prob-
lems, a selection of mainstream classifiers was explored. The classifiers were intentionally
chosen to use different underlying mathematical approaches. Many of the classifiers contain
parameters which could be tweaked. Within the scope of this study these were left at their
default Weka values. In consultation, the following classifiers were explored:

e functions.SMO Support vector classifier.

e trees.REPTree Decision tree learner.

e trees.RandomForest Constructs a forest of random trees.
e functions.Logistic Logistic classifier.

e weka.classifiers.bayes.NaiveBayes Application of Bayes’ rule and the assump-
tion that all features are independent.

e weka.classifiers.lazy.IBk A k-nearest neighbour classifier.

40

5.2. Results

Performance Evaluation Trained classifiers were evaluated using 10-fold cross valida-
tion. With respect to class balancing, balancing was applied to the training data only for
each fold.

5.2 Results

The obtained evaluation results are shown in Table 5.1} As a performance baseline, the
best performing smell detector in terms of F1 score from Study I was included as well.
By default, Weka’s evaluation results are a weighted average over all classification classes.
However, the labelled dataset was heavily skewed towards the non-smelly class while the
class of interest is the smelly class. Therefore, the metrics as shown are calculated over the
smelly classification class only.

Table 5.1: Classifier performance, for ‘smelly’ classification class only.

Detector TP FP FN Precision Recall F1 score

Feature Envy
JDeodorant (baseline) 10 30 74 0.25 0.12 0.08

SMO 84.0 8800 1.0 0.09 0.99 0.16
REPTree 78.0 8020 7.0 0.09 0.92 0.16
RandomForest 46.0 4160 39.0 0.10 0.54 0.17
NaiveBayes 82.0 8230 3.0 0.09 0.96 0.17
Logistic 83.0 850.0 2.0 0.09 0.98 0.16
1Bk 48.0 4100 37.0 0.10 0.56 0.18
Large Class

DECOR (baseline) 35 20 8 0.64 0.81 0.36
SMO 41.0 74.0 2.0 0.36 0.95 0.52
REPTree 41.0 22.0 2.0 0.65 0.95 0.77
RandomForest 40.0 15.0 3.0 0.73 0.93 0.82
NaiveBayes 42.0 71.0 1.0 0.37 0.98 0.54
Logistic 41.0 36.0 2.0 0.53 0.95 0.68
IBk 22.0 18.0 21.0 0.55 0.51 0.53
Long Method

DECOR (baseline) 18 11 40 0.62 0.31 0.21
SMO 56.0 481.0 4.0 0.10 0.93 0.19
REPTree 49.0 281.0 11.0 0.15 0.82 0.25
RandomForest 350 2350 250 0.13 0.58 0.21
NaiveBayes 57.0 520.0 3.0 0.10 0.95 0.18
Logistic 56.0 5350 4.0 0.09 0.93 0.17
IBk 28.0 228.0 32.0 0.11 0.47 0.18
Message Chain

DECOR (baseline) 9 94 92 0.09 0.09 0.04
SMO 101.0 375.0 0.0 0.21 1.00 0.35

41

5. STUDY II: CONSTRUCTING AN ANDROID-SPECIFIC SMELL DETECTOR

Table 5.1: Classifier performance, for ‘smelly’ classification class only.

Detector TP FP FN Precision Recall F1 score
REPTree 101.0 3950 0.0 0.20 1.00 0.34
RandomForest 99.0 3860 20 0.20 0.98 0.34
NaiveBayes 101.0 483.0 0.0 0.17 1.00 0.29
Logistic 94.0 11320 7.0 0.08 0.93 0.14
IBk 98.0 3850 3.0 0.20 0.97 0.34

For this study, classifier performance was compared on the F1 score only, with precision
and recall as informative metrics. While some classifier designs may prefer better precision
at the cost of recall, or the reverse, a neutral stance was held here. Therefore, the F1 score
(harmonic mean between precision and recall) was a usable single metric of performance.

Overall, the various classifiers perform better compared to a single smell detection tool.
This was not unexpected, as the available predictors can include the output of multiple
detectors. The code metrics that were added were also derived from the analysis used to
create the smell oracle. As the exception, the Long Method smell was not detected much
better compared to the baseline.

From this table, the optimal Android-specific smell detector would contain a trained
classifier corresponding to algorithm with the best F1 score as seen in the table. For ref-
erence, an Eclipse project containing all machine learning data and an implementation of
classifier evaluation is available on GitHub{]

5.3 Conclusion

RQ1: How does a ML-based Android-specific smell detector perform compared to
existing Java detectors?

The ML-based Android-specific smell detector performed better than the baseline for
the Feature Envy, Large Class and Message Chains smells, while performing similar for the
Long Method smell. For Feature Envy, the IBk k-nearest neighbour classifier performed
best with a F1 score of 0.18 (baseline 0.08). For Large Class, the RandomForest tree classi-
fier performed best with a F1 score of 0.82 (baseline 0.36). For Long Method, the REPTree
tree classifier performed best with a F1 score of 0.25 (baseline 0.21). Finally, for Message
Chain, the SMO support vector classifier performed best with a F1 score of 0.35 (baseline
0.04).

Possible paths to improve the ML-based detector include the adding better code metrics
where possible, performing feature selection to discard weak predictors, exploring more
types of classifier algorithms and tweaking the parameters of the classifier algorithms that
were used.

Ihttps://github.com/DustinLim/msc-thesis-weka-classifier-evaluation

42

https://github.com/DustinLim/msc-thesis-weka-classifier-evaluation

Chapter 6

Threats to Validity

This chapter discusses possible threats to validity.

Interpretation of Code Smells Some of the definitions of the investigated code smells
contained abstract elements. As a result, their interpretation is to a certain extent subjective.
We attempted to clearly point out any abstract elements in terms of definitions in Section
[2.2] followed by our interpretation during the construction of preprocessor filtering rules
and the manual validation of code smells. The consultation of previous work attempted to
reduce the risk of misinterpreting the investigated code smells. A common mitigation is the
use of multiple researchers which are required to reach consensus.

Preprocessor Filtering Rules The usage of filtering rules in the preprocessor introduced
an internal threat to validity. If the filtering rules were to remove any smelly instances, the
validity of the smell oracle would be affected. The utilization of filtering was required due
to the infeasibility of manually inspecting the complete dataset of language constructs. For
each code smell, we supplied a justification for why filtered out instances were very unlikely
to be smelly.

Generalization of Results Threats to external validity include the limited sample size of
Android apps included in the smell oracle, used to determine the detection performance of
various techniques and tools. In Study I, a limited set of Java smell detectors was included
in the determination of detection performance from existing smell detectors. In Study II,
the smell oracle was a key component for the machine learning approach used. The limited
scope of the smell oracle could affect the generalizability of the Android-specific smell
detector that was constructed. All of these cases were a based on a consideration between
generalization of results and limited time resources. An attempt was made to include as
much data as possible.

43

Chapter 7

Conclusion

This chapter gives an overview of the thesis’s contributions and conclusions. This is fol-
lowed by some ideas for future work.

Contributions In terms of software artefacts, the source code preprocessor as described
in Chapter is publicly available on GitHub ﬂ Functionality includes the parsing of lan-
guage constructs from Android code and the application of filtering rules. The preprocessor
generates an output file containing all preprocessed entities, including uniquely generated
identifiers.

A second software artefact is the Weka classifier evaluator, also publicly available on
GitHu This tool accepts a list of unique identifiers which representing a smell oracle and
lists of smell detections from existing detectors. The evaluator generates a feature space
from this input, followed by the training and evaluation of Weka classifiers.

A final contribution is the manually constructed smell oracle for the five investigated
Android apps. This oracle is included as one of the input files for the Weka classifier evalu-
ator.

Conclusions The construction of the smell oracle was very time consuming. In the con-
text of Android code, a pre-existing dataset of identified code smells did not exist, ne-
cessitating the manual construction of a smell oracle. Given the amount of manual work
involved, the added value of the existence of an effective code smell detector becomes very
apparent. The completed smell oracle contained positive examples for four of the five code
smells investigated. The Spaghetti Code smell was left with zero positive examples.

In Study I, we concluded that existing smell detectors perform relatively poorly on An-
droid apps. However, the instances that were found using existing detectors were shown to
overlap very little. This indicated that the combination of multiple detectors could improve
smell detection performance.

In Study II, we concluded that a novel machine learning approach designed specifically
for Android code performed significantly better in three of the investigated code smells.

Ihttps://github.com/DustinLim/mscthesis-preprocessor
Zhttps://github.com/DustinLim/msc-thesis-weka-classifier-evaluation

45

https://github.com/DustinLim/mscthesis-preprocessor
https://github.com/DustinLim/msc-thesis-weka-classifier-evaluation

7. CONCLUSION

Classifiers were trained on a combination of the output of existing smell detectors and se-
lected code metrics. Different Weka classifiers turned out to work best for the different code
smells.

Future work Many opportunities are left for future work. The Android-specific smell
detector can be improved through the addition of more Android apps to the smell detector.
In addition, the feature space of the machine learning process can be expanded by added
more existing detectors or code metrics. Finally, different classifiers may be evaluated and
tweaked in terms of parameters to improve on the performance results that were obtained.

46

(1]

(2]

(3]

[4]

[5]

(6]

[7]
[8]
[9]

[10]

[11]

Bibliography

Android ndk documentation. |https://developer.android.com/ndk/quides/
index.htmll

Android package index. https://developer.android.com/reference/classes.
htmll

Android studio. https://developer.android.com/studio/index.html.

Darren C Atkinson and Todd King. Lightweight detection of program refactorings. In
Software Engineering Conference, 2005. APSEC’05. 12th Asia-Pacific, pages 8—pp.
IEEE, 2005.

Gabriele Bavota, Rocco Oliveto, Malcom Gethers, Denys Poshyvanyk, and Andrea
De Lucia. Methodbook: Recommending move method refactorings via relational
topic models. IEEE Transactions on Software Engineering, 40(7):671-694, 2014.

William H Brown, Raphael C Malveau, Hays W McCormick, and Thomas J] Mowbray.
AntiPatterns: refactoring software, architectures, and projects in crisis. John Wiley &
Sons, Inc., 1998.

Checkstyle. http://checkstyle.sourceforge.net.
Eclipse ide. https://www.eclipse.org/home/index.php.
F-droid - free and open source android app repository. https://f-droid.orgl

Marios Fokaefs, Nikolaos Tsantalis, Eleni Stroulia, and Alexander Chatzigeorgiou.
Identification and application of extract class refactorings in object-oriented systems.
Journal of Systems and Software, 85(10):2241-2260, 2012.

Francesca Arcelli Fontana, Pietro Braione, and Marco Zanoni. Automatic detection
of bad smells in code: An experimental assessment. Journal of Object Technology,
11(2):5-1, 2012.

47

https://developer.android.com/ndk/guides/index.html
https://developer.android.com/ndk/guides/index.html
https://developer.android.com/reference/classes.html
https://developer.android.com/reference/classes.html
https://developer.android.com/studio/index.html
http://checkstyle.sourceforge.net
https://www.eclipse.org/home/index.php
https://f-droid.org

BIBLIOGRAPHY

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]
(23]

[24]

48

Francesca Arcelli Fontana, Marco Zanoni, Alessandro Marino, and Mika V Mantyla.
Code smell detection: Towards a machine learning-based approach. In Software Main-
tenance (ICSM), 2013 29th IEEE International Conference on, pages 396-399. IEEE,
2013.

Martin Fowler and Kent Beck. Refactoring: improving the design of existing code.
Addison-Wesley Professional, 1999.
gradle-eclipse-aar-plugin. https://github.com/ksoichiro/

gradle-eclipse-aar-plugin.

Michele Lanza and Radu Marinescu. Object-oriented metrics in practice: using soft-
ware metrics to characterize, evaluate, and improve the design of object-oriented sys-
tems. Springer Science & Business Media, 2007.

Robert C Martin. Agile software development: principles, patterns, and practices.
Prentice Hall, 2002.

Naouel Moha, Yann-Gael Gueheneuc, Laurence Duchien, and Anne-Francoise
Le Meur. Decor: A method for the specification and detection of code and design
smells. IEEE Transactions on Software Engineering, 36(1):20-36, 2010.

Emerson Murphy-Hill and Andrew P Black. An interactive ambient visualization for
code smells. In Proceedings of the 5th international symposium on Software visual-
ization, pages 5-14. ACM, 2010.

Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Fausto Fasano, Rocco
Oliveto, and Andrea De Lucia. On the diffuseness and the impact on maintainability
of code smells: a large scale empirical investigation. Empirical Software Engineering,
pages 1-34, 2017.

Fabio Palomba, Annibale Panichella, Andrea De Lucia, Rocco Oliveto, and Andy
Zaidman. A textual-based technique for smell detection. In Program Comprehension
(ICPC), 2016 IEEE 24th International Conference on, pages 1-10. IEEE, 2016.

Fabio Palomba, Pasquale Salza, Adelina Ciurumelea, Sebastiano Panichella, Harald
Gall, Filomena Ferrucci, and Andrea De Lucia. Recommending and localizing change
requests for mobile apps based on user reviews. In Proceedings of the 39th Interna-
tional Conference on Software Engineering, pages 106-117. IEEE Press, 2017.

Pmd source code analyzer. https://pmd.github.io.
Sourcemaking - code smells. https://sourcemaking.com/refactoring/smellsl

Nikolaos Tsantalis and Alexander Chatzigeorgiou. Identification of move method
refactoring opportunities. IEEE Transactions on Software Engineering, 35(3):347—
367, 2009.

https://github.com/ksoichiro/gradle-eclipse-aar-plugin
https://github.com/ksoichiro/gradle-eclipse-aar-plugin
https://pmd.github.io
https://sourcemaking.com/refactoring/smells

Bibliography

[25] Nikolaos Tsantalis and Alexander Chatzigeorgiou. Identification of extract method
refactoring opportunities for the decomposition of methods. Journal of Systems and
Software, 84(10):1757-1782, 2011.

[26] Santiago Vidal, Hernan Vazquez, J Andres Diaz-Pace, Claudia Marcos, Alessandro
Garcia, and Willian Oizumi. Jspirit: a flexible tool for the analysis of code smells.
In Chilean Computer Science Society (SCCC), 2015 34th International Conference of
the, pages 1-6. IEEE, 2015.

[27] Weka 3: Data mining software in java. |https://www.cs.waikato.ac.nz/ml/
weka/l

[28] Apple xcode xed documentation. https://developer.apple.com/legacy/
library/documentation/Darwin/Reference/ManPages/manl/xed.1.htmll

49

https://www.cs.waikato.ac.nz/ml/weka/
https://www.cs.waikato.ac.nz/ml/weka/
https://developer.apple.com/legacy/library/documentation/Darwin/Reference/ManPages/man1/xed.1.html
https://developer.apple.com/legacy/library/documentation/Darwin/Reference/ManPages/man1/xed.1.html

Appendix A

Manual Smell Detection Analysis

A.1 Feature Envy

Analysis Instances
[Rejected] Method delegates its invocation to another class. 94
[Accepted] Refactoring (part of) method appears appropriate. 82
[Rejected] Envy is evenly spread over multiple classes. 76
[Rejected] Method uses an utility class. 59
[Rejected] Envy is towards superclass of the class declaring the method. 58
[Rejected] Method manages collection of envied class. 56
[Rejected] No obvious refactoring possible. 49
[Rejected] Envied fields are public constants. 37
[Rejected] Envy not applicable towards logging class. 34
[Rejected] Envied class is instantiated, followed by setters. 34
[Rejected] Method is too large to analyse/refactor. 33
[Rejected] Parent class handles UI, envied class is part of the Model. 24
[Rejected] Method is inside a (static) utility class. 21
[Rejected] Parent class handles Ul, envied class is child UI element. 13
[Rejected] Method overrides superclass implementation. 12
[Rejected] Parent class handles Ul, envied class is parent Activity. 11

[Rejected] Method is inside a utility-type class.

[Rejected] Envied class is an interface.

[Rejected] Envied class is an anonymous inline class.

[Rejected] Method is inside anonymous class declaration.

[Rejected] Parent class is designed as layer above envied class.
[Rejected] Method accesses static fields / methods of envied class.
[Rejected] False positive due to logging code.

[Rejected] Static utility method, should be moved to envied utility class.
[Rejected] Parent Android View class, move method to envied Activity.

el 2 \° I SNV, e) SN o e}

51

A. MANUAL SMELL DETECTION ANALYSIS

[Rejected] Parent Android Activity class, managing the envied View. 1
Total accepted instances: 84
Total rejected instances: 646

A.2 Large Class

Analysis Instances
[Rejected] Class size inflated due to inner class(es). 16
[Accepted] Multiple class responsibilities visible. 16
[Rejected] No obvious refactoring. 12
[Accepted] Too many attributes. 10
[Accepted] UI class manages too much UL 10
[Accepted] Too many methods. 5
[Accepted] Multiple methods with: @ SuppressWarnings(unused’) 2
[Accepted] Part of class should be moved to a Model class. 2
[Rejected] Class structure (attributes and methods) is clear. 1
[Accepted] Implements too many interfaces. 1
[Accepted] Repeated switch-statements imply extractable subclasses. 1
[Rejected] Contains SDK method overrides and UI math attributes. 1
[Rejected] Class inflated due to Large Method(s). 1
Total accepted instances: 43
Total rejected instances: 31
A.3 Long Method

Analysis Instances
Accepted] Visible method section(s) to extract. 18
Accepted] Contains large inline anonymous class(es). 17
Rejected] Contains if-else or switch construct with many small cases. 15
Accepted] Contains if-else conditional with large cases. 14
Rejected] Method performs single focused task. 9

5
Rejected] A long sequence of short if-statements. 4
Accepted] Complex, deeply nested control flow. 2
Accepted] Contains switch construct with large cases. 1

1

[
[
[
[
[
[Accepted] Builds a UI element. Larger method sections for sub-elements.
[
[
[
[Accepted] Manually draws many UI elements, grouping possible.

52

A.4. Message Chain

[Rejected] Builds a Ul element. Many small method sections for sub- 1
elements.

Total accepted instances: 58
Total rejected instances: 29

A.4 Message Chain

Analysis Instances
[Rejected] Some invoked types belong to the Java platform. 139
[Rejected] Some invoked types belong to the Android platform. 91
[Accepted] Hide Delegate applicable. 84
[Rejected] Part of chain invokes inherited method(s). 57
[Rejected] Static method pattern is present. 50
[Rejected] Part of chain invokes local method(s). 38
[Rejected] Chain invokes a class and a Java collection of the same. 30
[Rejected] Utility-type interface is used. 30
[Accepted] Refactoring is appropriate. 17
[Rejected] Invocation on an inherited method. 12
[Rejected] Chain structure is justified. 12
[Rejected] Chained calls that repeatedly return the object itself. 6
Total accepted instances: 101
Total rejected instances: 465

53

	Preface
	Contents
	Introduction
	Research Context
	Research Motivation
	Thesis Outline

	Background and Related Work
	Code Smells
	Definitions of Investigated Code Smells
	Measuring Detection Performance
	Android Platform Overview
	Related Work

	Constructing a Smell Oracle
	App Selection
	Preprocessing
	Manual Smell Detection
	Results

	Study I: Using Existing Smell Detectors on Android Apps
	Methodology
	Results
	Conclusion

	Study II: Constructing an Android-specific Smell Detector
	Methodology
	Results
	Conclusion

	Threats to Validity
	Conclusion
	Bibliography
	Manual Smell Detection Analysis
	Feature Envy
	Large Class
	Long Method
	Message Chain

