

Delft University of Technology

Understanding Everything NPCs Can Do
Metrics for Action Similarity in Non-Player Characters
Balint, J. Timothy; Allbeck, Jan M.; Bidarra, Rafael

DOI
10.1145/3235765.3235776
Publication date
2018
Document Version
Final published version
Published in
FDG'18

Citation (APA)
Balint, J. T., Allbeck, J. M., & Bidarra, R. (2018). Understanding Everything NPCs Can Do: Metrics for
Action Similarity in Non-Player Characters. In FDG'18: Proceedings of the 13th International Conference on
the Foundations of Digital Games (pp. 1-10). Article 14 ACM. https://doi.org/10.1145/3235765.3235776

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3235765.3235776
https://doi.org/10.1145/3235765.3235776

Green Open Access added to TU Delft Institutional Repository

‘You share, we take care!’ – Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

https://www.openaccess.nl/en/you-share-we-take-care

Understanding Everything NPCs Can Do
Metrics for Action Similarity in Non-Player Characters

J. Timothy Balint
Delft University of Technology

j.t.balint@tudelft.nl

Jan M. Allbeck
George Mason University

jallbeck@gmu.edu

Rafael Bidarra
Delft University of Technology

R.Bidarra@tudelft.nl

ABSTRACT
Non-Player Characters (NPCs) have actions that allow them to
reason about what they can do in a game and how they can do it.
The background information about what they can do are the com-
ponents of the action, and how they can do it is the form or shape
of an action, which may be built up from several sub-actions. The
components and shape of an action must be fully de�ned in a game,
which can be tedious when several similar actions are needed. Fur-
thermore, as the number of nuanced actions grows, more pressure
is placed on an already constrained reasoning system. By discover-
ing the similarities between actions an NPC can do, a given action
set can be intelligently organized with similar components being
generalized using an action taxonomy. To understand the similarity
between actions we have developed measures of action similarity
based on their constituent components and form. From this, we
discover a metric to determine the generalization ability of an orga-
nization strategy for an NPC action set. We examine the use of our
measures on a previously developed action set to show the nuances
between those actions. Lastly, we �nd that intelligently organizing
actions has a positive e�ect on virtual character reasoning abilities.

CCS CONCEPTS
•Computing methodologies → Knowledge representation and
reasoning;

KEYWORDS
Arti�cial Intelligence in Games, Reasoning, Behavior Organization

ACM Reference format:
J. Timothy Balint, Jan M. Allbeck, and Rafael Bidarra. 2018. Understanding
Everything NPCs Can Do. In Proceedings of FDG, Malmö, Sweden, August
7-10, 2018 (FDG’18), 10 pages.
DOI: 10.1145/3235765.3235776

1 INTRODUCTION
Non-Player Characters (NPCs) have become ubiquitous in games
and simulations [15], with control of these characters performed
through actions [22, 34]. These actions allow for greater control
over virtual characters and provide them with the ability to utilize

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
FDG’18, Malmö, Sweden
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-6571-0/18/08. . . $15.00
DOI: 10.1145/3235765.3235776

techniques that create more emergent and immersive environments.
However, the term actions has several di�erent meanings in games
and we use the following de�nitions:

• Primitive Actions are the simplest form of an action. They
are atomic entities with few commands on how they a�ect
the world.

• Extra knowledge such as the objects that participate in the
action (such as weapons or other characters) are compo-
nents of the action [5, 10, 11, 19, 31]. Components can also
include the start and end states of the world, known as
conditions and assertions.

• Multiple smaller actions (sub-actions) can be chained to-
gether to create a behavior. Tree behaviors, such as Hier-
archical Task Networks (HTNs) or Behavior Trees (BTs)
are the most widely used form [5, 13, 18, 24, 29, 30]. The
behavior itself is a component of an action. This gives the
general de�nition of an action as a rich representation of
knowledge and function.

• The collection of all actions a character can perform is
called their abilities.

Actions have many roles in games from the obvious NPC con-
trol [24, 39] and narrative generation [28], to describing what is
o�ered by a game world [19, 32], and even for game world spec-
i�cation [37, 41]. Because actions consist of components such as
the behavior and their conditions to begin, there has been more
focus on the components of the actions themselves. From the be-
ginning [11], character planning has focused on the components of
actions (namely their conditions and assertions). The behavior com-
ponent of actions, useful for NPC control, has received a great deal
of attention, speci�cally in their creation [8, 23, 29, 39]. However,
behaviors by themselves only contain the form and must be encap-
sulated in an action with other components to be easily accessible by
agent reasoning systems. This has led to representations of actions
to be proposed in order to expand on their components [5, 31, 40].
These proposals have seen the need for encapsulating behaviors
with other knowledge to assist NPCs in reasoning about what they
are doing. However, there has not been a through exploration into
comparisons that use the total knowledge of the actions. Under-
standing similarities between actions allows both game characters
and designers to understand where nuanced di�erences exist be-
tween those authored actions.

More varied actions for NPCs requires a simulation author to
fully de�ne each of these actions, which becomes prohibitive as the
number of actions and types of components (the character’s domain)
grows. It also requires more computation time for any reasoning
abilities of characters. As more actions are added to the character’s
abilities, they need to be reasoned over to determine if that action
should be performed. For example, if a character can walk to a given

FDG’18, August 7-10, 2018, Malmö, Sweden J.T. Balint, J.M. Allbeck, and R. Bidarra

location, and has a destination to travel to, then the character should
easily choose to perform that action. However, if the NPC can Walk,
Run, Ski, Shoot, or Sit, some of which will cause the character to
travel to a given destination, the NPC must reason over the entire
set to choose the action it should perform. Given that behavior
planning is expensive in an already constrained simulation step
budget [12], providing more actions causes the character’s decision
making to be computationally infeasible. However, by intelligently
pre-computing similarities between actions, reasoning systems
can infer knowledge, reducing the total amount a character must
reason over. This means that if similarities exist between actions
in a character’s abilities, then organizing and generalizing those
actions, such as into an IsA (concept generalization-speci�cation)
taxonomy, would intelligently contain the character’s abilities and
save reasoning time.

Simulation authors should have the ability to create more subtly
varied actions and the nuances of those actions should have a mini-
mal impact on NPC reasoning performance. Therefore, we propose
that the abilities of NPC characters be arranged into taxonomies
based on the similarities and overlap of those actions.. The main
contributions of this work are:

• A method to compute similarity between game character
actions. Speci�cally, we describe metrics to determine
similarity between actions by both their components and
behavior.

• Measures to compare taxonomies based on the needs of
the NPC.

• Evidence that pre-computing similarities between actions
and representing that as a taxonomy allows the characters
to reason more quickly about their abilities. This leads to an
application-based approach to creating NPC taxonomies.

This work is organized in the following manner: Section 2 describes
other attempts to design metrics and taxonomies for game char-
acters, as well as examines common features between di�erent
action representations. Section 3 discusses how a game world can
be organized, while Section 4 describes metrics to compare action
at a component level (Section 4.1), behavior level (Section 4.2), and
ability level (Section 4.3). Finally, Section 5 shows the e�cacy of our
method, examining both the behavior and cost of di�erent ways of
organizing an action taxonomy.

2 RELATEDWORK
Organizing actions into a taxonomy is not a new concept in itself
and has been examined for many years for both game characters
and other AI �elds such as robotics. The work of Bindiganavale
et al. [5] has a taxonomy of actions as part of an overall ontology
(called the Actionary) for virtual agents. This work provides a high
level speci�cation for the Actionary, but does not provide a speci�c
taxonomy. Similarly, the work of Badawi and Donikian [1] provides
generalizations for virtual agent actions in respect to acting sites
on objects (the actions that would accompany Smart Objects [14]).
Tenorth and Beetz [33] designed an ontology for use with robotic
movement, including a taxonomy for action classes. These classes
were designed with di�erent components of a robot (i.e, closing a
gripper is a child of closing something). The development or removal
of components would therefore require a new taxonomy, which

should be expected. Finally, Balint and Allbeck [3] designed an
action taxonomy based o� of WordNet Hypernyms. Considering
all those proposals, organizing actions into hierarchies has seen
limited success for both NPCs and robotics. The previous work has
taxonomies that are either underspeci�ed [5] with no organizational
guidance or over-speci�ed [1, 3, 33] for a given project. Over-
speci�cation is due to taxonomies being proposed, which meet the
particular needs of a project but have not been able to be generalized
into a broader context. Instead of proposing a speci�c ordering of
actions, we take a general approach based on similarity of actions,
leaving the actual organization to be determined based on the end
use of the actions. This provides a process to creating a taxonomy
while not restricting the taxonomy to a given project.

In addition to context speci�c ways to organize actions, there
have been a few attempts to compare and contrast them. De Silva
and Padgham [9] showed that HTNs are analogous in structure
to another tree-based structure (Plan Trees). Botea et al. [6] used
other domain knowledge to extract generalizable information from
actions. Their work focuses on creating new actions by �nding
similarities between actions. Finally, Sagredo-Olivenza et al. [29]
learned by demonstration how to modularize BTs. They used the
Levenshtein distance to determine similarity between two actions.
We generalize this method by providing multiple metrics that can
compare the total structure (which can be represented as trees).
Furthermore, unlike the previous methods which only �nd matches
to generalize, our method provides a cost function that allows game
characters to determine non-exact relations between their abilities.

Most closely related to this work is Kapadia et al. [16] and
Sagredo-Olivenza et al. [29]. Kapadia et al. evaluates the con-
trol cost of a single BT over multiple ways of representing that
same plan. This method only judges a node if it is connecting other
nodes together (i.e, it does not look at the leaf primitive actions)
and is not concerned with comparing di�erent actions in the same
set. Sagredo-Olivenza et al. compare learned behavior trees using
the Levenstein distance on a sequence of action nodes. Therefore,
they ignore di�erences in the actions, as well as the di�erent ways
that actions can be connected (i.e., the focus of Kapadia et al.). Our
methods and metrics provide a more in-depth analysis of actions,
and can be used to determine similarities between actions in a set.
Furthermore, we examine the whole set of actions (the NPC’s abili-
ties) with the insight that there are similarities between them. This
allows us to generalize components of actions, pre-computing their
similarities so that a reasoning system does not need to compute
them every time they are compared.

3 TAXONOMIES IN GAMEWORLDS
Before describing metrics to organize and judge the organization of
actions we �rst de�ne taxonomies, both for actions and for objects.
This lays a foundation for the structure of organizing agent abilities
separate from their name (l is this work) as well as di�erences in
how action components can be compared. Taxonomies are general-
ization (IsA) relationships with a bi-directional connection so that
parents know their children and children know their parents1. For
our work, we assume each child has only one parent. The advan-
tage of this is that components on the parent can be more easily

1Throughout this work, we use p to refer to the parent in a taxonomy.

Understanding Everything NPCs Can Do FDG’18, August 7-10, 2018, Malmö, Sweden

propagated down to the children. This reduces the total amount of
distinct information in the system, which we show in Section 5 has
a positive e�ect on game character reasoning abilities.

The concept of an object taxonomy is not new, and has been
used in previous work [5, 20, 21]. These object taxonomies classify
the game world into di�erent categories, with the implicit under-
standing that each category is given a di�erent purpose in that
world. Our taxonomy is concerned with the semantics [35] of the
objects, and treats the graphical model as a semantic of the object.
An example object taxonomy can be seen in Figure 1, where types
of objects have semantic components (such as Posture or Model),
which would be used by the agent reasoning system.

Figure 1: A sample taxonomy of �ve objects built from four
graphical models.

Re�exively, actions can also be organized into generalizations,
such as the grouping in Figure 2. This is di�erent from organizing
actions into a plan tree structure (such as a BT or HTN) in that
the child actions are not needed to run the parent action. Each of
the actions in Figure 2 can be run independently by a character,
meaning each has its primitive or complex structure (shown as
each action having its own Behavior in the �gure). Similar to object
taxonomies, action taxonomies can generalize components (such
as the required objects) onto their parent, meaning that a character
should not need to reason over all actions if it is only requiring a
component of the action.

Figure 2: A sample taxonomy of four actions created from
Shoulson et al. [31].

Oftentimes, object types in games are clustered into a single
type, and abilities are not grouped at all. This hinders the ability to
reason between disjoint sets, as known similarity becomes a binary
property (it is either in the group or not). While our metrics (Sec-
tion 4.1 and Section 4.2) are not dependent on objects and actions
being organized into a taxonomy, doing so allows generalizations
that can further di�erentiate and compare actions. Furthermore, it

allows knowledge about the objects and actions to be extracted to
higher levels, meaning the NPC does not need to consider each ob-
ject or action individually, as they can assume the children inherit
the components of their parents (shown in Section 4.3).

4 SIMILARITY IN NPC ACTIONS
As stated previously, actions are a rich representation that contain
not just the what, but the how and why of character control. This
means comparisons between actions can be performed on many
levels. We use two levels, the components and the behavior of an
action. Component level analysis examines the di�erences in the
set of those components attached to an action (such as the objects
used in the action). Behavior analysis further examines the shape
of the steps in a complex behavior.

4.1 Component Based Similarity
Actions can be compared and contrasted by their aforementioned
components. We treat components as unordered sets and each
component of the action is orthogonal. In Figure 3a, one component
of the action Approach is its objects. When our metric is comparing
the objects on Approach (comparison between objects is assumed
in the examples for the rest of the section) it is only concerned
with there being two agents, and not the di�erence in how those
two agents act. Those di�erences may appear in other components,
such as the conditions or assertions, and would be noted in that
(orthogonal) component. We also di�erentiate between actions and
action templates. Templates are more general representations of an
action, and thus their components are also more general. Figure 3c
shows the template for Approach, which is constrained in Figure 3a
and Figure 3b.

(a) (b)

(c)

Figure 3: Three behaviors, (a)Transfer, (b)SoundAlarm, and
(c)Approach with the associated sub-actions and object com-
ponents.

To calculate the total costs of the components between two
actions, we calculate the symmetric di�erence using Equation 1;
where the actions are represented by A and the component set
of that action is represented by the function C . The symmetric
di�erence is a communicative measure that determines outliers
between the two sets. It does not consider order of the components,
but focuses on "what" is part of the action. By not considering
the order, actions that are symmetric (active and passive in verbs)
are considered equivalent. Furthermore, the symmetric di�erence

FDG’18, August 7-10, 2018, Malmö, Sweden J.T. Balint, J.M. Allbeck, and R. Bidarra

means that overlapping components (objects) between actions are
a cost of zero. Speci�cally for objects used in actions, the object
taxonomy of Figure 1 provides multiple ways that objects can over-
lap. For example, overlap between two objects can mean an exact
match (the agents matching each other in Figure 3) or through
generalizations. For generalization matches, parents in one action
can match to children in the other. The Approach sub-behavior
used in Figure 3a does not directly overlap the second object in
Figure 3b and therefore is not a direct match. When comparing
the two with the general interpretation of Figure 3c, both Agent2
and Button match to Entity based on the object taxonomy. This
allows our measure to consider possible connections, instead of
strict object-object connections.

D(Ai ,Aj) = symmetric di�erence(C(Ai),C(Aj)) (1)

4.2 Behavior Based Similarity
In addition to the components of an action, we can compare the
shape of them by examining the behavior. For comparison of be-
haviors, a consistent representation is needed, one that allows all
components to be compared. HTNs and BT are tress, as seen in Fig-
ure 3, and are more speci�cally actions connected by conjunctives
such as AND (SEQUENCER) or OR (SELECTOR). These sub-actions
themselves have shape, and so it is possible to expand the behavior
of those actions as well. To factor for this we propose a metric that
can be used with both expanded and unexpanded sub-behaviors,
that is, can solve this problem by solving the smaller sub-problems
of sub-action similarity. This leads itself to computing an edit dis-
tance [4] between two behaviors. The edit distance between two
trees describes the cost to convert one tree into another. For be-
haviors, this is the cost of changing actions and connections to
transform one behavior into another. This means that both the
constituent sub-actions as well as the shape (how the sub-actions
are connected together) contribute to the total cost, and therefore
the total similarity, between two actions. The edit distance (more
speci�cally, the Levenshtein distance) has been used by Sagredo-
Olivenza et al. [29] to compare learned actions. However, they
only used the sequence of actions (a sequence of names) in their
comparison without considering connections. The more general
edit distance can capture subtleties apparent in the connections.

One aspect of the edit distance is that each node (connection
and sub-action) is compared between the two behaviors and a cost
matrix is computed. The individual costs is computed between
actions (organization and components) and connections. If actions
are already organized in a taxonomy, we can exploit where actions
are in the taxonomy as part of the total cost, using a similarity
metric like Wu-Palmer Similarity [38] seen in Equation 2. In this
equation, lcs is the Least Common Sub-sumer, measured as the
closest parent between Ai and Aj in a taxonomy. For example, in
Figure 2, the cost of Exchange and Give is 2

4 , due to the common
parent of Transfer (where the depth of transfer starts at 1). One
issue with this is when a connection does not exist. In Figure 2,
there is no connection between Approach and Give. Therefore, a
false root should be used to connect all disjoint ability sets. This
makes the cost between Approach and Give 0

2 (with a false root
depth of 0). Furthermore, the cost between two components of each
behavior is an important part of the equation, and for that we use

Equation 1. To keep the symmetric di�erence from dominating the
total cost, we normalize the symmetric di�erence with the union
of the two component sets. Each sub-equation is then averaged
together to obtain a total cost between two sub-actions.

D(Ai ,Aj) =
2 ∗ depth(lcs)

depth(Ai) + depth(Aj)
(2)

Speci�cally for more complex behaviors, the type of connection in
addition to the number of children and their components e�ects
the total comparison. That is, the behavior of SEQUENCE and
SELECTOR nodes are di�erent, and this di�erence must be taken
into account for the total edit distance. Therefore, we associate a
binary cost when two connectors are compared (seen in Equation 3),
such that the cost is zero if they are the same connector (Figure 3a
and Figure 3b) and 1 otherwise. The cost comparison between an
action and connection is always 1.

D(Ai ,Aj) =

{
0 i f Ai = Aj

1 else
(3)

The end result of the edit distance is the minimum e�ort to
transform one behavior into another. At this stage, our measure
provides the cost of changing behaviors, where lower costs mean
more similar objects. This may be useful for re-planning systems.
However, to compute similarity between behaviors, we perform
L2 normalization between the total set of behaviors. The normal-
ized cost is then subtracted from 1 to provide an overall similarity
comparison between behaviors.

4.3 Action Generalization and Ability
Comparison

In addition to metrics for comparing actions, it is possible to ex-
amine entire action sets (that is, action taxonomies or partial tax-
onomies) in order to make comparisons on the e�ectiveness of
the organization. Part of this requires generalizing components
of the action on the taxonomy by pre-computing the similarities
and storing them for further use. Furthermore, by understanding
how much a taxonomy can generalize an action set, it can provide
a better understanding as to how well that system can be used in
an action selection mechanism based on the given component.

To generalize information in a taxonomy, we use a two-pass
technique, with a high level overview in Figure 4. The �rst pass
starts with the deepest interior actions in the taxonomy (the parent’s
of the leaf actions). When part of a component is the same for all
children, that component is also attached to the more general action.
This is propagated to the roots of the taxonomy, seen in Figure 4b.
We then do a second pass to remove extraneous information from
the children actions, with the �nal result seen in Figure 4c. We
implement a two-pass solution due to the generality of organizing
actions.

Our generalization method, seen in Figure 4, processes the tax-
onomy and generalizes as much information as possible. While
Figure 4a begins with the whole taxonomy, a correct taxonomy
can be used with any number of component properties to arrive at
Figure 4c. However, the method shown in Figure 4 does not com-
pare organization strategies, but only generalizes the taxonomy it

Understanding Everything NPCs Can Do FDG’18, August 7-10, 2018, Malmö, Sweden

(a) (b) (c)

Figure 4: A high level over-view of generalizing data on the taxonomy. Our method (a) �rst �nds all component properties
that are the same between children, traveling up the taxonomy. It then (b) removes all properties from the children that are
also on the parent, starting with the lowest level. The end generalized result can be seen in (c).

creates. To see the change, we compare the taxonomy before gener-
alization (Figure 4a) with the end result (Figure 4c) using Equation 4.
In Equation 4, ACT refers to the entire action set, with ACTB being
the starting taxonomy and ACTF being the �nal taxonomy.

∆ = 1 − |C(ACTB)|−|C(ACTF)|
|C(ACTB)| (4)

While Equation 4 is useful in determining the amount of redun-
dancy in an action taxonomy, there are several occasions in which
it is too optimistic a measure. As Figure 4 shows, reduction of
components only moves partial information around and may not
be applicable in situations that require the entire component to
be moved. In those instances, it is preferable to use a binary (per-
action instead of per-component) reduction, seen in Equation 6,
whereC is replaced by Equation 5. As binary reduction determines
the change in the number of actions with a component, it provide
a more realistic approximation of how the taxonomy is structured
and how much information is unnecessary for actual processing.

BIN (ACT) = act,∀act ∈ ACT ifC(act) > 1 (5)

∆ = 1 − |BIN (ACTB)|−|BIN (ACTF)|
|BIN (ACTB)| (6)

Both of these reduction measures hinge on the usability of a
component by an NPC. As more components and actions are added,
the size of the considered action set has an e�ect on the computa-
tional costs of the character’s reasoning tools. Also, the considered
action set may be a subset of the total action set, in that actions
appear the same to the reasoning mechanism. If we know that a
speci�c component of the action (i.e objects or conditions) is used
by the reasoning system, then we can determine if one taxonomy
is more appropriately structured than another.

5 EXPERIMENTATION
To show the e�cacy of our metrics on organizing NPC abilities, we
examine the e�ects our metrics have on determining the similarity
of NPC actions as well as game characters’ reasoning abilities2.
Our action set is based on the events of Shoulson et al. [31], seen
in Table 1. We automatically generate generalizations for objects
using WordNet [36] and the method of Pelkey and Allbeck [27].
This creates a total of 21 actions and 31 objects. The action set is
split between seven actions with complex behaviors (actions that
2The experiments presented here a part of a larger subset found in J. Timothy Balint’s
dissertation [2]

have more than one sub-action) and the rest are primitive behaviors.
The average number of object used in each action is four with a
standard deviation of two.

Our similarity metrics are designed to expose the nuances inher-
ent in a game character’s action set. Those similarities are stored to
ease the computational burden that appears when using a character
reasoning system. Therefore, we �rst show the di�erence using
the metrics of Section 4 have on the similarity between actions.
We then explore the e�ects di�erent taxonomical groupings have
on character reasoning abilities. Finally, we ground our work in a
game example, showing what similar actions mean in a game.

Action Name Type of Behavior # of Objects
Hide Primitive 2
Lock Primitive 2

EscapeCell Complex 3
Press Primitive 2
Guard Primitive 2
Trap Primitive 2

TrapGuardsAlarm Complex 9
TrapGuards Complex 9

Draw Primitive 2
Daze Primitive 2
Call Primitive 2

Approach Primitive 2
Give Primitive 3

Exchange Complex 3
Open Primitive 2

Unlock Primitive 3
Take Primitive 3

StealKey Complex 3
SoundAlarm Complex 7

Close Primitive 2
DistractGuard Complex 7

Table 1: Actions from Shoulson et al. [31]

FDG’18, August 7-10, 2018, Malmö, Sweden J.T. Balint, J.M. Allbeck, and R. Bidarra

(a) (b) (c)

Figure 5: Similarity matrices for comparing the behaviors of actions. (a) The Levenstein Distance using only a string of action
names. (b) Comparing the full shape of each behavior using component costs aswell. (c) Comparing the shape of each behavior
using component costs and Wu-Palmer similarity with a WordNet generated taxonomy for both actions and objects.

5.1 Semantic Relations from Action
components

To show what can be understood from the syntax of actions, us-
ing the edit distance and equations of Section 4, we examine the
similarity of di�erent actions and how the similarity changes with
parameterization. To examine the di�erent e�ects our metrics have,
we compute similarity scores between all actions and display the
result as a similarity matrix, seen in Figure 5(b-c). For comparison,
we also compute a similarity score with only the action names used
in the behaviors using the Levenshtein distance of Sagredo-Olivenza
et al. [29] seen in Figure 5a. The atomic character for the Leven-
shtein distance is l , and the compared string is the list of all names.
For all experiments, all actions are processed using the order of
Table 1. For the similarity shown in Figure 5, darker shades indicate
greater similarity between two actions.

From Figure 5, it can be seen that there are four very distinct
actions in the set. These correspond to large, complex behaviors
with many sub-actions, and it should be expected that any metric
that compares actions would �nd those di�erent from many of the
primitive actions. Figure 5b and Figure 5c also show more nuanced
bands in the lower right quadrant of the graphs, which are much
less prominent than in Figure 5a, especially when compared to
the diagonal (where each action is compared to itself). Figure 5b
and Figure 5c include a per action component analysis and a more
detailed shape analysis, with Figure 5c containing similarity based
on an organization of actions using Equation 2 and object compar-
ison that considers an object taxonomy. These two �gures show
that actions with similar components are considered more similar,
which is something that Figure 5a does not. Furthermore, Figure 5b
and Figure 5c display di�erences between the two most complex
actions, which is not easily seen in Figure 5a. Having a full structure
comparison and similarity of each component shows more subtle
di�erences between actions.

Based on the above analysis, we examine similarity computed
for only the objects (that is, no behavior or shape comparison) for
the set of actions, with the resulting similarity matrix shown in
Figure 6. In Figure 6, we examined two di�erent strategies for

(a) (b)

Figure 6: Similarity scores of the objects of actions when
comparing (a) only the objects used with (b) the objects and
their generalizations.

calculating the semantic di�erence of objects used in actions, one
with just the object names 6a, and one with a WordNet created
object taxonomy 6b. Similar to Figure 5, darker shades represent
more similar actions in Figure 6.

The similarity matrices of Figure 6 are much more varied than for
the analysis with the behavior in Figure 5 more closely following
the number of object comparison in Table 1. This is to be expected,
as Figure 6 is not biased by large, complex behaviors. The stark
bans from those complex behaviors still appear (as they use several
di�erent objects), but Figure 6 also shows di�erences between
primitive actions, evident in the upper left quadrant of both �gures
in Figure 6. An advantage of using component analysis is that
subtle di�erences between primitive actions are more visible. Using
an object hierarchy shows similarity between seemingly dissimilar
sets, evident in the darker squares in the lower right-hand corner
between Figure 6a and Figure 6b. This is due to the overall similarity
o�ered through the taxonomy, meaning that the type di�erences
are not fully di�erent.

Understanding Everything NPCs Can Do FDG’18, August 7-10, 2018, Malmö, Sweden

(a) (b)

(c)

Figure 7: A visual representation of the three taxonomy organizations used in this study from the unorganized set in Table 1.
(a) Actions organized to be condensed by condition-assertions. (b) Actions organized to be condensed by objects. (c) Action
organized into a WordNet taxonomy using Balint and Allbeck [3].

5.2 E�ects on Character Abilities
In this work we have discussed similarities between actions, which
can be used to organize an NPC’s abilities. To show the e�ects of
organization, we examine an application-based approach to orga-
nizing a character’s abilities. We have implemented two di�erent
virtual character reasoning algorithms: a location-object selection
mechanism for crowds of background characters based on Nor-
moyle et al. [25] and a condition-assertion based narrative genera-
tion system based on Kartal et al. [17]. We use these two methods to
display the changes in run-time that intelligently organizing action
sets a�ord. The location-object selection mechanism is analogous
to “what a crowd of characters can do in an area,” while the nar-
rative driven method is a more general planner. We use the same
action set as in Section 5.1.

We show the e�ect di�erent organization strategies of actions
into taxonomies have for two application-based components. To
do so, we devise three di�erent taxonomies, seen in Figure 7. One
is an application agnosticWordNet Hypernym strategy (Figure 7c,
generated using the method of Balint and Allbeck [3]). The other

two are hand-built taxonomies based on component similarity. We
use exact binary matching on objects (Figure 7b) and exact binary
matching on the combination of conditions and assertions (Fig-
ure 7a). We also add a baseline comparison of having no generaliza-
tions, analogous to Table 1. We run our generalization algorithm
on the di�erent taxonomies for both components and display the
results in Table 2. In Table 2, we show two measures for calculating
the change in components, partial comparison (Equation 4), and
binary comparison (Equation 6). Table 2 shows the contrast and
similarities between organization strategies when measuring the
movement of components in the taxonomy.

As can be seen from Table 2, using a taxonomy allows for com-
ponents of an action set to be combined together, generalizing the
actions. The change seen when organizations strategies match the
component being generalized is greater than when the organiza-
tion is mis-matched or agnostic. Non-binary redundancy is being
measured on the components and not the actions themselves. So,
an object focused method may have actions that are exact in all of
their siblings, but partial matches will also be compressed down.

FDG’18, August 7-10, 2018, Malmö, Sweden J.T. Balint, J.M. Allbeck, and R. Bidarra

∆ Component Type Figure 7c Figure 7b Figure 7a
Object (Equation 4) 90% 80% 93%
Condition-Assertion
(Equation 4)

92% 80% 90%

Object (Equation 6) 90% 65% 95%
Condition-Assertion
(Equation 6)

90% 100% 80%

Table 2: The change in components caused by the general-
izations for our organizational strategy.

Next, we show the e�ects of pre-computing similarities of ac-
tions on run-time using a location-object based action selection
mechanism, Normolye et al. [25]. We compute the change proba-
bilities for each action based on the objects in the system. To do
so, we �nd all actions with objects attached to them (similar to our
binary taxonomy measure) and consider this the action set the NPC
crowd considers (as Normolye et al. is a crowd based reasoning
system). Beginning conditions and end distributions between ac-
tions are randomized for each run. To better show the e�ects of
similarity pre-computation, each action is assigned ten locations
(so that the system is calculated on ten times as many actions). This
test was run on an Intel Xeon 2.3GHz, eight core processor on a
single thread. We run 1000 trials, reporting the average in Figure 8.

Figure 8: The average time to compute a distribution of
crowd characters for a location-object based method vs. the
organizational strategy.

What is not surprising from Figure 8 is that, as the total number
of actions considered decreases due to pre-computed similarity,
the average time to run also decreases. As the number of actions
to consider decreases, the number of equations the convex opti-
mization algorithm must solve also decreases, and so this result
is expected. What is more interesting is that the standard devia-
tion decreases dramatically as the compression increases. As the
connectivity of the system is controlled by the overall number of
considered actions, then reducing the total number of actions will
reduce the total possible connectivity. Less possible variance in the
connectivity will mean less variance overall. Figure 8 follows the
e�ects shown for binary object compression in Table 2, showing

that, for this method, the measure presented in Equation 4 is useful
for quickly calculating if an organization is useful.

We also test the e�ect di�erent organizations of the same ac-
tion set have on condition-assertions. Note from Table 2 that the
generalization ability of condition-assertions are much lower than
objects for both component and binary generalization. Condition-
assertions are much more varied than objects, and are therefore
more di�cult to compress. We use a narrative variation generator
that searches for action sequences that match a desired goal (asser-
tion) state. As we are only concerned with �nding the goal states,
we treat all narratives that match the goal state as viable, and do
not judge the narratives themselves. Each test started with �ve
random goals and was run on an Intel i5, four core processor on a
single thread. We report the average runtime for nineteen di�erent
trials in Figure 9.

Figure 9: The average time to compute a narrative plan vs.
the organizational strategy.

As can be seen from Table 2, the binary condition-assertion
focused taxonomy (Figure 7a) is the best for condition-assertion
reduction, whereas there is not as much di�erence for any par-
tial generalization. Figure 9 shows that the condition-assertion
reduction better re�ects how the change e�ects the runtime for
our narrative plan generator. This is because reduction on the
search tree is a�ected by the total number of actions. With fewer
considered actions, the chance of �nding an action that matches
the goal state through random simulation increase, as does the
probability that the assertions being searched for are found. In
reality, the search space is pruned through the use of the taxon-
omy, resulting in �nding a viable narrative quicker. The action sets
consisting of only the actions, the object-compressed taxonomy,
and the WordNet hypernym set all performed similarly, and slower
than the condition-assertion focused taxonomy. From Table 2, the
binary objects are di�erent for the binary condition-assertion set,
but are similar to the others. Therefore, when choosing which
compression measure to use on the taxonomies, how the reasoning
method works should be taken into consideration.

5.3 Demonstration
So far, we have shown how NPC actions can be compared and
how those comparisons can help organize actions into a taxonomy.
Taxonomies can hold pre-computed knowledge useful in NPC rea-
soning systems and so we provide a small example to illustrate how

Understanding Everything NPCs Can Do FDG’18, August 7-10, 2018, Malmö, Sweden

that can manifest in characters. We use a purchased virtual environ-
ment featuring two virtual characters shown in in Figure 10. The
virtual environment, which is modeled after a medieval style pub,
contains over eighty object types. We have two characters in the
environment, a male and female character. As part of the scenario,
the female character must move the male character away from the
bar in order to get to the exit. We do this as it is similar to the
scenario in event-centric planning, in which a prisoner NPC draws
over the Guard to move them away from his post. The reasoning
system for the female character is based on a condition-assertion
planning system.

(a)

(b)

Figure 10: A NPC character achieving the same e�ect using
twodi�erent actions. (a) The female character uses theDraw
action to get the male character’s attention. (b) The female
character uses the Call action to get the male character’s at-
tention.

Figure 7a is a condition-assertion binary taxonomy. This means
actions with a parent are completely equal on that component.
From this, there are two actions that attract the male character
and are equivalent: Draw (Figure 10a and Table 3a) and Call (Fig-
ure 10b and Table 3b). It should be seen from Figure 7a that these
two actions have the common parent, which means that these two
actions can be used interchangeably based on what they require
from the environment and what they accomplish. Simulating two
separate plans, we see that both of these actions have the same
conditions and e�ects, and therefore one can easily be replaced with
the other. Under further inspection of their de�nitions in Table 3,
the only di�erence in them is their name and primitive action used
(in this case, a single animation). This is a common occurrence,

where di�erent actions accomplish the same task. Usually a simu-
lation author would have to copy and change the de�nition from
one task to another, but by intelligently organizing actions into a
taxonomy, the condition-assertions (and objects) only have to be
de�ned once. This assists not only the simulation author, but also
the character reasoning system, as their single de�nition de�nes
them as equivalent.

Name Draw
Object Guard

condition �nishedAction(self.id)→SUCCESS
Behavior Draw

(a) Draw

Name Call
Object Guard

condition �nishedAction(self.id)→SUCCESS
Behavior Call

(b) Call

Table 3: Action de�nitions for (a)Draw and (b)Call

6 CONCLUSIONS, LIMITATIONS, AND
FUTUREWORK

In this work, we have proposed similarity metrics for NPC ac-
tions that a�ord a more complete understanding of the similarities
between actions, especially in regards to primitive actions. Analyz-
ing the components of actions provides a greater understanding
between primitive actions, whereas the full edit distance shape anal-
ysis more easily shows di�erences between complex actions. Our
metrics therefore show the nuances of actions that do not necessar-
ily appear when only considering the behavior as a sequence. We
also described how NPC reasoning can bene�t from intelligent or-
ganization of their abilities. The utility of an organization strategy
is dependent on the reasoning system. Pre-computed similarities
that the reasoning system uses are more bene�cial. Keeping this in
mind will allow for a wider variety of nuanced actions that can be
reasoned over in a similar, constrained budget.

Although intelligently organizing actions into taxonomies can
speed up a character’s reasoning abilities, the construction of such
taxonomies is not a trivial task. While work such as Balint and
Allbeck [3] do provide a method to create an action taxonomy,
the generated taxonomy does not take into consideration the com-
ponents of an action, instead electing to use a natural language
knowledge base to connect actions together. Optimizing based on
the authored meaning of an action, which we performed in Fig-
ure 7b and Figure 7a, still requires examining each action, which can
be a tedious process for a simulation author to undertake. Finding
an optimal organization of character abilities is di�cult to achieve.
Better taxonomies can be determined, but it may not be possible to
�nd an optimal taxonomy.

NPCs are not the only users of actions in games. Players often
follow a similar pattern, although their actions may be more primi-
tive. Player modeling is an active area of research and examining
player actions from in-game behaviors has received some attention

FDG’18, August 7-10, 2018, Malmö, Sweden J.T. Balint, J.M. Allbeck, and R. Bidarra

in recent years, using frequent pattern mining [7] or game play
traces [26]. A similarity metric based on the components and behav-
ior of actions may provide new and di�erent insight into grouping
players together and is an exciting area of future research.

ACKNOWLEDGMENTS
We would like to thank Nasrin Noor Ahmad for interpreting the
action set used in our experiments, as well as Aline Normoyle for
supplying the code of her stochastic algorithm. We would also like
to thanks Jessica Randall, Shib Duman, and Dianna M. Balint for
their suggestions and edits. This work is part of the programme
Virtual E-Coaching and Storytelling Technology for Post-Traumatic
Stress Disorder, which is �nanced by the Netherlands Organization
for Scienti�c Research (pr. nr. 314-99-104).

REFERENCES
[1] Marwan Badawi and Stéphane Donikian. 2007. The generic description and

management of interaction between autonomous agents and objects in an in-
formed virtual environment. Computer Animation and Virtual Worlds 18, 4-5
(2007), 559–569.

[2] J. Timothy Balint. 2017. Automated Extraction of Action Semantics for Embodied
Virtual Agents using Textual Knowledge Bases. Doctoral dissertation. George
Mason University, Fairfax, Virginia.

[3] Tim Balint and Jan M. Allbeck. 2015. Automated Generation of Plausible Agent
Object Interactions. In Intelligent Virtual Agents, Willem-Paul Brinkman, Joost
Broekens, and Dirk Heylen (Eds.). Lecture Notes in Computer Science, Vol. 9238.
Springer International Publishing, 295–309.

[4] Philip Bille. 2005. A survey on tree edit distance and related problems. Theoretical
computer science 337, 1-3 (2005), 217–239.

[5] Rama Bindiganavale, William Schuler, Jan M. Allbeck, Norman I. Badler, Ar-
avind K. Joshi, and Martha Palmer. 2000. Dynamically Altering Agent Behav-
iors Using Natural Language Instructions. In Proceedings of the Fourth Interna-
tional Conference on Autonomous Agents. ACM, New York, NY, USA, 293–300.
http://doi.acm.org/10.1145/336595.337503

[6] Adi Botea, Markus Enzenberger, Martin Müller, and Jonathan Schae�er. 2005.
Macro-FF: Improving AI planning with automatically learned macro-operators.
Journal of Arti�cial Intelligence Research 24 (2005), 581–621.

[7] Zhengxing Chen, Magy Seif El-Nasr, Alessandro Canossa, Jeremy Badler, Ste-
fanie Tignor, and Randy Colvin. 2015. Modeling individual di�erences through
frequent pattern mining on role-playing game actions. In Eleventh Arti�cial
Intelligence and Interactive Digital Entertainment Conference. AAAI Press, 2–7.

[8] Michele Colledanchise, Ramviyas Parasuraman, and Petter Ögren. 2018. Learning
of behavior trees for autonomous agents. IEEE Transactions on Games PrePrint,
99 (2018), 1–1.

[9] Lavindra De Silva and Lin Padgham. 2004. A comparison of BDI based real-
time reasoning and HTN based planning. In 17th Australian Joint Conference on
Arti�cial Intelligence. Springer, Cairns, 1167–1173.

[10] Kutluhan Erol, James Hendler, and Dana S. Nau. 1995. Semantics for Hierar-
chical Task-Network Planning. Technical Report T.R. 95-9. University of Mary-
land,College Park,MD,20742, Computer Science Department,Institute for Systems
Research,. 30 pages.

[11] Richard E Fikes and Nils J Nilsson. 1972. STRIPS: A new approach to the appli-
cation of theorem proving to problem solving. Arti�cial intelligence 2, 3 (1972),
189–208.

[12] John Funge. 2000. Cognitive modeling for games and animation. Commun. ACM
43, 7 (2000), 40–48.

[13] Kyunglyul Hyun, Kyungho Lee, and Jehee Lee. 2016. Motion Grammars for
Character Animation. Computer Graphics Forum 35 (2016), 103–113.

[14] Marcelo Kallmann and Daniel Thalmann. 1999. Direct 3D Interaction with Smart
Objects. In Proceedings of the ACM Symposium on Virtual Reality Software and
Technology (VRST ’99). ACM, New York, NY, USA, 124–130.

[15] Mubbasir Kapadia, Nuria Pelechano, Jan Allbeck, and Norm Badler. 2015. Virtual
Crowds: Steps Toward Behavioral Realism. Morgan & Claypool.

[16] Mubbasir Kapadia, Fabio Zünd, Jessica Falk, Marcel Marti, Robert W Sumner,
and Markus Gross. 2015. Evaluating the authoring complexity of interactive
narratives with interactive behaviour trees. Foundations of Digital Games (2015).

[17] Bilal Kartal, John Koenig, and Stephen J. Guy. 2014. User-driven Narrative Varia-
tion in Large Story Domains Using Monte Carlo Tree Search. In Proceedings of
the 2014 International Conference on Autonomous Agents and Multi-agent Systems
(AAMAS ’14). International Foundation for Autonomous Agents and Multiagent
Systems, Richland, SC, 69–76.

[18] John Paul Kelly, Adi Botea, and Sven Koenig. 2008. O�ine Planning with
Hierarchical Task Networks in Video Games.. In The 4th Arti�cial Intelligence
and Interactive Digital Entertainment International Conference. AAAI Press, Menlo
Park CA, 60–65.

[19] Jassin Kessing, Tim Tutenel, and Rafael Bidarra. 2009. Services in game worlds:
A semantic approach to improve object interaction. In Entertainment Comput-
ing–ICEC 2009. Lecture Notes in Computer Science, Vol. 5709. Springer, Berlin,
Heidelberg, 276–281.

[20] Jassin Kessing, Tim Tutenel, and Rafael Bidarra. 2012. Designing semantic game
worlds. In Proceedings of the The third workshop on Procedural Content Generation
in Games. ACM, 2.

[21] Jean-Luc Lugrin and Marc Cavazza. 2007. Making Sense of Virtual Environments:
Action Representation, Grounding and Common Sense. In IUI. ACM, New York,
NY, USA, 225–234.

[22] Maurizio Mancini and Catherine Pelachaud. 2007. Dynamic Behavior Quali�ers
for Conversational Agents. In Intelligent Virtual Agents (Lecture Notes in Computer
Science), Vol. 4722. Springer, Paris, France, 112–124.

[23] Negin Nejati, Tolga Könik, and Ugur Kuter. 2009. A Goal- and Dependency-
directed Algorithm for Learning Hierarchical Task Networks. In Proceedings of
the Fifth International Conference on Knowledge Capture (K-CAP ’09). ACM, New
York, NY, USA, 113–120.

[24] Xenija Neufeld, Sanaz Mostaghim, Dario Sancho-Pradel, and Sandy Brand. 2018.
Building a Planner: A Survey of Planning Systems Used in Commercial Video
Games. IEEE Transactions on Games Preprint (2018), 1–1.

[25] Aline Normoyle, Maxim Likhachev, and Alla Safonova. 2014. Stochastic Activity
Authoring with Direct User Control. In Proceedings of the 18th Meeting of the
ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (I3D ’14).
ACM, New York, NY, USA, 31–38.

[26] Joseph C Osborn and Michael Mateas. 2014. A game-independent play trace
dissimilarity metric.

[27] Cameron Pelkey and Jan M. Allbeck. 2014. Populating Virtual Semantic Envi-
ronments. Computer Animation and Virtual Worlds 24, 3 (May 2014), 405–414.

[28] Mark O. Riedl and R. Michael Young. 2010. Narrative Planning: Balancing Plot
and Character. J. Artif. Int. Res. 39, 1 (Sept. 2010), 217–268.

[29] Ismael Sagredo-Olivenza, Pedro Pablo Gómez-Martín, Marco Antonio Gómez-
Martín, and Pedro Antonio González-Calero. 2018. Trained Behavior Trees:
Programming by Demonstration to Support AI Game Designers. IEEE Transac-
tions on Games PrePrint, 99 (2018), 1–1.

[30] Alexander Shoulson, Francisco M. Garcia, Matthew Jones, Robert Mead, and
Norman I. Badler. 2011. Parameterizing Behavior Trees. In Proceedings of the 4th
International Conference on Motion in Games (MIG’11). Springer-Verlag, Berlin,
Heidelberg, 144–155.

[31] Alexander Shoulson, Max L Gilbert, Mubbasir Kapadia, and Norman I Badler.
2013. An event-centric planning approach for dynamic real-time narrative. In
Motion in Games. ACM, Doublin, Ireland, 121–130.

[32] Alexander Shoulson, Mubbasir Kapadia, and Norman I Badler. 2013. Paste: A
platform for adaptive storytelling with events. Intelligent Narrative Technologies
6 (2013), 216.

[33] Moritz Tenorth and Michael Beetz. 2012. A uni�ed representation for reasoning
about robot actions, processes, and their e�ects on objects. In Intelligent Robots
and Systems (IROS), 2012 IEEE/RSJ International Conference on. 1351–1358.

[34] Marcus Thiebaux, Stacy Marsella, Andrew N. Marshall, and Marcelo Kallmann.
2008. SmartBody: Behavior Realization for Embodied Conversational Agents.
In Proceedings of the 7th International Joint Conference on Autonomous Agents
and Multiagent Systems - Volume 1 (AAMAS ’08). International Foundation for
Autonomous Agents and Multiagent Systems, Estoril, Portugal, 151–158.

[35] Tim Tutenel, Rafael Bidarra, Ruben M. Smelik, and Klaas Jan De Kraker. 2008.
The Role of Semantics in Games and Simulations. Comput. Entertain. 6, 4 (Dec.
2008), 57:1–57:35.

[36] Princeton University. 2010. About WordNet. Technical Report. Princeton Univer-
sity. http://wordnet.princeton.edu

[37] Josep Valls-Vargas, Santiago Ontanón, and Jichen Zhu. 2013. Towards story-based
content generation: From plot-points to maps. IEEE, 1–8.

[38] Zhibiao Wu and Martha Palmer. 1994. Verbs Semantics and Lexical Selection.
In Proceedings of the 32nd Annual Meeting on Association for Computational
Linguistics (ACL ’94). Association for Computational Linguistics, Stroudsburg,
PA, USA, 133–138.

[39] R Michael Young, Mark O Riedl, Mark Branly, Arnav Jhala, R J Martin, and C J
Saretto. 2004. An architecture for integrating plan-based behavior generation
with interactive game environments. Journal of Game Development 1, 1 (2004),
51–70.

[40] Richard Zhao and Duane Szafron. 2014. Virtual Character Behavior Architecture
using Cyclic Scheduling.

[41] Alexander Zook, Stephen Lee-Urban, Mark O Riedl, Heather K Holden, Robert A
Sottilare, and Keith W Brawner. 2012. Automated scenario generation: toward
tailored and optimized military training in virtual environments. In the Interna-
tional Conference on the Foundations of Digital Games (FDG ’12). ACM, Raleigh,
North Carolina, 164–171.

http://doi.acm.org/10.1145/336595.337503
http://wordnet.princeton.edu

	Abstract
	1 Introduction
	2 Related Work
	3 Taxonomies in Game Worlds
	4 Similarity in NPC Actions
	4.1 Component Based Similarity
	4.2 Behavior Based Similarity
	4.3 Action Generalization and Ability Comparison

	5 Experimentation
	5.1 Semantic Relations from Action components
	5.2 Effects on Character Abilities
	5.3 Demonstration

	6 Conclusions, Limitations, and Future Work
	Acknowledgments
	References

