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Using Copulas for Modeling Stochastic Dependence
in Power System Uncertainty Analysis

George Papaefthymiou, Member, IEEE, and Dorota Kurowicka

Abstract—The increasing penetration of renewable generation
in power systems necessitates the modeling of this stochastic
system infeed in operation and planning studies. The system anal-
ysis leads to multivariate uncertainty analysis problems, involving
non-Normal correlated random variables. In this context, the
modeling of stochastic dependence is paramount for obtaining
accurate results; it corresponds to the concurrent behavior of
the random variables, having a major impact to the aggregate
uncertainty (in problems where the random variables correspond
to spatially spread stochastic infeeds) or their evolution in time (in
problems where the random variables correspond to infeeds over
specific time-periods).

In order to investigate, measure and model stochastic depen-
dence, one should transform all different random variables to a
common domain, the rank/uniform domain, by applying the cumu-
lative distribution function transformation. In this domain, special
functions, copulae, can be used for modeling dependence. In this
contribution the basic theory concerning the use of these functions
for dependence modeling is presented and focus is given on a basic
function, the Normal copula. The case study shows the application
of the technique for the study of the large-scale integration of wind
power in the Netherlands.

Index Terms—Copula, correlation, Monte Carlo simulation,
stochastic dependence, stochastic generation, uncertainty analysis,
wind power.

I. INTRODUCTION

T HE integration of stochastic generation in the form of re-
newable energy sources in the power system necessitates

the incorporation of uncertainty analysis as a integral part of
the power system planning and operation [1]. In system plan-
ning, this power generation uncertainty should be quantified for
the determination of the variability of the system power flows,
which is central for the system dimensioning. In system op-
eration, this uncertainty is translated into forecast uncertainty;
the incorporation of forecast uncertainty in the system manage-
ment is central for the optimal operation of power systems with
high penetration of stochastic energy sources. In both cases,
the system analysis leads to a multivariate uncertainty analysis
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problem, that involves correlated random variables that follow
different distributions. To clarify this decomposition into a mul-
tivariate uncertainty analysis problem, the case of wind power
will be discussed.

For long-term planning studies, Weibull distributions may be
used for modeling the wind activity in each generation site. The
wind power infeed is further obtained as a nonlinear transfor-
mation of the Weibull wind speed distribution (wind speed/wind
power characteristic of the wind turbine generators) yielding a
nonstandard power distribution. The wind speeds between dif-
ferent locations present a significant degree of correlation due
to their mutual dependence on wind activity which is translated
into correlation between the system wind power infeeds. Not
taking into account this correlation leads to a severe underes-
timation of the variability of the system power flows and con-
sequently to an underestimation of the risks related to specific
design decisions [2].

For the operation of power systems with high penetration
of wind power, estimates of the wind power production for a
number of hours ahead are used in the form of point forecasts
[3]. However, a large part of the research efforts is concentrated
on developing methods for giving the prediction uncertainty,
most commonly in the form of probabilistic forecasts of wind
generation [4]. They correspond to nonparametric probabilistic
predictions, i.e., for which no restrictive assumption is made on
the shape of predictive densities and may take the form of quan-
tiles, interval or density forecasts. Considering different geo-
graphic areas and different prediction horizons, the prediction
errors appear to be correlated, due to the movement of meteoro-
logical fronts or generally by inertia of meteorological systems
[5], [6].

In the related literature, focus is mainly given on the mod-
eling of time-dependent stochasticity in stochastic (renewable)
energy sources (see, e.g., [7]–[9]). The problem is treated for
each hour separately and the generation uncertainty is gener-
ally modeled as a normal distribution with a specific standard
deviation around a given mean. In [7], a clustering technique
for the grouping and the modeling of stochastic generation is
presented, treating stochastic generation in a time-dependent
framework. The case of linearly dependent normally distributed
nodal power injections was treated in [8] and [9]. An alterna-
tive approach for the modeling of linearly correlated system in-
puts has been presented in [10] and further developed in [11],
where the Gram–Schmidt orthogonalization is used in order to
transform the linearly correlated system inputs into a weighted
sum of independent random variables. The time-dependent ap-
proach is suitable for the modeling of the system load, which
by nature presents a high time-dependence on seasonality and
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daily patterns or for performing rough system analyses where
a multistate unit approach is enough for the modeling of sto-
chastic generation [7]. However, in many cases the time infor-
mation will not lead to a significant reduction of the uncertainty,
e.g., the wind power output for working day/noon/summer may
vary from zero to nominal, depending on the weather character-
istics. In this case, the problem is decomposed to the modeling
of correlated non-Normal random variables. This necessitates
the employment of algorithms that extend the concept of linear
dependence and can be applied to the case of non-Normality.

fwrIn this contribution, a Monte Carlo simulation framework
is presented for the treatment of this problem, based on the sepa-
ration of the modeling of the dependence structure from the mar-
ginal distributions. Although the importance of marginal distri-
butions is well recognized, the role of stochastic dependence for
the system analysis is crucial, since it corresponds to the concur-
rent behavior of the respective random variables, having a major
impact on their aggregate behavior. By separating the modeling
of dependence, a better understanding of its contribution on the
output is achieved. The next section contains an introduction to
concepts of dependence.

II. ROLE OF STOCHASTIC DEPENDENCE AND

IMPACT OF MARGINALS

Stochastic dependence refers to the behavior of a random
variable relative to another. In this context, two random vari-
ables are independent if the occurrence of a specific value of
the one has no impact on the probability of occurrence of any
value of the other. On the contrary, perfect positive dependence
refers to the situation where the occurrence of high (low) values
for the one random variable implies that the other takes also high
(low) values. To analyze the role of stochastic dependence, we
will further focus on these two dependence concepts.

Let and two random variables that are uniformly dis-
tributed in [0, 1]. In Fig. 1, the scatter diagrams, the cobweb
plots and the distribution of the sum of the random variables
for the two dependence concepts are presented. Independence
leads to a random matching of the occurrences in the domain
of each random variable as can be seen by the cobweb plot of
Fig. 1(c), leading to a uniform covering of the area in the scatter
plot of Fig. 1(a). Perfect dependence leads to a matching be-
tween the occurrences of the random variables as can be seen in
the cobweb plot of Fig. 1(d) interpreted as a linear relationship
in the scatter plot of Fig. 1(b).

In Fig. 1(e) and (f), one can see how different the distribu-
tions of the sum for the two dependence structures are. Both
distributions have the same mean value 1 and the same domain
[0, 2],1 but different shapes. This can be easily explained as in
the case of independence the occurrence of high (or low) values
for both random variables is scarce, while in the case of per-
fect dependence these values are always combined, leading to
a higher occurrence of values towards the tails of the distribu-
tion. Respectively, every other dependence structure will lead
to a different relative matching of the values and therefore a dif-
ferent distribution for the sum of the random variables.

1As known from basic probability theory, the mean value of the sum of
random variables always equals the sum of the mean values of the respective
random variables [12].

Fig. 1. Independence and perfect dependence between two uniform random
variables. (a) Independence-scatter plot. (b) Perfect dependence-scatter plot. (c)
Independence-cobweb plot. (d) Perfect dependence-cobweb plot. (e) Indepen-
dence-sum. (f) Perfect dependence-sum.

The plots in Fig. 1 refer to uniform marginal distributions. In
Fig. 2, the scatter diagrams for the same dependence concepts
for the case of a Normal and a Weibull random variable 2

[Fig. 2(a)] are presented. Independence leads to the scatter plot
in Fig. 2(b), while the perfect dependence [Fig. 2(c)] gives a
monotonic relationship between and .

Independence is easily recognized for uniform variables
[Fig. 1(a)]; however for different marginal distributions scatter
plots representing independence would change depending on
the marginals [see, e.g., Fig. 2(b)]. The same conclusion is
drawn for the case of perfect dependence, where the linear
relationship between uniforms [Fig. 1(b)] is becoming a mono-
tonic one between random variables with different marginals
[Fig. 2(c)]. Hence, the main efforts in the area of stochastic
dependence modeling have been focused on isolating the effect
of marginals from the dependence structure.

For stochastic dependence, one is interested in the behavior
of the ranks of the respective random variables rather than the
actual values they take. Intuitively, two random variables will be
highly dependent if “when the one takes large (small) values in
its domain, the other one takes large (small) values in its domain
as well” and not necessarily if “when the one takes the value

2The mean value and standard deviation for � are � � �� and � � �,
respectively. The scale and shape parameter for � are � � �� and � � �,
respectively.
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Fig. 2. Independence and perfect dependence between a Normal � and a
Weibull � random variable. (a) pdfs. (b) Independence-scatter plot. (c) Per-
fect dependence-scatter plot.

100, the other takes the value 100 also.” Therefore, the mea-
suring and modeling of stochastic dependence between arbitrary
random variables should be performed based on the respective
ranks of the random variables. By applying specific transforma-
tions, all random variables in the problem are converted to ranks
or uniforms. In this common uniform/rank domain the measure-
ment and modeling of stochastic dependence takes place. The
respective theory is presented in the next section.

III. STOCHASTIC DEPENDENCE MODELING USING COPULAS

A. From Marginals to Uniforms/Ranks: The cdf
Transformation

An arbitrary continuous random variable can be trans-
formed to uniform by the application of the cumulative distribu-
tion function (cdf) transformation. This uniform variable corre-
sponds to the respective ranks of the distribution. Accordingly,
the inverse cdf transformation (if it exists) can be used for trans-
forming the uniform random variable to its actual domain.

By definition, for a random variable with an invertible cdf
, the random variable follows

a uniform distribution on the interval [0, 1].3 Thus, if is
invertible the following relation holds:

(1)

where is a random variable that is uniformly distributed on
[0, 1]. In Fig. 3, the relation (1) is presented schematically.
This relationship forms the basis for the sampling of a random
variable in Monte Carlo simulation. In particular, the general

3The proof of this statement is as follows:

��� � � ��� �� � � �� ��� � �� �� � � � ���

�� � ��� � �	

Fig. 3. Sampling of an arbitrary random variable.

Fig. 4. Sampling of a random variable based on measured data.

Fig. 5. Increasing transformations and respective ranks.

random number generation algorithms provide samples that are
uniformly distributed. By applying (1), the generated uniform
samples are transformed to the desired distribution.

In cases when is not available in closed form, the empir-
ical cdf can be used. When sampling with the empirical cdf
we may first perform an interpolation to get a smooth distribu-
tion (the case of linear interpolation is presented in Fig. 4) or we
can simply sample the empirical distribution by choosing one of
the border values.

Transforming data to ranks is simple. One should just sort
the data and replace their values by their positions in the sorted
file. Fig. 5 presents the case of the application of two different
increasing transformations, and to a sample population.
One can see that although the actual numbers change, the ranks
remain unchanged.

The significance of the cdf transformation lies in the property
that its application does not affect the dependence structure.
In particular, the ranking (and consequently the stochastic
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dependence) of a sample population remains the same under
increasing transformations. This is investigated in the next
section.

B. Rank Correlation

To measure the strength of dependence between random vari-
ables, a measure of dependence is required. The known depen-
dence measure, the product moment (linear) correlation can
be applied in this setting. It measures the degree of linear rela-
tionship between the random variables and is invariant to linear
transformations [12]. However, since it is applied in the actual
domain of the random variables, it is affected by the marginal
distributions and is not invariant to increasing transformations
as the ones presented in the previous section. To avoid these
shortcomings, one should apply this measure to the respective
ranks of the random variables.

The product moment correlation of ranks is called the rank
correlation . The rank correlation of the random variables
and with cdf and is defined as

(2)

Since rank correlation is the product moment correlation of uni-
form variables (see (1)), it always exists and it takes values in
the interval [ 1,1]. It measures the monotonic relationship be-
tween the random variables. Its equality to 1 corresponds to per-
fect positive dependence, hence the monotonic relationship be-
tween variables [Fig. 1(b) and Fig. 2(c)]. By using the measure
in the uniform/rank domain, the effect of the marginal distribu-
tions on the value of the measure is removed. One can see this
by applying the two measures for the sample populations pre-
sented in Fig. 5. In particular, the product moment correlation
yields , while . In both cases,
the rank correlation is the same and equal to 0.30.

For uniform variables, linear and rank correlations are the
same , but in general they are different. For the
joint Normal distribution, the relationship between and
is known: let (X,Y) be random vectors with joint Normal
distribution, then

(3)

For multivariate problems, all mutual rank correlations be-
tween the random variables are gathered in the form of a rank
correlation matrix .

C. Copulas

1) General: By applying the cdf transformation to all
random variables of the problem the transition to a common
domain (rank/uniform domain) is achieved. The dependence
modeling takes place in this common domain and the random
variables can be further transformed back to their original
distributions by the inverse-cdf transformation without any
loss of information. Fig. 6 provides a representation of this
procedure. This transformation yields a decomposition of the
stochastic modeling into two basic components:

• the one-dimensional marginal distributions;
• the multidimensional stochastic dependence structure be-

tween the ranks of input random variables.

Fig. 6. Copula modeling mechanism.

Copulas are functions that join or ‘couple’ one-dimensional
marginal distributions in multivariate distribution functions.
Alternatively, copulas are multivariate distribution functions
whose one-dimensional marginals are uniform on the interval
[0, 1] [13]. Sklar’s theorem [14] offers the bridge between
copula and joint distribution of a number of random variables:
The random variables and with cdf and , are joined
by copula if their joint distribution can be written

(4)

If and are continuous, then is unique.
From (1) it can be written and , where
and are realizations of the uniform random variables and
, respectively. In this case, the (4) will become

(5)

This equation can be used for the construction of the copula
function from the respective multivariate distribution function.

2) Families of Copulas: Many families of copulas are known
in the literature. According to the relation (4) every joint distri-
bution yields corresponding copula, e.g., the Normal (Gaussian)
copula, the Elliptical copulas. There are families of copulas that
are not related to any specific family of multivariate distribu-
tions, e.g., the Archimedian copulas, the diagonal band copula.
For details on the properties of the different families of copulas,
one may refer to [13], [15], and [16].

In Fig. 7, the scatter diagrams for four different copulas with
the same rank correlation are presented. Although the same rank
correlation is kept, the scatter diagrams are different. For the
Normal, Frank’s and the minimum information copulas differ-
ences are not pronounced. However the scatter plot for diagonal
band copula differs significantly from the others.

Copulas allow realization of full range of values for the rank
correlation. In Fig. 8, the scatter diagrams for the diagonal band
copula with different values of ranging from 1 to 0.8 are
presented.

To conclude and summarize, we may notice that it is more
convenient to investigate and model stochastic dependence not
in the actual domain but in the common uniform/rank domain.
The following steps should therefore be followed when mod-
eling dependent random variables:

1) Rank correlations: the rank correlations between the
random variables should be calculated form data.
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Fig. 7. Scatter diagrams for four types of copulas under the same rank corre-
lation. (a) Normal copula � � ���. (b) Frank’s copula � � ���. (c) Diagonal
band copula � � ���. (d) Minimum information copula � � ���.

Fig. 8. Scatter diagrams for the diagonal band copula for different rank corre-
lations. (a) � � ��. (b) � � ����. (c) � � ���. (d) � � ���.

2) Copula: a copula with given rank correlation should
be used as a dependence function between ranks of the
random variables.

3) Inverse-cdf: the correlated ranks should be transformed
into the given marginal distribution.

In the following, the modeling algorithm for the case of the
most commonly used copula, the Normal/Gaussian copula is
presented in detail.

D. Normal/Gaussian Copula: Joint Normal
Transform Methodology

The Normal/Gaussian copula is the copula that corresponds
to the multivariate Normal distribution. The copula can be con-

Fig. 9. Joint Normal transform methodology.

structed from the multivariate Normal distribution using (5).
The density function is further obtained from the density func-
tion of the Normal distribution by differentiating. The formula
for the bivariate case is

(6)

where is the bivariate density of the Normal distribution with
correlation and is the inverse of the standard Normal dis-
tribution. Notice that is the parameter of the Normal copula in
the bivariate case. In the multivariate case the linear correlation
matrix of multivariate Normal forms the set of parameters
of the Normal copula. To sample a distribution with given mar-
gins and the Normal copula we can use standard theory of the
multivariate Normal distribution. A set of Normals correlated
according to linear correlation matrix can be generated if
is positive semi-definite. The margins are transformed into uni-
forms by applying the Normal-cdf transformation , according
to the theory presented in Section III-A. Further, based on the
standard copula theory, the inverse-cdf transformation should
be applied for obtaining the actual marginal distributions of
the random variables. This technique is called the joint Normal
transform (JNT) methodology [16], [17]. In Fig. 9, a schematic
representation of this procedure is presented, in accordance to
Fig. 6.

With the above methodology, the obtained random variables
will be correlated according to the product moment correlation
matrix . In order to obtain the desired rank correlation matrix

, one should start from an appropriate matrix . This ma-
trix can be calculated from the relationship between linear and
rank correlation for the joint Normal distribution presented in
(3). Note however that this calculation can lead to obtaining a
nonpositive definite matrix [1], [16].

Although by definition a correlation matrix is positive
semi-definite, problems with positive semi-definiteness can be
sometimes encountered in real applications. It often happens
that correlations are estimated by noisy procedures. It may
thus arise that a “measured” correlation matrix is nonpositive
semi-definite. This hinders the applicability of the method.
In this case, the method may be applied after repairing the
violations of positive semi-definiteness or other methods
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should be employed that do not require the full definition of
the correlation matrix [16]. Repairing the violations of positive
semi-definiteness comes down to the transformation of the
initial nonpositive semi-definite matrix to a positive semi-def-
inite matrix that is as close as possible to the original one. In
particular, a method has to be used that:

1) is guaranteed to produce a positive semi-definite matrix;
2) does not require a preexisting acceptable (positive semi-

definite) matrix to begin with;
3) is fast to implement even for large matrices;
4) allows the determination of a feasible matrix that most

closely approximates a target real symmetric (but non-
positive-definite) matrix in a well-defined and quantifiable
sense.

In [18], two main methods for repairing violations of positive
semi-definiteness are presented; the hypersphere decomposi-
tion, which satisfies all above properties and a second, faster
method, the spectral decomposition, which shares the first three
properties but is not guaranteed to satisfy the fourth property.
However, as mentioned in [18], empirical studies show that
the results obtained using this second approach are extremely
close, albeit not identical, to the ones obtained using the first
technique.

Another disadvantage of the Normal copula is that it fails
to represent asymptotic tail dependence, i.e., dependence be-
tween the extreme values of the random variables. In particular,
as shown in [19], the Normal copula gives asymptotic indepen-
dence, provided that . Regardless of how high a correlation
we choose, if we go far enough into the tail, extreme events ap-
pear to occur independently of each other. In order to represent
tail dependence, e.g., elliptical copulas can be used.

In the following we demonstrate the applicability of the JNT
methodology in a comprehensive example: the impact of large-
scale integration of wind power in the power system of the
Netherlands. In this example we present how measurement data
from different data sources can be combined.

IV. CASE-STUDY: WIND POWER INTEGRATION

IN THE NETHERLANDS

The study case involves the evaluation of the impact of the
integration of a total capacity of 1.5 GW onshore and 3.5 GW
offshore wind power in the power system of the Netherlands in
2020.

For the analysis, three different data sets are used: measure-
ments for onshore locations, measurements for offshore loca-
tions and load data. The availability and adequacy of the respec-
tive data may be categorized as follows:

1) Well-documented data: in the specific study case, we con-
sider ten locations for the onshore wind parks (sites 1–9
and 13 in Fig. 10); for each location, hourly wind speed
values are available for a period of 20 years from January
1, 1984 until December 31, 2003 [20]. This data set forms
a well documented entity, with a small number of missing
values. The planned capacities for each onshore wind park
are 100 MW for the locations 1–5 and 7–8, 200 MW for
location 9, and 300 MW for locations 6 and 13. The total
planned onshore capacity is 1500 MW.

Fig. 10. Wind park locations in the Netherlands.

2) Not well-documented data: measurements for five offshore
sites are available, namely for the sites 11, 12, 14 (near-
shore wind parks) and 10 and 15 (offshore wind parks)
in Fig. 10. The available data set corresponds again to
hourly measurements for the same period as for the on-
shore wind parks. This data set however is not so well doc-
umented, presenting a relatively large number of missing
values. The total planned offshore capacity is 3500 MW.
In the following matrix, the planned capacities for each of
these locations are presented together with the percentage
of missing values for each data set.

3) Different data system: the load data set corresponds to a
different recording period and sampling frequency, in par-
ticular 15-min averages for a period of one year, i.e., be-
tween January 1 and December 31, 2003.

The data sets involved in the analysis are not uniform; they
come from different data systems and span different periods
with different sampling frequencies. Such a non-uniformity of
the data sets is usual for real applications, due to the use of
different databases and measuring systems. In such cases, the
analysis should be based on extraction and utilization of max-
imum information from the data sets. The application of the JNT
methodology requires the computation of the following statis-
tics:

1) Marginal distributions: the wind speed/power distributions
at each generation site and the system load distribution.

2) Dependence structure: the rank correlation matrix between
the wind speed random variables and the system load.

A. Marginal Distributions

1) Wind Speed/Power Distributions: The wind speed distri-
butions for the sites where data are available are obtained after
adapting the measurement height (10 m) to the wind turbine hub
height. Typical pitch-controlled wind turbine generators (WTG)

Authorized licensed use limited to: TU Delft Library. Downloaded on July 06,2010 at 11:29:31 UTC from IEEE Xplore.  Restrictions apply. 



46 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 24, NO. 1, FEBRUARY 2009

Fig. 11. WTG wind speed/power characteristic and distributions.

are considered for this project, with a hub height of 80 m, a
nominal power of 2 MW and cut-in, nominal and cut-out wind
speed values of 3.5, 13.5 and 25 [m/s]. In Fig. 11, the wind
speed and wind power distributions for a such a wind turbine
generator are presented as obtained by a 10 000-sample Monte
Carlo simulation. On the left graph, the wind speed distribu-
tion for a typical site is presented (discontinuous line), together
with the wind speed/power wind turbine generator character-
istic (continuous line). In the right graph, the obtained wind
power distribution is presented. An accumulation of probability
masses at the zero and nominal wind power is observed. The
zero values correspond to wind speeds lower than the cut-in and
higher than the cut-out wind speed values. The nominal power
output values correspond to wind speeds between the nominal
and the cut-out values. The aggregate power curve of the wind
park is consider similar to the one of a single wind turbine. This
simplistic approximation is employed here in order to give em-
phasis to the impact of stochastic dependence. Alternatively, one
may use a multiturbine power curve approach from the related
literature (see, e.g., [21]) without rendering the applicability of
the methodology.

The sampling of the wind speed distributions has been per-
formed based on the empirical distribution obtained by data,
according to the methodology presented in Fig. 4. In Fig. 12,
the measured wind speed distributions for two characteristic
sites, the onshore site 1 [Fig. 12(a)] and the offshore site 14
[Fig. 12(b)] are compared to the simulated ones obtained from a
20 000-sample Monte Carlo simulation. The simulated distribu-
tions yield very accurate approximations of the measured ones.

2) System Load Distribution: In Fig. 13, the pdf and cdf for
the extrapolated system load for 2020 are presented. The ex-
trapolation is performed based on a yearly load growth rate of
2%. This results in an expected system load variation for 2020
ranging approximately from 9 GW to 19 GW. As may be seen,
the planned wind power capacity corresponds to a significant
part of the system demand.

B. Dependence Structure: Correlation Matrices

For the application of the method, the transformed correlation
matrix should be calculated from the rank correlation matrix

, based on (3). Since different datasets are involved in the
analysis, the matrix is calculated in parts, based on the max-
imum time-intersection of the respective datasets. In particular,
the data for the period of 20 years are used for the derivation of
the mutual wind speed rank correlations between onshore sites,

Fig. 12. Measured and simulated wind speed distributions at site 1 (onshore)
and 14 (offshore). (a) Measurements site 1. (b) Measurements site 14. (c) Sim-
ulation site 1. (d) Simulation site 14.

Fig. 13. System load distributions for the year 2020. (a) pdf. (b) cdf.

a revised version of this dataset without the missing values is
used for the estimation of the rank correlations between offshore
sites and between onshore and offshore, whereas the rank corre-
lations between the wind speeds and system load are calculated
for the common year of measurements, according to the lower
measurement frequency, i.e., hourly mean values.

The 16 16 rank correlation matrix is presented in Table I.
The first row and column correspond to the system load, while
the numbering of the other rows is in accordance to the loca-
tions in Fig. 10. A low correlation between the wind activity
and the system load is observed, ranging from zero to 0.24. The
onshore wind presents a low rank correlation to the system load,
while the offshore wind appears to be practically independent.
The rank correlations between the wind speeds range between
0.47 and 0.91. Hence, the wind resources are correlated even for
distant locations throughout the country.

C. The 5-GW Integration Scenario

According to the simulation procedure presented in
Section III-D, first the transformed correlation matrix is
calculated from the rank correlation matrix according to
(2). Both matrices are positive semi-definite, so the method can
be applied directly.
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TABLE I
RANK CORRELATION MATRIX � FOR THE CASE STUDY

Fig. 14. Onshore and offshore wind power distributions for the 5-GW integration scenario. (a) Onshore. (b) Offshore.

In Fig. 14, the aggregate onshore and offshore wind power
are presented. As may be seen, the different resources and de-
pendence structures for onshore and offshore wind power lead to
completely different distributions for the aggregate wind power.
The offshore wind power distribution presents a uniform be-
havior for power values from zero to nominal and the accumula-
tion of probability mass in the nominal value (which is the sum
of the nominal outputs from all wind parks, i.e., 3500 MW), cor-
responding to the cases when all offshore wind parks produce
simultaneously in their nominal value. This “steep” accumula-
tion of probability mass is due to the fact that the wind parks are
modeled as single wind turbines, as discussed in Section IV-A1.
In this case, for wind speed values between nominal and cut-out,
the wind park produces nominal power output. Therefore, when
the wind speeds in all wind parks are in this area (which is
often the case due to the high correlation values), the aggre-
gate power output will correspond to the sum of the nominal
power outputs of the wind parks. The choice of a multiturbine
approach for modeling the wind park power curve would result
to the dispersion of samples close to the nominal wind power
area for the wind park instead of accumulating the probability
mass in one point. As discussed in Section IV-A1, the choice of
this simple wind park model does not render the applicability of
the methodology, but instead allows the comprehension of the

TABLE II
CAPACITY FACTOR FOR THE WIND PARKS IN THE NETHERLANDS

aggregation effects of high dependence, as is the case here. In
Table II, the capacity factor for the wind parks is presented.
As may be seen, the onshore wind parks present a lower capacity
factor than the offshore ones. The maximum capacity factor of
0.54 is obtained in wind park location 15.

In Fig. 15, the aggregate wind power for the system is
presented, together with the net load distribution.4 The onshore
and offshore wind power distributions add up to a distribution
that has a uniform shape. The system net load distribution
[Fig. 15(b)], obtained as the difference between the distribu-
tion in Fig. 13(a) and the aggregate wind power distribution
[Fig. 15(a)] is changed compared to the situation before the
incorporation of 5 GW of wind power [Fig. 13(a)]. The way
these distributions are subtracted is dictated by the correlation
between wind speed and load and also by the transformation of

4System load minus generation is considered here as net load.
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Fig. 15. Total system wind power and system net load distributions for the 5-GW integration scenario. (a) System wind power. (b) System net load.

wind speed to power. This complex operation may sometimes
lead to counterintuitive results.

The analysis presented here allows for the calculation of the
system net load distribution, taking into account the depen-
dence structure between the wind activity in different locations
in the system, as well as with the system load. As discussed in
Section II, not taking this dependence structure into account
by assuming independence would lead to different results. Fo-
cusing in the specific case study, the obtained distributions are
of major importance for calculating the capacity credit added
to the generation system due to the integration of wind power.
The same sampling approach can also be used for the repetitive
calculation of the system steady state model, allowing for the
estimation of the system power flow distributions. This study
enables the system designer to calculate the necessary system
reinforcements due to the incorporation of wind power. This
subject will be investigated in future work.

V. CONCLUSIONS

The modeling of stochastic renewable generation in power
system studies brings forward the problem of modeling cor-
related non-Normal random variables, be it the stochastic in-
feeds in planning studies or forecast uncertainty in system op-
eration. Stochastic dependence refers to the relative behavior of
random variables. For this, its role is central in the calculation
of the properties of the sum of a multitude of random variables;
even in the case of the same marginal distributions, different de-
pendence structures lead to totally different distribution of their
sum, around the same mean value. Thus, not taking into account
the stochastic dependence between stochastic infeeds in power
system analysis, such as wind parks situated in different sites,
will lead to errors in the calculation of the total system genera-
tion.

In order to investigate and model stochastic dependence in a
multivariate context, the copula theory has been presented. The
methodology proposes the application of the cdf transformation
to each random variable, leading to the transition to a common
uniform/rank domain. The modeling of stochastic dependence
takes place in this common domain, using specific distributions
with uniform marginals, the copula functions. The modeling al-
gorithm for the Gaussian copula has been presented together

with a related application on the modeling of the impact of the
large-scale integration of wind power to the system load in the
Netherlands.

This contribution sets the foundations for the modeling of sto-
chastic dependence in power system studies. Future work will
focus on a variety of applications and extend the modeling algo-
rithms for the treatment of problems where the rank correlation
matrix is nonpositive definite and the investigation of the appli-
cability of different copula families to the power system uncer-
tainty analysis.
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