

SHAPING TRANSPARENT SAND IN SAND

FABRICATING TOPOLOGICALLY OPTIMIZED CAST GLASS COLUMN USING SAND MOULDS

IVNEET SINGH BHATIA | 4724518 | TU DELFT 2018-19

SHAPING TRANSPARENT SAND IN SAND

FABRICATING TOPOLOGICALLY OPTIMIZED CAST GLASS COLUMN USING SAND MOULDS

IVNEET SINGH BHATIA | 4724518 | TU DELFT 2018-19

MECHANICAL PROPERTIES

TRANSPARENT

BRITTLE

MECHANICAL PROPERTIES

TRANSPARENT

BRITTLE

HIGH COMPRESSIVE STRENGTH RESISTANT TO CORROSION RECYCLABLE

MATERIAL	ULTIMATE STRENGTH (THEORETICAL)			
	Tension (MPa)	Compression (MPa)		
Aluminum (2014-T6)	469	469		
Structural Steel (A36)	400	400		
Concrete	5	40		
Glass	>1000	>1000		

2 DIMENSIONAL STRUCTURES

2 DIMENSIONAL STRUCTURES

+

Less annealing time

+

Standardized Process

+

Ease of Fabrication

cruciform cruciform H - profile square profile	vertically	Indizontally		
Profile	Stacked	Layered tubular	Bundled	Cast

rofile	stacked	Layered tubular	Bundled	Cast
FLOAT GLASS	5	GLASS EXTR	USION	CAST GLASS

PROFILED GLASS COLUMNS

cruciform cruciform H - profile square profile	vertically	horizontally		
Profile	Stacked	Layered tubular	Bundled	Cast
FLOAT GLASS		GLASS EXTR	USION	CAST GLASS

3 DIMENSIONAL STRUCTURES

Biggest Solid Blank

2.5 m Diameter 4 tons 12 months

TOPOLOGICAL OPTIMIZATION & EVEN MASS DISTRIBUTION

TOPOLOGICAL OPTIMIZATION PROCESS

Biggest Solid Blank

2.5 m Diameter 4 tons 12 months

OPTIMIZATION IN TELESCOPE GLASS MIRRORS

Biggest Solid Blank

2.5 m Diameter 4 tons 12 months

Giant Magellan Blank 8.4 m Diameter 16 tons 3 months

Evolution of the cast mirror blanks in size due to smart geometry and manufacturing process (F. Oikonomopoulou, et al. 2018)

OPTIMIZATION IN TELESCOPE GLASS MIRRORS

OPTIMIZED GLASS COLUMN GEOMETRIES

(F. Oikonomopoulou, et al. 2018)

1. DISPOSABLE

Made of cheaper materials -Silica Plaster and Alumina-silica fiber.

Made of more durable expensive material- steel or Stainless steel and Graphite

2. PERMANENT

LABORIOUS & TIME CONSUMING PROCESS

LOST WAX TECHNIQUE OR INVESTMENT CASTING

(T. Bristogianni, et al. 2017)

REQUIREMENT OF A NEW FABRICATION TECHNIQUE

3D PRINTED SAND MOULD

3D PRINTED SAND MOULD

"How to fabricate a Topologically Optimized structural Glass Column using 3D printed moulds?"

"How to fabricate a Topologically Optimized structural Glass Column using 3D printed **SAND MOULDS**?"
"How to fabricate a Geometrically Optimized structural Glass Column using 3D printed **SAND MOULDS**?"

SUB- RESEARCH QUESTIONS:

- 1. How does Topological Optimization contribute to the feasibility of cast glass column?
- 2. What are the design criteria involved in designing a cast glass element?
- 3. What are the advantages and limitation of using 3D printed sand mould technology?
- 4. What are the constraints involved in 3D printing mould- size, thickness, edges/ corners etc?
- 5. Which binders and coatings are most promising?

KOLUMBA MUSEUM- CASE STUDY

COLOGNE, GERMANY

BY PETER ZUMTHOR

KOLUMBA MUSEUM- CASE STUDY

HISTORICAL EVOLUTION OF CHURCH OVER YEARS

LOAD CALCULATION

DESIGN CRITERIA

Limited Annealing Time

No sharp corners

german roads

Maximum Permissible size on

Solid cross section for better transparency in the eye level area

VISUAL PERFORMANCE

TRIANGULAR COLUMN

TRIANGULAR COLUMN

UN-ERGONOMIC DESIGN

ARCH SHAPED COLUMN

ARCH SHAPED COLUMN

OPTIMIZATION CONSTRAINTS

OPTIMIZATION SOFTWARE

THICKNESS ASSESSMENT

250 mm

500 mm

750 mm

THICKNESS ASSESSMENT

OPTIMIZED GEOMETRY

60% mass reduction

Weight before optimization: 20369 kg Weight after optimization: 8221.6 kg

OPTIMIZED GEOMETRY

SPLIT GEOMETRY

SPLIT GEOMETRY

SOLID GEOMETRY V/S SPLIT GEOMETRY

GEOMETRY	SPLIT GEOMETRY	500mm
Maximum Principal Stress (Tensile stress) (MPa)	15.38	28.8
Minimum Principal Stress (Compressive stress) (MPa)	-29.39	-35.5
Total Deformation (mm)	3.25	4.3
Maximum Shear stress	19.47	19.62

SMOOTHENED GEOMETRY

75% mass reduction

Weight before optimization: 17146 kg Weight after optimization: 4404.4 kg

SMOOTHENED GEOMETRY

Weight of one piece: 2202.2 kg

DESIGN CRITERIA

POST PROCESSING OF GEOMETRY

POST PROCESSED GEOMETRY

POST PROCESSED GEOMETRY

TRANSPORTATION CONSTRAINT

Homogeneous Mass

Shear Force

No sharp corners

Pure Compression

Homogeneous Mass

Shear Force

No sharp corners

Homogeneous Mass

Shear Force

No sharp corners

3D PRINTING OF SAND (PROCESS)

Binding adhesive

TYPES OF BINDER SYSTEM

TYPES OF BINDER SYSTEM

EXPERIMENTATION

TYPES OF BINDER SYSTEM

SURFACE FINISH

rough finish due to rough surface of sand mould

Cold hardening Phenolic

Anorganik binder system

Boron Nitride

Crystal cast (gypsum)

Mold Mix 6

EXPERIMENTATION

SURFACE FINISH

PROTOTYPING

FABRICATION REGIONS

FABRICATION REGIONS

GEOMETRY 1 - SCALE 1:20

Scale 1:20

GEOMETRY 1 - SCALE 1:20

Scale 1:20

GEOMETRY 2 - SCALE 1:3

GEOMETRY 2 - SCALE 1:3

GEOMETRY 3 - SCALE 1:5

3D PRINTED MOULDS

Anorganik binder system

Cold hardening Phenolic

MOULD PREPARATION- GEOMETRY 1

ANNEALING PROGRAM FOR KILN

CASTED MOULD

CASTED GLASS

ERRORS IN MOULD DESIGN

INCOMPLETE GLASS GEOMETRY

INCOMPLETE GLASS GEOMETRY

CASTED GLASS PROTOTYPE - GEOMETRY 3

CASTED GLASS PROTOTYPE - GEOMETRY 3

FINISHED GLASS PROTOTYPE - GEOMETRY 3

Anorganik binder system

Cold hardening Phenolic

STEP 1:

STEP 2:

STEP 3:

STEP 4:

STEP 5:

STEP 6:

STEP 7:

STEP 8:

STEP 1:

STEP 1:

STEP 2:

STEP 3:

STEP 4:

STEP 5:

STEP 6:

STEP 7:

STEP 8:

STEP 9:

STEP 10:

STEP 11:

STEP 12:

STEP 13:

STEP 14:

Topological Optimization

Advantages & Limitations

Comparison with current Disposable Mould technique

Sand mould binder: Anorganik binder system

Finishing: Crystal Cast

Computational Tools- Automation

DISCUSSIONS

DISCUSSIONS

Shell Nodes & Hybrid Structures

Topologically Optimized Glass shell node(W. Damen 2019)

DISCUSSIONS

Ornamentation

SHAPING TRANSPARENT SAND IN SAND

FABRICATING TOPOLOGICALLY OPTIMIZED CAST GLASS COLUMN USING SAND MOULDS

IVNEET SINGH BHATIA | 4724518 | TU DELFT 2018-19