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On Estimating the RMS Delay Spread from the
Frequency-Domain Level Crossing Rate

Klaus Witrisal, Student Member, IEEE

Abstract—It is shown that the level crossing rate (LCR) of
a Rayleigh distributed stochastic process is proportional to the
second centralized moment of the normalized power spectrum of
the underlying complex Gaussian process. This proportionality
factor is independent of the power spectrum. The relation can be
applied for estimating the rms delay spread of time-dispersive (=
frequency-selective) radio channels from swept-frequency power
measurements, where the rms delay spread is proportional to
the LCR in the frequency-domain, independent of the channel
impulse response.

Index Terms—Channel measurement, level crossing rate,
Rayleigh channels, rms delay spread.

I. INTRODUCTION

I N PREVIOUS works by the author [1], [2], it has been
shown that a strict proportional relationship exists between

the level crossing rate of a frequency-selective radio channel in
the frequency domain , and the channel’s root
mean square (rms) delay spread . This relation is written as

(1)

The proportionality factor is a function of the
threshold level at which the is observed , the
Ricean -factor of the channel , and channel parameters
(expressed by ). It was suggested to use this relation for
estimating the channel’s using swept-frequency power
measurements, from which the can be determined
[1]–[3].

The above relationship was proven upon a second order, wide
sense stationary (WSS) stochastic model of the frequency se-
lective radio channel [2]. A non-zero-mean complex Gaussian
process is underlying this model; therefore, the formula can
be applied to channels having a Ricean fading distribution.
Rayleigh channels are a special case among these, having

.
The Ricean -factor can be determined prior to applying (1).

However, the impact of the current channel on (ex-
pressed by ) remains an uncertainty, and might thus be a source
of systematic estimation errors.

In this paper it is shown for Rayleigh fading channels that
the proportionality factorbetween the and is inde-
pendent of the channel impulse response(IR). This new finding
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strongly supports the claim that the is a valuable means
for estimating in a simple way.

Analytical results from previous studies have shown that
such an independent factor does not exist for the more general
Ricean case. However, the factor has been compared for widely
varying channel models, suggesting that the model’s impact
is very small and can thus be neglected [2]. For instance, the
difference between for a rectangular delay power
profile and an exponentially decaying one is less than 4% at
any given -factor.

The result of the present paper can be generalized to any
band-limited, Rayleigh distributed, WSS stochastic process. It
is proven that there exists a fixed function of, relating the level
crossing rate to the second centralized moment of the normal-
ized power spectrum (or periodogram) of the (zero-mean) com-
plex Gaussian process underlying the Rayleigh process. The
paper focuses on the application of the relation to channel mea-
surements, without loss of generality.

The paper is organized as follows. The mathematical model
of the radio channel is introduced in Section II, followed by
the outline of the proof in SectionIII. Details are found in the
two Appendixes. The paper is concluded by a discussion of the
approximations introduced in the proof (Section IV).

II. DEFINITIONS AND MATHEMATICAL MODELING

The time-dispersive ( frequency-selective) radio channel is
described by its complex, lowpass equivalent IR

(2)

where are the complex-valued ray amplitudes and
are the rays’ respective delay times. The time-variability of a
physical radio channel is neglected in this equation. The fre-
quency-selectivity of the above-described channel is seen from
the frequency dependency of its transfer function (TF)

(3)

The similarity of this equation to Rice’s sum of sinusoids
suggests that could be the underlying complex Gaussian
process of any Rayleigh process (compare [4,
(3.7-2)–(3.7-4)], [5]).

The rms delay spread is considered as the most important
single parameter for defining the time-extent of a time-disper-
sive radio channel. It is defined from the IR as

(4)
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where and
is seen to be the second centralized moment of the normal-

ized power delay profile. For simplified notation we introduce
, yielding .

III. OUTLINE OF THE PROOF

The proof is based on the calculation of the level crossing
rate for a discrete-time (or discrete-frequency—as required
in our specific case) stochastic process. The probability of a
level crossing between adjacent samples is the probability that
the current sample’s magnitude is larger than a specified
threshold value, , while the preceding sample was
smaller, . The is thus written as

(5)

where [Hz] is the samplinginterval in the frequency-domain,
and and denote correlated random variables. Knowl-
edge of the bivariate cumulative distribution function (CDF) of

, denoted , is required to obtain
the .

(6)

where is the CDF of (any)
sample . Using an expression of the bivariate Rayleigh
CDF given in [6, eq. (10-10-3)], the probability (6) becomes

(7)

where is the normalized threshold level ; is
the correlation coefficient of the squared magnitudes

defined as ;
and is the Marcum’s -function (see [, (2-1-123)]).

is related to the auto-covariance coefficients of the under-
lying complex Gaussian process (where ) as

, where .
It is seen that the crossing probability (7) is solely deter-

mined by the correlation coefficient and by . Calculating
based on the stochastic or deterministic model of a Rayleigh

distributed process [e.g., for the channel description (2)] thus
leads to the level crossing rate.

It is shown in Appendix A that using (2) and (4), the coeffi-
cient can be approximated by (Approx. A)

(8)

if the product , which essentially means that the
sampling theorem must be honored. This result is valid regard-
less of the current channel model, i.e., regardless of the delay-
magnitude structure of the channel IR. Therefore, the is
independent of the channel model.

Equation (8) allows an interesting observation, suggesting
that the is proportional to . Provided that the sam-
pling theorem is not violated (i.e., strictly speaking, for ),

Fig. 1. Computational and simulation results depicting the errors introduced
by the approximations.

the must be independent of the sampling interval.
Therefore, the probability equation (7) must be proportional to

, to yield a constant with (5). This implies that (7) is
also proportional to , because it is seen from (8) thatand

have the same influence on. Thus the is propor-
tional to .

In Appendix B, it is shown mathematically that (7) can be
approximated as (Approx. B)

(9)

where the approximation is exact in the limit . This con-
dition is fulfilled strictly for , i.e., for an infinitely small
sampling interval, and approximately, if the sampling theorem
holds. With (8) and (5), the for Rayleigh fading channels
becomes

(10)

It should be noted that (10) is identical to the result of the con-
tinuous-frequency analysis presented in [1], [2], for .

IV. DISCUSSION ANDCOMPUTATIONAL RESULTS

Fig. 1 depicts computational and simulation results sup-
porting the discussion of the approximations introduced.

Approx. A, leading to [see. (8)], is evaluated by simulating
sets of impulse responses1 and comparing their exact -values
as obtained from (11) to the approximation. Using (9) and (5),
these values were transformed to -values to allow for a
more practical comparison. Relative errors are shown. The er-
rors’ small standard deviations indicate thatis largely inde-
pendent of the structure of the IR. All errors increase as the sam-
pling interval is increased. Note that to honor the sampling the-
orem, should be given. In

1Each IR consists ofn rays with unit-variance, Rayleigh distributed magni-
tudes, and arrival times being uniformly distributed within a unit time interval.
The IR’s were then normalized with respect to power and� .
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this range of , the systematic error due to approx. A is less
than 2%.

The systematic error of approx. B [eq. (9)] compared to (7)
is less than 1%, for the same and for thresholds

dB. Larger negative errors are evident for smaller
, since the sampling interval gets more impact as the fades get

deeper and narrower.
It is concluded that the final expression (10) is a practical

equation for deriving the LCR of Rayleigh processes.

APPENDIX A

The correlation coefficient is derived from the
autocorrelation function of the underlying complex Gaussian
process, . In the case of the frequency
selective radio channel, this function is called the spaced-fre-
quency correlation function, being

(11)

To calculate for one particular channel realization, the ex-
pectation operator should be considered as the average over the
frequency . But this equation also holds for a set of channels
with common stochastic properties, or for any Rayleigh process,
where the right-hand side of the equation is the Fourier trans-
form of its (normalized) power spectrum (cf., [4, eq. (3.7-11)],
[5]). The squared magnitude of is

(12)

For (for ) and (for ), the cos-term can be
replaced by and yielding

(13)

Noting that, due to the normalization of the , ,
we obtain . It
remains to be shown that

(14)

in order to get (8). The proof of this equation is a bit cumber-
some, but trivial.

APPENDIX B

In order to find an asymptotic expression for (7) in the limit
, we use the relation of the Marcum’s-function to the

CDF of a Ricean random variable (see [7, (2-1-142)])

(15)

When becomes large, may be replaced by its asymp-
totic expression, as suggested in [4, eq. (3.10–19)], [5]. This
yields the following approximation for the Ricean CDF, being
valid for and (see [4], [5]), which is ful-
filled for .

(16)

Replacing the error function by the first terms of its power series
expansion, the most important terms of (16) can be identified,

(17)

For the two -functions in (7), and are

(18)

respectively, where the approximations and the inequities hold
for . Keeping the most significant terms yields

(19)

Plugging this result into (7), the approximation (9) is obtained.
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