HOTSPRING FOR PARKSTAD

Synergy between a datacenter and hotspring in the Sibelco quarry

LOCATION IBA PARKSTAD
RESEARCH
DESIGN
LANDSCAPE
BUILD
CONCLUSION

LOCATION IBA PARKSTAD

INDUSTRIAL HISTORY

RESEARCH

1. RESEARCH TYPOLOGY

Sweden

REFLECTION

2. RESEARCH RESIDUAL HEAT

3. MAPPING DATA CENTERS

1. ANONYMOUS BOX

2. SOURCE OF RESIDUAL HEAT

RESEARCH QUESTION

What are the challenges and opportunities for achieving energetic synergy by implementing a data center in **IBA-Parkstad** and **what requirements does this set for the architectural design**?

2. RESIDUAL HEAT USERS

Datacenter	Heat supply	Cold demand
Demand [kWh/year/m2]		21900
Tevaporator [°C]	35 °C	
Tcondensor [°C]	45 °C	

Office buildings	Heat demand	Cold demand
Demand [kWh/year/m2]	44 - 127	6,1
Demand hours per year [h]	2618	441
Equivalent peak hours [h]	321	126
Peak demand [W/m2]	137	49
Tcondensor [°C]	45°C	
Required temperature	18 °C - 23 °C	
·		

Congress buildings	Heat demand	Cold demand
Demand [kWh/year/m2]	141	4,6
Demand hours per year [h]	4210	445
Equivalent peak hours [h]	833	86
Peak demand [W/m2]	169	53
Tcondensor [°C]	45°C	
Required temperature	Х	

Housing	Heat demand	Cold demand
Demand [kWh/year/m2]	48,5	
Demand hours per year [h]	х	
Equivalent peak hours [h]	1200	
Peak demand [W/m2]	40,4	
Tcondensor [°C]	45°C	
Required temperature	18 °C - 23 °C	

Healthcare buildings	Heat demand	Cold demand
Demand [kWh/year/m2]	84	4,9
Demand hours per year [h]	3792	334
Equivalent peak hours [h]	778	128
Peak demand [W/m2]	108	38
Tcondensor [°C]	45°C	
Required temperature	X	

Swimming pools	Heat demand	Cold demand
Demand [kWh/year/m2]	459 - 1500	
Demand hours per year [h]	8760	
Equivalent peak hours [h]	3648	
Peak demand [W/m2]	126	
Tcondensor [°C]	Х	
Required temperature	28°C - 32°C	

Sports buildings	Heat demand	Cold demand
Demand [kWh/year/m2]	55	22,6
Demand hours per year [h]	3783	613
Equivalent peak hours [h]	709	205
Peak demand [W/m2]	78	111
Tcondensor [°C]	45°C	
Required temperature	15°C - 25°C	

Schools	Heat demand	Cold demand
Demand [kWh/year/m2]	102	3,45
Demand hours per year [h]	1143	232
Equivalent peak hours [h]	432	276
Peak demand [W/m2]	237	45
Tcondensor [°C]	45°C	
Required temperature	Х	

Fish farms	Heat demand	Cold demand
Demand [kWh/year/m2]	3305	
Demand hours per year [h]	8760	
Equivalent peak hours	Х	
Peak demand [W/m2]	Х	
Tcondensor [°C]	Х	
Required temperature	30°C	

Greenhouses	Heat demand	Cold demand
Demand [kWh/year/m2]	518	495
Demand hours per year [h]	Х	Х
Equivalent peak hours [h]	2590	848
Peak demand [W/m2]	200	584
Tcondensor [°C]	45 °C	
Required temperature	Х	

Algae farms	Heat demand	Cold demand
Demand [kWh/year/m2]	Х	
Demand hours per year [h]	8760	
Equivalent peak hours [h]	Х	
Peak demand [W/m2]	Х	
Tcondensor [°C]	Х	
Required temperature	25°C - 28 °C	

OVERALL DESIGN QUESTION

How can a datacenter manifest its societal importance in the public realm and **what** opportunities does this offer for architectural, urban and energetic synergies in IBA-Parkstad?

DATA CENTER EXISTING SITUATION

DATA CENTER EXISTING SITUATION

COOLING TOWERS

DESIGN

DESIGN LOCATION

MODELLING STUDY OF LANDSCAPE

thermal core for updraft heat

thermal core for updraft heat

shaping the core to a hexagon for maximum surface thermal core...

thermal core for updraft heat

shaping the core to a hexagon for maximum surface thermal core...

create a cold ring around the thermal core to cool the servers...

thermal core for updraft heat

shaping the core to a hexagon for maximum surface thermal core...

create a cold ring around the thermal core to cool the servers...

use loadbearing shell to create open floorplan and regulate climate inside...

2. RATIO DATA CENTER - HOTSPRING

LANDSCAPE

REFLECTION

BUILD

RESEARCH

LOCATION

DESIGN

FLOORPLANS 1:100

BUILD

LOCAL PINE WOOD BRUNSUMMERHEIDE

BUILDING ORDER

- 1 prefabricating parts with hardwood beech dowels
- 2 modular parts to building site
- 3 assemble first floor
- 4 place the floors in the wood shell

BRETTSTAPEL METHODE

LOADBEARING CONSTRUCTION BEAM GRID

- 1 540/115 mm glulam beam
- 2 laminated pine wood

ISOMETRIC WALL CONSRUCTION

WOODEN SHELL STANDS ON CONCRETE BASE ON THE WATER

MINIMAL EDGE

DETAIL BALCONY 1:5

CONCLUSION

