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Abstract

Measuring cognitive load is essential for understanding driver performance. Under- and overload can re-
sult in dangerous situations on the road. Cognitive load can be estimated by monitoring the diameter and
movements of the pupils, but during measurements external influences such as changes in light intensity
affect pupil diameters. In this paper, we present a novel method for quantifying light intensity with a head-
mounted eye-tracker by weighting pixel values around the gaze direction. We demonstrate its effectiveness in
cognitive load classification systems that use pupil metrics only. 54 participants in two separate studies have
carried out n-back tasks during a simple driving task in a driving simulator. The data is classified by cognitive
task (baseline, 1-back, 2-back) with the Random Forest algorithm. The resulting systems are 92.5% accurate
with and 85.9% accurate without gaze features available, but are unable to generalise to participants unseen
in the training phase of the algorithm.
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1
Introduction

Cognitive load is an important measure in the quest for understanding driver performance. A cognitive over-
or underload is associated with reduced cognitive performance, potentially leading to dangerous situations
in traffic [1]. Tracking the cognitive load a driver experiences is a step in providing real-time feedback and
improving driver assistance systems, ultimately contributing to a safer vehicle environment. In a vehicle en-
vironment, it is important to have a non-intrusive way of measuring cognitive load. Back in 1964, Hess and
Polt already observed changes in pupil sizes related to cognitive load [2]. Later, in multiple studies, vari-
ous other behaviours of the eye, including blinks, fixations and saccades, have been linked to an increased
cognitive load [3]. Modern eye-trackers aid in observing such changes automatically, but several challenges
remain today. One of these challenges is providing accurate measurements in situations where light intensity
can vary, for instance in a vehicle. Like cognitive load, light intensity provokes pupillary responses. Where
load-induced dilations are usually up to 0.5 mm, pupil diameters can vary from 2 to 8 mm under different
light intensities. This effect of light can overshadow the effect of cognitive load. Therefore, the effects of light
intensity need to be taken into account for accurate cognitive load estimation. Research has aimed to subtract
light-evoked pupillary responses from the total dilations, so only a task-evoked pupillary response remains
[4, 5]. These approaches require the light intensity to be constant during the interval of measuring cognitive
load. To measure cognitive load automatically in an environment with varying light conditions, a different
approach is needed. Wavelet transforms on the pupil diameter have been used to estimate cognitive load,
regardless of the light conditions [6–8]. The underlying idea is that the pupil dilations induced by cognitive
load occur at a different frequency than dilations induced by other external influences as light.

In this paper, we present a novel way to quantify light intensity and derive two novel features for use in
cognitive load classification. We will do so by combining two studies into one dataset and examining them
with machine learning. Section 2 summarises the research this work was built upon. In Section 3 we explain
how the light intensity measure can be derived from images of a forward-facing camera and gaze marker
coordinates. Next, in Section 4, we will describe two features of the perceived light intensity: the median
light intensity and the Relative Change in Light Intensity (RCLI). Then we will demonstrate these features
alongside other features in a 3-class problem analysed with a Random Forest classifier [9]. The classes are
three tasks of varying cognitive load: baseline (just driving, low load), 1-back (on top of driving, medium
load) and 2-back (on top of driving, high load). As a benchmark, we will present two systems of features that
use known and well-researched measures of cognitive load; the median pupil diameter and the percentage of
eye closure (PERCLOS) [10]. A novel measure of the variability of the pupil diameter is the Relative Change in
Pupil Diameter (RCPD). The RCLI and the RCDP are used because the relative changes over time help paint
a more complete picture, on top of the information median values provide. On top of these features, one
of these systems will take the median gaze marker coordinates into account and the other will not. We will
demonstrate the benefit of taking the light intensity features into account on top of the previously mentioned
features. We show that with this approach a higher classification accuracy was reached than when using the
wavelet transform techniques IPA and LHIPA [7, 8].

Scripts used in this research can be found on the online repository at: https://github.com/C-O-Smit/
estimating-cognitive-load
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2
Related Work

Cognitive load can be estimated automatically with machine learning algorithms and pupillometry. When
the classifier of a machine learning algorithm is trained on recordings of situations where the cognitive load
condition was known, it can compare unseen data to these instances. In a comparison between different
algorithms, decision tree algorithms showed the advantage of a high performance and transparency of the
algorithms’ inner workings, allowing for intuitive identification of important predictive variables [11]. Frid-
man et al. presented two novel ways to estimate cognitive load in a driving environment with a 3-class clas-
sification approach, achieving 77.7% and 86.1% accuracy [12]. Both methods relied on gaze direction for the
cognitive load detection, the former explicitly and the latter implicitly. The higher the cognitive load, the
more concentrated the position of the eye and thus the gaze direction was. The more accurate approach was
indirectly influenced by the light intensity, as it was a deep learning approach that used images of the eye
directly as its input. The other method used a bivariate Hidden Markov Model with the pupil position and the
blink state as input, not taking the light intensity into account.

The Index of Cognitive Activity (ICA) popularised wavelet transform approaches to cognitive load esti-
mation [6]. The cognitive task-evoked dilations are separated from the light-evoked dilations with a wavelet
transform, after which the results are quantified in a score called the ICA. The ICA was found to have a strong
correlation with lane deviation in a driving simulator [13]. Rerhaye et al. found that a higher ICA was an indi-
cation for a higher workload during spatial processing, but also found inconclusive results when evaluating
an inhibition task, the Stroop task [14]. They conclude that the validity of the ICA is highly task-specific and
that measuring workload with the ICA remains questionable. Two open-source alternatives are the IPA (Index
of Pupillary Activity) and the LHIPA (Low/High Index of Pupillary Activity) [7, 8]. While based on the same
principle as the ICA, they use a different wavelet and different tresholding approaches. The IPA and more so
the LHIPA were reported to be sensitive to changes in cognitive load, but not sufficiently so to distinguish
between task difficulty levels.

The Percentage Change in Pupil Diameter (PCPD) is often cited as a reliable measure for cognitive load,
generally increasing with an increase in load [15, 16]. The PCPD is calculated by dividing the current pupil
diameter by the average pupil diameter of the participant during baseline conditions. A drawback is that the
light intensity has to be constant during a recording. Gaze direction is also cited as an indication of cognitive
load [17]. In a driving environment, the gaze direction is increasingly concentrated to the centre of the road
as cognitive load increases. This is attributed to tunnel vision; the shedding of less essential tasks such as
checking the mirrors or the dashboard instruments.
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3
A Proposed Measure for Light Intensity

The Pupillary Light Response (PLR) is a function of the Corneal Flux Density (CFD, i.e. the product of lu-
minance and subtended area) and the eccentricity [18, 19]. A measure for light intensity that aims to take
the PLR into account should reflect this. The light intensity was derived out of images from the forward-
facing camera in the vicinity of the gaze marker. The forward-facing camera recorded at 30 Hz, the gaze
markers were derived from eye-facing cameras that recorded at 60 Hz. The light intensity feature was com-
puted at 60 Hz where every video frame of the scene was matched with the two sets of gaze marker coor-
dinates with the closest matching timestamps. The light intensity is measured as the weighted 8-bit RGB
values of concentric, touching but not overlapping rings centred at the gaze marker, where the light inten-
sity (LI ) values per ring are weighted following a light intensity as used in the OpenCV software package:
LIr i ng = 0.2989R +0.5871G +0.1140B [20]. These weights per colour channel are based on how sensitive the
human eye is to the different channels. The rings each have a weight determined by their average eccentric-
ity. Figure 3.1 shows a simplified example of the rings; in reality 11 rings with a diameter corresponding to an
eccentricity of up to 15 degrees were used, as a circle of that eccentricity captures 99.8% of the potential light
intensity humans can experience according to the relation described in Figure 3.2.

Figure 3.1: Illustration of the derivation of the light intensity, with the gaze marker depicted as a red cross, surrounded by rings in which
each pixel has an equal contribution to the light intensity of that ring

The eccentricity was defined as the angle between the direction of the light that reaches the eye and the
line of sight. The weight for the eccentricity was determined by fitting a Gaussian distribution to the empir-
ical relation between perceived light intensity and the eccentricity as found by Wright and Nelson [21]. This
research stems from 1936, but the work on how light refracts inside of the human eye is still deemed relevant
in the 21st century [22]. This relation was determined by increasing the eccentricity of the light source and
visually comparing the light intensity to a light source with an eccentricity of zero. The light source with an
eccentricity of zero would be dimmed until its intensity was equal to that of the light source with non-zero
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4 3. A Proposed Measure for Light Intensity

Table 3.1: Ring weights for the light intensity calculation

Outer diameter (°) 0.5 1 1.5 2 2.5 3.5 5 7.5 10 12.5 15
Ring weight 0.0050 0.015 0.024 0.033 0.040 0.10 0.18 0.28 0.20 0.093 0.034

eccentricity. After performing this procedure for a range of eccentricity levels, the standard deviation (SD) of
the distribution was determined to be 5 degrees; the resulting relation is shown in Figure 3.2. From the verti-
cal view angle of the camera and the height of the image in pixels, the eccentricity was converted to a radius
in pixels using basic trigonometry. For every ring, the weight corresponding to the average eccentricity of the
ring is taken; e.g. for the ring with an inner diameter of 2° and an outer diameter of 2.5° the average eccen-
tricity is 2.25° with a corresponding weight of 0.144. To get the weight of the ring this number is multiplied
with the area of the ring. The ring weights are then normalised so their sum is 1. For the 11 rings used in
this research the weights are given in Table 3.1. The rings with the lowest outer diameters have a small area
and therefore a low weight. The ring from 5° to 7.5° has the highest weight, a result of its area multiplied by
the perceived light intensity for its average eccentricity. The outer rings have lower weights, as the perceived
light intensity for their eccentricity is lower. The rings were chosen over a continuous function to decrease
the computational complexity. The total light intensity is calculated by taking the sum of the light intensities
per ring multiplied by their ring weights, as in Equation 3.1. If a ring partially falls of the screen due to the
gaze marker being too close to the edge, the ring is not taken into account. The remaining rings’ weights are
adjusted so their sum remains 1. The result is a single light intensity value between 0 and 255 that is updated
60 times per second.

Figure 3.2: The perceived light intensity for varying eccentricity, a Gaussian distribution (SD = 5°) derived from Wright and Nelson [21]

From 0 to 8 degrees the relation between the light intensity and the eccentricity of Figure 3.2 is fairly
consistent with the relation between foveal acuity and the eccentricity as described by Duchowski [23]. The
foveal acuity was reported to be fairly constant within the central 2°, drop approximately linearly from there
to the 5° foveal border and drop more sharply from there. A difference between the two distributions is that
the Gaussian distribution describing the light intensity has tails where the intensity does not drop as sharply
with the increasing eccentricity, where the foveal acuity diminishes more rapidly. Using a tailed distribution
for the light intensity is physiologically plausible; where the foveal acuity is associated with photoreceptor
cells called cones, the perception of light intensity is associated with both cones and other photoreceptor
cells called rods. The cones are mostly found in the centre of the retina, the rods at its edge [24]. The rods
have a maximum density around an eccentricity of 20 degrees. A tailed distribution also corresponds with
the effects of light diffraction [25].

LI =∑
wr i ng ·LIr i ng (3.1)
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Estimating Cognitive Load

4.1. From time-series to features
The features of Table 4.1 were derived from the time-series of the light intensity, the pupil diameters and
the gaze marker coordinates. All features were calculated over a 6 second time period, consistent with other
research [12]. An equal amount of footage was cut from the start and the end of the recording, to make
the length of the recording a multiple of 6 seconds. The remaining footage was cut into segments adjacent
in time. For all features but the percentage of eye-closure (PERCLOS) the blinks were excluded and linear
interpolation was applied to the gaps. The feature Relative Change in Pupil Diameter (RCPD) was used as the
index of the variability of the pupil diameter. It is defined as the absolute sum of changes in pupil diameter
in 6 seconds, divided by the mean diameter over the same 6 seconds, as in Equation 4.1. Similar to the RCPD
the Relative Change in Light Intensity (RCLI) was defined as the absolute sum of changes in light intensity,
divided by the mean over the same time interval, as in Equation 4.2. Changes in light intensity and changes
in cognitive load both provoke changes in pupil diameter. By measuring light intensity and modelling its
pupillary response, the confounding effects of light can be compensated, leading to a more accurate cognitive
load estimation.

RC PD =
∑T

t=t0
| ∂PD
∂t |

µ(PD)
(4.1) RC LI =

∑T
t=t0

| ∂LI
∂t |

µ(LI )
(4.2)

Out of the processed time series of pupil diameters the following four features were calculated per data
point: the Median Pupil Diameter (MPD) of the left eye, the MPD of the right eye, the RCPD of the left eye and
the RCPD of the right eye. While the features of the left and the right eye will be strongly correlated, sensitivity
to light intensity is stronger in the non-dominant eye [26]. These metrics are therefore included for each eye
individually. A fifth feature, PERCLOS averaged over both eyes, was calculated from the unprocessed diameter
time series, before excluding the blinks. These five features are part of all four presented systems. From the
time-series of the gaze marker x and y coordinates in pixels the medians were used as features. As the gaze
marker coordinates are strongly task-dependent, two systems with these features and two systems without
these features will be presented.

From the time series of light intensity, two features were calculated: the median and the RCLI. To investi-
gate the added benefit of these measures two systems with and two systems without light intensity features
will be presented. The systems without light intensity features will serve as a performance baseline. In total
four systems will be presented; Table 4.1 provides an overview.

4.2. Classification with Random Forest
A random forest classifier was trained on the data [9]. The outcome of a random grid search decided the
range in which the hyperparameters would be optimal [27]. The final hyperparameter tuning was done with
an exhaustive grid search in that range. The hyperparameters were scored with a 10-fold cross-validation
score. This by cutting the shuffled dataset into 10 equally sized portions. Ten classifiers were each trained on
nine portions of the dataset and then tested on the remaining portion, so that every data point was trained on
nine times and tested on once. The cross-validation score is the average testing accuracy of the 10 classifiers.
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6 4. Estimating Cognitive Load

Table 4.1: The features used in the four presented cognitive load classification systems

Benchmark 1 System 1 Benchmark 2 System 2
left MPD left MPD left MPD left MPD

right MPD right MPD right MPD right MPD
left RCPD left RCPD left RCPD left RCPD

right RCPD right RCPD right RCPD right RCPD
PERCLOS PERCLOS PERCLOS PERCLOS

median gaze marker X median gaze marker X median light intensity
median gaze marker Y median gaze marker Y RCLI

median light intensity
RCLI

As optimal settings a forest of 1000 trees with no bootstrapping was found, all other settings were standard as
in the sci-kit learn library. These parameter settings were used for all systems.

We will also present another way of dividing the data between train and test sets in the 10-fold analysis,
known as group K-fold. In this split, all the data of an entire participant is put in one of the 10 portions. The
portions are of approximately equal size, but because the data of a participant must belong to one group
in its entirety, the groups are not perfectly equal in size. The result is that the classifier is only tested on
participants that are completely unseen in the training phase of the algorithm. The goal is to see how well
the classifier generalises to unseen participants. The systems using group K-fold were trained on the three
classes "baseline", "1-back" and "2-back".



5
The Dataset

In the training phase two independently recorded studies were used, which will be referred to as Study 1
and Study 2. The data of these studies was joined in a combined dataset that the classifiers were trained on.
Neither of the studies has been recorded with the direct purpose of cognitive load classification. Statements
made in this subsection apply to both studies, statements made in the subsection of the individual study
apply to that study only. Participants were recruited through a newsletter for all employees of the Porsche
Entwicklungszentrum in Weissach. Both studies were recorded to investigate in-vehicle interaction systems
(IVIS), but in all recordings used in this research no IVIS tasks were being performed.

The pupil diameters, depicted in Figure 5.1, were found by taking the means and standard deviations
of the features ’median right pupil diameter’ and ’median left pupil diameter’ per cognitive task. Error bars
indicate the standard deviation. All data was recorded with Ergoneers head-mounted eye-trackers (Dikablis
Professional or Dikablis Glasses 3) in a high-fidelity driving simulator with motion dynamics projecting a
driving environment around a mock-up cockpit of a road-legal vehicle. The cockpit is placed on the eMove
eM6-640-1800 by E2M Technologies, a 6-DOF moving base platform with an actuator stroke of 640 mm. The
projection was provided by projectors with a resolution of 3840 by 2160 pixels and a refresh rate of 60 Hz
projecting on the front, the side walls and the ceiling, creating a field of view of 180°. At the end of its service
life the projector lamps brightness has reduced by 50%, lowering the light intensity in the simulator. Whilst
driving secondary 1-back and 2-back tasks were both presented audibly for a duration of 2.5 minutes per
task, as prescribed by ISO TS 14198:2019 standards. Four series of 10 digits were presented through an audio
file, with 2.25 seconds spacing between the stimuli. Responses were given verbally, as prescribed by the MIT
AgeLab [28]. Baseline data was collected during driving with no secondary task. The driving task for Study 1
and Study 2 consisted of following a lead-vehicle on the right lane of a multi-lane highway. NASA-TLX mental
data was collected with both studies through a questionnaire after the cognitive task. Data where pupils were
wrongly detected in eye-brows, glasses or other faulty locations was excluded. If over half of the segments
contained faulty pupil detections, the whole recording was excluded. This was checked through manual
inspection. Participants who reported any level of simulator sickness were excluded. They either mentioned
simulator sickness themselves, or were asked about it if they showed symptoms.

For both eyes, the average pupil diameters were larger during a task associated with a higher cognitive
load, likely caused by task-evoked pupil dilations. The median pupil diameters were also found to be sig-
nificantly different per cognitive task by testing with an unpaired t-test, apart from the difference between
baseline and 1-back for the left eye (t(1727) = -1.70, p = 0.09). Means and standard deviations are given in
Table 5.1, sample sizes in Table 5.2.

The light intensity varied within the recordings, mainly because the participants would switch between
looking at the instruments in the black dashboard of the cockpit and looking at the projected road. Checking
instruments such as the speedometer is not directly related to the cognitive task, but to the driving task. We
did not find a significant difference in the average median light intensity between 1-back and 2-back record-
ings (unpaired t-test, t(2146) = 0.45, p = 0.65), but for baseline recordings the light intensity was 9% lower on
average (unpaired t-test between baseline and 1-back, t(1727) = 3.24, p = 0.001). This is caused by two things.
The first reason is that the average light intensity for Study 1 is lower than for Study 2 and 49% of baseline
recordings came from Study 1, where for 1-back and 2-back this number was 43% and 44% respectively. The
higher ratio of darker conditions makes the average light intensity for baseline recordings lower than for the
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8 5. The Dataset

other classes. The second reason is that during the baseline recordings, participants look left at the overtak-
ing traffic more often. The darker cockpit frame appears in the field of view, resulting in a lower median light
intensity for the segment. With the higher cognitive load of 1-back and 2-back tasks, the gaze direction is
more centred, yielding a higher median light intensity.

Figure 5.1: Average pupil sizes during cognitive tasks of the combined dataset of Study 1 and Study 2 with standard deviations as error
bars

The means and standard deviations per class of all features is given in Table 5.1. The gaze marker X coor-
dinate is horizontal and ranges from 1 (left) to 1920 (right) on screen. The Y coordinate is vertical and ranges
from 1 (up) to 1080 (down) on screen. Participants can also look off-screen leading to values out of these
ranges.

Figure 5.2: Median values per 6 second segment with pupil diameters averaged over both eyes for Study 1 and Study 2 and the median
light intensity as described in Section 3 with a least-squares fitted line

Figure 5.2 illustrates that while there is a negative correlation between the median light intensity and the
median pupil diameter, there is high variance. This variance is caused by a variety of factors, including nat-
ural differences between participants, emotional state and cognitive load. The product-moment correlation
coefficient (r) is -0.40 and the rank-order correlation coefficient (ρ) is -0.35. A higher light intensity is corre-
lated with a lower pupil diameter. Figure 5.2 also illustrates the average light intensity differences between
Study 1 and Study 2, caused by differences in lighting. The correlations also hold within the studies (Study 1:
ρ = −0.41 and r = −0.45 with a sample size of 1259, Study 2: ρ = −0.33 and r = −0.38 with a sample size of
1539, p < 0.001 for both individual studies as the combined dataset).
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Table 5.1: The means and standard deviations (SD) of all features per class for the combined dataset of Study 1 and Study 2

feature baseline mean baseline SD 1-back mean 1-back SD 2-back mean 2-back SD
left MPD (pixel) 48.93 11.87 49.98 11.77 52.36 11.98

right MPD (pixel) 48.75 10.55 50.38 10.83 51.69 10.88
left RCPD (-) 2.678 1.868 2.868 2.428 2.853 2.868

right RCPD (-) 2.492 1.965 2.257 1.451 2.466 1.580
PERCLOS (-) 0.053 0.048 0.059 0.048 0.072 0.058

median gaze X (pixel) 941.9 127.7 965.6 148.7 977.1 142.8
median gaze Y (pixel) 291.7 168.0 286.4 179.2 293.9 155.6

median light intensity (-) 120.2 63.19 130.3 66.61 131.6 66.22
RCLI (-) 13.10 9.846 11.39 6.661 11.82 7.677

5.1. Study 1
The recordings were made with the Dikablis Professional in 2017, in a study to driver distraction when oper-
ating IVIS through various interaction methods [29]. After exclusion, data of 24 participants remained. The
simulator simulated driving behind a lead-vehicle traveling at 110 km/h on a three-lane highway, no lane
changes occurred. 1-back, 2-back and 3-back tasks were recorded whilst driving as a benchmark to compare
with several IVIS tasks.

5.2. Study 2
These recordings were made with the Dikablis Glasses 3 in 2019 in a study on driver distraction when oper-
ating various in-vehicle interaction systems. After exclusion the data of 30 participants was included in the
dataset. The simulated driving task consisted of driving behind a lead-vehicle with a speed of 80 km/h in one
of two equiprobable situations presented at random, one with less and one with more traffic. In both cases
there would be no lane changes by the participant or other traffic. The simulated road was a two-lane high-
way. In both cases interaction with the traffic was limited to following the lead-vehicle. Concerning perceived
cognitive workload measured by the NASA-TLX mental dimension, the differences between the two different
road conditions “less traffic” (N=16, mean=12.9, SD=4.6) and “more traffic” (N=16, mean=13.5, SD=3.9) were
not statistically significant (paired t-test, t(30) = -0.71, p = 0.48). Therefore, we did not separate road type con-
ditions within our analysis. 1-back and 2-back tasks were recorded whilst driving as a benchmark to compare
with several IVIS tasks.

Table 5.2: numbers of participants and datapoints per cognitive condition and recording circumstances

cognitive condition nr. of participants nr. of datapoints
baseline Study 1 29 321

baseline Study 2 less traffic 22 172
baseline Study 2 more traffic 22 157

1-back Study 1 28 469
1-back Study 2 less traffic 17 292

1-back Study 2 more traffic 22 318
2-back Study 1 27 469

2-back Study 2 less traffic 22 315
2-back Study 2 more traffic 17 285

5.3. Pre-processing time series
From the 60 Hz recordings of both eyes time series of the pupil diameter and coordinates (x,y) of a gaze marker
were extracted. In the original unprocessed signal blinks and other moments where no pupil was detected
were depicted with 0 values, these were used to calculate the PERCLOS. The blinks, including one frame
before the blink and 4 frames after the blink, were excluded for the time series of the pupil diameters, gaze
marker coordinates and the light intensity. All time series were linearly interpolated to a common time vector
before splitting them in fragments of 6 s. Every 60 Hz fragment consisting of 360 samples of different features
will be referred to as a single data point, representing a 6 second period. Data points with pupil diameters
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smaller than 20 pixels or greater than 90 pixels, a PERCLOS of over 0.25, or a light intensity lower than 0 or
higher than 255 were assumed to be detection or interpolation errors and excluded from analysis. Combined
Study 1 and Study 2 provide 2798 data points after exclusion, corresponding to over 4.5 hours of recordings.

Participants were recorded performing one of three tasks; 1-back, 2-back and baseline, that each are
recorded in three circumstances; Study 1, Study 2 "less traffic", Study 2 "more traffic". The classifier sepa-
rates these 9 groups, but we only distinguish by cognitive task (baseline, 1-back and 2-back) when calculating
the results as in Table 6.1. Table 5.2 gives an overview of the sizes of the classes.



6
Results

The 10-fold cross-validation scores of the Random Forest classifiers with and without gaze features and with
and without the light intensity features are presented in Table 6.1. Both systems show significant improve-
ment with the use of the light intensity features.

Table 6.1: Classification accuracies of Benchmark 1, System 1, Benchmark 2 and System 2

without LI (Benchmark) with LI (System)
without gaze (2) 74.8% 85.9%

with gaze (1) 88.9% 92.5%

Feature importances are calculated with the Gini importance metric. To highlight the importance for
classifying cognitive load instead of what study the data belongs to, feature importances have been calculated
on a system trained directly on the 3 cognitive conditions (baseline, 1-back and 2-back), not on the 9 classes
from Figure 6.2. The feature importances calculated on System 1, with gaze and LI features, shown in Figure
6.1, identify the median X coordinate (horizontal) of the gaze marker to be the most important feature for
cognitive load classification, followed by the median light intensity. The median light intensity has a higher
importance than well-established measures as PERCLOS and the median pupil diameters. The gaze marker
X coordinate has a higher importance than its Y coordinate (vertical). Features calculated on the right pupil
diameter have a higher importance than features calculated on the left pupil diameter.

Figure 6.1: Normalized feature importances for System 1 trained on the combined dataset of Study 1 and Study 2

Figure 6.2 was calculated on the system without gaze features, since the gaze features are strongly task
dependent. The image was created by training a single classifier on 80% of the data and classifying the re-
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maining 20%. 278 test samples were correctly classified as belonging to the correct cognitive task of Study 2.
In 6 out of those 278 samples were the "less traffic" and "more traffic" conditions mixed up. It is important
to note that for every cognitive task in Study 2 a participant was given either the "less traffic" or the "more
traffic" condition. As a result, the classes contain data from different participants. When only distinguishing
by cognitive task, the classes (baseline, 1-back, 2-back) contain data from the same participants.

Figure 6.2: Confusion matrix of the 9-class System 2 Random Forest classifier

6.1. Testing on unseen participants
When using group K-fold to test on participants unseen in the training phase, the systems’ accuracies are
much lower. When examining the results of Table 6.2, it should be noted that guessing at random has an
expected accuracy of 33.3%. While the introduction of the light intensity features improved the accuracy for
both System 1 and System 2, the introduction of gaze features actually decreased accuracy for the Benchmark
classifiers. When training on 9-classes as in Figure 6.2, the System 2 classifier with group K-fold yielded an
accuracy of 35.5%.

Table 6.2: Classification accuracies of Benchmark 1, System 1, Benchmark 2 and System 2 when using group K-fold

without LI (Benchmark) with LI (System)
without gaze (2) 35.2% 35.4%

with gaze (1) 34.7% 36.7%

As shown in Figure 6.3, the inaccuracy of System 2 is not evenly distributed over the classes, the "base-
line" class was predicted correctly 58% of the time. System 1 had an accuracy of 55% for the baseline class,
Benchmark 1 and Benchmark 2 yielded accuracies of 46% and 38% respectively. For all classifiers the baseline
class had the highest accuracy.
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Figure 6.3: Confusion matrix of the 3-class System 2 Random Forest classifier using group K-fold

6.2. Combining the two studies
The classifier with gaze and light intensity features (System 1) has been trained on the individual studies.
Where the classifier had an accuracy of 92.5% on the combined set, Study 1 and Study 2 yielded accuracies of
89.9% and 90.5% respectively in k-fold cross-validation (k=10) with the same hyperparameters as used for the
combined dataset. Figure 6.4 shows that the classifiers trained on individual studies outperform the classifier
trained on the combined until 1100 and 1300 samples. Only after the classifiers trained on individual studies
run out of training samples does the classifier trained on the combined studies reach a higher accuracy.

Figure 6.4: Learning curves of a Random Forest classifier trained on Study 1, Study 2 and the combined studies

6.3. Less accurate systems
Variant model architectures, pre-processing methods and feature sets were evaluated but did not yield a bet-
ter performance than the methods presented above. Systems with a trained XGBoost classifier [30] yielded 1
and 3% lower accuracy scores than the Random Forest classifier, with the feature sets of System 1 and System
2 respectively. Systems where the IPA or the LHIPA was added to the feature set did not have an increased ac-
curacy with respect to the here presented systems [7, 8]. Attempts of smoothing the time series with a median
filter followed by a Savitzky-Golay filter reduced the importance of the RCPD features and ultimately classifi-
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cation accuracy. The standard deviations of gaze marker coordinates, pupil diameters and the light intensity
over the 6 second segments have been added as features. All reduced the accuracy of the systems, also after
re-tuning the hyperparameters. All these less accurate systems benefited from the light intensity features, of
which the median consistently ranked as the second most or most important feature.
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Discussion and Future Work

The results show a significant boost in accuracy when the light intensity features are incorporated, both for
systems with and without gaze features. Individually none of the features are a good predictor for cognitive
load, but when they are combined a Random Forest classifier can provide accurate estimations. With an
accuracy of 92.5% System 1, with gaze features, can compete with state of the art cognitive load estimation
techniques [12], but gaze features are very dependent on the task at hand [17]. With an accuracy of 85.9% Sys-
tem 2, without gaze features, is a helpful estimation tool as well. System 2 may generalise better to situations
with different tasks that involve different eye and head movements, as it is solely based on the pupil diameter
and the light intensity.

However, it is fair to say that the accuracies of the classifiers collapse when testing on unseen participants.
The systems are not able to generalise to data of participants who have not been included in the dataset
during training and perform marginally better than guessing at random. It appears that the Random Forest
classifier strongly relied on individual differences in the chosen features. This is partially because of how
the features are designed; e.g. the absolute scale of pupil sizes does not correct for the natural differences
in pupil sizes. Only using features that reflect relative changes rather than absolute properties might yield
better results. Not being able to generalise to unseen participants is not uncommon for driver assessment
applications. Often individual calibration is required to adjust monitoring systems to a driver’s driving style
and physical properties [31].

The learning curves of Figure 6.4 suggest accuracy could still improve by training the classifier on more
studies on n-back tasks [32]. As adding new studies will increase the variance in the dataset it will take more
training samples for the classifier to perform well. At the end of the training phase adding one or more studies
could result in not only a higher accuracy, but also a more robust classification model.

The light intensity as described in this paper is calculated with the use of the gaze marker coordinates
of the participants. As a result the light intensity features also partially capture the gaze behaviour of the
participants. This means their contribution to the classification is not just limited to the light intensity’s
influence on the pupil diameters.

While effective, this light intensity feature is not the perfect representation of the perceived light intensity.
Lens distortions, and camera properties and settings are not accounted for [33]. With standardisation it would
be easier to translate the light intensity feature between different cameras.

As the datasets were already recorded, we have not tested a controlled range of light intensities. Especially
very dark circumstances where the pupils are fully dilated and very light circumstances where the pupils are
fully constricted should be explored, as well as scenarios with large fluctuations. In different circumstances
it may be beneficial to extract more features from the light intensity than the median and the RCLI to provide
a more detailed image.

This research has been conducted with head-mounted eye-trackers. To work with less invasive remote
eye-trackers one or more additional cameras are required to capture the field of view of the participant. The
computation of the gaze marker and getting the correct line of sight would not be as straightforward as with
head-mounted eye-trackers, but this is achievable with extra calculations.
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8
Conclusion

Cognitive load estimation based on pupil measurements remains a challenge and many steps still have to
be taken before it is a solved problem. Being able to estimate cognitive load accurately in varying lighting
conditions is a step in the right direction. The light intensity measure and its derived features as presented in
this paper are promising tools to estimate cognitive load more accurately, both when gaze direction can and
cannot be used for load estimation. The features are relatively simple to implement and no extra recordings
are needed to compensate for the effects of light intensity. We have shown that when implemented in a 3-
class classification problem, the features reduced the error 32.4% with and 43.7% without using gaze features.
The systems were found to be unfit for classification of participants not included in the training data, with
classification accuracies only marginally better than guessing at random. We found that smoothing of the
time-series, usage of the IPA and LHIPA features or an XGBoost classifier did not improve accuracy. Both
systems presented in this paper only rely on pupil measurements, the available driving simulator data has
not been used for classification.
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Appendix A: The feature PERCLOS

In Figure 8.1 the means and standard deviations of the feature with the lowest importances that still improved
classification are depicted: PERCLOS. The means would suggest that PERCLOS could be an important vari-
able for classification, but the high stand deviation shows that PERCLOS had high variations between the
individual measurements, this was even the case with measurements from the same recording. By itself PER-
CLOS is not a reliable indicator for cognitive load, but a combination of many non-perfect indicators can still
result in accurate classification.

Figure 8.1: Mean PERCLOS per cognitive task with the standard deviation as error bars
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Appendix B: Tables with means and
standard deviations

The tables below depict the means and standard deviations of Study 1 and Study 2 that have been merged
into one dataset. Study 2 has also been split into the conditions "less traffic" and "more traffic". Please note
that Table 8.3 and Table 8.4 do not have the same participants in every class (cognitive task), as the data is
separated per traffic condition. This makes them less suitable for comparison between cognitive tasks.

Table 8.1: The means and standard deviations of all features per class for Study 1

feature baseline mean baseline SD 1-back mean 1-back SD 2-back mean 2-back SD
left MPD (pixel) 52.23 13.47 54.49 12.50 58.42 11.70

right MPD (pixel) 51.82 10.98 55.53 9.782 56.81 9.577
left RCPD (-) 2.099 1.410 2.612 2.670 2.854 3.668

right RCPD (-) 1.500 1.355 1.274 0.622 1.639 1.419
PERCLOS (-) 0.061 0.050 0.049 0.043 0.066 0.059

median gaze marker X (pixel) 897.4 137.0 921.8 178.2 936.2 167.3
median gaze marker Y (pixel) 186.2 160.2 166.9 178.5 192.6 162.3

median light intensity (-) 60.77 22.50 62.97 25.01 61.26 25.05
RCLI (-) 14.38 9.172 10.87 8.348 13.53 10.27

Table 8.2: The means and standard deviations of all features per class for the combined dataset of both traffic conditions of Study 2

feature baseline mean baseline SD 1-back mean 1-back SD 2-back mean 2-back SD
left MPD (pixel) 45.74 8.998 46.17 9.893 47.55 9.989

right MPD (pixel) 45.76 9.201 46.15 9.838 47.64 10.20
left RCPD (-) 3.244 2.075 3.081 2.184 2.853 2.035

right RCPD (-) 3.460 1.984 3.075 1.434 3.112 1.386
PERCLOS (-) 0.045 0.045 0.068 0.050 0.077 0.057

median gaze marker X (pixel) 985.3 100.5 1002 105.7 1009 110.2
median gaze marker Y (pixel) 394.7 96.19 385.8 102.8 373.1 90.86

median light intensity (-) 178.1 24.30 186.4 26.24 186.6 20.56
RCLI (-) 11.85 5.032 11.82 4.786 10.48 4.289

Table 8.3: The means and standard deviations of all features per class for the less traffic condition of Study 2

feature baseline mean baseline SD 1-back mean 1-back SD 2-back mean 2-back SD
left MPD (pixel) 46.70 9.679 49.45 7.807 44.45 10.31

right MPD (pixel) 45.99 9.317 49.45 6.764 44.59 11.12
left RCPD (-) 3.012 1.684 3.746 2.679 2.283 1.183

right RCPD (-) 3.654 1.715 3.210 1.573 3.174 1.407
PERCLOS (-) 0.054 0.049 0.071 0.052 0.069 0.047

median gaze marker X (pixel) 924.2 81.44 979.2 93.82 1032 105.7
median gaze marker Y (pixel) 414.2 100.9 386.4 110.4 374.3 79.72

median light intensity (-) 179.2 23.93 189.3 21.55 187.2 22.89
RCLI (-) 11.07 3.771 12.20 4.206 10.05 4.014
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Table 8.4: The means and standard deviations of all features per class for the more traffic condition of Study 2

feature baseline mean baseline SD 1-back mean 1-back SD 2-back mean 2-back SD
left MPD (pixel) 44.68 8.056 43.38 10.60 50.98 8.371

right MPD (pixel) 45.51 9.067 43.34 11.09 51.01 7.789
left RCPD (-) 3.499 2.407 2.515 1.423 3.483 2.533

right RCPD (-) 3.247 2.223 2.960 1.293 3.043 1.360
PERCLOS (-) 0.035 0.038 0.065 0.048 0.085 0.065

median gaze marker X (pixel) 1052 73.35 1021 111.2 983.8 109.4
median gaze marker Y (pixel) 373.2 85.77 385.3 95.80 371.6 101.7

median light intensity (-) 176.9 24.65 183.9 29.43 185.9 17.60
RCLI (-) 12.71 6.007 11.49 5.207 10.96 4.527



Appendix C: Signal smoothing

Figure 8.2 shows the pupil diameter signal as I initially wanted to process it. In the original signal blinks were
depicted with 0 values. These values were removed. Because the pupil detection was inaccurate 1 frame
before the zeroes and up to 4 frames after, these samples were also removed. The resulting gaps were in-
terpolated linearly. A median filter with a width of 3 samples was applied to remove outliers, followed by a
second order Savitzky-Golay filter with a width of 31 samples. The systems yielded accuracies that were 6%
lower than when not applying the filters. A system was trained with just the median filter applied, its accuracy
was 4% lower than the systems presented in this paper. I did continue applying linear interpolation to gaps
created by excluding the blinks and surrounding samples.

Figure 8.2: Signal smoothing not applied in final systems

Figure 8.3: Normalized feature importances for System 1 trained on the combined dataset of Study 1 and Study 2 with smoothing filters
applied

The drop in performance when applying smoothing suggests that a lot of the predictive information of the
time series for pupil diameters is found in the fast dilations and contractions, at least when examined with
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the feature sets of System 1 and System 2. Even just removing single outlier samples with the median filter
decreased accuracy with 4%. The smoothing removes some detail, especially affecting the Relative Change in
Pupil Diameter. When comparing the feature importances of System 1 trained on the smoothed time series
in Figure 8.3 with the feature importances of Figure 6.1, it becomes apparent that it is mainly the importance
of RCPD for both eyes that has changed. It could be that the RCPD captures the same rapid dilations and
constrictions that the ICA, IPA and LHIPA aim to find [6–8]. However, smoothing filters or not, the features
IPA and the LHIPA did not improve classification accuracy for the systems of this paper.



Appendix D: The correlation between light
intensity and pupil diameter

Figure 8.4: Light Intensity vs pupil diameter

Figure 8.5: Light Intensity vs pupil diameter

All correlation coefficients mentioned in this appendix are the Pearson’s product-moment correlation coeffi-
cient (r). When the light intensity increases, pupils generally constrict. In Figure 8.4 we see peaks in the light
intensity coinciding with drops in pupil diameter. The correlation coefficient for this segment is -0.23. While
for a large part we see the same behaviour in Figure 8.5, we also see a sharp drop can be seen in both the Light
Intensity and the pupil diameter at t = 33.5 seconds. This drop cannot be explained by the pupillary light
response. The correlation coefficient for this segment is positive, 0.28. In the screenshot of the eye-camera of
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Figure 8.6, it shows that these coinciding drops were an erroneously processed half-blink. The eye is closed
partially for a short time, causing the system to detect a smaller pupil. The eye never fully closes, the original
signal shows no zeroes that signal no pupil is detected and as a result the half-blink and surrounding frames
are not dealt with in processing. The gaze coordinates are calculated from the pupil position, which is also
shifted by the partial detection of the pupil. The gaze direction ends up on the black dashboard, the result is
a simultaneous drop in light intensity and pupil diameter.

Figure 8.6: Partially closed eye at t = 33.5

For the complete two minute recording the correlation coefficient is 0.03, suggestion there is little to no
correlation between the two variables. For the data of Study 1 and Study 2 combined it is -0.38, but there is
a lot of variation between participants, recordings and even segments of the same recording. Note, r = -0.38
for the raw data, for the processed medians r = -0.40. Table 8.5 lists the means and standard deviations of the
correlation coefficients of all individual segments, grouped per cognitive task and recording condition. The
average correlations range from -0.086 to 0.044, with standard deviations ranging from 0.270 to 0.358. This
indicates very low correlations, with large differences between the correlations. Adding this correlation as a
feature in classification decreased accuracy with a half percent.

Table 8.5: means and standard deviations per cognitive tasks of correlation coefficients of individual segments between the light intensity
measure and the average pupil diameter

cognitive condition mean standard deviation sample size
baseline Study 1 0.044 0.332 321

baseline Study 2 less traffic -0.051 0.318 172
baseline Study 2 more traffic 0.001 0.279 157

1-back Study 1 -0.086 0.358 469
1-back Study 2 less traffic -0.014 0.299 292

1-back Study 2 more traffic -0.002 0.358 318
2-back Study 1 -0.061 0.354 469

2-back Study 2 less traffic 0.020 0.270 315
2-back Study 2 more traffic -0.026 0.317 285



26 Appendices

Figure 8.7: Median values per 6 second segment with pupil diameters averaged over both eyes for Study 1 and Study 2 per cognitive task

Figure 8.7 contains the same data points as Figure 5.2, but separated by cognitive task. The distinction
per cognitive class in this graph seems to be less clear than the distinction per study.



Appendix E: Hyperparameter tuning

The following hyperparameters have been tuned; the number of trees, maximum depth of the tree (max
depth), the minimum number of samples required to split an internal node (min samples split), the mini-
mum number of samples required to be at a leaf node (min samples leaf) and whether bootstrapping would
be used in the trees or not. The number of trees means the number of individual decision trees that vote in the
random forest algorithm. Generally, the more trees, the higher the performance, but the more resources re-
quired for training the algorithm. At some point the performance shows asymptotic behaviour, performance
no longer increases when the number of trees increases, but the amount of required resources will still rise.
For these reasons the optimal value for the number of trees is the lowest number that still results in maxi-
mum performance. The maximum depth of the tree is the number of nodes a tree is allowed to have. As the
standard setting in the scikit-learn library no maximum depth is imposed. The "min samples leaf" is set to 1
if not specified. It can work as a smoothing factor, especially when using regression instead of classification.
The "min samples split" is set to 2 if not specified, meaning a node can split as soon as there is more than
one sample. If bootstrapping is applied, samples are drawn with replacement. As a result not every tree is
trained on the entire dataset. This increases the variance in individual trees, but can reduce the variance of
the overall forest without increasing its bias. Since this does not always work out, both settings have been
tested. By default bootstrapping is used by the scikit-learn library.

Since none of these variables are continuous, a grid was used instead of a continuous range. Together the
parameter options of Table 8.6 form 2160 possible combinations. Trying them all would be inefficient. To find
the best hyperparameters for the Random Forest classifiers in an efficient way, first a randomised grid search
was applied. Out of the 2160 combinations, 100 are picked at random. The best tried combination had 800
trees, no maximum depth, a "min samples split" of 2, a "min samples leaf" of 1 and no bootstrapping.

Table 8.6: The grid of hyperparameters investigated with a randomised grid search

number of trees max depth min samples split min samples leaf bootstrapping
200 10 2 1 yes
400 20 5 2 no
600 30 10 4
800 40

1000 50
1200 60
1400 70
1600 80
1800 90
2000 100

110
none

Hyperparameters that the random grid search determined to be optimal at their standard setting have
been set to their standard setting. The two hyperparameters that were not standard, number of trees and
bootstrapping, were varied. The outcome of the random grid search was used as input for an exhaustive
grid search, all eight combinations of Table 8.7 have been investigated. Two systems returned the maximum
performance of 92.5% accuracy, 1000 trees without bootstrapping and 1200 trees without bootstrapping. The
final hyperparameters were 1000 trees, no maximum depth, a "min samples split" of 2, a "min samples leaf"
of 1 and no bootstrapping. Only the hyperparameters that are not standard are mentioned in the paper.
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Table 8.7: The grid of hyperparameters investigated with an exhaustive grid search

number of trees max depth min samples split min samples leaf bootstrapping
600 none 2 1 yes
800 no

1000
1200

The parameters were tuned on all four systems, the two systems with light intensity features and their two
baselines. The same parameters were found for all but Baseline 2, which reached its maximum accuracy with
600 trees. To make the comparison between systems as fair as possible the same parameters were used for all
systems, so Baseline 2 was trained with a forest of 1000 trees.



Appendix F: Motion simulator
specifications

Table 8.8: Specifications of the eMove eM6-640-1800 motion simulator [34]

Excursions Velocity Acceleration
Single DOF Non-single DOF

Surge -0.48 to 0.60 [m] -0.64 to 0.63 [m] 0.8 [m/s] 7 [m/s2]
Sway -0.50 to 0.50 [m] -0.66 to 0.66 [m] 0.8 [m/s] 7 [m/s2]

Heave -0.41 to 0.41 [m] -0.41 to 0.41 [m] 0.6 [m/s] 10 [m/s2]
Roll -23.8 to 23.8 [deg] -29.2 to 29.2 [deg] 35 [deg/s] 250 [deg/s2]

Pitch -23.7 to 26.0 [deg] -28.2 to 32.9 [deg] 35 [deg/s] 250 [deg/s2]
Yaw -25.4 to 25.4 [deg] -28.7 to 28.7 [deg] 40 [deg/s] 500 [deg/s2]
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Appendix G: A study on take-over
maneuvers

To test generalisability, a study on take-over maneuvers was analysed with the Random Forest classifier trained
on n-back data. This separate study was not used in the training phase. Six different take-over maneuvers
were recorded with the Dikablis Glasses 3 in the same driving simulator set-up as Study 1 and 2. In all scenar-
ios the vehicle would be driving autonomously on the right lane of a two-lane highway. As the vehicle would
approach roadworks in the right lane, the participant would get a take-over warning. The objective was to
take over control of the vehicle and safely merge into the left lane to avoid collision with the obstacle. The
difference between the scenarios was the time between the obstacle and the warning, and the traffic density
in the left lane. Figure 8.8 shows the objective ratings for these six scenarios, where time budget (TB) is the
time between warning and obstacle and traffic density (TD) is the traffic density on the left lane. Error bars
indicate the standard error. Scenario 6 had a 20 second TB and the lowest TD, and was found the least critical
and complex. Scenario 1 had the lowest TB, and the highest TD and was found to be the most critical and
complex. The footage was cut to start from the obstacle warning and end 5 seconds after passing the obstacle.
The remaining footage was cut into 6 second segments which were processed and classified by the Random
Forest classifiers.

Figure 8.8: Subjective ratings of 6 take-over maneuvers [34]

Table 8.9: Segments of take-over maneuvers analyzed with n-
back classifier System 1

Maneuver Baseline 1-back 2-back
S1 83.5% 1.9% 14.5%
S2 82.0% 1.5% 16.5%
S3 87.5% 3.0% 9.5%
S4 76.4% 1.1% 22.4%
S5 75.6% 3.7% 20.7%
S6 74.1% 1.5% 24.4%

Table 8.10: Segments of take-over maneuvers analyzed with
n-back classifier System 2

Maneuver Baseline 1-back 2-back
S1 51.7% 32.4% 15.9%
S2 48.9% 28.9% 22.2%
S3 50.5% 32.5% 17.0%
S4 43.3% 33.1% 23.6%
S5 34.1% 36.9% 29.0%
S6 37.3% 32.8% 29.9%

Table 8.9 shows the results of classifying segments of the study with 6 different take-over maneuvers with
the System 1 classifier. For all maneuvers the category "Baseline" is awarded the majority of segments. In all
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cases "1-back" is awarded the least segments by the classifier. Table 8.9 was created with the classifier System
1, with gaze and LI features. The classifier System 2 in Table 8.10, without gaze features, shows more balance
between the classes. This still defies the expectations.

Figure 8.9: Average pupil sizes during take-over maneuvers

We found that the n-back classifier was not suitable for analysing the study of take-over maneuvers. The
expectation was that S1 would show the highest cognitive load, as it was rated the most critical and least
comfortable. This could have shown by e.g. a higher share of segments classified as 2-back and a lower share
of segments classified as Baseline than for a maneuver associated with a lower criticality, like S6.

The take-over study was done with different participants than the n-back studies. As we have found,
the classifiers are not able to generalise to unseen participants. With this in mind it is not surprising that
the classifiers were not able to classify this results as the subject ratings would suggest. Another plausible
explanation for the results is that the cognitive load of an overtake maneuver is not constant. To be expected
is a spike in load when the warning is given, possibly followed by a 5-second roller-coaster of emotions with
fear, panic, and in case of success, possibly relief or euphoria. System 1 and System 2 require the load to
be constant during a 6-second segment. The n-back tasks provided the participants with a constant level of
cognitive load, the take-over tasks did not. A third plausible explanation is that the load experienced during
a take-over maneuver is not in the range the n-back classifiers were trained on.

An interesting note is that when gaze features are included, almost all segments are classified as baseline,
while 1-back is the smallest class. When the gaze features are not taken into account, the classes are more
balanced. The average pupil sizes, shown in Figure 8.9, did not increase in situations where we expected a
higher load, in contrast to what we have seen with the n-back studies. As the average pupil diameters of the
over-take study were lower than those of the n-back studies, pupil sizes were normalised for all studies when
analysing the take-over scenarios. This had little to no effect on classification results.



Appendix H: Merging 9 recording
circumstances to 3 classes

The systems that do not use group K-fold are trained on 9 classes of Figure 6.2, instead of directly on the 3
classes that we want to distinguish by: "baseline", "1-back" and "2-back". We do not get into this in the paper
because the implications are relatively small and it distracts from the main point of the paper, but in this
appendix we aim to clarify why we do this and why it improves the accuracy.

When guessing at random the expected value of the accuracy of a 3-class problem is 1/3. For a 9-class
problem this is 1/9, which could suggest that a 9-class classification problem is inherently more difficult.
Of course a classifier is not guessing at random, machine learning algorithms can benefit from more clearly
defined classes. When grouping the data of Study 1 and Study 2, we are grouping data with very different
properties. Not only is the median light intensity different between the studies, we found that there are large
differences between subjects. We suspect that our classifiers benefited from having 9 more distinct classes,
yielding higher classification accuracies than when training them on the 3 classes.

After the 9-class classification, the classes were merged to the 3 cognitive conditions, ’baseline’, ’1-back’
and ’2-back’. This means that if a sample was erroneously classified as ’1-back Study 1’, while it belonged to
’1-back Study 2 Less Traffic’, it would now be counted as being classified correctly. This extra step improved
classification, but not by as much as choosing a 9-class system over a 3-class system did. For System 1, with
gaze features, the indirect way of creating the classes described in Section 5.3 improves accuracy with 1.87%.
In the testing of the 10 classifiers that make up the total system accuracy, 9 samples were corrected by the class
merging, accounting for 0.32% of the 1.87% accuracy improvement. For System 2, without gaze features, this
improvement was 0.58%. For System 2, 8 of the 2798 samples were initially classified incorrectly but corrected
by the merging, accounting for just under half of the total accuracy improvement. Note that this is a slightly
different result from Figure 6.2. This is because that image was created out of a single train and test split of
80% and 20% respectively of the data instead of a 10-fold cross-validation.

For the systems trained on the group K-fold splits the advantage of this indirect way of creating classes
was not present. As the accuracy of the systems was low overall, the benefit of more distinct classes was over-
shadowed by the increased difficulty of a 9-class problem with respect to the difficulty of a 3-class problem.
For this reason the systems were trained directly on the three cognitive tasks.
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Appendix I: T-testing on participants
averages

The following tables have been calculated on the combined dataset of Study 1 and Study 2. The averaged
values per participant per cognitive condition were compared between cognitive conditions with paired and
unpaired t-tests. It shows that when pairing the t-tests, the p-values are lower than when performing unpaired
t-tests, indicating that a more significant difference can be found between the cognitive classes.

Table 8.11: Paired t-testing of the median light intensity aver-
aged per participant per cognitive condition

baseline 1-back 2-back

baseline -
t(49) = -1.48

p = 0.144
t(49) = -1.32

p = 0.191

1-back
t(49) = -1.48

p = 0.144
-

t(46) = 0.410
p = 0.684

2-back
t(49) = -1.32

p = 0.191
t(46) = 0.410

p = 0.684
-

Table 8.12: Unpaired t-testing of the median light intensity
averaged per participant per cognitive condition

baseline 1-back 2-back

baseline -
t(49) = -0.347

p = 0.729
t(49) = -0.399

p = 0.691

1-back
t(49) = -0.347

p = 0.729
-

t(46) = 0.0466
p = 0.963

2-back
t(49) = -0.399

p = 0.691
t(46) = 0.0466

p = 0.963
-

Table 8.13: Paired t-testing of the median right pupil diameter
averaged per participant per cognitive condition

baseline 1-back 2-back

baseline -
t(49) = 3.97

p <0.001
t(49) = -5.80

p <0.001

1-back
t(49) = 3.97

p <0.001
-

t(46) = -5.37
p <0.001

2-back
t(49) = -5.80

p <0.001
t(46) = -5.37

p <0.001
-

Table 8.14: Unpaired t-testing of the median right pupil di-
ameter averaged per participant per cognitive condition

baseline 1-back 2-back

baseline -
t(49) = 0.676

p = 0.500
t(49) = -1.70
p = 0.0922

1-back
t(49) = 0.676

p = 0.500
-

t(46) = -0.999
p = 0.320

2-back
t(49) = -1.70
p = 0.0922

t(46) = -0.999
p = 0.320

-

Table 8.15: Paired t-testing of the median left pupil diameter
averaged per participant per cognitive condition

baseline 1-back 2-back

baseline -
t(49) = -1.23

p = 0.223
t(49) = -5.58

p <0.001

1-back
t(49) = -1.23

p = 0.223
-

t(46) = -5.32
p <0.001

2-back
t(49) = -5.58

p <0.001
t(46) = -5.32

p <0.001
-

Table 8.16: Unpaired t-testing of the median left pupil diam-
eter averaged per participant per cognitive condition

baseline 1-back 2-back

baseline -
t(49) = -0.377

p = 0.707
t(49) = -1.99
p = 0.0492

1-back
t(49) = -0.377

p = 0.707
-

t(46) = -1.57
p = 0.119

2-back
t(49) = -1.99
p = 0.0492

t(46) = -1.57
p = 0.119

-
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